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In this paper, we consider the bi-stable equation proposed by Rosenau to replace the Allen–

Cahn equation in the case of large gradients. We discuss the bifurcation problem for stationary

solutions of this equation on an interval as the diffusion coefficient and the length of the

interval are varied, concentrating on classical solutions.
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1 Introduction

In [13, 14], Rosenau suggested a generalisation of the Ginzburg–Landau theory to the

case of large spatial gradients in the order parameter. In brief, he starts with the free

energy functional

F[u] =

∫
Ω

[W (u) + εP (∇u)] dx, (1.1)

where ε > 0, W (u) is the double-well bulk energy, e.g.

W (u) =
u4

4
− u2

2
,

and the interface energy P (s) is a convex function of its variable that grows linearly in s;

for example, we can take

P (s) =
√

1 + s2 − 1.

Then, the L2-gradient flow of (1.1) is

ut = ε∇ · (ψ(∇u)) + f(u), (1.2)

where f(u) = −W ′(u),

ψ(s) = P ′(s) =
s√

1 + s2
,

and (x, t) ∈ Ω × (0, T ) ≡ QT for some bounded domain Ω ⊂ �n, T > 0. Of course (1.2)

has to be supplemented with some suitable boundary and initial conditions, and here, we

consider the physically relevant Neumann boundary conditions (BCs), ∇u · n on ∂Ω.

From now on, we work in the one-dimensional situation. Local existence and uniqueness

results for weak (variational inequality) solutions to (1.2) for the particular case where
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f(u) ≡ 0 have been established by Dascal et al. [3]. A well-posedness result for (1.2) with

a bi-stable non-linearity f(u) is proven in [2]. Weak solutions of (1.2) are defined via a

variational inequality

∫
QT

(ut − f(u))(v − u) dx dt+ ε

∫
QT

(P (vx) − P (ux)) dx dt � 0, (1.3)

for all v ∈ BV (QT ). Note that classical solutions of (1.2) with Neumann BCs automatically

satisfy variational inequality (1.3). In one space dimension, Ω = (0, L), the stationary

problem for (1.2) with λ = 1/ε and the above choices for W (u) and P (ux) is then

−
(

u′√
1 + (u′)2

)′

= λf(u), x ∈ (0, L), + BCs. (1.4)

We define a stationary BV solution of (1.2) to be a solution of the variational inequality

−λ
∫
Ω

f(u)(v − u) dx+

∫
Ω

P (vx) − P (ux) dx � 0 ∀v ∈ BV (Ω), (1.5)

obtained from (1.3) by taking u to be independent of time t. Again, observe that in one

dimension, the classical stationary solutions of (1.2) with Neumann BCs, i.e. solutions

to (1.4) + u′(0) = u′(L) = 0, satisfy the variational inequality (1.5).

The boundary value problem (1.4) for different choices of the non-linearity f(u) and

BCs has received attention from a variety of authors including Pan [11], Bonheure

et al. [1], Obersnel [10] and Habets and Omari [9]. In [9], Habets and Omari study (1.4)

with Dirichlet BCs, taking f(u) = up, for p > 0, and they investigate the influence of the

concavity of this choice of f(u) on the multiplicity of solutions to the problem. Note that

they can consider (1.4) only on the unit interval [0, 1], as up is homogeneous of degree p

and so it is possible to scale the fixed parameter L out of the space domain as follows:

set y = x/L and v = u/L, and then, v(y) satisfies

− v̈

(1 + (v̇)2)
3
2

= µf(v), x ∈ [0, 1],

where µ = LλLp, and the over-dot denotes differentiation with respect to y. Thus, in the

case of [9], it is possible to incorporate the length L of the domain in the parameter

µ, and hence, in this case, the associated bifurcation diagram cannot change as L is

changed. Note that the same is also true for the semi-linear case ψ(s) = s which gives the

Allen–Cahn equation. Pan [11] however studied a variant of the Liouville, Bratu–Gelfand

problem, taking an exponential non-linearity, f(u) = eu, and both in his case and our case

of f(u) = u − u3, the non-linearities are non-homogeneous so that different bifurcation

behaviour in λ is in principle possible for different values of L. This is indeed the case as

we shall demonstrate below.

In this paper, we concentrate on the analysis of classical, i.e. C2((0, L)) ∩ C1([0, L])

solutions of (1.4) with the physically significant Neumann BCs

u′(0) = u′(L) = 0. This we do by using time maps. In the last section of the paper, we
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Figure 1. (Colour online) Phase portraits with λ = 2, λ = 3 and λ = 5.

also comment on non-classical (in fact, discontinuous) weak solutions of the variational

inequality related to the boundary value problem (1.4).

2 Phase plane analysis

We rewrite (1.4) as a first-order system

u′ = v,

v′ = −λ(1 + v2)
3
2 f(u). (2.1)

It is not hard to check that this system has

H(u, v) = 1 − 1√
1 + v2

− λW (u), (2.2)

as a first integral.

In Figure 1, we show phase portraits of (2.1) for λ = 2, 3, 5. Figure 1 indicates that

there exists a value λ∗ ∈ (3, 5) such that for all λ > λ∗ there are no heteroclinic solutions

connecting the saddle points at (±1, 0). Let us consider this point in more detail.

Proposition 2.1 For each λ � 4, there exists a value rλ ∈ (0, 1] such that:

(1) The orbit passing through the point (rλ, 0) on the positive u-axis in the phase plane

satisfies u′ → −∞ as u → 0;

(2) Orbits passing through points (r, 0), rλ < r � 1 are such that u′ → −∞ as u tends to

some value ūλ(r) > 0;

(3) Orbits passing through points (r, 0), 0 < r < rλ are such that |u′| < ∞ as u → 0.

Proof This is a simple computation using the function H(u, v) of (2.2). For the value

rλ ∈ (0, 1] to exist, we must have H(rλ, 0) = H(0,−∞). This is equivalent to requiring that

−λW (rλ) = 1 for some rλ ∈ (0, 1] so that

rλ =

√
1 −

√
1 − 4

λ
, (2.3)
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Figure 2. (Colour online) A classical solution to (1.4) and its corresponding phase curve.

and it is now clear that such a rλ would only exist for λ � 4. Note that rλ = 1 when λ = 4

and that rλ → 0 as λ → ∞.

To find the vertical asymptotes ūλ(r) of orbits passing through (r, 0), r � rλ for λ � 4,

we solve the equation H(r, 0) = H(ūλ(r),−∞), obtaining

ūλ(r) =

√
1 −

√
1 +

4

λ
− 2r2 + r4. (2.4)

Of course ūλ(rλ) = 0. �

A classical solution of the Neumann problem for (1.4) is part of an orbit starting on

the u-axis in the phase plane, which encircles the origin in a clockwise direction and ends

on the u-axis taking a ‘time’ L in which to do this. For example, monotone decreasing

solutions start on the positive u-axis and end on the negative u-axis as shown in Figure 2.

From now on we will concentrate on the multiplicity questions for monotone decreasing

solutions of the Neumann problem for (1.4).

Note that for λ > 4, we can formally construct a non-classical (continuous) solution of

the Neumann problem that conserves H(u, v) as follows: start on the u-axis at (rλ, 0) in the

phase plane and end on the negative u-axis at (−rλ, 0), and assume that u′(L/2) = −∞.

We will call such a solution the critical solution for (1.4) and we give an illustration of its

form in Figure 3.

3 The Liapunov–Schmidt reduction

Let us define the mapping

Φ : � ×X → C0(0, L),
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Figure 3. (Colour online) Critical solution of (1.4) in the Neumann case.

where X = {u ∈ C2(0, L) : u′(0) = u′(L) = 0} by

Φ(λ, u) =
u′′

(1 + (u′)2)
3
2

+ λf(u),

for λ > 0. Then, clearly the linearisation of Φ(λ, u) at the trivial solution u = 0, which we

will denote by dΦλ,0, is given by dΦλ,0 · v = v′′ + λv.

It is obvious that the values λk = k2π2

L2 are points of bifurcation from the trivial solution,

which by the �2-symmetry must be pitchforks.

We want to determine the dependence of the direction of the pitchfork on the parameter

L. The easiest way of doing this is to use the Liapunov–Schmidt reduction [8].

ker (dΦλ,0) is one-dimensional when λ = λk = k2π2

L2 for k = 1, 2, . . . and is spanned by

vk = cos
(
kπx
L

)
. Hence, in a neighbourhood of a bifurcation point, solutions of Φ(λ, u) = 0

on X are in one-to-one correspondence with solutions of the equation h(λ, y) = 0, y ∈ �
where although the bifurcation function h is not known explicitly, all its partial derivatives

at a bifurcation point (λk, 0) can be computed by symmetry considerations and applications

of the chain rule. See [8] for details. If we denote by 〈·, ·〉 the usual inner product in L2

on [0, L] and set

d3Φ(v1, v2, v3) =
∂3

∂t1∂t2∂t3
Φ(λk, t1v1 + t2v2 + t3v3)|t1=t2=t3=0,

we have

h = hy = hyy = hλ = 0,

hyyy = 〈vk, d3Φ(vk, vk, vk)〉, and hλy = 〈vk, vk〉

so that hλy is positive for all k. On the other hand,

d3Φ(vk, vk, vk) = −3
(
2λkv

3
k + 3v′′

k (v
′
k)

2
)
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so that

hyyy = 3

∫ L

0

{
3k4π4

L4
cos2

(
kπξ

L

)
sin2

(
kπξ

L

)
− 2

k2π2

L2
cos4

(
kπξ

L

)}
dξ

=
9

8

k2π2(k2π2 − 2L2)

L3
.

Hence, we have proved the following.

Proposition 3.1 The kth bifurcation from the trivial solution is a super-critical pitchfork if

L > kπ/
√

2 and a sub-critical pitchfork if the inequality is reversed.

Note that, unlike in the semi-linear case, one can have both super- and sub-critical

pitchforks for different values of k.

4 The time map

To get more information about multiplicity of solutions as we change L and λ, we now

define and analyse the time map for classical solutions. This is a well-known technique

in the analysis of boundary value problems (see, e.g. Schaaf [15] and Smoller and

Wasserman [16]). We again restrict ourselves to monotone decreasing solutions.

Definition 4.1 We define the (classical part of the) time map Tλ(r) to be the ‘time’ it takes

for solutions starting at u(0) = r, u′(0) = 0 to reach u = 0.

From this definition, given that the points (±1, 0) are saddles, we have that the domain

of the classical part of the time map, D(Tλ), is given by

D(Tλ) =

{
(0, 1) if λ � 4,

(0, rλ] if λ > 4.

From the way, we have defined the classical part of the time map Tλ(r), it is easy to

see that, given L, for a particular value of λ, a monotone decreasing classical solution to

the Neumann problem for (1.4) exists iff we can find r ∈ D(Tλ) such that

Tλ(r) =
L

2
,

(and in such case r = u(0)). Hence, it will be useful to compute an explicit formula for

Tλ(r) and to study its properties as we vary λ. Note that in this section, we use a mixture

of analytical results and numerics.

Let Fλ(u) = −λW (u) = λ
∫ u

0 f(s) ds. To satisfy Neumann BCs in (1.4), we must have

that H(u, u′) = H(r, 0) = Fλ(r), i.e.

1 − 1√
1 + (u′)2

= Fλ(r) − Fλ(u).
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Solving this equality for u′ and setting χ(t) = 1−t√
2−t , as in [9], gives

u′ = −
√
Fλ(r) − Fλ(u)

χ(Fλ(r) − Fλ(u))
,

where we have taken the negative square root since we are dealing with monotone

decreasing solutions. Thus, an explicit formula for Tλ(r) is

Tλ(r) =

∫ Tλ(r)

0

dx =

∫ r

0

χ(Fλ(r) − Fλ(u))√
Fλ(r) − Fλ(u)

du, (4.1)

which becomes

Tλ(r) =

∫ r

0

4 − 2λr2 + λr4 + 2λu2 − λu4

√
8 − 2λr2 + λr4 + 2λu2 − λu4

√
λ(2r2 − r4 − 2u2 + u4)

du,

for fλ(u) = λ(u − u3). It is not hard to show that this is a well-defined continuously

differentiable function on D(Tλ).

Let us substitute u = rs in (4.1) so that

Tλ(r) = r

∫ 1

0

χ(Fλ(r) − Fλ(rs))√
Fλ(r) − Fλ(rs)

ds := r

∫ 1

0

G(r, s) ds.

Computing the Taylor expansion of the function rG(r, s) about the point r = 0 and

integrating in s, we have

Tλ(r) =
π

2
√
λ

+
3

32

π(2 − λ)√
λ

r2 − 3

2, 048

π(5λ2 − 20λ− 76)√
λ

r4 + O(r6). (4.2)

From (4.2), we can derive a number of conclusions. First of all note that for λ < 2,

Tλ(r) is initially monotone increasing, while for λ > 2, it is initially monotone decreasing.

Furthermore, by (2.3), we have that rλ = O(λ− 1
2 ) for λ large. Therefore, since D(Tλ) → 0

as λ → ∞ and since the remainder term in the Taylor series (4.2) with r = rλ is O(λ− 1
2 ),

we conclude that for λ large enough, Tλ(r) is always decreasing on D(Tλ).

Also observe that for λ � 4, since (u, u′) = (±1, 0) are saddle points, lim
r→1

Tλ(r) = ∞. This

means that we have (at least) three different types of behaviour of the classical part of

the time map, depending on the values of λ; these are indicated in Figure 4 generated

using MAPLE (note the differences in vertical scale).

Remark We have not proved that the turning point that by the above calculation must

exist for Tλ(r) for intermediate values of λ (as seen in Figure 4 for λ = 4) is unique and

rely for that on numerical evidence.

Recall that for λ > 4, the equation

r =

√
1 −

√
1 − 4

λ

gives the value of the right end-point of the domain of the classical part of the time map

Tλ(r). Solving this equation instead for λ, we obtain the inverse of rλ considered as a
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Figure 4. Time Maps Tλ(r) for λ = 1.5, λ = 4 and λ = 6.

function of r,

λ = Λ(r) =
4

1 − (1 − r2)2
.

Hence, we can define a function

g(r) = TΛ(r)(r),

which will give the values of the classical parts of time maps evaluated at the right end-

points of their domains; this will be useful in the discussion of the bifurcation diagrams

corresponding to different values of L. From the foregoing analysis, we see that g(r) is a

monotone increasing function satisfying

g(0) = 0, lim
r→1

g(r) = ∞.

5 Bifurcation diagrams

Let us use the results obtained above to discuss the various (minimal) possibilities for

bifurcation of monotone solutions to the Neumann problem for (1.4) by referring to

Figures 5, 6 and 7 below. There we have plotted some of the classical parts of the time

maps Tλ(r) for values of λ increasing down the vertical axis and we have fixed L firstly

to be sufficiently large, say L1 (Figure 5), then intermediate, say L2 (Figure 6), and finally

sufficiently small, say L3 (Figure 7). In the left-hand sides of these figures, we analyse

how many intersections there are between Tλ(r) (for varying values of λ) and the values

of Li
2
, i = 1, 2, 3 and in the right-hand sides, we plot the resulting bifurcation diagrams

corresponding to each value of Li.

Starting with L = L1 as in Figure 5. The first intersection occurs for Tλ∗ (r), where

λ∗ = π2/L2
1 and for L1 sufficiently large, λ∗ will be a super-critical pitchfork bifurcation

point.

There continues to be a single intersection between Tλ(r) and L1

2
for values of λ up

to and including λ∗ for which the intersection occurs at the value of the corresponding

classical part of the time map evaluated at the right end-point of its domain (i.e. we have

that Tλ∗ (rλ∗) = L1

2
). For all subsequent λ, there are no intersections between Tλ(r) and L1

2

https://doi.org/10.1017/S0956792511000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000076


Quasi-linear bi-stable equation 325
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Figure 5. (Colour online) Plots of time maps Tλ(r) intersecting with L1
2

(left) and the

Corresponding bifurcation diagram (right).

1
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2
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λ

0

Bifurcation Diagram for L2 = 1.6 (Intermediate)

r = u(0)

0
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λ∗ π2

L2
2

λ∗ λ

Figure 6. (Colour online) Plots of time maps Tλ(r) intersecting with L2
2

(left) and the

corresponding bifurcation diagram (right).

and hence no further classical solutions to the Neumann problem. Note that the solution

we obtain for the value λ∗ is the critical solution discussed in Section 2.

The intermediate values of L are such that the first time map to solve the equation

Tλ(r) = L/2 has a turning point. In this case, the bifurcation point is a sub-critical

pitchfork and the diagram will exhibit a saddle node at some value λ∗ (see Figure 6).

Again, there is a value λ∗ beyond which no classical solutions exist.

Finally, we consider L = L3, the situation where the first intersection is with a monotone

decreasing time map. Here, the bifurcation is again a sub-critical pitchfork, but the classical

solutions stop existing before we reach a saddle node (see Figure 7).
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Figure 7. Plots of time maps Tλ(r) intersecting with L3
2

(left) and the corresponding bifurcation

diagram (right).

6 Non-classical solutions to the problem

Non-classical solutions for problems related to the prescribed mean curvature equation

have been considered, to some extent in [1]. However, in that paper, the non-classical

solutions are C∞((0, L)). In [10], existence and multiplicity of sign-changing solutions that

are possibly discontinuous at points at which the solutions attain the value zero are

discussed. Below we show a construction for λ > λ∗ of solutions (in the BV sense) that

are discontinuous in the interior of the interval. Moreover, we show that this construction

delivers an uncountable number of solutions, and that, surprisingly, the set of solutions

is dynamically stable.

For definiteness, take L to be large enough so that we are discussing the super-critical

case. For λ > 4, let us define a mapping Sλ(r) as the time taken for solutions starting at

u(0) = r, u′(0) = 0 (for some r � rλ) to reach u = ūλ(r), where ūλ(r) is given by (2.4). An

explicit form for Sλ(r) is

Sλ(r) =

∫ r

ūλ(r)

χ(Fλ(r) − Fλ(u))√
Fλ(r) − Fλ(u)

du,

where now the domain of Sλ(r), D(Sλ) = [rλ, 1). Note that Tλ(rλ) = Sλ(rλ).

Definition 6.1 For a particular value of λ > 4, there exists a non-classical monotone

decreasing solution to the Neumann problem if we can find r1, r2 ∈ [rλ, 1) (where without

loss of generality, r1 � r2) such that Sλ(r1) + Sλ(r2) = L.

So for example, set r1 = r2 = r∗ � rλ with Sλ(r
∗) = L

2
, we construct a (so far formal)

non-classical solution to (1.4) by starting on the positive u-axis in the phase plane at

u = r∗ and ending on the negative u-axis at u = −r∗ as depicted in Figure 8. There will

need to be a jump connecting the two trajectories from the ‘point’ (ūλ(r
∗),−∞) to the
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Figure 8. (Colour online) Non-classical solution with zero mean.

+ δ

− δ

g(r)

Tλ(r)

Tλ(rλ) = Sλ(rλ)

0 1 rr1r2 r∗

λ

r1−r2

L
2

L
2

L
2

Figure 9. (Colour online) Construction of a non-classical solution.

‘point’ (−ūλ(r∗),−∞) and in this way, we would have constructed a non-classical solution

to (1.4) which has zero mean and obviously Sλ(r
∗) + Sλ(r

∗) = L.

We can also construct non-classical solutions to (1.4) for a particular value of λ that do

not have zero mean: we could start on the positive u-axis in the phase plane at u = r1 > rλ
and end on the negative u-axis at u = −r2 < −rλ with r1 > r2. Again, there will have

to be a jump to connect the two trajectories from the ‘point’ (ūλ(r1),−∞) to the ‘point’

(−ūλ(r2),−∞), and to satisfy the BCs, we must have Sλ(r1) + Sλ(r2) = L. Figure 9(left)

gives an indication of how one can construct such a non-classical solution with positive

mean: we have a value of L
2

and, for a particular value of λ, we have merged the classical

(red) and non-classical (blue) time maps, Tλ and Sλ with an intersection between Sλ(r)

and L
2

at the value of this non-classical part of the time map evaluated at r = r∗, which

corresponds to the non-classical solution with zero mean constructed in Figure 8. If we
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r1

−r2

ūλ(r1)

−ūλ(r2)

0 L

u(x)

Figure 10. A non-classical solution of (1.4) with positive mean.

move up in the diagram from L
2

by a certain amount δ with Sλ(r1) = L
2

+ δ and move

down by the same amount δ with Sλ(r2) = L
2

− δ then we will indeed have constructed a

non-classical stationary solution to the problem satisfying Sλ(r1) + Sλ(r2) = L as required.

The above constructions are formal but we can show that they define BV solutions to

the Neumann problem (1.4), i.e. they satisfy the variational inequality (1.5). We have the

following theorem:

Theorem 6.2 Suppose there exists x0 ∈ (0, L) such that

• for x ∈ [0, x0) and for x ∈ (x0, L], u(x) resides in level curves of the Hamiltonian H(u, ux),

• Sλ(u(0)) + Sλ(u(L)) = L, where Sλ(u(0)) = x0 and Sλ(u(L)) = L− x0,

• ux(x) → −∞ as x → x±
0 .

Then, u(x) is a BV solution of (1.4).

Proof Consider v ∈ BV (Ω) and the C∞(Ω) sequence vn = v ∗ ϕn for all n, where ϕn is the

standard mollifier so that vn → v with respect to the topology in BV (Ω) defined by the

metric

d(u, v) = ||u− v||L1(Ω) +

∣∣∣∣
∫
Ω

|ux| −
∫
Ω

|vx|
∣∣∣∣ ,

see, e.g. [6, p. 172]. Since the functional
∫
Ω
P (vx) is convex, by Demengel and Temam [4,

Lemma 2.2], we have that

−λ
∫
Ω

f(u)(v − u) dx+

∫
Ω

(P (vx) − P (ux)) dx

= lim
n→∞

{
−λ

∫
Ω

f(u)(vn − u) dx+

∫
Ω

(P (vnx) − P (ux)) dx

}
.
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Hence,

−λ
∫
Ω

f(u)(v − u) dx+

∫
Ω

(P (vx) − P (ux)) dx

= lim
n→∞

{
−λ

∫
Ω

f(u)(vn − u) dx+

∫
Ω

(P (vnx) − P (ux)) dx

}

= lim
n→∞

{
−λ

∫ L

0

f(u)(vn − u) dx+

∫ x0

0

(P (vnx) − P (ux)) dx+

∫ L

x0

(P (vnx) − P (ux)) dx

}

� lim
n→∞

{
−λ

∫ L

0

f(u)(vn − u) dx+

∫ x0

0

P ′(ux)(vnx − ux) dx+

∫ L

x0

P ′(ux)(vnx − ux) dx

}

= lim
n→∞

{
−λ

∫ L

0

f(u)(vn − u) dx+
[
P ′(ux)(vn − u)

]x0

0
−

∫ x0

0

d

dx
P ′(ux)(vn − u) dx

+
[
P ′(ux)(vn − u)

]L
x0

−
∫ L

x0

d

dx
P ′(ux)(vn − u) dx

}

= lim
n→∞

{
−

∫ x0

0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx−

∫ L

x0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx

+ lim
x→x−

0

ψ(ux)(vn − u) − lim
x→x+

0

ψ(ux)(vn − u)

}

= lim
n→∞

{
−

∫ x0

0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx−

∫ L

x0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx

−vn(x0) + u(x−
0 ) + vn(x0) − u(x+

0 )

}

> lim
n→∞

{
−

∫ x0

0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx−

∫ L

x0

[
λf(u) +

d

dx
ψ(ux)

]
(vn − u) dx

}
= 0

because u(x) must satisfy the Euler equation (1.4) in regions for which u(x) is classical.

Thus, we obtain

−λ
∫
Ω

f(u)(v − u) dx+

∫
Ω

(P (vx) − P (ux)) dx � 0, ∀v ∈ BV (Ω).

�

As we show below, the set of BV solutions constructed above has dynamical stability

properties: we can generate quite easily initial conditions for which the dynamic problem

ut =

(
ux√

1 + (ux)2

)
x

+ λf(u), x ∈ (0, L),

with Neumann BCs converges as t → ∞ to a discontinuous solution such as in Fig-

ures 8 or 10 and certainly not to a spatially homogeneous solution. Taking L = 2.5

(super-critical) with λ = 5, we present the time evolution of the initial function

u0(x) = −0.9 tanh
[
100

((
x
L

)
− 0.765

)]
in Figure 11.
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Figure 11. Time evolution of the initial data u0(x) = −0.9 tanh
[
100

((
x
L

)
− 0.765

)]
.

In other words, it appears that the discontinuous equilibria constructed above are

normally stable in BV (Ω) in the sense of [12]; we expect that the generalised principle of

linearised stability developed in that work should be applicable in this situation.

7 Conclusions

In this paper, we started the investigation of a boundary value problem associated

with a quasi-linear reaction–diffusion equation with a bi-stable kinetic non-linearity and

Neumann BCs. The results are surprising.

Firstly, the bifurcation structure depends on the length of the interval, which is not

the case for the corresponding semi-linear equation, for equations with diffusion governed

by, say, the p-Laplacian operator, or indeed for equations with diffusion governed by the

prescribed mean curvature operator as here, with a homogeneous kinetic non-linearity. A

physical interpretation of a length-scale defined by L (in addition to one defined by ε) is

required.

Secondly, as we show in Section 6, the problem possesses a wealth of apparently stable

discontinuous stationary solutions, which reminds one of the situation in the integro-

differential analogue of the Allen–Cahn equation [5, 7]. For comparison, the classical

Allen–Cahn equation with Neumann BCs has no stable non-constant solutions, as a

bifurcation analysis easily shows. Clearly, the elucidation of the mechanism by which

stability is generated is an interesting open question.
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