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Commentary on Andy Clark and Chris Thornton (1997). Trading spaces: Computation, representation, and
the limits of uninformed learning. BBS 20:57–90.

Abstract of the original article: Some regularities enjoy only an attenuated existence in a body of training data. These are regularities
whose statistical visibility depends on some systematic recoding of the data. The space of possible recodings is, however, infinitely large
– it is the space of applicable Turing machines. As a result, mappings that pivot on such attenuated regularities cannot, in general, be
found by brute-force search. The class of problems that present such mappings we call the class of “type-2 problems.” Type-1 problems,
by contrast, present tractable problems of search insofar as the relevant regularities can be found by sampling the input data as originally
coded. Type-2 problems, we suggest, present neither rare nor pathological cases. They are rife in biologically realistic settings and in
domains ranging from simple animat (simulated animal or autonomous robot) behaviors to language acquisition. Not only are such
problems rife – they are standardly solved! This presents a puzzle. How, given the statistical intractability of these type-2 cases, does
nature turn the trick? One answer, which we do not pursue, is to suppose that evolution gifts us with exactly the right set of recoding
biases so as to reduce specific type-2 problems to (tractable) type-1 mappings. Such a heavy-duty nativism is no doubt sometimes
plausible. But we believe there are other, more general mechanisms also at work. Such mechanisms provide general (not task-specific)
strategies for managing problems of type-2 complexity. Several such mechanisms are investigated. At the heart of each is a fundamental
ploy – namely, the maximal exploitation of states of representation already achieved by prior, simpler (type-1) learning so as to reduce
the amount of subsequent computational search. Such exploitation both characterizes and helps make unitary sense of a diverse range
of mechanisms. These include simple incremental learning (Elman 1993), modular connectionism (Jacobs et al. 1991), and the
developmental hypothesis of “representational redescription” (Karmiloff-Smith 1979; 1992). In addition, the most distinctive features
of human cognition – language and culture – may themselves be viewed as adaptations enabling this representation/computation trade-
off to be pursued on an even grander scale.
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Abstract: Clark & Thornton take issue with my claim that parity is not a
generalisation problem, and that nothing can be inferred about back-
propagation in particular, or learning in general, from failures of parity
generalisation. They advance arguments to support their contention that
generalisation is a relevant issue. In this continuing commentary, I exam-
ine generalisation more closely in order to refute these arguments.
Different learning algorithms will have different patterns of failure: back-
propagation has no special status in this respect. This is not to deny that a
particular algorithm might fortuitously happen to produce the “intended”
function in an (oxymoronic) parity-generalisation task.

Clark and Thornton (1996t) (C&T) distinguish between straight-
forward type-1 problems which are “statistical” and problems of
type-2 which are “relational.” The former are learnable by an
“uninformed” learning device, they say, while the latter require
some sort of recoding to become learnable. C&T cite parity as an
example of type-2 problem, demonstrate the inability of back-
propagation to generalize on this problem, and draw the conclu-
sion that (sect. 5, para. 1): “Uninformed learning . . . had little
chance of penetrating the space of type-2 problems.” In my
commentary Damper (1996), I showed that the parity problem –
at least where this involves binary-to-binary input-output map-
pings – cannot be considered a generalisation problem.

My argument was actually stated more eloquently by C&T in
their Authors’ Response (sect. R6, para. 1, p. 87) than I had
managed myself:

Damper . . . worries that holding back even a single pattern on the
classical (2 variable, XOR) parity problem simply makes the problem
insoluble (the machine would need to read our minds to know the
intended function) as the learning algorithm lacks sufficient data. He
concludes that it must be wrong to link parity learning to issues about
generalization.

Having grasped my argument so well, however, they are strangely
reluctant to accept it. Instead, they advance some counter argu-
ments to support their original position. I seek to show here that
these counter arguments are insufficient.

Let us first be clear what generalisation is. Actually, it is not a
very well-defined concept: basically, it refers to the fitting of a

smooth function to the input-output mapping, avoiding over-
fitting of the training data. So, it is not well-defined because one
can ask: How smooth does smooth have to be? Although it is not
well defined, however, we can still assert that “parity is not a
generalisation problem” because binary-to-binary mappings are
inherently discontinuous.

C&T go on to say (sect. R6, para. 2, p. 87): “Damper implies that
parity cannot be a generalization problem because parity map-
pings exhibit neutral statistics.” Leaving aside the matter that I
certainly did more than “imply,” the argument was not based on
statistics. I showed through the results of simulations on the
2-variable XOR problem with the 11 (⇒ 0) input held back that
the learned function always reflected the most obvious input-
output mapping (the OR function), rather than anything to do with
probabilities or statistics. This point was also well made by Chater
(1996) in his commentary: he writes that feedforward neural
networks are not “concerned with learning arbitrary conditional
probability distributions, but rather with learning functions from
input to output.” Put even more concretely, the back-propagation
algorithm is concerned with searching heuristically an error sur-
face in weight space for a minimum; this is only loosely related to
input-output statistics – or, indeed, to generalisation. This lack of a
very direct relation explains why, in practical applications, the
evolving generalising ability of a network has to be tested during
training with held-out data (so-called validation testing), rather
than merely by monitoring the training-set error, if over-fitting is
to be avoided.

C&T next opine (sect. R6, para. 3, p. 87) that expecting
generalisation on a 4-variable problem (holding out just one case
in 16 to leave 15 cases as the basis for generalisation) “somehow
. . . does not seem quite so unreasonable.” But they themselves
showed that the problem would not generalise, and drew strong
inferences from this failure! The essential nature of the problem is
not changed by adding more variables. The reason for the failure is
precisely the same as the reason for failure in the 2-variable case:
parity is not a generalisation problem.

C&T then consider the standard two-spirals problem which,
they say, is “parity-like” and “has never been treated as anything
other than a generalization problem.” The clue here is in the
“-like” qualification. Because the inputs are co-ordinates in the
plane and the output is a discrete label from one of two classes, this
problem involves continuous-to-binary mappings and so is an
instance of what I called an “extended parity problem” (my sect.
3). The extra information in the continuous input is crucial in
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making this a genuine generalisation problem (one where it makes
sense to think of a smooth interpolation of the training data-
points), where the “true” (binary-to-binary) parity problem is not.

Now, if “true” parity is not a generalisation problem, what are
we to make of the claim of Berkeley (1996) in his commentary
(pp. 66–67) to have a solution for it? The key point here is that his
learning procedure is quite unlike distributed back-propagation; it
is localist in that the “ value units” have restricted (nonmonotonic,
Gaussian) receptive fields. I mentioned in my commentary (sect.
4) that constructive techniques with localist units are trivially
capable of “solving” the parity-generalisation (actually an oxy-
moron) problem, and gave the example of constructing an and-or
network to illustrate the principle. There is, of course, nothing to
stop a learning device appearing to mind-read by discovering just
that solution which happens to be in the experimenters’ mind!

The lesson of all this is that learning is not homogeneous –
different algorithms learn different things. Indeed, quite subtle
differences between learning procedures can produce quite pro-
foundly different results. For instance, most people would imag-
ine that it matters little whether one uses back-propagation
(Rumelhart et al. 1986) or the perceptron rule (Rosenblatt 1962)
to train a single-layer perceptron: the former is just an extension to
the latter and allows hidden-unit weights to be estimated. Yet, as
Brady et al. (1989) have shown, back-propagation actually fails on
some linearly separable problems where perceptron learning
succeeds. This result deserves to be much better known than it is.
So back-propagation learning has no special status, and C&T are
wrong to read too much into its failures (especially on an insoluble
problem!). Echoing Chater’s question “Why probabilities?” we
could as well ask of C&T “Why back-propagation?”
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Abstract: In his new commentary, Damper re-emphasises his
claim that parity is not a generalisation problem. But when proper
account is taken of the arguments he puts forward, we find that the
proposed conclusion is not the only one that can be drawn.

In adding the word “still” to the title of his ongoing
commentary, Damper re-emphasises his claim that “parity
is not a generalisation problem.” His view is that in our
Response (Clark & Thornton 1997r) we failed to accept or
even properly address his argument. However, as we hinted
in the first paragraph of section R6, the interpretation of his
claim is not a straightforward matter. “Parity” refers to the
truth function whose rule is that the output is true if an odd
number of the inputs are true. Parity functions may be of
any order but we are particularly familiar with the 2-place
variant, also known as “exclusive-or” (XOR).

Now, of course, a function is a function is a function. It is
not, in itself, a “problem.” And incontrovertibly, therefore,
it cannot be a “generalisation problem.” However the parity
function (like any other function) is easily used as the basis
for a generalisation problem. The procedure is straightfor-
ward: we take the complete mapping for a given parity

function (e.g., all 16 input/output associations for the 4-bit
parity function) and we present a subset of these cases to
the generalisation mechanism, for example a supervised
learner. We then test the generalisation performance of the
mechanism by examining its response on the unseen cases,
or the “validation” set as Damper calls it. This is the
standard method for presenting a generalisation problem to
a supervised learning mechanism. And we note that in both
his commentaries, Damper describes the way he used the
method to test the generalisation abilities of a backpropaga-
tion network. His account in his first commentary is partic-
ularly clear: he describes how he provided his backpropaga-
tion network with just “the first three lines of the [XOR]
truth table” so as to see whether it could “generalise on the
2-variable parity (XOR) problem.” Clearly, then, Damper is
familiar with the procedure by which a parity mapping is
used as the basis for the presentation of a generalisation
problem. His intention thus cannot be to argue that parity
cannot be used as the basis of a generalisation problem.
What, then, are we to make of his declaration that “parity is
not a generalisation problem.”

A clue to his intentions comes in his second commentary.
Here he suggests that generalisation “refers to the fitting of
a smooth function to an input-output mapping.” For
Damper, this implies that “parity is not a generalisation
problem because binary-to-binary mappings are inherently
discontinuous.” The argument here is that since parity
involves a particular operation – namely the “fitting of a
smooth function to an input-output mappings” – the setting
up of a generalisation problem in which this operation
cannot, in principle, be applied, inevitably results in failure.
In experimental terms, the procedure should be deemed a
pointless and vacuous exercise and “parity generalisation”
classified as an oxymoron.

Several aspects of Damper’s first and second commen-
taries suggest that this is indeed his intended argument and
that we should therefore treat “parity [still] isn’t a gener-
alisation problem” as a claim about the impossibility of
solving parity-generalisation problems. And yet, nagging
doubts [still] remain. Can Damper’s view that generalisa-
tion involves the fitting of a “smooth function” to an input-
output mapping be taken seriously? A significant propor-
tion of contemporary generalisation models are symbolic in
nature and do not trade in any sort of numerical representa-
tion. Is it Damper’s intention that these should be ruled out
of court? His attitude to the performance of backpropaga-
tion on parity-generalisation also presents problems. We
expect Damper to take the failure of any generalisation
method on parity generalisation to corroborate his view that
parity-generalisation cannot be regarded as a genuine prob-
lem. And yet in his conclusion, Damper suggests that “C&T
are wrong to read too much into [backpropagation’s] fail-
ures” on the parity-generalisation task.

And what are we to make of his treatment of the gener-
alisation method described by Berkeley? Damper notes
that Berkeley’s method provides a “solution” to a parity
generalisation task and we naturally expect Damper’s posi-
tion to be an emphatic rejection of Berkeley’s claim that the
method performs anything approximating “genuine gener-
alisation.” And yet, paradoxically, Damper’s view is that
Berkeley’s method satisfactorily accomplishes the task it is
set even though – as he puts it – the method may appear to
“mind-read by discovering just that solution which happens
to be in the experimenter’s mind!” This sounds suspiciously
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like a muted round of applause. And in fact it turns out that
Damper’s view is that “the lesson of all this is that learning is
not homogeneous – different algorithms learn different
things.”

Reading these words we must struggle with the contrast
between the Damper who thinks parity generalisation is not
a genuine learning problem and the Damper who considers
that certain methods satisfactorily solve parity generalisa-
tion problems. But to get hung up on these apparent
contradictions would, we believe, be a mistake. Rather, we
should try to determine Damper’s intended meaning by
carefully reading between the lines of his commentary.

In appearing to present inconsistent views with respect
to generalisation’s technicalities, Damper may be cunningly
shaking out the thorny problem which lies at the subject’s
core, namely Hume’s problem, or the “problem of induc-
tion.” This is the observation that since inductive gener-
alisations do not have (by definition) a logical deriva-
tion, they can never be regarded as entirely certain. Any
inductively-acquired knowledge (e.g., scientific knowl-
edge) is thus necessarily uncertain.

An interesting corollary is that, since generalisation prod-
ucts are always uncertain, we should arguably treat all
generalisation methods as being of equal status. And, in-
deed, this thesis has recently been given a mathematical
foundation in the form of the No-Free-Lunch theorem of
Wolpert (1996b; 1996a) and the Conservation Law of
Schaffer (1994).1

Damper’s assertion that “backpropagation has no special
status” seems to confirm our suspicion that his underlying
aim is not so much to demonstrate that parity isn’t a
generalisation problem but rather to demonstrate that the
performance of particular learning methods on particular
problems does not tell us very much. But if this is his
intention then all parties can breathe a sigh of relief. There
is nothing about our position which would cause us to do
anything but wholeheartedly concur.

Recall that our target article used a probability argument
to show that inductive generalisations may be justified
either though type-1 (statistical) effects or through type-2
(relational) effects. We demonstrated that learning which
depends exclusively on the exploitation of type-1 effects
cannot deal with relational problems because such prob-
lems do not present exploitable, type-1 effects. (In both his
commentaries, Damper takes time to illustrate what this
means in the context of the parity mapping.) Following the
presentation of the type-1/type-2 distinction we then intro-
duced a case study involving the backpropagation method.
This was intended merely to provide an illustrative exam-
ple. Our suggestion was that the in-principle intractability
that relational problems present to methods relying on
type-1 effects “may help to explain why backpropagation
. . . often fails to solve low-order parity problems when
presented as generalisation problems.” In other words, we
were speculating that backpropagation may be bad at parity
generalisation as a result of depending too heavily on the
exploitation of type-1 effects. We could easily have made
the same remark about any other method adopting the
same strategy.

We believe that wires may have become crossed over this
reference to backpropagation partly because of the uncon-
ventional way in which the type-1/type-2 distinction was
formulated. But we hope that the ensuing commentary has
clarified the fact that the distinction introduced is uncon-

tentious and that it is in fact one which has been expressed
in a wide variety of ways over a large number of years. As it
turns out, it can even be formulated in terms of Damper’s
own “smooth function” concept.

To formulate the distinction in these terms we first need
to visualise the generalisation process and associated input/
output mapping in pictorial terms. We view the input/out-
put mapping in terms of an input space whose datapoints
correspond to individual inputs. The label attached to each
datapoint is then the output associated with the input; a
method then solves a generalisation problem by success-
fully using a sample of labelled datapoints to predict the
labels of inputs not included in the sample.

In a “smooth” input/output mapping – the type that
Damper believes presents a genuine generalisation prob-
lem – the labeling of datapoints varies smoothly across the
space. Datapoints with the same label cluster together and
there is a gradual transition between different labels as we
move across the space. Generalisation methods must asso-
ciate groups of inputs with specific outputs and in the
“smooth mapping” context, this is easily accomplished.
Because of the way inputs with the same output tend
to cluster together, the process of separating them can
be accomplished straightforwardly by introducing simple
bounding constructs (planes, spheres, etc.) into the space.
If the input/output mapping is not smooth and datapoints
with the same label do not cluster together, then separation
of groups of inputs requires the introduction of more
complex bounding constructs.

These observations might lead us to introduce a “new”
fundamental distinction between smooth and non-smooth
input/output mappings and to point out that only smooth
input/output mappings allow for learning/generalisation
processes based on the introduction of simple bounding
constructs. Particular learning methods could then be di-
vided up according to whether they utilise simple or com-
plex bounding constructs. Key members of the “simple”
camp would turn out to be the Perceptron method (Minsky
& Papert 1988) which introduces a single, planar boundary,
ID3 (Quinlan 1983) which adds an arbitrary number of axis-
aligned, extreme boundaries, backpropagation (Rumelhart
et al. 1986), which manipulates a fixed number of linear
boundaries, LVQ (Kohonen et al. 1990), which manipulates
a fixed number of spherical boundaries and the k-nearest-
neighbours method (Duda & Hart 1973), which utilises the
implicit planar boundaries between datapoints. Key mem-
bers of the “complex” camp would turn out to be methods
such as AQ15 (Michalski et al. 1986), cigol (Muggleton &
Buntine 1988), and foil (Quinlan 1990), which utilise back-
ground knowledge of one form or another for the purposes
of forming complex separations among classes of inputs.

But in working through this argument we would, of
course, simply be rehashing the type-1/type-2 distinction
introduced in our paper. Input/output mappings are
“smooth” just in case datapoints with the same label cluster
together. This occurs if absolute input values (i.e., datapoint
coordinates) are significant for the prediction of output. If
input values are not significant, then there is no reason to
expect datapoints with the same label to occupy the same
part of the input space; there is no clustering and no
smoothness. Damper suggests that expecting a method to
generalise in this context – when absolute values are
insignificant for the prediction of output (as they are in the
parity mapping) – amounts to “expecting the [method] to
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be a mind-reader.” But although absolute values may not be
significant, the relationship(s) among them may be. Gener-
alisation then does not require mind-reading but merely an
accurate identification of the relationship underlying the
mapping. This brings us more or less back to the original
point around which our paper was based. Mappings in
which the underlying input/output rule is relational or
type-2 cannot be generalised by methods which utilise
simpler bounding constructs and thus implicitly assume a
“smooth” (type-1) mapping.

As we suggested in our initial response, Damper is quite
right to observe that absolute input values (datapoint coor-
dinates) cannot be used as a basis for predicting outputs in
parity mappings. But rather than demonstrating that parity
cannot be treated as a generalisation problem, it actually
demonstrates that parity forms the basis for a particular
type of generalisation problem, namely, a relational prob-
lem in which the successful prediction of outputs involves
the discovery of the relational rule underlying the mapping.
Thus Damper’s correction of his title should not involve the
insertion of the word “still” but rather the insertion of
“type-1,” thus producing the correct conclusion “Parity is
not a type-1 generalisation problem.”

NOTE
1. These methods make use of the fact that when we average

the performance of a generalisation method over all possible
scenarios, we inevitably find that each particular generalisation is
correct just as often as it is incorrect. The effect is that all
generalisation methods have an average performance which is
identical to that achieved by random guessing.
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