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Abstract

Traditional approaches to automatic AND-parallelization of logic programs rely on some

static analysis to identify independent goals that can be safely and efficiently run in parallel

in any possible execution. In this paper, we present a novel technique for generating

annotations for independent AND-parallelism that is based on partial evaluation. Basically,

we augment a simple partial evaluation procedure with (run-time) groundness and variable

sharing information so that parallel conjunctions are added to the residual clauses when the

conditions for independence are met. In contrast to previous approaches, our partial evaluator

is able to transform the source program in order to expose more opportunities for parallelism.

To the best of our knowledge, we present the first approach to a parallelizing partial evaluator.

KEYWORDS: partial evaluation, automatic parallelization, program analysis

1 Introduction

With the widespread adoption of multi-core processors, the generation of automatic

parallelizing compilers becomes an urgent need. On the other hand, there exist a

number of program optimization techniques (like partial evaluation (Jones et al.

1993)) that have not considered the introduction of parallelism so far, thus limiting

its potential for improving program performance.

In this work, we tackle the definition of a parallelizing partial evaluator which

is able to automatically generate annotations for independent AND-parallelism

from logic programs. In contrast to traditional approaches to automatic AND-

parallelization of logic programs (which rely on some static analyses to identify

independent goals that can be safely and efficiently run in parallel in any possible

execution), our approach combines both run-time analyses and the dynamic infor-

mation gathered during partial evaluation. Furthermore, it allows us to transform

the source program in order to expose more opportunities for parallelism (e.g.,

we can have different specializations of a given clause so that some of them are

parallelized and some are not, without adding run-time conditions).

� This work has been partially supported by the Spanish Ministerio de Econoḿıa y Competitividad
(Secretaŕıa de Estado de Investigación, Desarrollo e Innovación) under grant TIN2008-06622-C03-02
and by the Generalitat Valenciana under grant PROMETEO/2011/052.
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Partial evaluation. Partial evaluation (Jones et al. 1993) is a well-known technique

for program specialization. From a broader perspective, some partial evaluators are

also able to optimize programs further by, e.g., shortening computations, removing

unnecessary data structures and composing several procedures or functions into

a comprehensive definition. Within this broader approach, given a program and

a partial (incomplete) call, the essential components of partial evaluation are:

the construction of a finite representation—generally a graph—of the possible

executions of (any instance of) the partial call, followed by the systematic extraction

of a residual program (i.e., the partially evaluated program) from this graph.

Intuitively, optimization can be achieved by compressing paths in the graph, by

deleting unfeasible paths, and by renaming expressions while removing unnecessary

function symbols. In this paper, we propose a novel source of optimization based on

transforming some sequential constructions of residual programs into parallel ones.

The theoretical foundations of partial evaluation for (normal) logic programs

was first put on a solid basis by Lloyd and Shepherdson (1991). When pure logic

programs are considered, the term partial deduction is often used. Roughly speaking,

in order to compute the partial deduction of a logic program P w.r.t. a set of

atoms A = {A1, . . . , An}, one should construct finite—possibly incomplete—SLD

trees for the atomic goals ← A1, . . . , ← An, such that every leaf is either successful,

a failure, or only contains atoms that are instances of {A1, . . . , An}; this is the so-

called closedness condition (Lloyd and Shepherdson 1991). The residual program

then includes a resultant of the form Aiσ ← Q for every non-failing root-to-leaf

derivation ← Ai ↪→∗σ ← Q in the SLD trees. Similarly, we say that a residual

program P ′ is closed when every atom in the body of the clauses of P ′ is an instance

of a partially evaluated atom (i.e., an appropriate specialized definition exists).

From an algorithmic perspective, in order to partially evaluate a program P w.r.t.

an atom A, one starts with the initial set A1 = {A} and builds a finite (possibly

incomplete) SLD tree for ← A. Then, all atoms in the leaves of this SLD tree which

are not instances of A are added to the set, thus obtaining A2, and so forth. In

order to keep the sequence A1,A2, . . . finite, some generalization is often required,

e.g., by replacing some predicate arguments with fresh variables. Some variant of the

homeomorphic embedding ordering (Leuschel 2002) is often used to detect potential

sources of non-termination.

A sketch of this algorithm is shown in Figure 1, where the unfolding rule unf (Ai)

builds finite SLD trees for the atoms in Ai and returns the associated resultants,

function atoms returns the atoms in the bodies of these resultants, and the abstraction

operator abs(Ai,A′) returns an approximation of Ai ∪ A′ so that the sequence

A1,A2, . . . is kept finite.

Motivation. Depending on when control issues—like deciding which atoms should or

should not be unfolded—are addressed, two main approaches to partial evaluation

can be distinguished. In offline approaches to partial evaluation, these decisions

are taken beforehand by means of a so called binding-time analysis (where we

know which parameters are known but not their values). In contrast, online partial

evaluators take decisions on the fly (so that actual values of static data are available).
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Initialization: i := 1; Ai := {A};
Repeat

Ai+1 := abs(Ai, atoms(unf (Ai)));
i := i + 1

Until Ai ≈ Ai−1 (variants)
Return unf (Ai)

Fig. 1. Partial evaluation procedure.

While offline partial evaluators are usually faster, online ones produce more

accurate results. Partial evaluators for logic programs have mostly followed the

online approach (e.g., SAGE (Gurr 1994), Mixtus (Sahlin 1990), SP (Gallagher

1991), ECCE (Leuschel et al. 2006)), though some offline partial evaluators have

been also developed (e.g., LOGEN (Leuschel et al. 2006)).

Recently, we have proposed in (Vidal 2011) a hybrid approach to partial evaluation

that does not fit well in neither the offline nor the online style of partial evaluation.

Basically, we follow a typical online partial evaluation scheme, but augment it

with run-time information gathered from a pre-processing static analysis. There

are some previous approaches that combine the online and offline styles of partial

evaluation. However, the novelty is that (Vidal 2011) considers collecting run-time

information rather than partial evaluation time information in a pre-processing stage

(as binding-time analyses do).

In this paper, we want to push this approach forward by defining a parallelizing

partial evaluator that generates annotations for independent AND-parallelism.

As it is well known, two goals (G1, G2)θ are strictly independent if, for every pair

of variables (x, y) ∈ (Var(G1),Var(G2)), either (i) they are equal, x = y, and xθ

is ground (i.e., Var(xθ) = ∅) or (ii) they are different, x 	= y, and their values,

xθ and yθ, do not share a common variable (i.e., Var(xθ) ∩ Var(yθ) = ∅). In

order to have this information available at partial evaluation time, we need some

run-time information that is not usually present in partial evaluation schemes. For

this purpose, we introduce a hybrid partial evaluation scheme with the following

features:

• First, a pre-processing stage performs both a groundness and sharing analysis,

so that we get call and success patterns for each predicate.

• Then, we apply a rather simple partial evaluation stage that only performs

one-step unfolding. This is very limited in general and propagates almost

no information. However, in our context, we do not aim at aggressively

propagating static data but only groundness and sharing information. In this

way, the potential for generating annotations for the implicit independent

AND-parallelism can be better evaluated.

• Finally, a post-processing stage extracts residual rules from the partial eval-

uation computations and, in some cases, replaces sequential conjunctions by

parallel ones, thus boosting the performance of the residual program.

A proof-of-concept implementation of the parallelizing partial evaluator is available

at http://kaz.dsic.upv.es/litep.html. Despite its simplicity (a thousand lines
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of Prolog code), the results for definite logic programs (including some built-in’s)

are very encouraging.

The paper is organized as follows. Section 2 presents the different stages of our

parallelizing partial evaluation scheme. Then, Section 3 summarizes our findings

from an experimental evaluation of the new technique and, finally, Sect. 4 concludes

and discusses some possibilities for future work. Correctness results can be found in

the online appendix.

2 Parallelizing partial evaluation

In this section, we present our partial evaluation scheme in a stepwise manner. We

do so for clarity of presentation but these stages can be interleaved (and actually

they are in our implementation).

2.1 Pre-processing stage

Our pre-processing stage consists of two different analyses. The first one is a

simple call and success pattern analysis that resembles a mode analysis. The formal

definition of the analysis can be found elsewhere (e.g., in (Leuschel and Vidal 2009)).

We consider groundness call and success patterns π denoted by a list of natural

numbers which represent the (definitively) ground arguments of a predicate. The

underlying abstract domain is thus very simple: {definitively ground, possibly non-

ground}. As mentioned in (Leuschel and Vidal 2009), the analysis could be made

more precise by considering a richer abstract domain (including elements like list,

nonvar, etc). This is orthogonal to the topics of this paper and thus we keep the

two element domain for simplicity. The greatest lower bound operator � on patterns

is defined in the natural way by the set union, i.e., given two patterns π1, π2 for

predicate p/n, we let π1 � π2 = π1 ∪ π2.

Basically, given an initial query and the groundness call patterns for the atoms in

this query, the analysis infers for every predicate p/n a number of call and success

patterns of the form p/n : πin
gr
�→ πout such that πin and πout are subsets of {1, . . . , n}

denoting the arguments πout of p/n which are definitely ground after a successful

derivation, assuming that it is called with ground arguments πin. The analysis is

started with a number of entry points to the program, together with their initial

groundness call patterns.

Example 1

Consider the well known definition of append/3:

append([ ], Y , Y ).

append([H |T ], Y , [H |TY ]) ← append(T , Y , TY ).

Given the initial groundness call patterns π1 = {1} and π2 = {1, 2} for append/3, the

call and success pattern analysis would return the following mappings:

append/3 : {1}
gr
�→ {1} append/3 : {1, 2}

gr
�→ {1, 2, 3}
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Their meaning should be clear: if append(t1, t2, t3) is called with t1 ground, we can

only ensure that t1 will be ground after a successful derivation. In contrast, if it is

called with both t1 and t2 ground, then t3 will be also ground after a successful

derivation.

For guaranteeing the independence of goals, we also consider the information

gathered by a dependency analysis like that of (Debray 1989). Basically, for a given

predicate p/3, the analysis computes mappings with sharing call and success patterns

µ like, e.g., 〈{1, 2}, {1, 2, 3}, {2, 3}〉, which indicates that the first argument may share

variables with the second argument, the second argument may share variables with

the first and third arguments, and the third argument may share variables with the

second argument. Again, the analysis infers for every predicate p/n a number of call

and success patterns of the form p/n : µin
sh�→ µout such that µin and µout belong to

the domain 2{1,...,n} × . . .×2{1,...,n} (a tuple of n sets) and µout denotes the dependencies

of p/n which hold after a successful derivation, assuming that it is called with the

dependencies denoted by µin.
1

In this case, the least upper bound operator � on sharing patterns is defined as

follows: given patterns µ = 〈ϑ1, . . . , ϑn〉 and µ′ = 〈ϑ′1, . . . , ϑ′n〉 for some predicate p/n,

we have µ � µ′ = 〈ϑ1 ∪ ϑ′1, . . . , ϑn ∪ ϑ′n〉. Note that, in contrast to the greatest lower

bound on groundness patterns that may increase the number of ground variables

(and thus the accuracy of the result), the least upper bound on sharing patterns may

lose accuracy since more dependencies can be obtained.

Example 2

Consider again append/3. Given the sharing call patterns µ1 = 〈{1}, {2}, {3}〉 and

µ2 = 〈{1, 2}, {1, 2}, {3}〉, the dependency analysis would return the following:

append/3 : 〈{1}, {2}, {3}〉 sh�→ 〈{1, 3}, {2, 3}, {1, 2, 3}〉
append/3 : 〈{1, 2}, {1, 2}, {3}〉 sh�→ 〈{1, 2, 3}, {1, 2, 3}, {1, 2, 3}〉

Here, we consider two possibilities: first, if append is called with three independent

arguments then, after a successful derivation, the third argument may be bound

to a value that shares variables with either the first and the second arguments; on

the other hand, if append is called with the two first arguments bound to terms

containing shared variables, then all three arguments may depend on each other

after a successful derivation.

2.2 Partial evaluation stage

Now, we present the proper partial evaluation stage of the parallelizing partial

evaluator.

1 We note that a sharing pattern like 〈{1}, {2}, {3}〉 assumes that all three argument are independent
and, moreover, that no variable sharing can be introduced through a single argument; i.e., we assume
that predicate arguments are always linear. We keep this restriction for simplicity but could easily be
overcome.
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In principle, one could consider checking independence of goals using the

information available solely at partial evaluation time. This approach, however,

would be generally incorrect for a number of reasons. First, the notion of closedness

(see Sect. 1) allows run-time atoms to be covered by instances of partial evaluation

atoms. Therefore, q(X,X) is closed w.r.t. q(X,Y ). This means that goals can be

independent at partial evaluation time but need not be independent at run-time.

Moreover, whenever we split a goal of an incomplete computation into atomic

subgoals, we are also loosing some context information that might be essential for

checking independence, as the following example illustrates:

Example 3

Consider the following program

p(X,Y ) ← q(X), r(Y ).

eq(X,X).

. . .

Given the goal eq(A,B), p(A,B), if we split it into its atomic subgoals eq(A,B)

and p(A,B), and partially evaluate them independently, we could derive the goal

q(A), r(B) and incorrectly assume that q(A) and r(B) are independent.

Furthermore, the use of an abstraction operator might also involve the loss of some

dependencies (e.g., generalizing p(X,Y , f(Y )) to p(X,Y , Z) with Z a fresh variable).

In summary, the information available at partial evaluation time is not enough

to determine the run-time independence of a goal.2 Therefore, as mentioned before,

in this paper we consider that the partial evaluator includes a pre-processing stage

where run-time groundness and sharing information is gathered.

In particular, we design a rather simple partial evaluator with the following

distinguishing features:

• only one-step unfolding of atomic goals is performed;

• no static data are provided (i.e., the initial goal has different variables as

arguments);

• every atomic goal is enriched with groundness and sharing call patterns that

are propagated through partial evaluation.

The fact that we do not consider partially instantiated initial goals, together with

the fact that only one-step unfolding is performed, allows us to better identify the

potential for generating annotations for independent AND-parallelism. Moreover, it

makes the online partial evaluator scale up better to medium and large applications.

Our partial evaluator deals with sets of extended atoms (instead of sets of atoms,

as in the algorithm of Figure 1).

2 Of course, we could avoid splitting goals, do not use an abstraction operator and only allow variants
to be closed, but then the termination of partial evaluation could not be ensured.
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Definition 1 (extended atom)

We consider extended atoms of the form (A, π, µ) where A is an atom, π is a

groundness call pattern for A, and µ is a sharing call pattern for A. This notion is

extended in the natural way to queries and goals. We denote the empty extended

query by true.

Given an extended query Q, we introduce the following auxiliary function:

query(Q) = A1, . . . , An, if Q = (A1, π1, µ1), . . . , (An, πn, µn).

The number of different specialized versions of an atom will be determined, not

only by its shape (as it is usually the case), but also by the different combinations

of groundness and sharing call patterns. For instance, (p(X,Y ), {1, 2}, 〈{1}, {2}〉) and

(p(X,Y ), {1}, 〈{1}, {2}〉) would give rise to different specialized versions.

Another distinguishing feature of our scheme is that, in contrast to previous

approaches, we do not explicitly distinguish between the so-called local and global

levels (as in (Gallagher 1993)). Rather, we construct a single partial evaluation tree

that comprises both levels. Moreover, our partial evaluation process performs just

one pass since residual rules can be produced immediately after every unfolding step

(rather than in a post-process, as it is often done since the unfolding tree can be

modified during the partial evaluation process).

In the following, we denote by π(A) the (definite) ground arguments of A

according to π, i.e., π(p(s1, . . . , sk)) = {sj | j ∈ π}. Also, we denote by µ(A) the

set of (possibly) shared variables in A according to µ, i.e., µ(p(s1, . . . , sk)) = {(x, y) ∈
(Var(si),Var(sj)) | i, j ∈ {1, . . . , k}, i 	= j, {i, j} ⊆ s ∈ µ}. Before introducing the

notion of SLD resolution over extended queries, we need the following preparatory

definition, which is used to propagate groundness and sharing call patterns to the

atoms in the body of a clause.

Definition 2 (entry procedure)

Let H ← B1, . . . , Bn be a clause and (A, π, µ) an extended atom such that A and

H unify. We denote with entry a function that propagates π and µ to B1, . . . , Bn.

Formally, entry(π, µ, (H ← B1, . . . , Bn)) = ((B1, π1, µ1), . . . , (Bn, πn, µn)) if, for all Bi =

pi(ti1, . . . , timi
), i = 1, . . . , n, the following conditions hold:

• j ∈ πi iff Var(tij) ⊆ Var(π(H)) (i.e., all variables in tij are ground in H

according to π).

• {1, . . . , mi} ⊇ {j1, . . . , jk} ∈ µi iff there are (non necessarily different) variables

(xj1 , . . . , xjk ) ∈ (Var(tij1 ), . . . ,Var(tijk )) such that for every pair of different

variables xjr , xjs , we have (xjr , xjs ) ∈ µ(H) (i.e., either the terms share some

variable or have different variables that are shared in H according to µ).

Note that the entry procedure is independent of A (only its associated groundness

and sharing call patterns matter), since we want the results for a partial evaluation

time atom A be valid for every run-time atom Aθ.
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Example 4

Let us consider the following program for computing Fibonacci numbers:

(C1) fibonacci(0, 1). (C2) fibonacci(1, 1).

(C3) fibonacci(M,N) ← M > 1, M1 is M − 1, fibonacci(M1, N1),

M2 is M − 2, fibonacci(M2, N2), N is N1 + N2.

Here, entry({1}, 〈{1}, {2}〉, C3) returns the following extended query:

(M > 1, {1, 2}, 〈{1}, {2}〉),
(M1 is M − 1, {2}, 〈{1}, {2}〉),

(fibonacci(M1, N1), {}, 〈{1}, {2}〉),
(M2 is M − 2, {2}, 〈{1}, {2}〉),

(fibonacci(M2, N2), {}, 〈{1}, {2}〉),
(N is N1 + N2, {}, 〈{1}, {2}〉)

We are now ready to introduce the notion of extended SLD resolution:

Definition 3 (extended SLD resolution)

Extended SLD resolution, denoted by �, is a natural extension of SLD resolution

over extended queries. Formally, given a program P , an extended query Q =

(A1, π1, µ1), . . . , (An, πn, µn), and a computation rule R, we say that ← Q�P ,R,σ← Q′
is an extended SLD resolution step for Q with P and R if the following conditions

hold:3

• R(Q) = (Ai, πi, µi), 1 � i � n, is the selected extended atom,

• H ← B1, . . . , Bm is a renamed apart clause of P ,

• Ai and H unify with σ = mgu(Ai,H), and

• Q′ = entry(πi, µi, (H ← B1, . . . , Bm))σ.4

Trivially, extended SLD resolution is a conservative extension of SLD resolution:

given extended queries Q,Q′, we have that ← Q�σ← Q′ implies ← query(Q) ↪→σ←
query(Q′).

In the following, we use pred (A) to denote the predicate symbol of atom A.

As it is common practice, we avoid infinite unfolding by means of a well-known

strategy based on the use of the homeomorphic embedding ordering. Intuitively, we

say that atom Ai embeds atom Aj , denoted by Ai � Aj , when Aj can be obtained

from Ai by deleting symbols (see (Leuschel 2002) for a precise definition).

Definition 4 (variant, embedding)

We say that two (extended) atoms (A, π, µ) and (A′, π′, µ′) are variants, denoted by

(A, π, µ) ≈ (A′, π′, µ′) if there is a renaming substitution ρ such that Aρ = A′, π = π′

and µ = µ′.

We say that (A, π, µ) embeds (A′, π′, µ′), denoted by (A, π, µ) � (A′, π′, µ′), if A � A′,

π = π′ and µ = µ′.

3 We often omit P , R and/or σ in the notation of an extended SLD resolution step when they are clear
from the context.

4 We let ((B1, π1, µ1), . . . , (Bn, πn, µn))σ = (B1σ, π1, µ1), . . . , (Bnσ, πn, µn).
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(variant)
∃(A′, π′, µ′) ∈ memo. (A, π, µ) ≈ (A′, π′, µ′)

〈(A, π, µ),Q; memo〉 v−→ 〈Q; memo〉

(failure)
� ∃Q′. ← (A, π, µ) �σ ← Q′

〈(A, π, µ),Q; memo〉 f−→ 〈Q; memo〉

(embedding)
∃(A′, π′, µ′) ∈ memo. (A, π, µ) � (A′, π′, µ′)

〈(A, π, µ),Q; memo〉 e−→ 〈Q; memo〉

(nonuser)
pred(A) is not defined in the user’s program clauses

〈(A, π, µ),Q; memo〉 n−→ 〈Q; memo〉

(parallel)
← (A, π, µ) �σ← Q′ ∧ ∃(Q1,Q2,Q3,Q4) ∈ partitionµ(Q′)

〈(A, π, µ),Q; memo〉 p−→σ 〈Q1,Q2,Q3,Q4,Q; memo ∪ {(A, π, µ)}〉

(unfolding)
← (A, π, µ) �σ← Q′ ∧ � ∃(Q1,Q2,Q3,Q4) ∈ partitionµ(Q′)

〈(A, π, µ),Q; memo〉 u−→σ 〈prop(Q′, true),Q; memo ∪ {(A, π, µ)}〉

Fig. 2. Partial evaluation semantics.

Our partial evaluation semantics is formalized by means of the (labelled) state

transition system shown in Figure 2. The partial evaluator deals with states, defined

as follows:

Definition 5 (state)

A state is a pair of the form 〈Q;memo〉 where Q is a sequence of extended atoms5

and memo is a set of extended atoms (the atoms already partially evaluated, which

are recorded to guarantee termination).

An initial state has the form 〈(A, π, µ); {}〉. A final state has the form 〈ε;memo〉,
where ε denotes an empty sequence.

A successful partial evaluation starts with an initial state and (non-deterministically,

because of the unfolding rule) constructs a number of derivations of the form

〈(A, π, µ); {}〉 −→∗ 〈ε; 〉, where −→∗ denotes the reflexive and transitive closure

of −→. The process does not return anything but the trace itself, that will be used

for producing residual rules (see the next section).

Let us now explain the rules of the partial evaluation semantics. Rule (variant)

discards an extended atom if it is a variant of an already partially evaluated extended

atom. Rule (failure) also discards an extended atom when it cannot be unfolded

(e.g., when A does not unify with the head of any clause).

The next rule, (embedding), discards an extended atom when it embeds a

previously partially evaluated extended atom. This rule is necessary in order to

ensure that partial evaluation always terminates. Rule (nonuser) allows us to deal

with built-in’s and other extra-logical features of Prolog by leaving calls to the

original predicates, as we will see in the next section.

5 Note that this sequence is not an extended query. Rather, this is the queue of (extended) atomic goals
to be partially evaluated.
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The interesting rules are (parallel) and (unfolding). In the following, we assume

a fixed left-to-right selection rule as in Prolog. Therefore, we use a function prop to

propagate groundness and sharing success patterns to the atoms to the right of a

given atom before splitting an extended query. This is necessary because only the

partial evaluation of atomic goals is allowed and, thus, this information should be

propagated before the query is split into its constituents in order to avoid a serious

loss of accuracy.

Definition 6 (pattern propagation)

Let Q1,Q2 be extended queries, with Q1 = (A1, π1, µ1), . . . , (An, πn, µn) and Q2 =

(An+1, πn+1, µn+1), . . . , (Am, πm, µm). We define the function prop to propagate success

patterns to the right as follows:6

• prop(Q1,Q2) = Q2 if n = 0 (i.e., Q1 is an empty query);

• prop(Q1,Q2) = ((A1, π1, µ1), prop(Q′1,Q′2)) if n > 0,

pred (A1) : π1

gr
�→ π′1, pred (A1) : µ1

sh�→ µ′1,

entry(π′1, µ
′
1, (A1 ← A2, . . . , Am)) = (A2, π

′
2, µ
′
2), . . . , (Am, π

′
m, µ

′
m),

Q′1 = (A2, π2 � π′2, µ2 � µ′2), . . . , (An, πn � π′n, µn � µ′n), and

Q′2 = (An+1, πn+1 � π′n+1, µn+1 � µ′n+1), . . . , (Am, πm � π′m, µm � µ′m).

Observe that the two arguments of function prop are not needed for unfolding a

goal. However, this formulation will become useful later when also using prop to

partition a goal.

Example 5

Consider again the Fibonacci program of Example 4 and the result of the entry

procedure. Thus we have fibonacci(A,B) �{A�→M,B �→N} (M > 1, {1, 2}, 〈{1}, {2}〉),
(M1 is M−1, {2}, 〈{1}, {2}〉), (fibonacci(M1, N1), {}, 〈{1}, {2}〉), (M2 is M−2, {2}, 〈{1},
{2}〉), (fibonacci(M2, N2), {}, 〈{1}, {2}〉), (N is N1+N2, {}, 〈{1}, {2}〉). We assume the

following call and success patterns:

is/2 : {2}
gr
�→ {1, 2} is/2 : 〈{1}, {2}〉 sh�→ 〈{1}, {2}〉

fibonacci/2 : {1}
gr
�→ {1, 2} fibonacci/2 : 〈{1}, {2}〉 sh�→ 〈{1}, {2}〉

Then, for instance, we have

prop(((M > 1, {1, 2}, 〈{1}, {2}〉), M1 is M − 1, {2}, 〈{1}, {2}〉),
(fibonacci(M1, N1), {}, 〈{1}, {2}〉), (M2 is M − 2, {2}, 〈{1}, {2}〉),
(fibonacci(M2, N2), {}, 〈{1}, {2}〉), (N is N1 + N2, {}, 〈{1}, {2}〉)), true)

=((M > 1, {1, 2}, 〈{1}, {2}〉), (M1 is M − 1, {2}, 〈{1}, {1}〉),
(fibonacci(M1, N1), {1}, 〈{1}, {2}〉), (M2 is M − 2, {2}, 〈{1}, {2}〉),
(fibonacci(M2, N2), {1}, 〈{1}, {2}〉), (N is N1 + N2, {2}, 〈{1}, {2}〉))

so we know that, when the last call N is N1 +N2 is performed, N1 +N2 is ground.

6 Note the non-standard use of function entry to propagate success patterns to the right, despite the fact
that A1 ← A2, . . . , Am is not really a program clause.
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Before explaining the rules (parallel) and (unfolding), we still need one more

auxiliary function, partition, which is used to check if a query contains some subgoals

that can be executed in parallel (i.e., if they are strictly independent at run-time):

Definition 7 (partition)

Let (A, π, µ) be an extended atom such that (A, π, µ) �σ Q. We introduce the function

partitionµ as follows:7

• partitionµ(Q) = (Q′1,Q′′2 ,Q′′3 ,Q′′′′4 ) if Q contains at least two extended atoms,

Q = Q1,Q2,Q3,Q4, with Q2 and Q3 non-empty queries,

(Q′1, (Q′2,Q′3,Q′4)) = prop(Q1, (Q2,Q3,Q4)),

Q′2 and Q′3 are independent,

(Q′′2 ,Q′′4) = prop(Q′2,Q′4), (Q′′3 ,Q′′′4 ) = prop(Q′3,Q′′4), and Q′′′′4 = prop(Q′′′4 , true).

Here, strict independence of Q′2 and Q′3 is checked using the standard notion (see

Section 1) and taking into account the groundness call patterns available from the

extended atoms and the sharing call pattern for the head of the clause, i.e., the

variables in Var(Q′2) ∩ Var(Q′3) must be ground according to the groundness call

patterns in Q′2,Q′3 and each pair of different variables (x, y) ∈ (Var(Q′2),Var(Q′3))
should not be shared in the head of the clause according to µ.

Example 6

Consider again the Fibonacci program of Example 4 and the extended SLD

resolution step of Example 5. By applying function partition to the derived extended

query, we get

Q1 =(M > 1, {1}, 〈{1}, {2}〉),
Q2 =(M1 is M − 1, {2}, 〈{1}, {2}〉), (fibonacci(M1, N1), {1}, 〈{1}, {2}〉),
Q3 =(M2 is M − 2, {2}, 〈{1}, {2}〉), (fibonacci(M2, N2), {1}, 〈{1}, {2}〉),
Q4 =(N is N1 + N2, {2}, 〈{1}, {2}〉)

which means that the queries (M1 is M − 1, fibonacci(M1, N1)) and (M2 is M −
2, fibonacci(M2, N2)) can be safely run in parallel at run-time.

Now, rules (parallel) and (unfolding) should be clear. When an atom is unfolded

and the body of the selected clause can be run in parallel (which is determined by

function partition), rule (parallel) applies. Note that we consider a simple algorithm

where the atoms of a query cannot be reordered (i.e., we respect Prolog’s computation

rule). Of course, more elaborated strategies exist (see, e.g., (Muthukumar et al. 1999;

Gras and Hermenegildo 2009)), but we consider them out of the scope of this paper.

When the body of the clause cannot be partitioned so that some subgoals are run

in parallel, rule (unfolding) applies (which will give rise to a sequential clause, as

we will see later). Here, we apply function prop in order to propagate groundness

and sharing information to the extended atoms before they are split in the next step

(since only the unfolding of atomic goals is considered).

7 In order not to encumber the notation, we assume that Q′i refers to the same extended query Qi after
some processing.
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In both rules, we add the selected extended atom to the set of already partially

evaluated extended atoms.

All transition rules are labelled with a letter that identifies the rule applied. This

will become useful to generate residual rules (see the next section).

Example 7

Consider again the Fibonacci program of Example 4. Given the initial state

S0 = 〈(fibonacci(A,B), {1}, 〈{1}, {2}〉), {}〉

we have three partial evaluation derivations starting from S0:

S0
u−→{A�→0,B �→1} 〈ε, {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉

S0
u−→{A�→1,B �→1} 〈ε, {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉

S0

p
−→{A�→M,B �→N} 〈(Q1,Q2,Q3,Q4), {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
n−→ 〈(Q2,Q3,Q4), {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
n−→ 〈((fibonacci(M1, N1), {1}, 〈{1}, {2}〉),Q3,Q4),

{(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
v−→ 〈(Q3,Q4), {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
n−→ 〈((fibonacci(M2, N2), {1}, 〈{1}, {2}〉),Q4),

{(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
v−→ 〈(Q4), {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉
n−→ 〈ε, {(fibonacci(A,B), {1}, 〈{1}, {2}〉)}〉

Note that predicates not defined in the user’s program (like > or is) are not

unfoldable and that Q1,Q2,Q3,Q4 are the extended queries of Example 6.

2.3 Post-Processing stage

Once the partial evaluation stage terminates, we produce renamed, residual rules

associated to the transitions of the partial evaluation semantics. In the following,

we assume that there is a function ren that takes an extended atom and returns

a renamed atom whose predicate name is fresh and depends on the patterns of

the extended atom. We do not present the details of this renaming function here

since it is a standard renaming as introduced in, e.g., (Benkerimi and Lloyd 1989;

De Schreye et al. 1999). For instance,

ren(fibonacci (X,Y ), {1}, 〈{1}, {2}〉) = fibonacci 1 1 2(X,Y )

Note, however, that non-user predicates are not renamed, e.g.,

ren(M1 is M − 1, {2}, 〈{1}, {2}〉) = M1 is M − 1

The generation of residual rules proceeds as follows:

• We do not generate residual clauses associated to the application of rules

(variant) nor (failure).

• For embedding steps of the form 〈(A, π, µ),Q;memo〉 e−→ 〈Q;memo〉 we

produce a residual rule of the form ren(A, π, µ) ← A. This means that some
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atoms will not be closed but defined in terms of calls to the original predicates

(and, thus, the clauses of the original program should be added to the residual

program).

• For nonuser steps 〈(A, π, µ),Q;memo〉 n−→ 〈Q;memo〉, we do not generate

residual rules since non-user calls are not renamed.

• For an unfolding step 〈(A, π, µ),Q;memo〉 u−→σ 〈prop(Q′, true),Q;memo∪
{(A, π, µ)}〉, we produce a residual rule of the form

ren(A, π, µ)← ren(B1, π1, µ1), . . . , ren(Bn, πn, µn).

where prop(Q′) = ((B1, π1, µ1), . . . , (Bn, πn, µn)).

• Finally, for a parallel step 〈(A, π, µ),Q;memo〉
p
−→σ 〈Q1,Q2,Q3,Q4,Q;memo

∪{(A, π, µ)}〉, we produce a residual rule of the form

ren(A, π, µ) ← ren(B1, π1, µ1), . . . , ren(Bn, πn, µn),

(ren(Bn+1, πn+1, µn+1), . . . , ren(Bm, πm, µm)

& ren(Bm+1, πm+1, µm+1), . . . , ren(Bk, πk, µk)),

ren(Bk+1, πk+1, µk+1), . . . , ren(Bl, πl , µl).

where
Q1 = ((B1, π1, µ1), . . . , (Bn, πn, µn)),

Q2 = ((Bn+1, πn+1, µn+1), . . . , (Bm, πm, µm)),

Q3 = ((Bm+1, πm+1, µm+1), . . . , (Bk, πk, µk)),

Q4 = ((Bk+1, πk+1, µk+1), . . . , (Bl, πl , µl)).

Example 8

For instance, for the derivations of Example 7, we produce the following residual

program:

fibonacci 1 1 2(0, 1).

fibonacci 1 1 2(1, 1).

fibonacci 1 1 2(M,N) ← M > 1, (M1 is M − 1, fibonacci 1 1 2(M1, N1)

& M2 is M − 2, fibonacci 1 1 2(M2, N2)),

N is N1 + N2.

2.4 Correctness and termination issues

The core of our new proposal mainly involves new control strategies, but the main

procedure is still an instance of the standard partial evaluation framework, so its

correctness should not be an issue. In particular, our partial evaluation scheme can

be seen as an instance of the procedure of Benkerimi and Lloyd (1989), though in

our case an atom is closed only if it is a variant (rather than an instance) of an

already partially evaluated atom. Our approach is correct though since we add calls

to the predicates of the original program for non-closed atoms (and the residual

program includes a copy of the original program clauses).

Regarding the termination of partial evaluation, this is a well studied area and

the approach that we consider based on the homeomorphic embedding ordering is

quite standard (Leuschel 2002).
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Regarding the introduction of parallel conjunctions, in this paper we assume the

correctness of the underlying groundness and dependency analyses. Moreover, we

prove in the online appendix the correctness of the few functions introduced to

propagate groundness and sharing patterns at partial evaluation time, entry and

prop. Of course, the correctness of function partition can only be ensured when Q′2
and Q′3 only contain user defined predicates or “safe” built-ins (i.e., built-ins without

side effects, which do not depend on or may change the order of evaluation, etc).

To summarize, this paper is not concerned with the development of new theoretical

developments regarding partial evaluation or program parallelization, but with the

design of new control strategies that could allow us to improve existing partial

evaluation techniques and use them to extract some implicit independent AND-

parallelism of logic programs. Moreover, the proof-of-concept implementation of a

parallelizing partial evaluator (that we discuss in the next section) shows that our

approach is indeed viable in practice.

3 Experimental evaluation

A prototype implementation of the parallelizing partial evaluator described so far

has been developed. It consists of approx. 1000 lines of SWI Prolog code (including

the groundness call and success pattern analysis, comments, etc). The only missing

component is the sharing analysis, which currently should be provided by the

user. In general, built-in’s and extra-logical features are not unfolded, though our

tool includes information regarding the propagation of groundness and sharing

information for them.

A web interface to our tool is available at http://kaz.dsic.upv.es/litep.html.

We have tested it by running some typical benchmarks from the literature on au-

tomatic independent AND-parallelization of logic programs (see, e.g., (Muthukumar

et al. 1999; Gras and Hermenegildo 2009)):

• amatrix implements the addition of two matrices (a matrix is a list of lists);

• fib computes the well-known Fibonacci function;

• flatten is used to flatten a list of lists of any nesting depth into a flat list;

• hanoi solves the Towers of Hanoi problem;

• msort implements the mergesort algorithm on lists;

• mmatrix implements the multiplication of two matrices;

• palin recognizes (list) palindromes;

• qsort implements the quicksort algorithm on lists;

• tak computes the Takeuchi function.

Moreover, in order to test the scalability of the tool, we have also applied our

parallelizing partial evaluation tool to itself (ppeval). The code of the examples can

be found in the tool’s webpage.

We use SWI Prolog’s concurrent/3 to run goals in parallel. Parallel processes

in SWI Prolog, however, are not lightweight. As mentioned in (SWI 2012), if the

goals are CPU intensive and normally all succeeding, typically the number of CPUs

is the optimal number of threads. Less does not use all CPUs, more wastes time in
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Table 1. Experimental evaluation of the parallelizing partial evaluator

benchmark Seq Par1 Par2 Par4 Par6 Par8

fib 1.00 1.00 1.83 2.88 3.82 3.70

hanoi 1.00 1.27 1.54 2.29 2.05 1.97

mmatrix 1.00 1.05 1.07 1.09 1.08 1.07

palin 1.00 1.07 1.79 2.52 2.30 2.41

tak 1.00 0.98 1.31 1.31 1.30 1.31

amatrix 1.00 1.02 0.59 0.30 0.20 0.16

flatten 1.00 1.23 0.72 0.63 0.61 0.81

msort 1.00 1.59 0.86 1.23 1.22 1.26

qsort 1.00 1.73 0.48 0.71 0.72 0.60

ppeval 1.00 1.00 1.15 SO SO SO

context switches and also uses more memory. For instance, the unbound number of

threads that would be created with the program of Example 8 would perform very

badly for even small input values. In order to solve this problem, we replace calls to

concurrent/3 by a special version as follows:

concurrent_k(A,B,C) :-

current_threads(N), max_threads(K),!,

(N < K -> M is N+1,

retractall(current_threads(_)),assert(current_threads(M)),

concurrent(2,[B,C],[]),

current_threads(T), S is T-1,

retractall(current_threads(_)),assert(current_threads(S)),

; call(A) ).

Basically, given queries Q1 and Q2, concurrent k((Q1,Q2),Q′1,Q′2) determines, depend-

ing on the current and maximum number of threads, if a sequential goal (Q1,Q2) or

a parallel goal Q′1&Q′2 should be run (where Q′i is the parallel version of Qi).
Table 1 summarizes our experimental results for the selected benchmarks. We

executed SWI-Prolog (Multi-threaded, 64 bits, Version 6.0.2) on a 2.66 GHz Quad-

Core Intel Xeon (with 8GB 1066 MHz DDR3 RAM) running Mac OS X v10.7.3.

Therefore, one can expect the best results for a maximum of 4 threads. Run times

have been obtained using SWI Prolog’s get time/1, which is similar to SICStus

walltime and includes CPU time, garbage collection, etc. Rather than timings, we

show the relative speedup (i.e., run time of the original program/run time of the

residual program; values > 1 are then actual speedups) for each original program

(column Seq), and its partially evaluated version using 1/2/4/6/8 cores (columns

Par1/Par2/Par4/Par6/Par8). Here, SO indicates a stack overflow.

First, we observe that the values of column Par1 are not always 1.00. This is due

to the effects of the partial evaluation. We tried to minimize it, but it seems that

for some examples it still has a significant effect. The first group of benchmarks

(fib, hanoi, mmatrix, palin and tak) show the expected results: Par1 is generally

close to 1 and the introduction of parallel threads produces noticeable speedups.
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For the second group of benchmarks (amatrix, flatten, msort and qsort), we get a

slowdown in almost all cases but in msort (and, even in this case, the sequential

partial evaluation is faster). Let us take a look at the results. For instance, for

amatrix, we transform:

amatrix([L1|O1],[L2|O2],[L3|O3]):- am1(L1,L2,L3), amatrix(O1,O2,O3).

into

amatrix_par([A|B],[C|D],[E|F]) :-

concurrent_k((am1(A,C,E),amatrix(B,D,F)),

am1(A,C,E), amatrix_par(B,D,F)).

and leave the rest of the program untouched. For quicksort, we get

quicksort_par([A|B],C):-partition(B,A,D,E),

concurrent_k((quicksort(D,F),quicksort(E,G)),

quicksort_par(D,F),

quicksort_par(E,G)),

append(F,A,G,C).

and the rest of the program is not modified. Similar results are obtained for

flatten and msort. Note that the output of our tool is perfectly reasonable (i.e., it

coincides with a typical parallelization by hand). So what explains the slowdowns

produced? Besides the particularities of these benchmarks, it might be caused by

the implemented model of parallel threads in SWI Prolog (which copies ground

arguments instead of sharing them). Further investigating this point is a subject

of ongoing research; e.g., we plan to test the benchmarks using a different Prolog

environment supporting source-level primitives for AND-parallelism. As for the

third group, ppeval, we do not get a significant speedup but it allows us to check

that the approach is viable in practice and scales up well to medium programs (the

stack overflow corresponds to running the specialized partial evaluator to partially

evaluate itself on 4 or more threads, and seems to be related to the limited size of

threads’ stacks—i.e., it is not a fault of ppeval).

In summary, the experimental evaluation is still preliminary, but it clearly shows

that there is a good potential for improving program performance by using a

parallelizing partial evaluator. Indeed, one can easily judge by visual inspection of the

annotated programs (check the results in http://kaz.dsic.upv.es/litep.html)

that our parallelizing partial evaluator uncovers as much parallelism opportunities as

it is possible. We have not compared our tool with any existing parallelizing compiler

for logic programs yet. On the one hand, because our tool is not yet mature enough

to deal with realistic Prolog applications. On the other hand, because we could not

find a publicly available working system for source-level program parallelization.

4 Concluding remarks and future work

In this work, we have presented a novel approach to parallelizing partial evaluation.

Analogously to standard approaches to automatic independent AND-parallelization
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of logic programs, our partial evaluator uses run-time groundness and dependency

information. However, in contrast to these approaches, we can transform the source

program in order to expose more opportunities for parallelization. We are not

aware of any previous proposal along the same lines. (Consel and Danvy 1992;

Sperber et al. 1997) considers performing partial evaluation in parallel, which is

quite a different goal as ours. The closer approach we are aware of is that of

(Surati and Berlin 1994), where a standard partial evaluator is used to expose some

low level operations of a program so that a parallelization algorithm can be more

successfully applied. They consider, however, two independent actions: standard

partial evaluation and program parallelization, in contrast to ours. Nevertheless,

the idea of combining partial evaluation and static analysis is not new (Jones

1997). Also, the use of partial evaluation to compile an instrumented interpreter can

be used to enrich source programs with some additional information that can be

useful for debugging or optimizing execution (see, e.g., (Debois 2004; Jones 2004)).

Although we are not aware of using it for generating annotations for parallelism

so far, partially evaluating an interpreter instrumented with groundness and sharing

information (so that conjunctions are executed in parallel when safe) could get

similar results as our approach.

Being a novel approach, we consider that there is plenty of room for further

improvements. Firstly, one can consider the use of more accurate groundness and

sharing analysis. Secondly, our partition procedure to extract two independent

subgoals that can be run in parallel is rather simple. We plan to extend it to allow

an arbitrary number of parallel subgoals, and also to allow the reordering of some

subgoals. We would also like to explore other notions of AND-parallelism like non-

strict independent AND-parallelism or, even, dependent AND-parallelism. Finally,

the combination of our approach with a more aggressive partial evaluation scheme

is also an interesting avenue for future work.
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