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Abstract

Laser beat wave heating of magnetized plasma via electron cyclotron damping is proposed and
analyzed. A plasma density ripple is presumed to exist across the magnetic field. Two collinear
lasers propagating along the magnetic field exert a beat frequency ponderomotive force on
electrons, driving a large amplitude Bernstein quasi-mode which suffers cyclotron damping
on electrons. Finite Larmor radius effects play an important role in the heating. Electron tem-
perature initially rises linearly with time. As the temperature rises cyclotron damping becomes
stronger and temperature rises rapidly. The process, however, requires ripple wavelength
shorter than the wavelength of the beat wave.

Introduction

The excitation of collective modes in plasmas by beating intense electromagnetic beams has
been studied extensively over the years (Tajima and Dawson, 1979; Joshi et al., 1984;
Clayton et al., 1993; Krall et al., 1993). The plasma waves excited by such schemes have proven
useful for electron acceleration up to ultra-relativistic energies (Liu and Tripathi, 1994;
Nakajima et al., 1995; Esarey et al., 1996; Ting et al., 1997; Jarwal et al., 1999). In tokomak,
radio frequency wave driven space charge modes are used for current drive, plasma heating,
and diagnostics (Liu and Tripathi, 1986).

The efficiency of mode coupling processes is significantly influenced by the presence of
plasma density ripple. Experimental and analytical studies have demonstrated resonant
enhancement in the efficiency of second and third harmonic generation and terahertz gener-
ation due to density ripples (Parashar and Pandey, 1992; Liu and Tripathi, 2008; Kumar and
Tripathi, 2012. Vijay and Tripathi (2016) found density ripple to be effective in laser beat fre-
quency heating of unmagnetized plasma. Malik et al. (2017) have reported resonant enhance-
ment in two color laser excitation of terahertz radiation due to a density ripple.

In this paper, we study the beat frequency heating of a magnetized plasma in the presence
of a density ripple. The magnetic field introduces cyclotron damping as an effective route to
energy deposition where finite Larmor radius effects could also play a role. We employ two
collinear lasers, with frequency difference near the electron cyclotron frequency, propagating
along the static magnetic field but transverse to ripple wave vector. The beat frequency ponder-
omotive force by the laser drives an electrostatic Bernstein quasi-mode (Kumar and Tripathi,
2010). The mode is cyclotron damped on electrons and gives rise to strong electron heating.
We employ fluid theory to obtain electron response to lasers and Vlasov theory to obtain the
response of magnetized electrons at the beat frequency, including finite Larmor radius effects.

In Section “Excitation of Bernstein quasi-mode”, we deduce the beat frequency electric field
produced by two collinear lasers in a rippled density plasma. In Section “Anomalous heating”,
we obtain the anomalous heating rate of electrons and study the rise in electron temperature.
In Section “Discussion”, we discuss the results.

Excitation of Bernstein quasi-mode

Consider a magnetized plasma of electron density n0, electron temperature Te, and ambient
magnetic field Bs ẑ. The plasma has a density ripple,

n0 = n00 + nq

nq = nq0e
iqx (1)

Two collinear lasers propagate through the plasma along the magnetic field (Fig. 1),

�Ej = x̂Aje
−i(vj t−kjz), j = 1, 2 (2)
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where ω1− ω2≈ ωc, ω1− ω2≫ ωp, ωc k1≈ (ω1/c), k2≈ (ω2/c), ωp

= (n0e
2/mε0)

1/2 is the plasma frequency, ωc = eBs/m is the electron
cyclotron frequency, -e and m are the electron charge and mass,
and ε0 is the free space permittivity. The lasers impart oscillatory
velocities to electrons �v1 = ((e�E1)/(imv1)), �v2 = ((e�E2)/(imv2))
and exert a ponderomotive force on them at ω = ω1− ω2,
(k1 − k2)ẑ,

Fpz =
e∂fp

∂z
(3)

where

fp =
A1A2e
mv1 v2

e−i[(v1−v2)t−(k1−k2)z] (4)

The ponderomotive force creates a velocity perturbation

vNLvz = − Fpz
mi(v1 −v2)

(5)

which beats with the density ripple nq to produce nonlinear den-
sity perturbation nNLv,k at ω = ω1− ω2, �k = (k1 − k2)ẑ + qx̂.
Following Vijay and Tripathi (2016), one may write

nNLv,k = − kznqekzfp

2vm2
(6)

The nonlinear density perturbation nNLv,k, produces space
charge potential φω,k. This potential produces self-consistent elec-
tron density perturbation nLv,k, called linear density perturbation.
Following Vlasov theory one may write nLv,k in terms of φω,k and
electron susceptibility χe as

xe =
2v2

p

k2v2th
1+ v

kzvth

∑
l

Z
v− lvc

kzvth

( )
Il(b)e−b

⎡
⎢⎣

⎤
⎥⎦ (7)

where Il is the modified Bessel function of order l and argument
b = k2⊥v

2
th/2v

2
c , vth = (2Te/m)1/2 is the electron thermal velocity,

and ⊥ refers to the component perpendicular to magnetic field.
From the Poisson’s equation (assuming ions to be immobile),

∇2fv,k =
e
10

(nLv,k + nNLv,k) (8)

we obtain

fv,k = − e
10k

k10xe
e

fv,k −
kznqe

2mv2
fp

[ ]
(9)

fv,k = fp
xe
1
, (10)

where ε = 1 + χe is the plasma permittivity.
The electric field at ω, k produced by the beating of lasers, is

�Ev,k = −∇fv,k

�Ev,k = − ie
[0 (1+ xe)

kznqe

2mv2

( )
fp (11)

This field is large when permittivity ε(ω, k) = 1 + χe is small,
i.e., the ω, k mode is a quasi-Bernstein mode.

Anomalous heating

The beat wave driven space charge field heats the electrons. The
time average heating rate per unit volume is given by

H = Re[−(1/2)n00e�E
∗
v,k · �vv,k] (12)

where �vv,k is the electron velocity due to �Ev,k.
To obtain �vv,k we solve the Vlasov equation for electrons,

∂f
∂t

+ v�· ∇f − e(�Ev,k + v�× Bs ẑ) · ∂f

∂ v�= 0 (13)

In equilibrium f = f0 which we take to be Maxwellian

f0 = n0
m

2pTe

( )3/2

e−v2⊥/v
2
the−v2z/v

2
th

and

(Jl+1(x) + Jl−1(x)) = 2l
x
Jl(x)

Fig. 1. Schematic of laser beat wave heating of electrons in
rippled density plasma in the presence of a parallel static
magnetic field.
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Following Kumar and Tripathi (2010), we expand f as f0 + f1
and linearize the Vlasov equation, we obtain

f1 = − ef
Te

f0
∑
l′

Jl
k⊥v⊥
vc

( )
Jl′

k⊥v⊥
vc

( )
lvc + kzvz

v− lvc − kzvz
e−i(l−l′ )u

(14)

Using the perturbed distribution function we obtain the drift
velocity,

�vv,k = 1
n0

∫1
−1

∫2p
0

∫1
0

f1�vdv⊥dudvz (15)

vxv,k = eflvth
Tepb

1+ v

kzvth
z

v− lvc

kzvth

( )[ ]
[Il(b

2/2)e−b2/2] (16)

vzv,k = ef2pv
Tepkzvth

1+ v− lvc

kzvth
z

v− lvc

kzvth

( )[ ]
[Il(b

2/2)e−b2/2]

(17)

Thus the heating rate is:

He = − n00 e
2

ie
10

nqe

2mv2

( )[ ]
f

∗
p (Il(b

2/2)e−b2/2)
e

Tep

{ }

(kx + q)
lvth
b

1+ v

kzvth
z

v− lvc

kzvth

( )( )[ ]

+ 2pv
kz

1+ v− lvc

kzvth
z

v− lvc

kzvth

( )[ ]
f

(18)

We may write χe = χer + iχei

where

xer =
2v2

p

k2v2th
1− v

v− lvc
Il(b)e

−b

[ ]
(19)

As

xe
1
� xer

1+ xer

where

xer
1+ xer

= 1− 1

1+ 2v2
p

k2 v2th
1− v

v− lvc
Il(b)e

−b

[ ]
⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (20)

The heating rate per electron per second is

H
n00

= v2
p

v2

( )
nq0

eA1

mv1vth
· eA2

mv2vth

( )2Te

p

Il
1
2
k⊥vth
vc

( )2

e
− k⊥vth

2vc

( )2
⎡
⎣

⎤
⎦(kx + q)

lvc

k⊥vth
· vth

��
p

√ v

kzvth
e−(v−lvc)2/k2z v

2
th

[

+ v

kz

��
p

√ v− lvc

kzvth

( )
e−(v−lvc)

2/k2z v
2
th

]

1− 1
1+ ((2v2

p)/(k2 v2th))[1− (v/(v− lvc))Il(b)e−b]

[ ]

H
n00

= v2
p

v2

( )
Nq0

v1v2
c2

( )2mc2

8p
Il

b2

2

( )
e−b2/2

[ ]

(kx + q)
lvc

k⊥vth
+ v− lvc

kzvth

( )
v

kz

��
p

√
e
−(v−lvc)2/k2z v

2
th

[ ]

H
n00

= hmc2v

where

h = v2
p

v2

( )
Nq0

8p
v1v2
c2

( )2k⊥
kz

��
p

√
Il

b2

2

( )
e−b2/2

[ ]

lvc

k⊥vth
+ v− lvc

kzvth

( )
v

kz

��
p

√
e
−(v−lvc)2/k2z v

2
th

[ ]

The equation governing the evolution of electron temperature
can be written as

d
dt

3
2
Te

( )
= hmc2v = C1

xei
|1|2

= C1 Il
b2

2

( )
e−(b2/2)

[ ]
(kx + q)

lvc

k⊥vth
+ v− lvc

kzvth

( )
v

kz

��
p

√
e
−(v−lvc)2/k2z v

2
th

[ ]

1− 1
1+ ((2v2

p)/(k2 v2th))[1− (v/(v− lvc))Il(b)e−b]

[ ]
(21)

C1 =
Nq0

8p
v1v

∗
2

c2

∣∣∣∣
∣∣∣∣
2 v2

p

6v2
(22)

For pulsed lasers, e.g., A2
1A

2
2 = A2

10A
2
20e

−2t2/t2 , C1 is a function
of time and one may solve Eq. (22) numerically to obtain Te as a
function of time. As the electron temperature rises the cyclotron
damping of electrons (manifested through the rise in χei)
increases, hence heating rate becomes stronger. We introduce
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normalized laser amplitudes a10 = eA10/mω1c, a20 = eA20/mω2c
and dimensionalize the normalized heating rate h by a quantity
h0.

h0 =
v2
p

v2

( )
Nq0

8p
v1v2
c2

( )2 ��
p

√
. (23)

In Fig. 2, we have plotted the normalized heating rate of elec-
trons h/h0 as a function of kzvth0/vc, the normalized parallel wave
number of the quasi-mode (or beat wave number of the lasers),
assuming electron temperature to be clamped. The parameters
are (ω− ωc) = 0.1, qvth/vc =

��
2

√
.

The heating rate increases with kzvth0/vc, attains a maximum
when (ω− ωc)/kzvth≈ 1 and then falls off gradually due to the kz
dependence of the factor outside the exponential. Fig. 3 shows the
variation of electron temperature as a function of normalized time.

The electron temperature initially rises with time more than
linearly. As the temperature increases cyclotron damping becomes
stronger. Beyond the laser intensity peak the rise ion electron
temperature is slow and temperature saturates. gradually and
eventually saturates with time.

Discussion

A density ripple of 10% having wavelength few times the laser
wavelength is effective for beat wave cyclotron heating of elec-
trons. The ripple could be created by a machining laser beam as

done by Milchberg et al. (2001). The driven beat mode heats
the electrons via cyclotron damping. Initially the heating is
slow. However, as the electron temperature rises the damping
becomes more severe and the heating becomes quite efficient.
For Gaussian laser beams, the heating rate rises rapidly as the
electron temperature increases. After attaining (ω− ωc)/kzvth≈
1, the heating rate slows down. The electron temperature rises
with time and saturates in the rear phase of the laser pulse.

Heating rate is a function of wave number of the ripple due to
finite Larmor radius effects. The temperature is enhanced on
increasing the normalized temperature and the less normalized
time is required on increasing the normalized temperature.
However, the peak for Te/T0 = 2 is higher than Te/T0 = 3 due to
the term [Il(b2/2)e−(b2/2)] and exponential term and in Eq. (21).
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