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Summary

Increasing evidence has demonstrated that obesity impairs female fertility and negatively affects
human reproductive outcome following medically assisted reproduction (MAR) treatment. In
the United States, 36.5% of women of reproductive age are obese. Obesity results not only in
metabolic disorders including type II diabetes and cardiovascular disease, but might also be
responsible for chronic inflammation and oxidative stress. Several studies have demonstrated
that inflammation and reactive oxygen species (ROS) in the ovary modify steroidogenesis and
might induce anovulation, as well as affecting oocyte meiotic maturation, leading to impaired
oocyte quality and embryo developmental competence. Although the adverse effect of female
obesity on human reproduction has been an object of debate in the past, there is growing
evidence showing a link between female obesity and increased risk of infertility. However,
further studies need to clarify some gaps in knowledge. We reviewed the recent evidence on
the association between female obesity and infertility. In particular, we highlight the association
between fat distribution and reproductive outcome, and how the inflammation and oxidative
stress mechanisms might reduce ovarian function and oocyte quality. Finally, we evaluate the
connection between female obesity and endometrial receptivity.

Introduction

Obesity affects over 600 million adults worldwide. Its prevalence is rising steadily in developing
and developed nations, inducing higher morbidity and mortality rates (Wang YC et al., 2011;
Flegal et al., 2013; Meng et al., 2021). In some countries, such as in the United States, obesity has
evolved from a health problem to an epidemic. Recent data have shown that 68% of the United
States adult population is overweight, and 39.6% is obese. In females of reproductive age (20–39
years), the prevalence of obesity is comparable with the general population (36.5%), but it is
higher in the African American (55%) and Hispanic (51%) communities (Hales et al., 2017).

Obesity is defined as a body mass index (BMI) greater than 30 kg/m2 and overweight when
the BMI is more than 25 kg/m2. Considerable attention has been given to research on the mech-
anisms underlining obesity and its consequences. The raising of lipid storage in adipose tissue
and other metabolic organs leads to cellular lipid toxicity, inflammation and ROS formation
that induces oxidative stress. At the end of the last century, the adverse effect of obesity on
reproduction was always considered the object of discussion and mainly controversy
(Bellver et al., 2006).

At this time, there is enough evidence suggesting that obese women report an increased risk
of ovulatory and anovulatory infertility compared with the age-matched lean women
(Maheshwari et al., 2007; Ramlau-Hansen et al., 2007; Kumbak et al., 2012). Furthermore, obese
women have reduced receptiveness to gonadotropins and show a decreased oocyte number and
quality. In addition, reduced implantation rates and pregnancy outcomes following MAR treat-
ments have been reported, as well as higher risk for miscarriage rates compared with their lean
counterparts (Boots and Stephenson, 2011; Kumbak et al., 2012; Broughton and Moley, 2017).
However, themechanisms by which high BMI impairs almost each reproductive system compo-
nent, from oocyte to embryo development and the uterus, have not been completed elucidated
(Bellver, 2008; Jungheim et al., 2010; Wu et al., 2010). Therefore, the primary goal of this review
was to summarize current evidence assessing the reproductive outcome in obese patients:
analyzing how lipid toxicity impairs ovarian function and oocyte competency.

A preliminary investigation showed that gene expression during the window of implantation
revealed endometrial dysregulation in obese women correlated to normal-weight controls
(Bellver et al., 2011). Finally, we highlight recent studies investigating the relationship between
female obesity and endometrial receptivity, which might reduce pregnancy outcomes in MAR
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cycles (Bellver et al., 2008; Boots and Stephenson, 2011; Kumbak
et al., 2012; Broughton and Moley, 2017).

Sign of oogenesis

The precursors of oocytes are the proliferating primordial germ
cells (PGCs). They develop in fetal life and start themeiosis process
that had been arrested in the diplotene stage of prophase I. The
germinal vesicle (GV) stage lasts for several years in humans.
The GV-arrested oocytes are surrounded by a single layer of flat-
tened granulosa cells (GC) and compose the primordial follicles,
usually formed during fetal life in primates (Hunt and Hassold,
2008). Subsequently, GC proliferation and oocyte growth promote
preantral follicle development, under the control of intraovarian
factors, either activating or inhibitory. At this stage, GC express
follicle-stimulating hormone (FSH) receptors that stimulate
follicular growth and oestradiol (E2) production and control GC
proliferation.

Preantral follicles are also reactive to the transforming growth
factor (TGF) family and the androgens, insulin and insulin-like
growth factor-1. A critical component is the formation of theca cell
(TC) layers from the ovarian stroma, which provide follicles with
luteinizing hormone receptors. Starting from cholesterol, LH coor-
dinates the production of androgen that is converted to E2 in GC.
Oestrogens also regulate FSH receptor activation and LH receptor
expression in GC (Canipari et al., 2012). During this growth phase,
the oocyte secretes the zona pellucida (ZP) glycoproteic shell
around the ooplasm, responsible for the interaction with sperm
cells at the time of fertilization and critical for avoiding polyspermy
and abnormal fertilization.

The pulsatile secretion of FSH stimulates the transition to the
antral phase, identified by the presence of the antral cavity filled
with follicular fluid (FF) and by the differentiation of the cells
around the oocyte, the cumulus cells (CC), and mural GC lining
the antrum. FSH is produced from a cohort of antral follicles,
the follicle with the higher mitotic rate of GC and elevated E2
production becomes the dominant follicle, while the less mature
follicles proceed to atresia. The preovulatory follicle containing
the GV-arrested oocyte at this point is ready to respond to
the LH surge that triggers meiotic maturation and ovulation
(Rajkovic and Pangas, 2017).

The process of meiotic resumption is a delicate and intricate
one, which involve the cooperation between hormones and signal-
ling pathways (Canipari et al., 2012; Liu et al., 2019). The LH signal
induces the activation of mitosis promoting factor (MPF) and
mitogen-activated protein kinase (MAPK) signalling leading to
the formation of the first meiotic spindle together with the
extrusion of the first polar body (PBI), and the oocyte arrested
at metaphase II (MII). At ovulation, the oocyte is released into
the fallopian tube. After fertilization, the second meiosis will be
completed by the extrusion of the second polar body and male
and female pronuclei formation. The release of progesterone is
essential to prepare the endometrium for implantation (Edson
et al., 2009).

Obesity and inflammation

Adipose tissue is not only involved in energy storage but it is an
endocrine organ that secretes numerous bioactive and chemical
signals (Berg and Scherer, 2005). Accumulating evidence suggests
that obesity is linked to a chronic low-grade inflammation state
(Hotamisligil, 2006). Increased lipid storage in adipose tissue

and metabolic organs leads to cellular lipid toxicity, inflammation
and oxidative stress (Snider and Wood, 2019), which induces
metabolic dysfunctions like type II diabetes and cardiovascular
diseases (Wang YC et al., 2011; Finkelstein et al., 2012). Chronic
inflammation is associated with persistent and irregular chemo-
kine and cytokine production (Snider and Wood, 2019).

Chemokines are molecules with chemotactic activity directed at
specific leukocytes populations. These compounds are released by
stromal cells and endothelial cells, whereas their receptors are
located on the leukocytes’ surface, allowing a specific targeting
during immune responses (Shimizu et al., 2011). Persistent inflam-
mation induces changes in cell metabolism andmicrobiomemodi-
fications that can induce a de novo inflammatory response (Garn
et al., 2016; Kuroda and Sakaue, 2017). Low-grade chronic inflam-
mation in adipose tissue has a pivotal role in obesity-related
complications
as insulin resistance, metabolic syndrome and type 2 diabetes
(Kuroda and Sakaue, 2017). In the context of obesity, adipocyte
hypertrophy results from the storage of increased circulating
triglycerides (Engin, 2017).

Macrophages are recognized as a centre of inflammatory
response in obesity, producing cytokines and chemokines (Cinti
et al., 2005). Furthermore, macrophage infiltration into adipose
tissue is enhanced by obesity (Xu et al., 2003; Ouchi et al., 2011;
Kuroda and Sakaue, 2017). Notably, cytokines and adipokines
released into the bloodstream might promote an inflammatory
response in other organs, including the ovary (Ouchi et al.,
2011; Wang and Huang, 2015; Xie et al., 2016). Due to the inter-
dependence of inflammation and oxidative stress, it is not
surprising that obesity is a state of chronic oxidative stress,
producing ROS and overcoming the antioxidant system (Piya
et al., 2013; Rimessi et al., 2016).

Investigators have identified a symbiotic relationship between
different anatomical sites, including skin, colon and vagina, with
local bacteria changes (Cho and Blaser, 2012; Belizário et al.,
2015). In the gut, there is a symbiotic relationship between its
microbiome, the intestinal epithelia, immune system and inflam-
matory responses. Gut dysbiosis can be identified in obese patients,
with an increased ratio of two bacteria families: Firmicutes and
Bacteroidetes (Ley et al., 2005; Turnbaugh et al., 2006; Riva
et al., 2017).

This change induces a loss of tight junctions among cells with
increased epithelial permeability (Saad et al., 2006) and leakage of
lipopolysaccharides (LPS), resulting in low-level endotoxemia and
induction of systemic inflammation (Figure 1). Increased fatty acid
and LPS in the blood circulation, associated with gut microbiome
changes and high caloric diet, have been described by several
authors (Ley et al., 2005; Saad et al., 2006; Turnbaugh et al.,
2006; Cani et al., 2007; Cox and Blaser, 2013). Together, these
studies have established the now well accepted paradigm that
obesity is a chronic condition characterized by low-grade inflam-
mation, oxidative stress and increased gut permeability.

Cytokine and chemokine signalling in the ovary

As previously discussed, the process of folliculogenesis starts with
the recruitment of primordial follicles, progressing through the
proliferation of granulosa and thecal cells, oocyte maturation,
steroidogenesis and ovulation (Richards et al., 1988; McLaughlin
and McIver, 2009). Each stage involves paracrine and endocrine
environmental dialogue between the oocyte and somatic cell layers,
mediated mainly by a vast ensemble of hormones and cytokines
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(Pasquali and Gambineri, 2006), critical for producing a mature,
competent oocyte (Eppig, 1985; Richards and Hedin, 1988;
Buccione et al., 1990; Oktay et al., 2000).

Cytokines are key regulators of ovarian physiology,
contributing to creating an appropriate environment for
follicle selection and growth (Field et al., 2014). They support
resident and infiltrating leukocytes to process a complex spectrum
of signals resulting from direct-cell contact with their environment
(Połeć et al., 2011). Therefore, leukocytes are the most relevant
cytokine producers in the ovary, although ovarian somatic cells,
including stromal, luteal, granulosa and thecal cells, are also an
important source of those compounds (Gilchrist et al., 2000).

Evidence suggests that primordial-to-primary follicle transition
is mediated by pre-GC, surrounding oocyte in primordial follicles.
Pre-GC action in animal models is mediated by a range of cyto-
kines, such as stem cell factor, fibroblast growth factor (FGF-2)
and leukaemia-inhibitor factor (LIF) (Nilsson and Skinner,
2004; Wang and Roy, 2004). During the follicular phase,
activated T-lymphocytes, macrophages, monocytes and neutro-
phils can be found in the theca layer (Wu et al., 2006).
Granulocyte–macrophage colony-stimulating factors (GM-CSF)
increase preantral follicle progression, and decrease granulosa cell
proliferation and oestradiol (E2) and progesterone (P4) synthesis
(Wang and Roy, 2004; Zhang et al., 2008). Interleukin-8 (IL-8)
stimulates follicular progression from preantral to preovulatory
stage, inhibits E2 synthesis by GC and increases P4 production
by theca and GC (Shimizu et al., 2013).

These mechanisms regulate cumulus expansion and ovulation
as well as participate in the luteinization process following the
LH surge (Brännström and Enskog, 2002; Jang et al., 2015).
As cytokines mediate folliculogenesis, it is reasonable to investigate
their potential role as biomarkers and assess their diagnostic and
prognostic value in MAR treatments, considering that morpho-
logical evaluation is still the main method of assessment for
oocyte maturity, despite evidence of a highly subjective intraoper-
ator variation (Rienzi et al., 2011). As an example, Jasper and
collaborators (2000) identified a specific role for GM-CSF in the
development of the corpus luteum.

This biochemical finding correlated well with clinical evidence
of women undergoing ovarian hyperstimulation, who presented
significantly increased plasma and follicular GM-CSF levels
compared with non-stimulated patients (Jasper et al., 2000).

Yanagi and co-workers showed a positive correlation between
FF granulocyte colony-stimulating factor (G-CSF) concentration
and oocyte quality and maturity, and used by others to predict live
birth (Yanagi et al., 2002). Similar results have been reported by
others investigating macrophage-stimulating factor (M-CSF)
(Salmassi et al., 2010). Finally, analyzing the cytokine profiles of
the FF at the time of oocyte retrieval might offer a useful and
non-invasive analytical strategy for assessing the development
potential of the oocyte and the embryo (Field et al., 2014).

Obesity ovarian function and oocyte competency

It has been established that high lipid content negatively impacts
ovarian function and oocyte competence (Douchi et al., 2002).
In this vein, obesity is associated with irregular menses, anovula-
tory cycles and polycystic ovarian syndrome (Rich-Edwards et al.,
1994). It has been reported that women with a high BMI are three
times more likely to be infertile compared with women with a
normal weight (Rich-Edwards et al., 1994; Douchi et al., 2002;
Metwally et al., 2007).

A linear association between BMI and increased need
for gonadotropin stimulation, lower serum oestradiol concentra-
tion on the day of HCG administration, lower cumulus–oocyte
complexes retrieved, and poorer quality blastocysts describe the
average profile of obese women facing MAR treatment
(Metwally et al., 2007; Minge et al., 2008). Obesity compromises
follicle growth and development mostly due to a depletion of
the primordial follicle pool, advancement of follicles to antral stage,
and an increase in atretic follicles number (Minge et al., 2008;
Wu et al., 2015; De Araújo et al., 2018). The adverse effects of
maternal obesity on fertilization and preimplantation embryo
development are probably multifactorial and initiate in the ovary
at the follicular phase of the developing oocyte. However, mecha-
nisms by which obesity interferes with the reproductive system are
still debated.

Robker and colleagues found a higher level of triglycerides in FF
in obese women. They noted that a high concentration of fatty
acids within the bloodstream increases the ovary’s insulin levels
at the follicular level and the oocyte surrounding the CC, compro-
mising ovarian function (Robker et al., 2009). Moreover, insulin-
like growth factor-1, transforming growth factor-beta, insulin
and LH are involved in higher leptin levels in the follicles, which
may inhibit ovarian granulosa and thecal cell steroidogenesis.
Therefore, data have suggested that the obesity-dependent reduc-
tion in the number of primordial follicles and augmentation in the
number of antral and atretic follicles leads to a reduction in the
ovarian reserve, contributing to subfertility (Valckx et al., 2014;
Wang N et al., 2014).

O’Gorman and collaborators used the FF lipid profile as a
predictor of oocyte quality. They compared the fatty acid compo-
sition from FFs to which oocytes were fertilized and developed to
embryos with those fluids in which oocytes after fertilization could
not cleave, and were arrested at the zygote stage. Nine fatty acids
were significantly different between FF from the cleaved and the
non-cleaved sample (O’Gorman et al., 2013). When the oocyte
reaches the end of the growth phase in the follicle, it acquires
the ability to resume meiosis (Canipari et al., 2012). It is also
important that the oocyte achieves cytoplasmic maturation with
the right amount of mitochondria supporting the energy require-
ment at the early stage of embryo development.

Together with nuclear maturation, this condition makes the
oocyte competent for fertilization and embryo development,

Figure 1. Illustrates how changes in the gutmicrobiota following oxidative stress and
inflammation impair oocyte competency. LPS, lipopolysaccharide; ROS, reactive
oxygen species.
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implantation and the resulting in pregnancy to term (Mao et al.,
2014). Moreover, meiotic maturation necessitates the resumption
of meiosis, spindle formation and correct chromosomes migration,
which relies on the GV breakdown, progression from prophase I to
metaphase II and extrusion of the first polar body. Errors at this
stage of maturation might lead to spindle alteration and abnormal-
ities in chromosome segregation, resulting in embryo aneuploidies,
implantation failure and miscarriage (Turner and Robker, 2015).
Several animal studies have reported that maternal obesity nega-
tively affects oocyte function leading to defective mitochondria
heritage.

For instance, diet-induced maternal obesity mice have revealed
a decrease in oocyte quantity and quality, as indicated by disrupted
meiotic spindle morphology and oxidative stress, leading to poor
oocyte fertilization and embryo aneuploidy (Zhang et al., 2015;
Hou et al., 2016; Wang H et al., 2018). Therefore, it is essential
to improve weight loss through a periconceptional lifestyle, with
a low energy diet and exercise in obese women. It has been demon-
strated that even a modest weight loss of 10% in obese women
might be effective in improving hormonal profiles, menstrual
regulatory, ovulation and pregnancy rates following IVF/ICSI
cycles (Norman et al., 2004; Rondanelli et al., 2014).

Mitochondrial dysfunction: potential implication
of gut microbiome in infertility

As pointed out earlier, obesity is characterized by the accumulation
of intracellular lipid, including LPS, triglycerides, cholesterol and
free fatty acids in the blood circulation and ovarian cells.
Elevated lipid content might modify the functionality of several
cellular organelles, including the endoplasmic reticulum (ER)
and mitochondria (Borradaile et al., 2006). Abnormal ER function
or oxidative stress might lead to a change in protein secretion path-
ways (Ozcan and Tabas, 2012). At the same time, calcium released
from the ERmodifies mitochondrial membrane potential inducing
uncoupling of oxidative phosphorylation, producing ROS and
reactive lipid peroxides.

All these mechanisms that generate oxidative stress and apop-
tosis are not only cytotoxic but might cause damage to mitochon-
drial function (Malhotra and Kaufman, 2007; Vannuvel et al.,
2013). Mitochondria are fundamental for oocyte maturation and
embryo development to the blastocyst stage (Igosheva et al.,
2010; Van Blerkom, 2011; Babayev and Seli, 2015). In oocytes, their
crucial role involves the process of oxidative phosphorylation and
energy production (ATP), vital for the meiotic completion and
spindle formation. This represents a compelling concern;

therefore, a high level of embryos generated by MAR treatments
display several abnormal chromosomes, most of them are due
to a high frequency of chromosomemis-segregation in oocytes that
generate aneuploid in oocytes and embryos (Wang S et al., 2019;
Wang S et al., 2021).

Although maternal age is considered one of the main factors
responsible for human embryo aneuploidy, it needs to be consid-
ered that this question also involves young women. Duringmeiosis
maturation, a necessary process occurs, i.e. crossover (CO) recom-
bination, which is imperative to assure genetic variety in the future
generation. Faulty or atypical CO arrangements due to several
elements, including the kinetochore, spindle formation, check-
points, energy affluence, oxidative stress, BMI and age might
play a crucial role in the correct process of chromosome segrega-
tion. Therefore, abnormal CO configuration might lead to
mis-segregation, which is the primary cause of embryo aneuploidy,
implantation failure and miscarriage (Hunter, 2015; Wang S et al.,
2019; Wang S et al., 2021).

Those findings are reinforced by animal studies demonstrating
that oocytes collected from diet-induced obese mice have
weakened quality and decreased embryo development (Minge
et al., 2008; Pohlmeier et al., 2014). Table 1 illustrates the major
effects that obesity might have on oocyte maturation. Recent
studies have suggested the important role of the gut microbiome
in influencing female subfertility and infertility. Several authors
have illustrated the association of PCOS with decreased diversity
of the gut microbiome (Lindheim et al., 2017; Liu et al., 2017;
Insenser et al., 2018). Furthermore, Elgaart and colleagues reported
in Drosophila melanogaster that the loss of gut microbes repressed
oogenesis (Elgart et al., 2016). Figure 1 shows the mechanism by
which changes in the gut microbiome might affect infertility.

Although future investigations need to evaluate these prelimi-
nary results further, it however seems that inflammation and
oxidative stress processes might impair ovary function and oocyte
competency, through which the change in gut permeability
increased the leakage of LPS. The increased concentration of
LPS in the blood circulation once reaching the FF might arrest
the meiotic resumption, damage the spindle structure and mito-
chondrial membrane potential, compromising oocyte competency
(Magata and Shimizu, 2017). However, studies showing a causative
effect of gut microbiome changes on obesity-dependent changes in
the ovary are still required.

Therefore, it might be common that obese women might expe-
rience abnormalities in folliculogenesis and ovulation, which can
be overcome by controlled ovarian stimulation (Pohlmeier et al.,
2014). Oocyte quality and embryo development, implantation

Table 1. Obesity negatively impacts both meiotic and cytoplasmic maturation of the oocyte

Events References

Reduced germinal vesicle (GV) breakdown Mao et al., 2014; Wang H et al., 2018

Polar body (PB) extrusion Chaffin et al., 2014; Mao et al., 2014; Hou et al., 2016; Wang H et al., 2018

Spindle damage Mao et al., 2014; Zhang et al., 2015; Hou et al., 2016; Wang H et al., 2018

Chromosome segregation abnormalities Minge et al., 2008; Hunter, 2015; Luzzo et al., 2012; Pohlmeier et al., 2014; Zhang et al.,
2015;
Hou et al., 2016; Wang H et al., 2018, Wang S et al., 2019, Wang S et al., 2021

Embryo aneuploidy Minge et al., 2008; Hunter, 2011; Luzzo et al., 2012; Mao et al., 2014; Pohlmeier et al., 2014;
Zhang et al., 2015; Wang H et al., 2018, Wang S et al., 2019, Wang S et al., 2021

Mitochondria dysfunction and energy depletion Igosheva et al., 2010; Van Blerkom, 2011; Luzzo et al., 2012; Turner and Robker, 2015;
Babayev and Seli, 2015
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and pregnancy outcomes are deeply influenced by endocrine and
metabolic environment (Pasquali and Gambineri, 2006). Evidence
has suggested that obese women are three times more likely to be
infertile compared with women with a normal weight (Rich-
Edwards et al., 1994). Finally, multiple studies have reported that
obese women undergoing MAR treatments have decreased preg-
nancy and implantation rates and show higher miscarriage rates
compares with their lean counterparts (Rich-Edwards et al., 1994;
Douchi et al., 2002; Kumbak et al., 2012; Kawwass et al., 2016).

Obese women: miscarriage and endometrial receptivity

Several authors have investigated the relationship between obesity
and impaired endometrium receptivity in humans. Boots and
Stephenson (2011), in a systematic review and meta-analysis,
investigated this aspect in natural conception. Data were analyzed
and compared in three groups: normal-weight, overweight
and obese patients. The authors found a higher miscarriage rate
of 13.6% in 3800 obese versus 10.7% in 17,146 normal-weight
patients, concluding that high BMI is linked with a higher
miscarriage rate in women who conceive naturally (Boots
and Stephenson, 2011). However, many studies have used the
oocyte-donation model to clinically investigate this concern
with generally contradictory results (Bellver et al., 2003, 2007,
2013; Wattanakumtornkul et al., 2003; Styne-Gross et al., 2005;
DeUgarte et al., 2010).

A 2003 study investigated ~700 oocyte-donation cycles and
found no differences in implantation or pregnancy rates in obese
recipients. However, results revealed a significant difference in
abortion rates between the obese (38.1%), the normal (13.3%)
and overweight (15.5%) groups, even if the sample included only
50 patients in the obese group (Bellver et al., 2003). In a subsequent
analysis, the authors investigated more than 2600 patients who
were undergoing a first egg-donation cycle, including 122 obese
recipients. They reported a trend towards lower pregnancy rate
when BMI increased (38.3% versus 45.5%) (Bellver et al., 2007).
In 2013, in a subsequent analysis including more than 9000 first
egg-donation cycles with oocytes donated by normoweight donors,
the same group reported a significant reduction in implantation,
pregnancy and clinical pregnancy according to the increased
BMI (Bellver et al., 2013).

A study by Desolle and collaborators observed a statistically
significant decrease in pregnancy rates when obese recipients
received frozen embryos from donated oocytes (Dessolle et al.,
2009). Although this study was relatively small, with 450 cycles
and only 33 obese patients, the authors speculated that obesity
could be considered an independent risk factor for pregnancy
failure. Another systematic review and meta-analysis including
almost 48,000 cycles noted that obese women resulted in signifi-
cantly lower clinical pregnancy and live birth rates than patients
with normal BMI (Rittenberg et al., 2011). A recent study also
investigated the effect of BMI and increase risk of miscarriage
following the transfer of euploid blastocysts in almost 3500 cycles
of in vitro fertilization with preimplantation genetic testing for
aneuploidy (PGT-A).

The authors found that miscarriage rates were significantly
higher in obese women compared with women with normal
weight. Live birth rates were also reduced in obese patients, indi-
cating that endometrial receptivity, rather than aneuploidy,
is responsible for these results (Cozzolino et al., 2021).
Therefore, according to these reports, there is agreement between

BMI and adverse pregnancy outcome and excess weight induces an
extra ovarian detrimental effect that decreased uterine receptivity
and live birth rates (Wang JX et al., 2002; Bellver et al., 2007;
DeUgarte et al., 2010; Sobaleva and El-Toukhy, 2011; Aydogan
Mathyk et al., 2021). However, some other studies have presented
divergent results (Styne-Gross et al., 2005; Levens and Skarulis,
2008; McClamrock, 2008; Norman et al., 2008). A meta-analysis
published by Metwally and co-workers reported no evidence for
increased risk of miscarriage in obese patients undergoing IVF
cycles (Metwally et al., 2008).

A large study using the Latin American Registry of ART inves-
tigated the effect of obesity on pregnancy outcomes in more than
107,000 patients undergoing autologous IVF/ICSI treatments.
It noted that BMI was not associated with the percentage of preg-
nancy, live birth and miscarriage (MacKenna et al., 2017). Similar
findings were described in a systematic review published by
Jungheim and co-workers, indicating that obesity has no adverse
effect on IVF outcomes in patients undergoing oocyte-donation
programmes (Jungheim et al., 2010).

A multicentre randomized study, published by Einarsson and
colleagues in 2017, demonstrated that an intensive weight reduc-
tion programme prior to IVF treatment resulted in a substantial
weight loss, but it did not increase live birth rates in moderately
obese women scheduled for MAR treatments, compared with
women undergoing IVF without weight loss (Einarsson et al.,
2017). However, the frequency of live births after spontaneous
pregnancy was higher in the weight reduction group. The same
authors in a subsequent follow-up trial published in 2019 showed
that, for women with a BMI ≥ 30 and< 35 kg/m2 and scheduled
for IVF, the weight reduction did not increase their chance of a live
birth. It needs to be mentioned that all data reported in this trial
were self-reported by the participants, which could affect the
results (Kluge et al., 2019).

Another recent randomized, double-blinded study performed
across 19 IVF units in China analyzed 877 infertile women sched-
uled for IVF who had a BMI ≥ 25 kg/m2. The main aim of this
paper was to investigate whether pharmacologic weight-loss inter-
vention before MAR cycles could obtain an increase in live birth
rate among overweight or obese women. Results showed that
the live birth rate was not significantly different between the
two groups (25.5% in the weight-loss group versus 25.6% in the
groups without weight reduction), concluding that treating obese
women with Orlistat, prior to IVF treatment induces a weight
reduction, however, it did not increase the live birth rate among
overweight patients (Wang Z et al., 2021).

Furthermore, some authors have recently investigated gene
expression profiles to identify whether the luteal phase endometrial
transcriptome is altered in obese women during the window of
implantation. Preliminary results, which need to be confirmed,
have shown that during the window of implantation, obese women
display endometrial dysregulation and a different gene expression
compared with normal-weight control women (Bellver et al., 2011;
Metwally et al., 2014).

Finally, the transcriptomic profile of endometrial genes
in infertile obese women has been reported and results demon-
strated that obesity is associated with significant endometrial
transcriptomic differences compared with normal-weight
patients. This variation in obese women might partially explain
decreased implantation rates and a rise in the number of miscar-
riages observed in obese women undergoing MAR treatments
(Comstock et al., 2017).
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Conclusion

In the few last decades, obesity has firmly increased across the
globe. This chronic condition can activate other diseases including
type-2 diabetes or cardiovascular conditions. The effect of obesity
on ovarian function, oocyte quality, and embryo and endometrial
receptivity has been intensely investigated.

The adverse effect of obesity on the above conditions seems to
be mainly due to a rise in inflammation and oxidative stress due to
the combination of elevated LPS and ROS production. Women
with a high BMI undergoing MAR treatments had lower preg-
nancy outcomes and a higher risk of miscarriage compared with
women with a normal weight. Indeed, those concerns are still
the object of debate, as the current literature shows contradictory
results.

Therefore, further studies are required to clarify how those
mechanisms adversely impair the ovarian function, and oocyte
and embryo viability to implantation, and allow a pregnancy to
reach term. Future investigations will describe targets that can
be applied clinically and therapeutically to improve fertility
concerns in obese women or patients with metabolic problems.

Data availability statement. no data are available.

Author contributions. RS and SB contributed to initiation of the study and
designed the manuscript. RS, SB, LT and SCE wrote sections of the manuscript
and revised it for content. All authors contributed to manuscript revision, and
read and approved the submitted version.

Funding. None

Conflict of interest. The authors have no conflict of interest to declare.

Patient consent for publication. Not required.

References

Aydogan Mathyk B and Quaas AM (2021). Obesity and IVF: Weighing in on
the evidence. J Assist Reprod Genet 38, 343–5. doi: 10.1007/s10815-021-
02068-6

Babayev E and Seli E (2015). Oocyte mitochondrial function and reproduction.
Curr Opin Obstet Gynecol 27, 175–81. doi: 10.1097/GCO.0000000000000164

Belizário JE, Belizário JE andNapolitanoM (2015). Humanmicrobiomes and
their roles in dysbiosis, common diseases, and novel therapeutic approaches.
Front Microbiol 6, 1050. doi: 10.3389/fmicb.2015.01050

Bellver J (2008). Impact of body weight and lifestyle on IVF outcome. Exp Rev
Obstet Gynecol 3, 607–25. doi: 10.1586/17474108.3.5.607
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