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Abstract
Mobile robots and multimobile robotic system usage for task achievement have been an emerging research area
since the last decades. This article presents a review about mobile robot navigation problem and multimobile robotic
systems control. The main focus is made on path planning strategies and algorithms in static and dynamic environ-
ments. A classification on mobile robots path planning has been defined in the literature and divided to classical
and heuristic approaches. Each of them has its own advantages and drawbacks. On the other hand, the control of
multimobile robots is presented and the control approaches for a fleet of robots are presented. Scientists found that
using more than one robot as opposed to a single one presents many advantages when considering redundant task,
dangerous tasks, or a task that scales up or down in time or that requires flexibility. They have defined three main
approaches of multiple robots control: behavior-based approach, leader–follower approach, and virtual structure
approach. This article addresses these approaches and provides examples from the literature.

1. Introduction
When dealing with autonomous mobile robots navigation problem, path planning phase is of high con-
sideration to achieve the robot target reaching. It has been an active research field for the last decades
[1, 2, 3] and it was considered as one of the optimization problems [4]. It stands for finding the optimal
path from the initial robot position to its desired final position while ensuring safe and smooth nav-
igation [5]. Path planning has been divided into two categories: local and global path planning. The
former considers a limited knowledge of robot environment and the latter is based on a complete knowl-
edge of the environment. Path planning methods are also classified to classical approaches (CAs) and
heuristic approaches (HAs) [6, 7]. CAs include Cell Decomposition CD [8], Roadmap Approaches RA
[9], Potential Field PF [10], Subgoal Network SN [11], etc. Heuristic-based methods can be defined as
intuitive or reactive approaches where the path planning problem is treated in an intelligent way using
Neural Network algorithms NN [12], Genetic Algorithm GA [13], Particle Swarm Optimization PSO
[14] etc.

Unlike single robot setups, multirobot systems provide more efficient and robust task completion and
allow a higher degree of complexity and sophistication behavior. For example during a payload trans-
portation, in order to facilitate the task, the payload can be appropriately distributed among a group of
inexpensive robots due to simpler kinematics and architecture and the payload handling ability may be
increased. There have been a significant studies related to payload transportation using multiple robots
[15, 16, 17, 18, 19, 20]. In ref. [21], an overview about mobile robots and cooperative control for multia-
gent systems was presented. In recent literature, the control problem of a group of robots was considered
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Figure 1. Control architecture for a multi-robot system [26].

and many projects treated the problem of control architectures and control approaches [22, 23, 24, 25,
26, 27, 28, 29, 30, 31].

Multirobot transportation tasks could be considered as a navigation in formation control problem.
This is a classical issue that has attracted the attention of many researches in the last decade [32, 33,
34, 35]. The proposed approaches can be classified into three main groups: behavior-based approach,
leader–follower approach, and virtual structure approach. Mobile robots control needs the juxtaposition
of three main phases: perception, decision, and action. The perception builds a model of the environment
where the robot evolves, the decision uses this model to generate the motion instructions. Finally, the
action transforms these instructions to an adequate control for the robot effectors. A sophisticated control
must manage these three phases [26].

During a transportation task dedicated to a group of mobile robots, the mobile robot control not
only depend on its proper perception and objectives, but also it will take into consideration a certain
information related to the global evolution of the multirobot system. Obviously, this will add a certain
level of complexity to the mobile robot controller. This complexity is related to:

• The dynamics of the interaction between the robot entities in the environment. These interactions,
if they are not well mastered, may influence in a harmful way the system evolution. The robots
can be blocked, embarrassed, and desynchronized.

• The number of variables governing the system evolution, resulting from the raising of the number
of used systems (robots) in the environment,

• The complexity of the inherent control of one robot that has to act in function of his own received
instructions coming from the environment and also has to adapt its behavior to the other entities.
That means that the robot will try to converge to a viable or even optimal equilibrium for the
cooperative task execution,

• The perceptual uncertainties of the robot which can add more complexity for the robot control
for a large number of sensors.

All these mentioned points lead to complicating the multimobile robot system control.
The control scheme in Fig. 1 was extended for the case of multirobot system. We can conclude that

the robots share the same environment and that the decisions (control) generated by each controller are
influenced by the interactions with the other robots.

This article is organized as follows: Section 2 will give an overview about mobile robots, navigation
approaches, and obstacle avoidance techniques developed in the literature. Section 3 will compare the
centralized and decentralized control architecture and navigation in formation for multimobile robots.
Finally Section 4 will conclude the proposed work.
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Visibility graph [6]. Voronoi Diagram [6]

Figure 2. Roadmap Approach.

2. Mobile robots path planning
When a mobile robot aims to reach a desired position, which is denoted as Target Reaching (TR) phase,
the problem of localization, path planning, and navigation arise. Localization is the robot’s ability to
identify its position exactly in the real environment w.r.t its position inside a map. Path planning prob-
lem treats the calculation of an optimal path without collision from an initial configuration to a final
configuration in a free space. Navigation stands for the identification of a robot’s position in an accurate
way, plan, and follow a planned path. In literature, path planning problem is widely considered [36] as a
major problem in robotics field and various methods have been developed for mobile robots navigation.
They are classified into two categories:

• Classical approaches (CA);
• Heuristic approaches (HA);

2.1. Classical approaches (CA)
Artificial intelligence (AI) and Heuristic techniques appeared recently to solve navigation problem for
mobile robots whereas CAs were very popular for solving this problem long ago before. By using CAs
to perform a mobile robot task, it was demonstrated that either a result could be obtained or does not
exist. Cell Decomposition CD, Roadmap Approach RA, and Artificial Potential Field APF are some of
the CAs which will be discussed.

Roadmap approach (RA): The Roadmap Approach, commonly known in literature as Retraction,
Skeleton or Highway approach, is the strategy to navigate from the initial position to a desired posi-
tion via the shortest path selected from a set of paths which are collision-free connections of area [9].
The notion of nodes are used to define the robot optimal path. In literature, Voronoi and visibility graphs
are two popular methods to develop a roadmap. The visibility graph method (cf. Fig. 2(a) [37] connects
the initial and the target position with nodes from the map. This path consists of the initial, target posi-
tion, and vertices of polygonal obstacles. The Voronoi diagram (cf. Fig. 2) [38, 39, 40] is based on the
map division into tessellating polygons. The edges are defined by the use of points that are equidistant
from the adjacent two points on the boundaries of the obstacle.

A weak point of visibility graph is that the optimal paths are not safe as it collides with the vertices
or even edges of obstacles. Voronoi diagrams are able to avoid this issue.

Cell decomposition (CD) approach: This approach is widely used for mobile robots path planning [8,
41] and is based on space representation based on grids or cells (cf. Fig. 3). Then a connectivity graph is
used to evolve from one cell to another to achieve a navigation of mobile robot. The space representative
cells are labeled as pure or corrupted depending on the existence of obstacle or not. The optimal path is
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Exact Cell Decomposition method for mobile robot target reaching
[47].

Approximate Cell Decomposition [47].

(a) (b)

Figure 3. Cell Decomposition method.

Figure 4. Mobile robot navigation by PF approach [6].

formed by a sequence of continuous pure cells from the initial position to the ending desired position [42,
43]. One important aspect in CD method is borders assignment between the cells which will differentiate
between exact, approximate, and probabilistic CD approach. In excat CD method, the borders are defined
as an environment structure function [44]. For approximate CD, the space decomposition is made as an
approximation of the map [45]. And for probabilistic CD, the borders are defined as in the approximate
CD but do not represent any physical meaning [46].

Potential field (PF) approach: The Potential Field approach was introduced by Khatib [10] in 1986 for
mobile robot navigation. This methods takes into consideration the resultant force between two opposite
attractive and repulsive forces. The Target and obstacles are acting like charged surfaces and the total
potential creates the imaginary force on the robot. This generated force ensures the robot attraction
towards the goal while keeping it away from the obstacle (cf. Fig. 4). The mobile robot reaches its
desired position by following the negative gradient which allows obstacle avoidance. Many researchers
applied this method for mobile robot navigation such as the work presented in refs. [47, 48, 49, 50].
Donmez et al. [51] used adaptive artificial potential field on acquired image based on vision system and
combined a decision tree-based controller to ensure a safe mobile robotic system navigation in a static
indoor environment.

One of the weakness points of Potential Field approach is getting trapped in local minima or being
computationally intensive.

Other CAs: Other CAs exist in literature such as Subgoal Network (SN) [11] based on the use of a
set of possible configurations to reach the goal from a starting position. Dijkstra’s Algorithm (DA) is
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also a classical algorithm used for path planning based on finding the shortest possible path within a
cloud of nodes that represent spaces between obstacles [52]. Rapidly Exploring Random Tree Method
are developed to deal with an environment with obstacles and differential constraints. It is based on
constructing in an incrementally decreasing way of the estimated gap of a selected arbitrarily point to
the tree.

CAs appeared to be less performant in unknown and dynamic environment. It requires high computa-
tional cost to adapt the environment dynamics (changes) and for this it is not recommended for real-time
implementation as they are dependent on the environment prior knowledge to generate an optimal path.

2.2. Heuristic approaches
Recently, HAs have gained more interest over conventional approaches thanks to their better efficiency
for mobile robots navigation and control. HA algorithm have the advantage to take into consideration the
robot environment uncertainties. HAs include genetic algorithm (GA), fuzzy logic (FL), neural network
(NN), and other miscellaneous algorithms. These approaches are discussed below.

Genetic algorithm (GA): Introduced first by Bremermann [13] in 1958, GAs is a search-based opti-
mization tool inspired from genetics and natural brain selection. The first use of these algorithms in the
field of computer science was used first by Holland [53] in 1975. Recently its use is spread to a wide
range of applications such as mobile robots navigation. It deals with optimization problems to maximize
or minimize an objective function w.r.t given constraints. Mobile robots navigation control based on GAs
has been introduced in ref. [54] in a static environment. Simulation results for a simple specific obstacle
shape (polygonal obstacle) have been presented. In case of unknown environment, GA are very robust
and efficient real-time method which ensures processing of few data about the environment compared
to CAs which are very slow for searching and optimization. Shing et al. [55] presented a real-time path
planner using GA approach for mobile robot navigation. GA approach is used by Xiao et al. [56] for a
navigation problem such as path planning and obstacle avoidance. The nonlinear environmental dead
end navigation problem is addressed by ref. [57] in uncertain areas. They developed an online training
model to come out with the fittest chromosome that ensures obstacle collision free. In literature, scien-
tists mostly worked on GA use for static environment navigation problems but navigation in dynamic
environment with uncertainties has been proposed by Shi et al. [58].

Fuzzy logic (FL): For navigation problems including a high degree of uncertainty, complexity, and
nonlinearity, FL algorithms are used. They were introduced by Zadeh [59] in 1965 and then used in all
areas of R&D. Data processing and classification, decision-making, image processing, pattern recogni-
tion, and control present some of these fields. The concept of the FL framework is built based on the
noteworthy ability of people to make decisions based on processing perception-based information. It
converts the human-supplied rules to its equivalent mathematical models. This simplifies the work of
system designer and computer to extract valuable and exact information about the system performance
way in real world and as consequence, it is used in mobile robot navigation and path planning. In ref.
[60], authors used FL controller to assist the sensor-based mobile robot navigation in an indoor envi-
ronment. In ref. [61], authors designed and implemented a trajectory tracking mobile robot controller
using FL for indoor navigation.

Neural network (NN): the concept of artificial NN is based on simple and highly interconnected pro-
cessing elements. The information is transferred by these elements based on their capabilities of dynamic
state response to external inputs. NN architecture shown in Fig. 5 is presented by layers and intercon-
nected nodes. These latter are an activation function. The input layer of the NN mechanism identifies
the patterns which will be communicated to hidden layers for actual processing via a system of weighted
connections. These layers communicate with the output layer in order to provide the required answer.
What makes NN a useful method in mobile robot’s navigation problem are its very specific features
such as generalization ability, massive parallelism, distributed representation, learning ability, and fault
tolerance.
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Figure 5. Architecture of NN [62].

Janglova [12] proposed a NN-based application for a wheeled mobile robot navigation in a partly
undefined environment. He used two NN-based mechanisms for the development of a collision-free
path. The first neural mechanism finds the free space using sensory data. The second NN finds a safe
path by avoiding the nearest obstacle. Jinglun [62] combined NN with Hierarchical Reinforcement
Learning (RL) for optimal algorithm system. Experimental results of the proposed algorithm proved
that it decreases the planning time, lowers the number of path steps, reduces the convergence time, and
enhances the smooth as well as the movement capabilities of the robots.

Firefly algorithm (FA): Firefly algorithm, also known as the metaheuristics algorithm, has been intro-
duced by Yang [63] in 2008 and was inspired from the fireflies flashing behavior. It is consisted of
random states and general identification as trial and error of fireflies which is existing in nature. The
firefly belongs to wing beetle family Lampyridae (commonly called lightning bug since they are able
to produce light). The light is produced based on an oxydation process of Luciferin in the presence of
enzymes Luciferase. This process of light production is known as bioluminescence. This light is used
for mate selection, message communication, and sometimes to scare predators. The FA gained a lot of
interest in the recent years as an optimization tool and is used in many engineering applications such
as mobile robot navigation. Hidalgo-Paniagua et al. [64] proposed a FA-based method for a mobile
robot with fixed obstacle. They have accomplished the three elementary objectives of navigation which
are: path length, smoothness, and safety. Firefly algorithms are very recent and have gained interest
for mobile navigation problems. It is able to identify the best optimal path in short time which is very
efficient. It also ensures safe navigation as the determined path may avoid all obstacles.

Particle swarm optimization (PSO): PSO, presented by Eberhart and Kennedy [14] in 1995, is a
nature-based metaheuristic algorithm which adopts the social behavior of creatures such as fish schools
and bird flocks. It is a fast growing optimization tool for solving the diverse problems of science and
engineering. The PSO is based on mimicking social animal behavior but does not need any leader to
reach the target. When a herd of animals goes to look for food, they go with one of the nearest members
to food. Hence, the flock of animals reaches their required solution by their own communication strat-
egy with the population members. The PSO algorithm consists of a group of members where each one
represents a potential solution. Recently, PSO is commonly used for the mobile robot navigation. Tang
et al. [65] discussed the mapping and localization problems of mobile robot navigation in the undefined
environment by using a multiagent particle filter. PSO usage helped in calculation reduce and held more
stable convergence characteristics.

Ant colony optimization (ACO): ACO is an algorithm presented by Marco Dorigo in 1992 [66]. It is
a population-based approach developed to solve computational problems. This algorithm was inspired
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from the behavior of ants and its capability to find the best path to a food source from nest. Recently, the
ACO is used to optimize mobile robots control for navigation and obstacle avoidance. Guan-Zheng et al.
[67] have presented the ACO algorithms for mobile robots real-time path planning. The use of the ACO
boosts the convergence speed, solution variation, computational efficiency, and dynamic convergence
behavior when compared with other algorithms such as GA.

Reinforcement learning (RL): RL is an approach basically inspired from animal learning and which
uses experience to determine the optimal decision-making plan from experience [68]. Its goal is to teach
the robot how to act in its unknown surroundings by performing the most favorable Q-value function that
commits the best results [69]. Deep Reinforcement Learning-based (DRL) navigation methods consist
of determining the optimal plan to guide the robot to a target position while interacting with its sur-
roundings [68]. An example of application of DRL for mobile robot end-to-end path planning method
was presented in ref. [70]. A deep Q-network (DAN) is prepared and trained to estimate the robot’s
state-action value function. In ref. [71], a Globally Guided Reinforcement Learning approach (G2RL)
is introduced. G2RL is designed to answer the multirobot trajectory planning issues. Experiments proved
that it demonstrates excellent generalization and performs likewise the fully centralized state of the art
standards. Another DRL-based proof of concept for real autonomous robot navigation was introduced
in ref. [72]. It uses NN and combines a 2D laser scanner with a 3D-RGBD camera to produce needed
network inputs.

Bio-Inspired Learning Control Approach (BILCA): the BILCA presented in ref. [73] is a novel
approach dedicated to the evaluation of robot motion trajectories and visual control commands and it is
based on the Learning from Demonstration (LfD) framework. LfD facilitates knowledge transmission
from the guiding human to the robot. It depicts a group of supervised learning where the behavior is
described as pairs of states and actions [74]. Two phases are involved in BILCA: (1) actuator commands
are learned through Firefly Algorithm (FA) and demonstrations of desired behavior, and (2) real-world
experiment used to evaluate the acquired wheel commands. This method merges metaheuristic method
together with the LfD framework. This integration has several benefits: (1) robot motion persists unin-
terrupted even-though the existence of feature outliers, changing scene illumination, or image noise,
(2) artificial markers in the environment are not required for the working of BILCA for vision-based
control, and (3) proposed hybrid scheme resolves the absence of the homography plane. Despite these
advantages, BILCA still has few limitations. First, the two phases of the LfD framework, learning and
reproduction, cannot be executed at the same time. Gathering group of desired trajectories to learn and
learning of actuator commands are essential in order to start the second phase. Second, the complexity
of trajectory to generate, number of demonstrations of trajectories, algorithm population and the whole
iteration amount, make the learning algorithm time-consuming.

Other algorithms: Many researchers gave different intelligent techniques to perform the task of mobile
robot navigation in various environmental situations such as Shuffled frog leaping algorithm [75, 76,
77], Cuckoo search algorithm [78, 79], Artificial bee colony algorithm [80, 81, 82, 83], InvasiveWeed
Optimization [84, 85, 86], Harmony Search Algorithm [87, 88], Bat Algorithm [89, 90, 91], Differential
Evolution Algorithm [92, 93, 94], reactive obstacle avoidance based on boundary following using sliding
mode control [95], collision avoidance based on geometric approach [96, 97], and many more.

Patle presented a statistical comparison review of the use of the two approaches [6] in mobile robotics.
Results resumed in Fig. 6 are based on the analysis of the percentage of published papers for both CAs
and HAs.

CAs have many limits such as the lack of decisive information about external environment, the lim-
ited computational capabilities, the need of an accurate sensing mechanism for real-time navigation,
and others. Thus, the uncertainty and unreliability of these CAs makes them not convenient enough
for real-time systems. Yet, HAs came up as a better solution to repel these restraints notably the real-
time navigation problems. They are more efficient and most used for navigation in an undetermined
environment.
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Figure 6. Development of mobile robot navigation approaches. [6].

3. Multimobile robots navigation
Before designing a control architecture for a group of mobile robots, it is extremely important to take
into consideration the choice of centralizing the control or distributing it for the robotic entities.

3.1. Centralized control architecture versus distributed control architecture
Centralized control [26, 27] is often synonym to the Top-Down approach. It is based on a single
controller relocated from the physical structure of a robot that processes all the information needed
to achieve the desired control objectives. Thus in a centralized control, both the individual member and
the whole group can improve superior performance and optimal decisions. This architecture implies a
global knowledge of each element of the system. It requires a high computational power and a massive
information flow. Although, it is not robust due to the dependence on a single controller.

In contrast with centralized control, in a decentralized control [26, 27], often synonym for the
Bottom-Up approach, each element of the system has its own controller and is completely autonomous
in the decision process. This implies a reduced number of communicated signals and information.
Decentralized controllers are then more flexible and require less computational effort. It is also needed
to provide some degrees of centralization for human operator for programming tasks and to monitor the
system.

Twinning both control architectures makes a hybrid architecture where a central processor applies
high-level control over autonomous entities.

For multimobile robots navigation, the main used approaches are discussed in the following
section.

3.2. Navigation in formation
Formation control is more and more considered in recent literature [28, 30, 98, 29, 31, 34, 99, 100] and
is classified into three main approaches: the behavior-based approach, the leader–follower approach, and
the virtual structure approach.

In the behavior-based approach [101, 31, 102], primitives for each element is designed (e.g. obsta-
cle avoidance, formation keeping, target seeking, trajectory tracking). Then, a more complex motion
patterns can be generated by using a weighted sum of the relative importance of these behaviors and
the interaction of several robots. Although, the main drawback of this approach is the complexity of the
dynamics of the group and as a consequence, the desired formation configuration cannot be guaranteed.

Leader–follower approach [28, 34, 103, 99, 104, 105] is a strategy in which a robot will be the leader
while others act as followers. The main advantage of using this approach is the reduction of the strategy
to a tracking problem where the stability of the tracking error is shown through standard control theoretic
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Figure 7. Triangular Virtual structure navigation using Khepera mobile robots [29].

techniques: the leader will aim to track a predefined trajectories and the followers track its transformed
coordinates with some prescribed offset. A disadvantage of this approach is that there is no feedback
from followers to the leader so that if a follower is perturbed then the formation cannot be maintained
which involve a lack of robustness to this strategy.

The final approach is Virtual-structure (VS) [17, 16, 29, 30, 106] in which the entire formation is
considered as a rigid body and the notion of hierarchy does not exist. The control law for each entity is
derived by defining the VS dynamic and then translated to the motion of the VS into the desired motion
of each vehicle. The main advantages of this approach are its simplicity to prescribe the coordinate
behavior of the group and the maintenance of the formation during maneuvers. However, the possible
application will be limited if we aim to maintain the same VS especially when the formation shape needs
to be frequently reconfigured.

In ref. [28], authors presented a control law for formation control for the flocking problem. A kine-
matic model for a car-like system was developed and a modeling for attraction to a target was achieved
considering the obstacles avoidance problem. The proposed control law was developed based on a
defined Lyapunov function. It was validated by simulation results. In refs. [29, 30, 107], the different
approaches toward cooperative control of mobile robots were introduced and the aim was to develop
and design a virtual structure controller using the so called mutual coupling terms between robots by
introducing coupling parameters relating the robots in the control law function.

In ref. [31], a work combining behavior-based approach and virtual structure method to build a dis-
tributed control architecture is proposed. Obstacle avoidance and attraction to a dynamic target were
considered (cf. Fig. 7). Unicycle robot model was used and navigation in formation problem was mod-
eled to make a control law architecture based on Lyapunov function which was validated by simulation
and experiments.

In ref. [108], a bio-inspired formation control algorithm for swarm mobile robots is presented based
on ant agents (AA) and pheromone agents (PA). The communication is based on migration of PAs
generated by the other AAs to drive and attract robots to compose the desired objective formation. A
local information based on vector values linked to the PA is generated and specifies the desired locations
to be occupied by the neighboring robots. Figure 8 illustrates the proposed algorithm.

In ref. [34], the leader–follower formation control for nonholonomic mobile robot was considered
based on bioinspired neurodynamics-based approach. In this article, trajectory tracking for a single
robot was extended to formation control based on backstrepping technique in which the follower can
track in real time the leader by the proposed kinematic controller. In backstepping control, it was used
the derivative of the reference orientation instead of the reference orientation. This technique ensures
the tracking controller stability and simplicity. As a typical biological model, the shunting model was
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Figure 8. A1 generates a pheromone agent and attracts A2 with its robot R2 [108].

adopted for this work. Autonomous navigation of vehicle in an urban environment was considered in ref.
[101]. This article presents a control law based on a novel definition of control variables and Lyapunov
function based on the distance error, orientation, and a new parameter related to angle between robot
and target positions. This control law was designed for point stabilization (reach a point with a certain
orientation) and trajectory tracking problem (track a time parametrized reference). A modeling for tri-
cycle was presented and the control law was developed based on Lyapunov function definition. This
work was validated by simulation and experimentation. In ref. [103] presents works for leader–follower
motion coordination. Trajectory tracking controller was designed to make followers track a virtual vehi-
cle using NN approximation in combination with backstepping and Lyapunov direct design techniques.
In ref. [99] as well the leader–follower formation problem was studied and a control law was developed
in which the control input were forced to satisfy suitable constraints between robots and which must
be respected to maintain the desired formation. In ref. [104], authors presented a distributed formation
control architecture that accommodates an arbitrary number of group leaders and arbitrary flow among
vehicles. Authors in ref. [105] presented the problem of modeling and controlling leader–follower for-
mation control of mobile robots and developed a controller based on feedback linearization and a sliding
mode compensator to stabilize the overall system including the internal dynamics.

In ref. [109], various time-varying and time-invariant controllers for unicycle mobile robots were
presented and implemented on Khepera robots. In ref. [110], the problem of controlling two-wheeled
mobile robots is considered and a feedback control scheme is able to cope with dynamic environments.
In ref. [106] considered the creation of algorithm for a group of robot coordination. It employs
coordination and trajectory following techniques. The developed control law was based on Lyapunov
technique and graph theory embedded in the virtual structure. In ref. [111], it was considered the design
of point to point control algorithm to drive a robot from any arbitrary position to another position. The
control variables are derived using Lyapunov’s stability technique. In ref. [112], a new control law using
an appropriate Lyapunov function was presented. The model of unicyle robot and the configuration
of error were modeled to finally deduce a control law and to prove the stability of the Lyapunov
function.

4. Conclusion
This article presented a review of used approaches for path planning and control of mobile and mul-
timobile robotic systems. It has also shown the strategies and techniques developed in the literature
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for optimal path planning and target reaching. CAs for searching and optimization are very slow in real-
time compared to reactive approaches which require more interest from researchers to solve in real time.
The three primary objectives of navigation are path length, path smoothness, and path safety. CAs are
less performant in unknown and dynamic environment as it requires high computations. HAs presented
a better solution to undertake these restraints notably the real-time navigation problems and adaption
to environmental dynamics. They are more efficient and most used for navigation in an undetermined
environment. Also the article presented multimobile robots control approaches for navigation and for-
mation exceptionally for transportation tasks. Scientific works from literature using multirobot control
approaches were presented and analysed.
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