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Objectives: The aim of this study was to estimate the potential cost-effectiveness and
expected value of perfect information of a recently derived clinical prediction rule for
patients presenting to emergency departments with chest
discomfort.
Methods: A decision analytic model was constructed to compare the Early Disposition
Prediction Rule (EDPR) with the current standard of care. Results were used to calculate
the potential cost-effectiveness of the EDPR, as well as the Value of Information in
conducting further research. Study subjects were adults presenting with chest discomfort
to two urban emergency departments in Vancouver, British Columbia, Canada. The
clinical prediction rule identifies patients who are eligible for early discharge within 3 hours
of presentation to the emergency department. The outcome measure used was
inappropriate emergency department discharge of patients with acute coronary syndrome
(ACS).
Results: The incremental cost-effectiveness ratio of the EDPR in comparison to usual
care was (negative) $2,999 per inappropriate ACS discharge prevented, indicating a
potential cost-savings in introducing the intervention. The expected value of perfect
information was $16.3 million in the first year of implementation, suggesting a high benefit
from conducting further research to validate the decision rule.
Conclusions: The EDPR is likely to be cost-effective; however, given the high degree of
uncertainty in the estimates of costs and patient outcomes, further research is required to
inform the decision to implement the intervention. The potential health and monetary
benefits of this clinical prediction rule outweigh the costs of doing further
research.
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Value of Information of a clinical prediction rule

Economic evaluations of health technologies aim to maxi-
mize the societal benefit of scarce healthcare resources (11).
Given the increasing demands on healthcare systems and
progressively greater emphasis on constraint in spending
(15;25), many health management organizations and indi-
vidual institutions have turned to formal, evidence-based
approaches to inform expenditure decisions (7;25). Deci-
sion makers require analytic tools to aid in the decision
of implementing a health technologies based on the evi-
dence available. Cost-effectiveness analysis has been used
as a measure of a technology’s value in terms of the health
gains it provides; however, there is often a great deal of un-
certainty regarding the cost-effectiveness of an intervention,
thus clouding the adoption decision. It has been argued that
this uncertainty should not affect the adoption decision, how-
ever, it can be used to determine whether further research on
the effectiveness of an intervention is required (7). Value of
Information analysis has the potential to assist policy mak-
ers, researchers, and health research funding organizations in
formulating future research programs and to make the best
use of limited research funding.

To illustrate the use of value of Information analysis,
we present a novel, nonpharmacological health intervention
that aims to improve the sensitivity of detection of acute
coronary syndrome (ACS) in individuals presenting to emer-
gency departments with complaints of chest discomfort. An
estimated 500,000 patients in Canada and 6 million patients
in the United States present to emergency departments with
a complaint of chest discomfort every year (20;29). The ma-
jority of these patients do not have ACS and yet over 50
percent of these patients in Canada and the United States are
admitted to hospital for further investigation. Less than half
of these admitted patients prove to have ACS (14); the cost to
the healthcare system of investigating and treating all these
patients who have noncardiac causes for their chest pain is
significant. Furthermore, unnecessarily long emergency de-
partment stays contribute to the high levels of congestion
experienced in Canadian emergency departments in urban
centers. Despite the fact that most patients admitted to hospi-
tal with chest pain do not have ACS, 2–5 percent of patients
discharged home after a short emergency department evalu-
ation prove to have ACS and run the risk of higher mortality
and morbidity (5;14). The mortality rate for those patients
with ACS who are discharged from the emergency depart-
ment is almost double that of patients with ACS who are
admitted to hospital (26).

Several risk stratification tools have been developed
to assist physicians in identifying those patients with chest
pain that are at high risk of having ACS (12;16;17;21;23;
27;28;30;31). However, none of these tools help clinicians
identify patients that can be discharged safely after a short
emergency department evaluation. The “Early disposition
prediction rule for patients with chest discomfort” is a
research project currently under way in Vancouver, British
Columbia, Canada. This project has developed, but not yet

validated, a clinical prediction rule that identifies patients
who are safe to send home after 2 hours of observation and
investigation and within 3 hours of emergency department
admission. The derived Early Disposition Prediction Rule
has a sensitivity of 98.8 percent and a specificity of 32.5
percent for predicting ACS events occurring within 30 days
(6).

Despite the potential benefits of implementing this clin-
ical prediction rule in emergency departments across the
country, there exists a great deal of uncertainty around both
cost and outcome parameters in determining effectiveness
and cost-effectiveness. Prior to thought of implementing this
intervention, this uncertainty clouds the decision to further
research the efficacy and effectiveness of the intervention in
the form of a validation study. The objective of our study is
to demonstrate the utility of Value of Information analysis
in aiding the decision to conduct further research, using the
example of a newly developed Early Disposition Prediction
Rule (EDPR) for patients presenting to emergency depart-
ments with chest discomfort.

METHODS

A decision analytic model was constructed to investigate the
potential cost-effectiveness of the EDPR and assess the value
in acquiring further research to validate the rule (Figure 1).
Our study was based on resource utilization and outcome
data collected for a previously published study on the devel-
opment of the EDPR for patients with chest discomfort (5,6),
which compared the implementation of the EDPR with clin-
ical judgment alone (hereafter referred to as “usual care”).
The usual care cohort was modeled on 1,799 patients who
presented with undifferentiated chest pain to the emergency
department of two large teaching hospitals in Vancouver,
British Columbia, Canada, during the period June 2000 to
April 2001 (5). The EDPR cohort was modeled on the 769
patients used to develop the rule (6). A total of 221 pa-
tients were included in both patient groups and were ex-
cluded from our model, leaving 1,578 and 548 patients in
the usual care and EDPR cohorts, respectively. Patient char-
acteristics and outcomes for the two cohorts are outlined
in Table 1. The time horizon of the study was 30 days
after presentation to the emergency department with chest
pain.

Parameter Estimates: Outcome Probability
and Cost Measures

The probabilities of arriving at each decision node in the
model were based on the real patient dispositions in the
usual care cohort and on the predicted patient disposition
if the EDPR had been applied to the EDPR cohort. Patient
outcomes (ACS positive or negative) were based on actual
patient data obtained from the 2 study populations. ACS
was defined as either acute myocardial infarction or definite
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Figure 1. Decision analytic model. ACS, acute coronary syndrome.
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Value of Information of a clinical prediction rule

Table 1. Patient characteristics

Early disposition
Usual care prediction rule

Sample size 1,578 548
Age, mean years (SD) 58.3 (16.5) 58.0 (14.4)
Male 899 (57%) 340 (62%)
Past myocardial infarction 347 (22%) 132 (24%)
Past angina 552 (35%) 192 (35%)
Presence of:

Smoking NA 164 (30%)
Hypertension NA 197 (36%)
Hyperlipidemia NA 197 (36%)
Diabetes NA 93 (17%)

30-day outcome diagnosis
Definite AMI 214 (13.6%) 53 (9.67%)
Definite unstable angina 120 (7.6%) 61 (11.3%)
Possible unstable angina 42 (2.7%) 13 (2.4%)
Adverse eventa but no ACS 72 (4.6%) 23 (4.2%)
No ACS or adverse event 1130 (71.6%) 398 (72.6%)

30-day mortality
Overall 13 (0.9%) 6 (1.1%)
With AMI 12 (5.9%) 3 (6.0%)
With unstable angina 1 (1.05) 1 (1.7%)
With possible unstable

angina
0 (0) 0 (0)

With adverse event but no
ACS

0 (0) 1 (4.8%)

With no ACS or adverse
event

0 (0) 1 (0.3%)

a Adverse event defined as one or more of the following: cardiac arrhyth-
mia requiring medical intervention, respiratory failure requiring assisted
ventilation, proven pulmonary thromboembolism, proven symptomatic
aortic aneurysm or dissection, new congestive heart failure requiring
intravenous drug treatment, hypotension requiring intra-aortic balloon
pump, intravenous drugs or blood transfusion, chest compressions,
coronary artery bypass graft), any percutaneous coronary intervention).
AMI, acute myocardial infarction; ACS, acute coronary syndrome; NA,
not available, data not collected.

unstable angina (5). Our measure of effectiveness was the
number of ACS discharges from the emergency department
prevented.

Patient-specific resource utilization data for a 30-day
follow-up period from index visit was used to calculate
costs. Because costs in the EDPR cohort may have been
influenced by the development of the rule, costs for both
cohorts were derived from the usual care cohort. The costs
of hospitalization (1;11), surgical procedures (4;33), physi-
cian visits (4), and diagnostic tests (4;24) were all included.
The analysis adopted the perspective of the Ministry of
Health. All costs were reported in 2003 Canadian dollars
($1CAD = $0.81US). Neither costs nor benefits were dis-
counted due to the short duration of patient follow-up.

Analytic Methods: Incremental
Cost-Effectiveness

The incremental cost-effectiveness ratio (ICER) was calcu-
lated as the difference in mean cost (C) divided by the differ-

ence in mean effectiveness (E) between the EDPR and the
usual care groups:

ICER = CEDPR − CUC

EEDPR − EUC

≤ λ (1)

Let λ be the maximum willingness to pay for a unit
of health benefit—in our case, the prevention of an inap-
propriate ACS discharge; if ICER ≤ λ, then the CPR can
be considered cost-effective. We used probabilistic sensi-
tivity analysis to evaluate the uncertainty surrounding the
ICER. This procedure includes two steps: First, specifying
distributions for uncertain model parameters in terms of their
mean, standard deviation, or other statistics, and, second, us-
ing Monte Carlo simulation to select values at random from
these distributions to assess the overall distribution of the
cost-effectiveness ratio and construct the desired credibility
interval (2;10). We assigned Dirichlet distributions for the
parameters, indicating the probabilities of arriving at each of
the nodes of the decision analytic model, and normal distri-
butions for all the cost parameters (3). Estimates and distribu-
tions of probabilities and costs can be found online in Supple-
mentary Tables 1 and 2 (which can be found at http://www.
journals.cambrige.org/jid_thc).

Analytic Methods: Expected Value
of Perfect Information

Uncertainty surrounding the mean estimate of cost-
effectiveness can be costly if it increases the possibility of
making the wrong decision in terms of implementing or
not implementing the health intervention. The information
gained from further research is valuable, as it reduces the
expected costs of this uncertainty. The Expected Value of
Perfect Information (EVPI) can be interpreted as the ex-
pected costs of uncertainty, as perfect information would
eliminate completely the possibility of making the wrong
decision.

The EVPI is calculated as the difference between the
expected value of benefit if the decision is made when the
“true” parameter values are known (in other words, with
“perfect” information), and the expected value of benefit if
the decision is made with uncertainty in all parameter values
(current information), as follows:

EVPI = Eθ max
a

Ba(θ, λ) − max
a

EθBa(θ, λ) (2)

where Ba represents the net benefit of a given strategy “a”
(in monetary terms), which is a function of θ , the uncertain
parameters, and λ, the threshold cost-effectiveness ratio. This
net benefit is simply a transformation of the above ICER in
monetary terms for a single strategy a, taking into account
the threshold ratio, λ:

Ba(θ, λ) = λEa(θ ) − Ca(θ ) (3)
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Therefore, the first term in Eq. 2, the expected net benefit
of a decision taken with perfect information, is the mean of
the maximum values of net benefit for each iteration of the
Monte Carlo simulation, while the second term, the expected
net benefit of a decision taken with current information, is the
maximum of the mean values of net benefit for each iteration.
This calculation is then repeated for a range of values of λ.
The EVPI represents the maximum sum that the healthcare
system should be willing to pay for reducing the uncertainty
in the decision to implement the EDPR. Although the esti-
mated EVPI is the expected maximum value for additional
information to inform the treatment of a single patient, the
information acquired can be used to treat all patients that may
benefit from the intervention in question. We can, therefore,
estimate the population or total EVPI by multiplying the per-
person EVPI by the number of persons that may benefit from
intervention each year, as follows:

tEVPI = EVPI ∗
(

T∑
t=1

n

(1 + r)t

)
(4)

RESULTS

The results of our probabilistic decision analytic model sug-
gest that application of the EDPR could result in a cost-
savings of $36,564 and 12.2 fewer ACS discharges per 1,000
patients. The cost-effectiveness of the EDPR compared with
usual care was −$2,999 per ACS discharge prevented in
the base-case analysis, indicating a cost-savings. Probabilis-
tic sensitivity analysis supported the baseline results with
a 55 percent probability that the ICER would be negative
due to cost-savings. However, the credibility interval sur-
rounding the mean estimate was large, with an ICER of
$89,318 at the upper bound of the 95 percent credibility
interval. The cost-effectiveness acceptability curve plotted
in Supplementary Figure 1 (which can be found online at
http://www.journals.cambrige.org/jid_thc) indicates that at a
cost-effectiveness threshold ratio of λ = $20,000 per inappro-
priate discharge prevented, there is a 20 percent probability
that the intervention would not be cost-effective, given cur-
rent information. The threshold ratio of $20,000 per inappro-
priate discharge prevented represents the approximate oppor-
tunity cost of inappropriately discharging then re-admitting
an individual who is ACS positive. This opportunity cost does
not take into account any incremental loss of quality of life
or other health burden, thus the threshold ratio of $20,000 is
a conservative estimate of societal willingness to pay.

The EVPI calculations for the decision are presented
in Supplementary Figure 2 (which can be found online
at http://www.journals.cambrige.org/jid_thc). If we assume
λ = $20,000 per inappropriate discharge prevented, the EVPI
per patient is $32.59. Alternatively, for a λ = $50,000 per
inappropriate discharge prevented, the EVPI per patient is
$11.81.

Using a discount rate of r = 3 percent, time horizons
of T = 1, 2, and 5 years, and an annual population of
n = 500,000, corresponding to the number of individuals
presenting to emergency departments with chest discom-
fort each year in Canada (20), we found a total EVPI of
$16.3 million within the first year of implementation, assum-
ing λ = $20,000 (Figure 2). Varying the annual incidence of
presentation to ED with chest discomfort by 25 percent in
each direction indicates a range of $12.2 to $20.4 million. The
total EVPI remained positive even at very high threshold val-
ues. At a threshold of $100,000 per inappropriate discharge
prevented, tEVPI after 1 year of implementation was $3.5
million. EVPI was higher when considering longer periods
of implementation.

These estimates of tEVPI can be used to decide whether
to collect more information to inform the decision of imple-
menting the intervention. For different values of λ, tEVPI is
compared against the cost of collecting further information
in the form of experimental or observational research. For
the intervention in question, for λ = $20,000, we have found
that the value of further research is $16.3 million in the first
year of implementation, thus conducting any research costing
more than this would not be cost-effective.

DISCUSSION

In this article, we have demonstrated the utility of Value
of Information analysis in guiding decisions to adopt new
interventions and to pursue further research. In our exam-
ple, preliminary analysis suggests that the EDPR may be
cost-effective, that is, cost-saving. However, given the small
sample size on which our analysis is based and the rarity
of the outcome measure of inappropriate discharges of ACS,
we conclude that it would be cost-effective to conduct further
research to reduce the uncertainty regarding the decision to
implement the EDPR on a national scale.

Our example of the decision to implement the EDPR
in Canadian emergency departments provides a good illus-
tration of the utility of Value of Information analysis for
two reasons. First, the intervention in question is potentially
highly cost-effective, if not cost-saving; however, given that
the outcome in question is rare and the sample size of the
initial observational study is small, there is a high degree of
variability in our estimate of cost-effectiveness. If the inter-
vention appeared not to be cost-effective after initial evalu-
ation, further research would have been much more difficult
to justify. Second, our decision analysis and the intervention
in question present a novel application of Value of Infor-
mation analysis. Past studies have been used to provide a
rational basis with which to inform formulary decisions for
Health Management Organizations, such as the National In-
stitute for Health and Clinical Excellence, on whether or not
to list a pharmacological intervention on a formulary or to
request further research to inform the decision (8;9;18). In
our case, we show that this methodology may be used to
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Figure 2. Expected value of perfect information for the population of Canada.

inform investigators and health research funding organiza-
tions on whether to pursue and fund further research for
promising nonpharmacological interventions as well.

The need for evidence-based decision making in allocat-
ing scarce health resources has never been greater, especially
in healthcare systems providing universal coverage. Cost-
effectiveness analysis provides decision makers with an an-
alytic tool with which to determine the relative and absolute
value of health interventions to provide an ordinal ranking of
new interventions in terms of their cost-effectiveness or value
for money. Value of Information analysis is an extension of
cost-effectiveness analysis which, when used together, can
inform policy makers not only in the decision to implement
an intervention, but also the decision of whether further re-
search is required before implementation. Further detail on
this and related methods can be found in Claxton (7) and
Groot Koerkamp et al. (19).

A criticism of EVPI analysis, and economic evaluation
of health interventions in general, is that λ, the threshold
ICER, is unknown (13). The critical value λ is meant to rep-
resent the threshold at which decision makers are indifferent
between funding the intervention and using the resources in
other programs or interventions. Threshold values of $20,000
to $50,000 per quality-adjusted life-year gained have been

used (22;34), but these estimates have been criticized as be-
ing unsubstantiated. As generic measures of health related
quality of life were not used in the observational study on
which we base our analysis, we use a nongeneric measure of
effectiveness, making the choice in threshold value somewhat
more difficult. Despite these drawbacks, some have argued
in favor of an approach that makes the choice of λ explicit,
thus requiring decision makers to contemplate the implicit
trade-off they make in choosing which health interventions
to implement (32). Furthermore, in presenting the results of
EVPI analysis, the tEVPI is presented for a range of values
of λ, thus presenting decision makers with a range of thresh-
old values for which the decision to conduct further research
may be cost-effective.

There were some limitations with our analysis. We were
limited to applying the rule to the same cohort of patients
that the rule was derived from; the EDPR has not been
prospectively applied to a cohort of patients. In our decision
analysis, we estimated average costs for each branch of our
decision tree from the Usual Care cohort because of incom-
plete cost information obtained from the Clinical Prediction
Rule cohort. The variability in these parameter estimates
introduced a degree of uncertainty around our base-case
ICER.
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POLICY IMPLICATIONS

Our study demonstrates how cost-effectiveness and Value of
Information analysis can be applied in the decision to con-
duct further research on a new health technology. Our results
suggest that the health and monetary benefits of conduct-
ing further research into the EDPR are likely to outweigh
the costs of conducting this research, even in the short-term.
Given that approximately 500,000 patients present with chest
discomfort to Canadian emergency departments each year,
there is potential for a cost-savings of $18.3 million with
6,000 fewer inappropriate ACS discharges annually.
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