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Abstract

Background. Substance use occurs at a high rate in persons with a psychiatric disorder.
Genetically informative studies have the potential to elucidate the etiology of these phenom-
ena. Recent developments in genome-wide association studies (GWAS) allow new avenues of
investigation.

Method. Using results of GWAS meta-analyses, we performed a factor analysis of the genetic
correlation structure, a genome-wide search of shared loci, and causally informative tests for
six substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five
psychiatric disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia).
Results. Two correlated externalizing and internalizing/psychosis factor were found, although
model fit was beneath conventional standards. Of 458 loci reported in previous univariate
GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic
with additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic
loci, 152 were associated with both substance use and psychiatric disorders, implicating
neurodevelopment, cell morphogenesis, biological adhesion pathways, and enrichment in
13 different brain tissues. Seventy-five and 114 pleiotropic loci were specific to either psychi-
atric disorders or substance use phenotypes, implicating neuronal signaling pathway and
clathrin-binding functions/structures, respectively. No consistent evidence for phenotypic
causation was found across different Mendelian randomization methods.

Conclusions. Genetic etiology of substance use and psychiatric disorders is highly pleiotropic
and involves shared neurodevelopmental path, neurotransmission, and intracellular traffick-
ing. In aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting
horizontal pleiotropy or more complex forms of phenotypic causation.

Introduction

Substance use is a leading cause of global mortality (Ezzati, Lopez, Rodgers, Vander Hoorn, &
Murray, 2002) and shows a close association with psychiatric disorders. Individuals who have a
prior lifetime history of psychiatric disorders (Conway, Swendsen, Husky, He, & Merikangas,
2016) as well as those with a current diagnosis show higher rates of substance use across a var-
iety of substances, including tobacco (Lasser et al.,, 2000; Weinberger et al., 2017), alcohol
(Weitzman, 2004), and cannabis (Blanco et al., 2016). For example, relative to general popu-
lation, individuals with severe psychotic disorders showed an increased risk of smoking [odds
ratio (OR) =4.6], heavy alcohol use (OR=4.0), and heavy cannabis use (OR =3.5) (Hartz
et al,, 2014). Substance use has been found to predict psychiatric disorders prospectively,
including depressive disorders (Brook, Cohen, & Brook, 1998), anxiety disorders (Johnson
et al., 2000), and psychotic disorders (van Os et al., 2002). At the same time, early psychiatric
problems have also been found to predict later substance use (King, Iacono, & McGue, 2004;
Miettunen et al., 2014). The elevated use of substances is associated with poorer outcomes such
as medication non-adherence (Margolese, Malchy, Negrete, Tempier, & Gill, 2004), more psy-
chiatric hospitalizations (Dalton, Cate-Carter, Mundo, Parikh, & Kennedy, 2003), and
increased suicide rates (Kask et al., 2016), which is partly responsible for the excess mortality
due to smoking and alcohol-related diseases (Brown, Inskip, & Barraclough, 2000; Hjorthej
et al,, 2015). The high comorbidity and accompanying mortality naturally leads to questions
about shared etiology among these behaviors of high public health impact (Barkus & Murray,
2010; Gregg, Barrowclough, & Haddock, 2007).

Numerous studies have demonstrated shared genetic vulnerability to substance use and
psychiatric disorder, especially those conceptualized as externalizing disorders such as
ADHD and conduct disorder (Hicks, Krueger, Iacono, McGue, & Patrick, 2004; Kendler
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et al,, 2011; Rosenstrom et al., 2019; Young et al., 2009). Young
et al. (2009) reported a moderately heritable factor loading on
substance use (alcohol, tobacco, marijuana, and other illicit
drugs), conduct disorder, ADHD, and novelty-seeking traits at
the start and the end of adolescence, using structural equation
ACE models on the family data of 293 twin pairs. Similarly,
Hicks et al. (2004) reported a highly heritable, general vulnerabil-
ity factor that accounts for the correlations among conduct
disorder, adult antisocial behavior, and alcohol and drug depend-
ence in a sample of 542 twin families. Of note, most studies
reporting such findings are based on known familial relationships
(e.g. twins), rather than direct measurement of genetic markers.
Genome-wide association studies (GWAS) have now identified
hundreds of risk loci for substance use and psychiatric disorders,
providing new opportunities to evaluate the pattern of relation-
ships among these phenomena. Moreover, GWAS allows one to
test not only the existence of shared genetic risk, but to interrogate
individual genomic locations and related genes, with the potential
to inform biology associated with the shared liability. The largest
substance use GWAS to date identified many sets of genes and
relevant tissues contributing to individual differences in alcohol
and tobacco use such as nicotinic, dopaminergic, glutamatergic
neurotransmission and developmental biology (Liu et al., 2019).
Gene-sets relevant to cannabis use also included neurogenesis
and dopaminergic neurotransmission (Pasman et al., 2018).
Investigating genetic overlap can further elaborate knowledge on
how these biological systems relate to psychiatric disorders or
more specifically to certain types of substance use measures.

Pleiotropy - that variation within a given locus is associated
with variation in two or more phenotypes - is abundant for com-
plex traits (Paaby & Rockman, 2013). Evidence for pleiotropy
comes from family studies and population studies of genome-wide
genetic covariances among phenotypes, as well as associations
between multiple phenotypes and variation within individual
genes or genomic loci. These avenues of research are informative
about whether pleiotropy exists, but do not readily distinguish dif-
ferent types of pleiotropy. Horizontal pleiotropy arises when gen-
etic variation affects two or more phenotypes independently [or,
alternatively, independently affect some intermediate process(es),
which then affects the two phenotypes]. Vertical pleiotropy arises
when genetic variation affects one phenotype, the experience/
expression of which then causes a second phenotype; this is the
type of pleiotropy Mendelian randomization (MR) mainly attempts
to detect. Genetic covariances can arise under either form of plei-
otropy (Solovieff, Cotsapas, Lee, Purcell, & Smoller, 2013).
Distinguishing horizontal from vertical pleiotropy would have
implications for many existing causal theories of psychopathology
and substance use, some of which posit that psychiatric disorders
cause substance use (e.g. self-medication; Khantzian, 1997), or
that substance use is a causal risk factor of psychiatric disorders
(Weiser & Noy, 2005). In contrast, the existence of horizontal plei-
otropy would support conceptualizations of psychopathology as a
product of more general liabilities to the manifestation of psycho-
pathology and substance use or dependence (Kotov et al., 2017;
Krueger & Markon, 2006). Such causal hypotheses can in theory
be tested with MR through the use of genetic instruments
(Davey Smith & Ebrahim, 2003). Different MR methods provide
complementary ways to test causal associations, and here we take
advantage of two recently developed methods (O’Connor &
Price, 2018; Pickrell et al., 2016).

The aim of this paper is to inform the nature of shared genetic
influences on substance use and psychiatric disorders by (1)
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examining the structure of genetic correlations using genome-wide
methods and directly measured genetic variation (i.e. GWAS), (2)
characterizing individual loci that are associated with two or
more phenotypes, and (3) testing potential causal relations — hori-
zontal or vertical pleiotropy — between substance use and psychi-
atric disorders. Although several GWAS meta-analyses have been
conducted on the genetic overlap between various individual
pairs of psychiatric disorders (Lee et al., 2019; van Hulzen et al,,
2017), the overlap between multiple forms of substance use and
a variety of psychiatric disorders has not been evaluated.

Materials and methods
Quality control

Publicly available European ancestry GWAS summary statistics,
the largest to date, were collected for six substance use and five
psychiatric disorder phenotypes. Any well-powered meta-analysis
GWAS of substance use and psychiatric disorders covering exter-
nalizing, internalizing, and psychotic disorders were considered
for inclusion. Among these, those reporting at least five significant
loci in European ancestry and whose summary statistics were
publicly available before mid-2019 were included. Additionally,
education and height were included as controls to serve as a ref-
erence for interpreting the results. Quality controls, including var-
iants filtering and LD clumping, were applied to ensure that
problematic variants were excluded and different sets of summary
statistics were as comparable as possible. Study characteristics
after QC and details of QC procedure are reported in Table 1
and the Supplementary Note, respectively. Note that LDSC inter-
cept values for the smoking and alcohol use traits are <1.0, con-
sistent with the fact that these summary statistics were originally
generated using genomic control (Liu et al., 2019).

Factor analysis

We used genomicSEM (Grotzinger et al., 2019) to perform factor
analysis on the multivariate covariance matrix. The matrix was
first constructed with SNPs filtered to those polymorphic in
HapMap3 Europeans with minor allele frequency >0.01. We fit
a hypothesized three-factor model as well as exploratory factor
analysis (EFA) with 1-3 factors. Fit for all models were compared
using confirmatory factor analysis (CFA). EFA was performed
with promax rotation and maximum likelihood estimation
using factanal() in the R package stats v.3.6.1. CFA was conducted
with Diagonally Weighted Least Square estimation and imple-
mented in genomicSEM, which provides standard fit information
including the x> fit statistic, Akaike Information Criterion
(Akaike, 1974; Vrieze, 2012), comparative fit index (CFI), and
standardized root mean square residual (SRMR). While no
doubt the confirmatory models based on the EFA were overfitted,
the CFA allowed us to evaluate fit indices for best-case (indeed,
over-fitted) scenarios.

Bivariate locus-wise association

To identify pleiotropic loci, we used gwas-pw (Pickrell et al., 2016;
Ruderfer et al., 2018), a bivariate association method used to iden-
tify loci associated with pairs of phenotypes (here, 78 total pairs).
The method is a Bayesian hierarchical modeling approach devel-
oped to compare the posterior probability of four competing
models for a given approximately independent LD block.
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Table 1. Study information

Number of sentinel

Phenotype Type GWAS variants® Sample size® A LDSC intercept® h? Source

Age of initiation of smoking ~ Substance use 12 341427 1.227 0.976 (0.008) 0.044 (0.003) Liu et al. (2019)
Cigarettes per day Substance use 98 337334 1.294 0.958 (0.010) 0.074 (0.007) Liu et al. (2019)
Smoking cessation Substance use 37 547219 1.222 0.948 (0.009) 0.067 (0.03) Liu et al. (2019)

Ever smoker Substance use 439 1232091 1.701 0.813 (0.011) 0.085 (0.002) Liu et al. (2019)
Drinks per week Substance use 138 941280 1.393 0.901 (0.009) 0.036 (0.002) Liu et al. (2019)
Lifetime cannabis use Substance use 4 162 082 1.191 1.006 (0.007) 0.120 (0.008) Pasman et al. (2018)
ADHD Psychiatric disorder 12 53293 1.247 1.029 (0.010 0.221 (0.014) Demontis et al. (2019)
Anorexia Psychiatric disorder 10 72517 1.248 1.028 (0.010) 0.162 (0.011)  Watson et al. (2019)
Bipolar disorder Psychiatric disorder 16 51710 1.326 1.022 (0.010) 0.200 (0.010)  Stahl et al. (2019)
Major depressive disorder  Psychiatric disorder 8 173 005 1.23 0.996 (0.008) 0.080 (0.005) Wray et al. (2018)
Schizophrenia Psychiatric disorder 189 105318 1.684 1.070 (0.011) 0.239 (0.008) Pardifas et al. (2018)
Years of education Control 644 766 345 2.095 1.031 (0.014) 0.107 (0.003) Lee et al. (2018)
Height Control 5598 709 706 3.61 1.899 (0.045) 0.455 (0.019)  Yengo et al. (2018)

®Number of GWAS variants are ascertained by LD clumping (r*>0.1) genetic variants with p value <5x 107® using Priority Pruner.
bSample size is based on full summary statistics released in public except GSCAN phenotypes (Liu et al., 2019) which included 23andMe sample.
“Smoking and drinking GWAS data from Liu et al. (2019) have LDSC intercept <1 due to genomic control.

Models 1 and 2 assume the block harbors a causal variant that is
associated with either only the first or only the second phenotype
in a pair, respectively. Model 3 assumes the block harbors a vari-
ant that is associated with both phenotypes simultaneously, and
model 4 assumes the block contains two distinct variants, each
associated with only one of the two phenotypes. As in the original
publication of the method, genomic regions were defined a priori
by splitting chromosomes into approximately independent LD
blocks (mean block size: 1.5M base-pairs) (Berisa & Pickrell,
2016). The method empirically estimates priors for each regional
model by using effect size information of variants in a given LD
block and applies sample overlap correction (here we used effect
size correlations between variants with p value >0.1 in both stud-
ies; online Supplementary Table S1) to generate posterior prob-
abilities. A region was deemed pleiotropic if the posterior
probability of model 3 was >0.9. SNPs showing the highest poster-
ior probability within the shared locus were chosen as lead SNPs
for that region. This method has been shown to detect shared loci
at a false discovery rate of 10% (Pickrell et al., 2016).

Functional annotations and tissue/gene-set enrichment
analysis

First, we tested whether pleiotropic loci harbor more or less dele-
terious variants compared to non-pleiotropic loci using
Combined Annotation Dependent Depletion (CADD) scores,
which predict deleteriousness of variants based on protein func-
tion and structure (Kircher et al., 2014). Second, we tested
whether variants from pleiotropic loci are more or less likely to
harbor variants of different functional classes (e.g. non-
synonymous, intronic, intergenic, etc.). Lead SNPs and their LD
partners (r*>0.4, 1d-window 500kb) were annotated with
CADD and SEQMINER using refGene (retrieved 18 September
2019; Ye et al, 2010). Next, we performed tissue and gene-set
enrichment analysis to test whether genes mapped to pleiotropic
loci were enriched in certain tissue or gene-sets. A given region
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was categorized depending on whether it is associated with both
substance use and psychiatric or associated with only one or the
other. Tissue- and gene-set enrichment analyses were conducted
by extracting nearest genes of the lead SNPs in these regions
using a hypergeometric association test implemented in FUMA
(Watanabe, Taskesen, van Bochoven, & Posthuma, 2017).
Gene-sets surviving Bonferroni correction for tissue specificity
P <0.5/54, and FDR of 0.05 for gene-set analysis were considered
significantly enriched.

Testing for vertical pleiotropy

To test causal associations, we applied bidirectional MR (Pickrell
et al, 2016) and the Latent Causal Variable model (LCV)
(O’Connor & Price, 2018), two recently developed methods
applicable to GWAS summary statistics. They are designed to
be relatively robust to horizontal pleiotropy which is prevalent
for complex traits (Verbanck, Chen, Neale, & Do, 2018). Both
methods are based on simple intuition: if phenotype A causally
influences phenotype B (e.g. smoking causing lung cancer),
then any variant associated with A (smoking) will have correlated
effects on B (lung cancer). However, variants associated with B
(lung cancer) will not necessarily have correlated effects on A
(smoking), as there will be many genetic causes of B (lung cancer)
that are independent of A (e.g. asbestos exposure). In bidirectional
MR, two sets of correlations are calculated on genetic association
effect sizes, first using genome-wide significant (GWS) variants of
the first phenotype and then repeating the same procedure using
GWS variants for the second phenotype. These correlations are
used to evaluate evidence for four models: in models 1 and 2,
phenotype A or B causes B or A; in model 3, there are no causal
relationships; in model 4, two phenotypes are very closely related
(e.g. two alternate measurements of a single entity or one could be
the major highly penetrant causal factor for the other). A relative
likelihood for causal (models 1 and 2) v. non-causal (models 3
and 4) model (rl) <0.01 was interpreted as supporting the
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Fig. 1. The bottom triangle of panel A shows genetic correlations estimated by bivariate LDSC (online Supplementary Table S14). Non-significant correlations after
Bonferroni correction are in gray. The upper triangle shows the number of loci shared between corresponding phenotype pairs. The numbers in the diagonal are
the total number of genome-wide significant hits from original, univariate GWAS (ascertained by LD clumping). The background colors of the upper triangle indi-
cate following pairs of domains: blue - between substance uses, purple - between substance use and psychiatric disorders, green - between psychiatric disorders,
brown - between control phenotypes and all other phenotypes. Panel B shows the sign concordance of effect for lead SNPs in shared loci for a given phenotype
pair. More reddish color indicates higher concordance. In each box, the left-side number indicates the number of lead SNPs having concordant directions of effects
while the right-side number indicates the total number of lead SNPs in pleiotropic loci for a given pair. Note that smaller value of Age of Smoking Initiation indi-
cates earlier age of smoking initiation and higher values of Smoking Cessation, Ever Smoker, and Lifetime Cannabis Use indicate current smoker, ever smoker, and
ever cannabis user, respectively. Higher values of psychiatric disorders indicate the presence of the disorder.

causality. In the LCV model, a latent variable mediates the genetic
correlation between phenotypes A and B, having causal effects on
both traits. A genetic causality proportion (GCP) is estimated
(ranging from 0 to 1), which quantifies the degree of genetic caus-
ality, using mixed fourth moments of marginal effect sizes of all
available SNPs. A high GCP indicates the genetic component of
phenotype A is at least partially causal for phenotype B, while
low GCP values suggest a lack of causal effects. Phenotype pairs
with GCP >0.6 and p values surviving Bonferroni correction
(here, p <0.00064) were identified as potential phenotypes in cau-
sal relations (O’Connor & Price, 2018). Finally, the LCV and
bidirectional MR results were compared to two-sample MR
results obtained using MRbase v.0.5.3 (Hemani et al.,, 2018) in
R 3.6.1 on substance use-psychiatric phenotype pairs, for integra-
tion with the broad MR literature (see Supplementary Note for a
detailed procedure for each method).

Results
Structure of genetic correlations

The first five eigenvalues of the genetic correlation matrix were
2.9, 1.1, 0.72, 0.13, and 0.07 (online Supplementary Fig. S1).
We fit EFAs with 1-4 factors. Only the two-factor model was
free of Heywood cases (loadings >1.0), rendering model inter-
pretation difficult. All EFA results are reported in online
Supplementary Table S2. The two-factor model consisted of an
externalizing factor loading on all three smoking phenotypes
and ADHD, and an internalizing-psychosis factor loading on
depression, anorexia, schizophrenia, and bipolar disorder (x> =
838.92, df=26, p=431x10""%, AIC=876.92, CFI=0.80,
SRMR =0.11). This procedure of fitting exploratory models and
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then similar confirmatory models in the same dataset will lead
to overfitting, so these values should be considered an absolute
best-case scenario. The four-factor model, roughly having an
internalizing, psychosis, externalizing, and substance use factor,
achieved the best fit. However, to converge, we had to drop drinks
per week and constrain multiple uniquenesses to have >0 vari-
ance. Overall, models with 3-4 factors, including our hypothe-
sized three-factor model, resulted in negative variances for
several variables. As a sensitivity analysis, we conducted CFA
using summary statistics for smoking and drinking to which no
genomic controls had been applied, and this did not change the
fit. CFA results are presented in online Supplementary Table S3
and Fig. S2.

Shared loci

Complete results on pleiotropic loci are available in online
Supplementary Tables S4-8. Of all 30 possible substance use—psy-
chiatric phenotype pairs, ever smoker and ADHD had the highest
number of shared loci (N = 40), followed by age of smoking initi-
ation and ADHD (N=22). Within psychiatric disorder pairs,
bipolar disorder and schizophrenia showed the highest number
of shared loci (N = 108). Within substance use pairs, age of smok-
ing initiation and ever smoker showed the highest number (N =
58). In contrast, height shared few loci with substance use and
psychiatric disorders despite its large number of GWAS signals,
but years of education showed substantial overlap with both sub-
stance use and psychopathology (Fig. 1). Of note, the number of
pleiotropic regions reflects both degree of genetic overlap and stat-
istical power of the original GWAS, rendering between-pair com-
parisons difficult. The lead SNPs in shared loci mostly agreed with
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Fig. 2. Panel A shows results for up-regulated Differentially Expressed Gene (DEG) set tests while panel B shows results from the down-regulated DEG set test. X-axis
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tion. The white bar represents genes from loci pleiotropic for both substance use and psychiatric disorders while gray and black bars represent genes from loci

pleiotropic within psychiatric disorders or substance use.

the expected direction based on the genetic correlation (i.e. the
more substance use, the higher risk of psychiatric disorder)
(Fig. 1).

A total of 341 loci showed evidence for association with two or
more substance use or psychiatric disorder phenotypes. This
number includes 230 loci reported in past GWAS of respective
phenotypes, and 111 additional loci not reported in those studies
(online Supplementary Table S8). Of these 341 loci, 152 loci
(45%) were associated with both substance use and psychiatric
phenotypes; 114 (33%) were associated with multiple substance
use phenotypes but no psychiatric disorder, and 75 (22%) were
associated with multiple psychiatric disorders but no substance
use phenotypes .

When 152 shared loci were classified depending on type of
substance, 10 loci were associated with the use of all three types
of substances [i.e. smoking, cannabis, and alcohol (Table 2)]. A
gene encoding the D2 subtype of the dopamine receptor,
DRD2, on chromosome 11 was located in these multi-substance
shared loci along with cell-adhesion protein coding genes includ-
ing NCAM1 and CADM?2. Five loci were associated with alcohol
and psychiatric disorder, including Utr3 region of FUT2, a gene
involved in bifidobacterial diversity in the intestine and plasma
levels of B12 vitamins (Mitchell, Conus, & Kaput, 2014). Five
loci were associated specifically with cannabis use and psychiatric
disorder, including intron region of WSCD2, a gene previously
associated with extraversion and risky behaviors (Linnér et al,
2019; Lo et al,, 2017). Perhaps notably, nicotinic receptor genes
(e.g. CHRNA4 and CHRNA5) did not belong to the 152 shared
loci and instead were associated only with smoking (CHRNA4)
and smoking and drinking phenotypes (CHRNAS).

Genes harboring lead SNPs of the 152 shared loci were over-
expressed in all 13 brain tissues in GTEx v8 database and down-
regulated in six tissues including substantia nigra, kidney cortex,
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and liver (Aguet et al., 2019). They are enriched in 90 Gene
Ontology (GO) biological processes, 10 molecular function, and
34 cellular components gene-sets. The top 3 most strongly asso-
ciated biological processes were ‘neurogenesis’, ‘cell projection
organization’, ‘regulation of nervous system development’.
Enriched molecular functions include protein dimerization, tran-
scription factor binding, and cell adhesion molecule binding, and
the enriched cellular components encompass various parts of
neuron including glutamatergic synapse. The 75 psychiatric-
specific shared loci were overexpressed in four brain tissues
(anterior cingulate cortex, frontal cortex, amygdala, and hippo-
campus) but not downregulated in any tissues. They were
enriched in 11 biological processes, five molecular function, and
20 cellular components gene-sets. Most of the enriched gene-sets
concerned neuronal signaling-related activity (e.g. voltage-gated
ion channel activity) and cell structures (e.g. synaptic membrane).
Finally, the 114 substance use-specific shared loci were overex-
pressed in the cerebellar hemisphere, cortex, and artery tibial,
and downregulated in seven tissues including kidney cortex,
liver, and pancreas. They are enriched in one molecular function,
‘clathrin binding’ and 12 cellular components most of which are
located in neurons, including ‘dopaminergic synapse’ (Fig. 2; see
online Supplementary Tables S9 and 10 for full tissue and gene-
set enrichment results).

The median CADD rank scores were not significantly different
across lead SNPs from substance-psychiatric pleiotropic loci,
either psychiatric or substance use-specific pleiotropic loci, and
non-pleiotropic loci (p=0.34; online Supplementary Fig. S3).
Most of the lead SNPs fell in intergenic or intronic regions
(>90%) and their distribution across functional categories did
not differ across different groups of pleiotropic and non-
pleiotropic loci (p=0.26; online Supplementary Fig. S4; online
Supplementary Table S11).
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Table 2. Pleiotropic regions associated with all three types of substance use and psychopathology

Associated phenotypes

Genes associated with lead

Chr Start Stop Substance use Psychopathology Controls SNPs?
11 112459488 114256749 Cigarettes per day, drinks per Bipolar disorder, major Years of Synonymous:DRD2; Intron:
week, ever smoker, lifetime depression, education NCAM1
cannabis use, smoking schizophrenia
cessation
3° 84367614 87409543 Age of smoking initiation, ADHD Years of Intron:CADM2
cigarettes per day, drinks per education
week, ever smoker, lifetime
cannabis use, smoking
cessation
4 2844097 3845571 Age of smoking initiation, ADHD Years of Intron:ADDI; Intron:NOP14|
cigarettes per day, drinks per education NOP14-AS1;
week, ever smoker, lifetime Normal_Splice_Site:HTT
cannabis use, smoking
cessation
1 71687454 74326484 Drinks per week, ever smoker, ADHD, major Exon:LINC01360
lifetime cannabis use, depression,
smoking cessation schizophrenia
4 100678905 103220401 Age of smoking initiation, ADHD, schizophrenia Years of Nonsynonymous:SLC39A8;
drinks per week, lifetime education, Intron:DNAJB14
cannabis use height
5 87390784 88891173 Age of smoking initiation, ADHD Years of Intron:LINC00461; Utr3,
cigarettes per day, drink per education Intron:MEF2C
week, ever smoker, lifetime
cannabis use
8 90638201 93554257 Age of smoking initiation, Schizophrenia Intron:RUNX1T1
drinks per week, ever smoker,
lifetime cannabis use
8 63349908 65232744 Cigarettes per day, drinks per Schizophrenia Intergenic
week, lifetime cannabis use
17 1929074 3701588 Drinks per week, ever smoker, Schizophrenia Intron:SRR

lifetime cannabis use

%Lead SNP in the locus, their associated phenotype pairs, and the direction of effects can be found in online Supplementary Tables S4 and 5.
Two adjacent regions (3:84367614-85582078, 3:85582231-3:87409543) were combined to form this row.

Causally informative analyses

Of 78 pairs submitted to the analysis, none showed evidence of
vertical pleiotropy from bidirectional MR and LCV. As a sensitiv-
ity analysis, bidirectional MR was conducted with the GWAS var-
iants originally reported by each study and LCV was repeated with
summary statistics for smoking and drinking without genomic
control, both yielding the same pattern of results. Eight causal
associations were significant in more than half of the four two-
sample MR tests performed (Table 3). Full results of bidirectional
MR and LCV, and two-sample MR are in online Supplementary
Tables S12 and 13, respectively.

Discussion

We coordinated and analyzed GWAS results of six substance use
and five psychiatric phenotypes to investigate the genetic correl-
ation structure, multivariate association, and causal links among
these phenotypes. The two-factor structure performed better
than the single-factor model, but did not achieve a good model
fit (e.g. CFI =0.8, SRMR = 0.11, AIC = 876.92). Modification indi-
ces suggested that internalizing factor might not be well captured
by covariance between depression and anorexia and residual
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covariance exists between schizophrenia and bipolar disorder as
well as among some substance use phenotypes. In line with this
diagnosis, the four-factor model achieved a better fit (e.g. CFI=
0.87, SRMR = 0.08, AIC =709.62), which additionally fit separate
substance use and psychosis factor. This model also aligns with
current conceptualizations of the meta-structure of psychopath-
ology (i.e. correlated externalizing, internalizing, and psychosis
factors) (Kotov et al., 2017). However, caution is required in inter-
preting the four-factor model since the solution could be ill-
specified (Heywood cases) and over-fitted (same data were used
to both construct and test the model). The joint factor structure
of substance use and psychiatric disorders should be further tested
in independent samples, especially as large-scale GWAS on
related phenotypes continue to be published.

We identified a total of 341 loci that showed at least one bi-
variate pleiotropic association with substance use or psychiatric
phenotypes, which included about half of the loci reported in pre-
vious GWAS (~50% of the 458 univariate GWAS associations),
confirming the presence of extensive pleiotropy. Genes nearest
to the loci shared by both substance use and psychiatric disorders
simultaneously (152 loci) were over-expressed in broad regions of
the brain and enriched in neurodevelopmental pathways, suggest-
ing that general neurodevelopmental processes (e.g. neurogenesis
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Table 3. Comparison of LCV, bidirectional MR and two-sample MR results

ADHD?P ADHD Ever smoker MDD Cigarettes per day Ever smoker MDD Schizophrenia
Age_Smoke Ever smoker ADHD Cannabis Schizophrenia MDD Ever smoker Ever smoker
Lcv GCP (s.t.) —0.08 (0.16) 0.08 (0.11) —0.08 (0.11) 0.25 (0.39) 0.33 (0.37) 0.04 (0.06) —0.04 (0.06) —0.15 (0.17)
p value 0.61 0.50 0.50 0.56 0.28 0.54 0.54 0.12
Pickrell Rho1¢ -0.63 0.8 0.66 0.64 0.33 0.5 0.5 0.28
Rho2 —-0.41 0.66 0.8 0 0.19 0.5 0.5 0.38
Rl 1.85 142.73 142.73 0.78 13.03 2.13 2.13 598.82
VW B (se)® —0.09 (0.01) 0.11 (0.02) 0.67 (0.13) 0.50 (0.14) 0.48 (0.16) 0.46 (0.07) 0.14 (0.04) 0.02 (0.01)
p value’ 1.25x 1078 2.40 x 10710* 497x107"* 5.20 x 10%* 241x107° 5.94 x 10712 1.21x107* 8.52x107°*
Weighted median B (sE) —0.09 (0.02) 0.08 (0.2) 0.92 (0.19) 0.58 (0.13) 0.64 (0.14) 0.53 (0.10) 0.11 (0.02) 0.02 (0.005)
p value 2.38x107°* 9.72x107°%* 7.53x1077* 6.64x107°%* 2.56 x 107°%* 6.70 x 107%* 438x107°%* 5.67x107°*
Weighted mode B (s) —0.09 (0.03) 0.07 (0.02) 1.39 (0.45) 0.58 (0.17) 0.62 (0.15) 0.89 (0.26) 0.10 (0.03) 0.04 (0.02)
p value 2.75x1072 2.13x1072 2.48x107° 2.80x 1072 3.67x107%* 8.24x107** 2.17x1072 1.08x1072
MR Egger B (s) —0.10 (0.12) 0.06 (0.14) 1.01 (0.57) 0.59 (1.06) 0.68 (0.30) 0.23 (0.27) 0.21 (0.24) 0.01 (0.03)
p value 434x107" 7.02x107! 7.76x1072 6.14x107! 2.97x1072 4,07x107* 449x107" 6.32x107%

®The order of phenotypes in the first two rows represents the direction of causality (i.e. top to bottom).

PAge_Smoke = age of smoking initiation, Cannabis = lifetime cannabis use, MDD = major depressive disorder.
“Rhol, Rho2 = effect size correlations for genome-wide significant variants ascertained with phenotype 1 (Rhol) and phenotype 2 (Rho2).
(= relative likelihood (rl <0.01 is considered significant causal association).

“Units: log odds ratio and standard deviations for binary and continuous phenotypes, respectively.

fAstericks attached to phenotype pairs represent significant causal associations after Bonferroni correction.
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and neuron differentiation) may underlie the risk of both psychi-
atric disorders and substance use. For example, DCC, a gene
involved in axonal growth and white matter projections (Jamuar
et al., 2017), was mapped to the most pleiotropic locus in a recent
fixed-effect meta-analysis of eight psychiatric disorders (Lee et al.,
2019). The same gene was mapped to highly pleiotropic locus in
the current analysis, associated with the age of smoking initiation,
ever smoker, depression, schizophrenia, and education. Biological
adhesion and cellular morphogenesis/organization pathways were
prominent among the neurodevelopmental pathways enriched in
the 152 shared loci. Cell adhesion molecules have been reported to
regulate synapse number, maturation, and plasticity (Sytnyk,
Leshchyns’ka, & Schachner, 2017), serving essential functions in
neural development. On the other hand, genes nearest to the
pleiotropic loci specific to psychiatric disorders were mostly
enriched in neuronal signaling pathways such as voltage-gated
ion channel activity while those specific to substance use were
enriched in clathrin binding-related functions and cell structures.
The potential role of clathrin binding is less clear, but it plays a
key role in receptor endocytosis and vesicle recycling at th synapse
(Jung & Haucke, 2007; Kaksonen & Roux, 2018) and has been
implicated in drug-evoked neural plasticity in animal studies of
addiction, including amphetamine (Brebner et al., 2005), heroin
(Van den Oever et al., 2008), and morphine (Morén et al.,
2007). For example, inhibiting clathrin-dependent postsynaptic
AMPA receptor endocytosis in ventral mPFC and nucleus accum-
bens reduced drug-seeking behaviors in rats (Brebner et al., 2005;
Van den Oever et al., 2008). Current results provide converging
evidence as to the role of clathrin binding as a risk factor relatively
specific to drug use and addiction.

Our bidirectional MR and LCV analysis detected no causally
associated pairs, consistent with the notion that genetic correla-
tions among these traits arise from horizontal pleiotropy. MR
Egger, a classic two-sample method more robust to confounding
by horizontal pleiotropy, also detected no pairs in vertical plei-
otropy. In contrast, the other two-sample MR analyses more sus-
ceptible to such confounding (Verbanck et al, 2018) reported
multiple pairs of causal associations, similar to past findings: gen-
etic liability to ADHD associated with increased risk of smoking
initiation (Fluharty, Sallis, & Munafo, 2018) and vice versa (Treur
et al., 2019), and genetic liability to smoking associated with
increased risk of schizophrenia and depression and vice versa
(Wootton et al, in press; Yao et al,, in press); but see also some
null MR findings (Gage et al., 2017; Hodgson et al, 2020;
Taylor et al., 2014). Heterogeneity statistics from classic MR
were significant for five out of eight associations (p < 0.05), indi-
cating further the potential presence of horizontal pleiotropy for
these five pairs (Bowden, Hemani, & Davey Smith, 2018). Three
pairs, i.e. ADHD lowering the age of smoking initiation, ever
smoker increasing risk for ADHD, and depression, showed non-
significant heterogeneity statistics thus may be causally related.
However, their genetic correlations were rather high (ie. rg=
—0.6, 0.57, 0.35 for each pair in order), a condition which can
produce excess false positives in classic MR (O’Connor & Price,
2018).

On the other hand, LCV and bidirectional MR showed rela-
tively well-calibrated type 1 and 2 errors in such a scenario
(O’Connor & Price, 2018). Taken together, vertical pleiotropy,
at least a single causal direction, may not explain the well-known
high rate of co-occurrence among psychopathology and substance
use. Related causal hypotheses such as self-medication or sub-
stance use as a causal risk factor for psychopathology are not
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well supported by current results. For example, GCP for major
depression and ever smoker (0.04, s.E.: 0.06) and that for cannabis
use and schizophrenia (—0.15, s.E.: 0.20) were close to zero and
significantly different from 1.

Our findings should be interpreted in light of several limita-
tions. First, the number of manifest variables may be still insuffi-
cient to fit CFA models with more than three factors. We also
stress again that CFA fit could be overestimated to some unknown
degree since the models were built on EFA results in the same
sample. Current results should be tested in replication sample
with more manifest variables especially those for internalizing.
From a more technical standpoint, some of the constituent
GSCAN cohorts used linear mixed models (LMM) and this
may have exerted a subtle influence on CFA fit due to model mis-
specification between linear regression-based LDSC model and
LMM (Yang, Zaitlen, Goddard, Visscher, & Price, 2014). The
degree and remedy for this potential bias should be further stud-
ied. For pleiotropic loci analysis, the size of LD blocks used in this
method is relatively large (mean 1.5 Mb) yielding limited reso-
lution, and the posterior probability threshold to detect pleiotropy
is almost certainly less stringent than the typical family-wise error
rate of 5% in GWAS. We used the more liberal threshold (corre-
sponding to an FDR of ~10%) since the focus of the current study
was to assess the scope of pleiotropy in known associated loci,
rather than declaring high confidence novel loci. In the simulation
performed in the original article, gwas-pw overall gave a slight
overestimation for model 3 (pleiotropy). In the presence of high
sample overlap, it additionally gave modest overestimation for
model 4 (two separate effects in a single locus) over model 1 or
2 (only one effect for either trait in a single locus), requiring cau-
tion in interpretation. It is also not possible to distinguish a single
variant influencing both traits from two causal variants in strong
LD affecting each trait separately. Regarding causal inference,
although the results were mainly interpreted in light of shared
genetic effects, cyclical feedback loops between phenotypes may
exist to some degree, possibly for all pairs of phenotypes. This
type of causality can evade LCV and bidirectional MR but can
still be detected by two-sample MR methods to some extent.
Last, the GWAS were all performed on individuals of European
ancestry, which limits the generalizability of current findings.
Increasing availability of trans-ancestry GWAS can improve the
generalizability of this kind of analyses in the future.

Despite these limitations, the current study provides compre-
hensive analyses of the genetic overlap between substance use
measures and psychiatric disorders based on GWAS results. It
offers novel insights into the structure, biology, and causal nature
of this overlap and points toward the future directions for meth-
odological and etiology research. Refining our understanding of
the biological underpinnings of the externalizing spectrum (e.g.
salient developmental processes and periods) will be helpful to
tackle adverse outcomes associated with it. Continuing to study
multiple layers of biology such as those underlying addiction to
various substance types (e.g. clathrin-mediated endocytocis of
AMPA receptors) and that pertaining to specific substance-
psychiatric disorder association can add rich information to the
etiology of the two phenomena. Finally, the current study applied
novel causal inference methods developed to address pervasive
horizontal pleiotropy in complex traits and adds to the
fast-growing causal inference literature.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/5003329172000272X.
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