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Abstract

DeMiguel, Garlappi, and Uppal (2009) report that naı̈ve diversification dominates mean-
variance optimization in out-of-sample asset allocation tests. Our analysis suggests that
this is largely due to their research design, which focuses on portfolios that are subject to
high estimation risk and extreme turnover. We find that mean-variance optimization often
outperforms naı̈ve diversification, but turnover can erode its advantage in the presence of
transaction costs. To address this issue, we develop 2 new methods of mean-variance port-
folio selection (volatility timing and reward-to-risk timing) that deliver portfolios charac-
terized by low turnover. These timing strategies outperform naı̈ve diversification even in
the presence of high transaction costs.

I. Introduction

Mean-variance optimization is a cornerstone of modern portfolio theory.
However, a recent study by DeMiguel, Garlappi, and Uppal (2009) questions the
value of mean-variance optimization relative to naı̈ve diversification (i.e., relative
to a strategy that places a weight of 1/N on each of the N assets under consid-
eration). The authors of the study implement 14 variants of the standard mean-
variance model for a number of data sets and find that “there is no single model
that consistently delivers a Sharpe ratio or a CEQ return that is higher than that
of the 1/N portfolio.” This finding presents researchers with 2 clear challenges.
The first is to understand why the mean-variance approach to portfolio selection
performs so poorly in the DeMiguel et al. study. The second is to develop more
effective procedures for using sample information about means and variances in
portfolio problems.
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With respect to the 1st challenge, we show that the DeMiguel et al. (2009) re-
search design places the mean-variance model at an inherent disadvantage relative
to naı̈ve diversification. Specifically, it delivers mean-variance efficient (MVE)
portfolios that are very aggressive, with target conditional expected excess returns
that often exceed 100% per year. Targeting conditional expected excess returns of
this magnitude leads to poor out-of-sample performance because it greatly mag-
nifies both estimation risk and portfolio turnover. If the mean-variance model is
implemented by targeting the conditional expected return of the 1/N portfolio,
the resulting MVE portfolios outperform naı̈ve diversification for most of the
DeMiguel et al. data sets. However, it is not clear that this finding is robust to
the presence of high transaction costs.

In response to the 2nd challenge, we develop simple active portfolio strate-
gies that retain the most appealing features of the 1/N strategy (no optimization,
no covariance matrix inversion, and no short sales) while exploiting sample infor-
mation about the reward and risk characteristics of the assets under consideration.
In particular, we specify the portfolio weights in terms of conditional expected
returns, conditional return volatilities, and a tuning parameter that allows some
control over portfolio turnover. The empirical evidence shows that the proposed
strategies outperform naı̈ve diversification by statistically and economically
significant margins. This is true even though we implement the strategies using
estimators of the conditional expected returns and conditional return volatilities
that are likely to be relatively inefficient. Moreover, the advantage of the proposed
strategies persists even in the presence of high transaction costs.

Although our strategies are most naturally interpreted as mean-variance tim-
ing rules, they are rooted in the literature on asset allocation in the presence of
estimation error and constraints on portfolio holdings. There have been several
notable additions to this literature in recent years. Pastor (2000) and Pastor and
Stambaugh (2000) use Bayesian methods to address parameter uncertainty.
Jagannathan and Ma (2003) consider short-sale constraints and show that these
restrictions improve performance by reducing the effect of estimation error. Kan
and Zhou (2007) develop a 3-fund strategy that optimally diversifies across both
factor and estimation risk. Tu and Zhou (2010) incorporate economic objectives
into Bayesian priors and show that the resulting portfolio rules outperform some
of the best rules that have been proposed in the classical framework.

The recent contribution of Tu and Zhou (2011) is particularly interesting. The
authors develop a theory of portfolio choice under estimation risk by assuming
that asset returns are independently and identically distributed (i.i.d.) over time.
Building on the idea that the 1/N portfolio is a reasonable shrinkage target, they
propose a new strategy that optimally combines the 1/N portfolio and the Kan
and Zhou (2007) 3-fund portfolio, with the rate of shrinkage toward the 1/N port-
folio determined by the level of estimation risk. Simulations demonstrate that this
“4-fund strategy” outperforms the 1/N strategy in an i.i.d. setting under a range
of assumptions about the data generating process.

This paper addresses many of the issues studied by Tu and Zhou (2011),
but it does so from the perspective of an investor who assumes that the condi-
tional means and variances of asset returns change through time. We start by
proposing a new class of active portfolio strategies that are designed to exploit
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sample information about volatility dynamics in a way that mitigates the effect of
estimation risk. Under our approach, which we refer to as volatility timing (VT),
the portfolios are rebalanced monthly based solely on changes in the estimated
conditional volatilities of asset returns. We control the sensitivity of the portfolio
weights to these changes via a tuning parameter that can be interpreted as a mea-
sure of timing aggressiveness. This allows us to keep the turnover of the proposed
strategies to a level competitive with that of naı̈ve diversification.

We also propose a more general class of timing strategies that incorporates
sample information about the dynamics of conditional expected returns. Under
our approach, which we refer to as reward-to-risk timing (RRT), the portfolios are
rebalanced monthly based solely on changes in estimated reward-to-risk ratios.
We implement these strategies using 2 estimators of conditional expected returns:
a simple rolling estimator that imposes no parametric assumptions and an estima-
tor that is designed to reduce estimation risk by exploiting the predictions of asset
pricing theory.

The empirical section of the paper compares the out-of-sample performance
of the VT and RRT strategies to that of the 1/N strategy using 4 different data
sets. All of the strategies are implemented using the same rolling sample approach
used by DeMiguel et al. (2009). We find that both types of timing strategies can
significantly outperform the 1/N strategy for a range of data sets, and that this per-
formance advantage persists after accounting for the impact of transaction costs.
Thus, in contrast to DeMiguel et al., we conclude that there can be substantial
value in using sample information to guide portfolio selection decisions.

For example, with proportional transaction costs of 50 basis points (bp), the
1/N strategy has an estimated Sharpe ratio of 0.46 for a data set comprising 25
portfolios formed on size and book-to-market characteristics. In comparison, the
VT strategies have estimated Sharpe ratios that range from 0.47 to 0.49. These
differences translate into significant performance gains because the returns for
the VT and the 1/N strategies are highly correlated, resulting in small standard
errors for relative performance measures. We estimate that risk-averse investors
would be willing to pay from 81 bp to 108 bp per year to switch from the 1/N
strategy to our VT strategies. These estimated fees are statistically different from
0 at the 10% significance level.

The performance gains are more pronounced for the RRT strategies. If we
implement these strategies using a simple rolling estimator of conditional
expected returns, then the estimated Sharpe ratios range from 0.52 to 0.54. We
estimate that risk-averse investors would be willing to pay from 127 bp to 167 bp
per year to switch from the 1/N strategy to these strategies. RRT appears to be a
particularly promising strategy when it is implemented using the estimator of ex-
pected returns implied by the Carhart (1997) 4-factor risk model. In this case, the
estimated Sharpe ratios range from 0.52 to 0.57 and the estimated performance
fees range from 118 bp to 220 bp per year. These gains are all statistically signif-
icant at the 1% level.

The evidence also suggests that the performance gains increase with the
cross-sectional dispersion in the means and variances of returns. The data set that
poses the biggest challenge to the timing strategies contains 10 industry portfo-
lios. Sorting firms into industries produces only a modest spread in the estimated
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means. In contrast, some of the most compelling results are obtained using a
data set created by sorting firms into 10 portfolios based on momentum, which
produces a pronounced spread in the estimated means. The 1/N strategy has an
estimated annualized Sharpe ratio of 0.28 for this data set, while the RRT strate-
gies have estimated annualized Sharpe ratios that range from 0.43 to 0.47 when
they are implemented using a simple rolling estimator of conditional expected re-
turns. We observe similar performance gains for the VT strategies using a data set
constructed by sorting firms into portfolios based on historical volatility.

The remainder of the paper is organized as follows. Section II considers the
portfolio choice problem of an investor with quadratic risk preferences and shows
how the resulting framework can be used to motivate VT and RRT strategies. Sec-
tion III describes our estimators of the conditional mean vector and conditional
covariance matrix of excess returns. Section IV discusses our approach to per-
formance evaluation and statistical inference. Section V describes the data and
presents the empirical results. Section VI provides concluding remarks.

II. Portfolio Strategies

This section describes the portfolio strategies we investigate. The 1st strategy
(naı̈ve diversification) consists of making an equal allocation to each asset. The
remaining strategies fall into 1 of 2 basic categories: strategies that are ex ante
optimal under quadratic loss, that is, they invest in conditionally MVE portfolios,
and strategies that do not entail formal optimization, but invest in portfolios that
exploit sample information about conditional means and variances in a manner
that mitigates estimation risk. We assume throughout that there are N risky assets
and a single risk-free asset, and we refer to naı̈ve diversification across the risky
assets as the 1/N strategy.

A. Optimal Portfolios under Quadratic Loss

Let rt=Rt− ιRft, where Rt is an N×1 vector of risky-asset returns, Rft is the
risk-free rate, and ι denotes an N×1 vector of 1s. Under the standard approach to
conditional mean-variance optimization, the investor’s objective in period t is to
choose the N × 1 vector of risky-asset weights ωpt that maximizes the quadratic
objective function

Q(ωpt) = ω′ptμt − γ2ω
′
ptΣtωpt,(1)

where μt = Et(rt+1) is the conditional mean vector of the excess risky-asset re-
turns, Σt = Et(rt+1r′t+1)−Et(rt+1)Et(rt+1)

′ is the conditional covariance matrix of
the excess risky-asset returns, and γ denotes the investor’s coefficient of relative
risk aversion. The weight in the risk-free asset is determined implicitly by 1−ω′ptι.

This problem has a straightforward and well-known solution: ωpt=Σ
−1
t μt/γ.

The solution implies that, in general, the investor divides his wealth between
the risk-free asset and a tangency portfolio (TP) of risky assets with weights
ωTP,t = Σ

−1
t μt/ι

′Σ−1
t μt. That is, he holds a conditionally MVE portfolio. The

fraction of wealth allocated to the TP is xTP,t = ι
′Σ−1

t μt/γ. Because there is a
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1-to-1 correspondence between γ and μpt = ω
′
ptμt for each t, we can express the

vector of optimal weights as

ωpt = μpt

(
Σ−1

t μt

μ′tΣ
−1
t μt

)
(2)

and view the investor as choosing the period t portfolio by minimizing the condi-
tional risk of the portfolio for a specified value of the conditional expected excess
return.

We refer to the portfolio in equation (2) as the optimal unconstrained (OU)
portfolio because the sum of the risky-asset weights is unconstrained. DeMiguel
et al. (2009) focus on portfolios that constrain these weights to sum to 1 to en-
sure that performance differences across portfolios are not driven by different
allocations to the risk-free and risky assets. This constraint is imposed by rescal-
ing the weights of the OU portfolio to obtain the TP.1 This may seem innocuous
given that the tangency and OU portfolios have the same conditional Sharpe ratio.
However, the TP differs from the OU portfolio in 2 important respects: estimation
risk and turnover. These differences can have a substantial impact on the relative
performance of the corresponding investment strategies.

1. Estimation Risk, Turnover, and the Tangency Portfolio

First consider the estimation risk issue. Intuitively, estimation risk stems
from uncertainty about the parameters of the data generating process. This leads
to errors in estimating the portfolio weights, which drives up portfolio risk. Sup-
pose, for example, that μt = μ and Σt = Σ for all t. If μ and Σ are known to the
investor, then the OU portfolio and the TP have known, time-invariant weights
given by ωp =Σ

−1μ/γ and ωTP =Σ
−1μ/ι′Σ−1μ. Because the weights are pro-

portional to Σ−1μ in each case, the excess return on the OU portfolio is perfectly
correlated with the excess return on the TP, and the 2 portfolios have the same
unconditional Sharpe ratio.

This is not true, however, if we replace μ andΣ with the sample mean vector
μ̂ and sample covariance matrix Σ̂. Sampling variation in μ̂ and Σ̂ translates
into sampling variation in the portfolio weights, which increases the variance of
the returns and lowers the unconditional Sharpe ratio. Although both portfolios
are affected, the deterioration in the Sharpe ratio is likely to be more severe for
the TP. Consider the expression for the estimated weights: ω̂TP= Σ̂

−1μ̂/ι′Σ̂−1μ̂.
If |ι′Σ̂−1μ̂| is small, then the TP can display extreme weights and hence extreme
returns. The OU portfolio does not suffer from this problem because the vector
Σ̂−1μ̂ is scaled by 1/γ rather than by 1/ι′Σ̂−1μ̂. The investor chooses γ, while
ι′Σ̂−1μ̂ is a random variable that can take on values close to 0 if there is sufficient
sampling variation in μ̂ and Σ̂.

Estimation risk is particularly important in the presence of transaction costs,
because anything that increases turnover (the fraction of invested wealth traded

1To be precise, DeMiguel et al. (2009) consider a portfolio with weights ω∗t =Σ
−1
t μt/|ι′Σ−1

t μt|.
This portfolio invests 100% in the TP if ι′Σ−1

t μt > 0. However, it invests −100% in the TP and
200% in the risk-free asset if ι′Σ−1

t μt < 0 (i.e., if the TP is conditionally inefficient).
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in a given period) can cause performance to deteriorate. To see how we compute
turnover for the OU portfolio, note that if $1 is invested in the portfolio at time
t − 1, there will be ωi,t−1(1 + Rit) dollars invested in the ith risky asset at time t.
Hence, the weight in asset i before the portfolio is rebalanced at time t is

ω̃it =
ωi,t−1(1 + Rit)∑N

i=1 ωi,t−1(1 + Rit) + (1−∑N
i=1 ωi,t−1)(1 + Rft)

,(3)

and the turnover at time t is given by

τpt =

N∑
i=1

|ωit − ω̃it| +
∣∣∣∣∣

N∑
i=1

(ωit − ω̃it)

∣∣∣∣∣ ,(4)

where ωit is the desired weight in asset i at time t.
Equations (3) and (4) imply that turnover is largely determined by the value

of γ. Consider our earlier example with μt = μ and Σt =Σ for all t. In this case,
the estimated weights of the OU portfolio are given by ω̂p=Σ̂

−1μ̂/γ. Changing γ
has no effect on the before-transaction-costs Sharpe ratio because both the mean
and standard deviation of the portfolio return are proportional to 1/γ. However, it
can have a dramatic impact on turnover because |ωit − ω̃it| is approximately pro-
portional to 1/γ.2 Reducing γ causes rebalancing costs to rise, driving down the
mean return and, correspondingly, the after-transaction-costs Sharpe ratio. Hence,
the choice of γ is an important consideration when developing a research design
to evaluate the effectiveness of mean-variance optimization.

Turnover is an even greater concern for the TP strategy. If there is more than
a small chance that ι′Σ̂−1μ̂ is less than 0, then realizations of this quantity that
are close to 0 can push turnover to very high levels. The effect is the same as
setting γ close to 0 for the OU strategy. Unfortunately, we can do little to mitigate
this problem. In contrast to the OU strategy, we cannot reduce turnover by spec-
ifying a higher γ. This is a major drawback in the presence of transaction costs.
By focusing on the TP strategy, DeMiguel et al. (2009) place the mean-variance
model at an inherent disadvantage with respect to turnover and estimation risk.
Thus, their results could produce an overly pessimistic picture of the usefulness
of mean-variance optimization.

2. Optimization Over the Risky Assets Only

If the objective is to study MVE portfolios that exclude the risk-free asset,
an alternative to considering the TP is to solve the investor’s portfolio problem
subject to the constraint ω′ptι= 1. The 1st-order condition for this problem is

μt + δtι− γΣtωpt = 0,(5)

2Note that ω̃it = ωi,t−1(1 + Rit) for the special case in which the portfolio has a zero return in
period t. Because ωi,t−1 and ωit are proportional to 1/γ, it follows that |ωit − ω̃it| is proportional to
1/γ in this case. More generally, approximate proportionality holds.
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where δt is the Lagrange multiplier associated with the constraint. Hence, the
optimal vector of constrained portfolio weights is

ωpt =
1
γ
Σ−1

t μt +
δt

γ
Σ−1

t ι.(6)

The 1st term on the right-hand side of equation (6) is proportional to ωTP,t. The
2nd term is proportional to ωMV,t =Σ

−1
t ι/ι

′Σ−1
t ι, which is the vector of weights

for the minimum-variance (MV) portfolio; that is, the portfolio obtained by mini-
mizing ω′ptΣtωpt subject to ω′ptι = 1. Thus, the solution to the constrained problem
takes the same general form as that for the unconstrained problem with the MV
portfolio replacing the risk-free asset.

If we solve for δt and substitute the resulting expression into equation (6),
we obtain

ωpt = xTP,t

(
Σ−1

t μt

ι′Σ−1
t μt

)
+ (1− xTP,t)

(
Σ−1

t ι

ι′Σ−1
t ι

)
,(7)

which implies that μpt = xTP,tμTP,t + (1 − xTP,t)μMV,t, where μTP,t and μMV,t de-
note the conditional expected excess returns for the tangency and MV portfolios.
Accordingly, we can express equation (7) as

ωpt =

(
μpt − μMV,t

μTP,t − μMV,t

)(
Σ−1

t μt

ι′Σ−1
t μt

)
(8)

+

(
1− μpt − μMV,t

μTP,t − μMV,t

)(
Σ−1

t ι

ι′Σ−1
t ι

)
,

and view the investor as choosing ωpt by minimizing conditional risk for a speci-
fied μpt. We refer to the portfolio in equation (8) as the optimal constrained (OC)
portfolio.

The OC portfolio is identical to the OU portfolio except that the weight in the
risk-free asset has been transferred to the MV portfolio. It follows, therefore, that
the increase in estimation risk from imposing the constraint is due solely to errors
in estimating ωMV,t. Two observations suggest this increase should be consider-
ably less than that incurred by rescaling the OU portfolio weights (provided the
OU portfolio is a convex combination of the risk-free asset and TP). First, ωMV,t

does not depend on μt. The return variances and covariances can typically be es-
timated more precisely than the mean returns (see, e.g., Merton (1980)), so the
errors in estimating ωMV,t should be smaller than those in estimating the weights
of other MVE portfolios. Second, the denominator of ωMV,t = Σ

−1
t ι/ι

′Σ−1
t ι is

the reciprocal of the variance of the MV portfolio. This suggests that the potential
for generating extreme weights is much lower for the MV portfolio than for the
TP because the value of ι′Σ̂−1

t ι is, by construction, both positive and maximized.

B. The DeMiguel et al. (2009) Results Revisited

To provide direct evidence on the role of the issues identified in Section II.A
in the DeMiguel et al. (2009) results, we replicate their analysis for the tangency,

https://doi.org/10.1017/S0022109012000117  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109012000117


444 Journal of Financial and Quantitative Analysis

MV, and 1/N portfolios, and compare the results to those for the OC portfolio. In
particular, we document the performance of tangency, MV, 1/N, and OC strate-
gies under circumstances in which the OC portfolio targets the estimated expected
excess return of the 1/N portfolio (i.e., we set μ̂pt for the OC portfolio equal to
μ̂′tι/N).3 This ensures that the aggressiveness of the OC portfolio is comparable
to that of 1/N portfolio in each period. The analysis is conducted for 5 of the 6
DeMiguel et al. data sets.4 Three are constructed by sorting U.S. firms into port-
folios based on size and book-to-market values (the FF 1-factor, FF 4-factor, and
Mkt/SMB/HML data sets), one is constructed by sorting U.S. firms into industries
using Standard Industrial Classification (SIC) codes (the FF 10 Industry data set),
and one contains international equity market indexes (the international data set).
The sample size is 497 monthly observations except for the international data set,
which contains 379 observations.

We report the results of the comparison in Table 1. Panel A reports the annu-
alized mean, standard deviation, and Sharpe ratio for the time series of monthly
excess returns generated by each of the strategies. We use rolling estimators with a
120-month window length and assume that transaction costs are 0 when comput-
ing these statistics. Panel B reports the minimum, median, and maximum values
of the estimated conditional expected return for each strategy over the months in
the out-of-sample period. The estimated Sharpe ratios for the tangency, MV, and
1/N strategies match those reported by DeMiguel et al. (2009) in their Table 3
(after scaling by 1/

√
12 to obtain monthly statistics).

It is clear that the reward and risk characteristics of the TP strategy are
markedly different from those of the other strategies. The estimated mean and
estimated standard deviation of the TP excess return are greater than 100% per
year for 2 of the data sets. This contrasts sharply with the results for the OC strat-
egy, which has reward and risk characteristics similar to those of the 1/N and MV
strategies. Moreover, the TP strategy typically has an estimated expected monthly
turnover that is orders of magnitude higher than that of the OC strategy. The only
exception is for the Mkt/SMB/HML data set. The TP and OC strategies have the
same estimated expected turnover for this data set.

Panel B of Table 1 points to why the Mkt/SMB/HML data set produces atyp-
ical results. The median value of μ̂TP,t for this data set is 6.7% per year, which is
relatively low compared to median values ranging from 30.9% to 60.8% per year
for the remaining data sets. This probably reflects the impact of predominately
negative estimated return correlations.5 More importantly, the maximum value of
μ̂TP,t is only 15.5% for Mkt/SMB/HML, but it ranges from 2,486% to 12,216%
per year for the remaining data sets. It is not surprising to find that target estimated
expected excess returns of this magnitude produce extreme turnover. Furthermore,
the weights that deliver these targets are not feasible in practice.

3Occasionally, targeting the estimated expected excess return of the 1/N portfolio delivers a
conditionally inefficient portfolio. In these cases we replace μ̂pt − μ̂MV,t in the sample analog of
equation (8) with |μ̂pt − μ̂MV,t|. This delivers a conditionally efficient portfolio with the same condi-
tional volatility as the identified inefficient portfolio.

4We thank Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal for sharing these data. The
Standard & Poor’s (S&P) sector data set is proprietary and thus not included in analysis.

5The estimates of corr(rMkt,t, rSMB,t) and corr(rMkt,t, rHML,t) are −0.29 and −0.47.
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TABLE 1

Characteristics of the 1/N and MVE Strategies for the DeMiguel et al. (2009) Data Sets

Table 1 documents key sample characteristics of the 1/N, MV, OC, and TP strategies for 5 of the 6 DeMiguel et al. (2009) data sets: the 10 Fama-French (FF) industry portfolios plus the market portfolio (FF 10
Industry); the 8 Morgan Stanley Capital International (MSCI) developed market portfolios plus the MSCI world market portfolio (International); the FF market, size, and value factor portfolios (Mkt/SMB/HML); the 20
FF size and book-to-market portfolios plus the market portfolio (FF 1-Factor); and the 20 FF size and book-to-market portfolios plus the market, size, value, and momentum factor portfolios (FF 4-Factor). Panel A
reports the annualized mean excess return (μ̂p), annualized excess return standard deviation (σ̂p), annualized Sharpe ratio (̂λp), and average monthly turnover expressed as a fraction of wealth invested (τ̂p) for
each strategy under the assumption that transaction costs are 0. Panel B reports the minimum, median, and maximum of the annualized time-series estimates of the conditional expected excess return ( μ̂pt) for
each strategy. The MV, OC, and TP strategies are implemented using a 120-month rolling estimator of the conditional mean vector and conditional covariance matrix of excess returns, and the OC strategy targets
the estimated conditional expected excess return of the 1/N portfolio each period as described in Section II.B. The sample period is July 1963–November 2004 for the FF data sets and January 1970–July 2001
for the international data set, with 497 and 379 monthly observations, respectively. In each case, the first 120 observations are held out to initialize the rolling estimators. See the text for a detailed description of
each strategy.

FF 10 Industry International Mkt/SMB/HML FF 1-Factor FF 4-Factor

Panel A. Summary Statistics

Strategy μ̂p σ̂p ̂λp τ̂p μ̂p σ̂p ̂λp τ̂p μ̂p σ̂p ̂λp τ̂p μ̂p σ̂p ̂λp τ̂p μ̂p σ̂p ̂λp τ̂p

TP 108 457 0.24 473 −19.5 170 −0.11 1,077 5.66 7.47 0.76 0.06 35.92 812 0.04 212 139 219 0.64 69.5

1/N 7.14 15.23 0.47 0.02 6.66 15.07 0.44 0.03 4.93 6.36 0.78 0.02 10.47 18.62 0.56 0.02 9.93 16.35 0.61 0.02
MV 7.07 13.13 0.54 0.46 7.60 14.72 0.52 0.21 4.80 5.56 0.86 0.02 12.86 13.37 0.96 0.74 −0.20 3.09 −0.06 0.13
OC 6.55 13.30 0.49 0.65 7.10 14.75 0.48 0.29 4.77 6.26 0.76 0.06 16.32 14.18 1.15 0.95 5.69 4.94 1.15 0.46

Panel B. Estimated Conditional Expected Returns (μ̂pt)

Strategy Min. Med. Max. Min. Med. Max. Min. Med. Max. Min. Med. Max. Min. Med. Max.

TP 22.7 47.4 12,216 17.2 30.9 2,486 3.4 6.7 15.5 38.1 60.8 9,191 3.6 34.6 7,635

1/N −3.2 7.9 14.1 −2.4 7.6 12.6 1.3 3.7 8.5 −0.5 8.6 16.5 0.4 8.0 15.5
MV −1.7 4.2 12.2 −3.4 6.4 12.0 1.8 4.3 8.6 −3.1 14.2 22.5 −0.7 −0.1 0.8
OC −0.3 8.4 15.8 −2.4 8.9 16.2 2.6 5.0 8.6 −0.5 16.8 36.7 0.4 8.0 15.5
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In comparison, the maximum value of μ̂pt for the OC strategy ranges from
8.6% to 36.7% per year, a much more reasonable range. If we discount the results
for the TP strategy, the picture that emerges from Table 1 is far more supportive of
mean-variance optimization than that suggested by DeMiguel et al. (2009). The
estimated Sharpe ratio of the OC strategy exceeds that of the 1/N strategy for 4 of
the data sets. Indeed, for the FF 1-factor and FF 4-factor data sets, the estimated
Sharpe ratio for the OC strategy is greater than 1 and about twice that of the 1/N
strategy. This supports our view that the DeMiguel et al. research design, which
makes no attempt to match the risk characteristics of the MVE portfolios under
consideration to those of the naı̈ve diversification benchmark, is skewed in favor
of naı̈ve diversification, especially with respect to turnover and after-transaction-
costs performance.6

For example, DeMiguel et al. (2009) implement a version of the “3-fund”
strategy proposed by Kan and Zhou (2007), but it contains only 2 funds (the tan-
gency and MV portfolios) because they rescale the weights for the risky assets to
sum to 1. The estimated expected turnover of the resulting strategy exceeds that of
the 1/N strategy by a factor of more than 1,000 for several of the data sets. How-
ever, we find that the OC strategy, which is a combination of the same 2 funds,
has a vastly lower turnover when we target the conditional expected excess return
of the 1/N portfolio. We should not interpret the turnover and other performance
figures reported by DeMiguel et al. as representative of the 3-fund strategy.

Our findings with respect to the DeMiguel et al. (2009) research design are
consistent with the analysis of Brown (1979). He argues that the 1/N benchmark
is difficult to beat in the standard mean-variance framework because this frame-
work fails to account for the impact of estimation risk. Intuitively, optimization
based on sample means, variances, and covariances tends to produce portfolio
choices that are too extreme.7 To make it less likely that estimation risk will over-
whelm the potential benefits of incorporating sample information, we target the
estimated expected excess return of the 1/N portfolio in the optimization. This
reduces the chances (relative to the scenario considered in DeMiguel et al.) that
optimization produces extreme weights due to estimation error.

C. Mean-Variance Timing Strategies

Although the OC strategy performs much better than the TP strategy, it is not
clear that the OC strategy would consistently outperform the 1/N strategy under
plausible assumptions about transaction costs. For instance, if we assume that
establishing or liquidating a portfolio position costs 50 bp, then the estimates of
expected turnover for the OC strategy reported in Table 1 would entail transaction
costs of between 0.4% and 5.7% per year. In view of the potential impact of
transaction costs, we regard turnover as the primary barrier to capitalizing on the
gains promised by mean-variance optimization.8

6Tu and Zhou (2011) discuss additional reasons for the unusually strong relative performance of
the 1/N portfolio in DeMiguel et al. (2009).

7See Jorion (1985), (1991) for further discussion and possible solutions.
8Transaction costs might be less of an issue for large institutional investors. Establishing or liqui-

dating a portfolio position could plausibly cost as little as 5 bp for such investors.
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We could consider reducing turnover by using various techniques proposed
to improve the performance of mean-variance optimization.9 However, our inter-
est lies in a different direction. Instead of focusing strictly on portfolio optimiza-
tion, we expand the scope of the investigation to include alternative methods of
exploiting sample information. Our objective is to develop methods of portfolio
selection that retain the features that make naı̈ve diversification appealing (non-
negative weights, low turnover, and wide applicability) while improving on its
performance.

1. Volatility Timing

Fleming, Kirby, and Ostdiek (2001), (2003) study a class of active port-
folio strategies in which the portfolio weights are rebalanced based on changes
in the estimated conditional covariance matrix of returns. They find that these
“volatility-timing” strategies outperform unconditionally MVE portfolio strate-
gies by statistically significant margins. This points to the potential for a VT
approach to outperform naı̈ve diversification. The question is how to implement
VT in the present setting. Unlike Fleming et al. (2001), (2003), who use futures
contracts for their analysis, we want to avoid short sales and keep turnover as low
as possible. Accordingly, we propose a new class of VT strategies characterized
by 4 notable features: They do not require optimization, they do not require co-
variance matrix inversion, they do not generate negative weights, and they allow
the sensitivity of the weights to volatility changes to be adjusted via a tuning
parameter. The last feature facilitates control over turnover and transaction costs.

To motivate our approach, consider a scenario in which all of the estimated
pair-wise correlations between the excess risky-asset returns are 0 (i.e., Σ̂t is a
diagonal matrix). In this case, the weights for the sample MV portfolio are given by

ω̂it =
(1/σ̂2

it)∑N
i=1(1/σ̂

2
it)
, i = 1, 2, . . . ,N,(9)

where σ̂it is the estimated conditional volatility of the excess return on the ith risky
asset. Thus, if Σ̂t is restricted to be diagonal for all t, the investor will follow a
very simple VT strategy. Obviously, we do not expect Σ̂t to actually be diagonal.
However, the sample MV portfolio obtained by setting the off-diagonal elements
of Σ̂t to 0 might perform better than that obtained using the usual estimator ofΣt.

To see why, note that weights in equation (9) are strictly nonnegative, while
the weights obtained using a nondiagonal estimator of Σt will typically involve
short positions in some assets. In general, strategies that permit short sales are
more likely to generate extreme weights. We view setting the off-diagonal
elements of Σ̂t to 0 as an aggressive form of shrinkage. Because this results in
N(N − 1)/2 fewer parameters to estimate, the reduction in estimation risk could
outweigh the information loss. We can also reduce the impact of the information

9Some recent examples of work in this area include Pastor (2000), Pastor and Stambaugh (2000),
MacKinlay and Pastor (2000), Jagannathan and Ma (2003), Ledoit and Wolf (2003), (2004), Garlappi,
Uppal, and Wang (2007), and Kan and Zhou (2007).
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loss by modifying the way in which the portfolio weights respond to volatility
changes. Consider the N = 2 case. The estimated weights of the MV portfolio are
in general given by

ω̂1t =
σ̂2

2t − σ̂1tσ̂2tρ̂t

σ̂2
1t + σ̂2

2t − 2σ̂1tσ̂2tρ̂t
(10)

and ω̂2t = 1 − ω̂1t, where ρ̂t is the estimated conditional correlation between the
excess returns. Now suppose σ̂1t = σ̂2t so that ω̂pt = (1/2, 1/2)′. If asset 1’s estimated
conditional volatility doubles in period t + 1, we adjust the portfolio weights to
ω̂t+1= (0, 1)′ for ρ̂t+1= 1/2 and to ω̂t+1= (1/5, 4/5)′ for ρ̂t+1= 0. Thus, the weights are
more responsive to volatility changes when the estimated correlation between the
returns is positive.

Although the strategy in equation (9) provides no flexibility in determining
how the portfolio weights respond to volatility changes, it belongs to a more gen-
eral class of VT strategies with weights of the form

ω̂it =
(1/σ̂2

it)
η∑N

i=1(1/σ̂
2
it)
η
, i = 1, 2, . . . ,N,(11)

where η ≥ 0. The idea behind this generalization is straightforward. The tuning
parameter η is a measure of timing aggressiveness (i.e., it determines how ag-
gressively we adjust the portfolio weights in response to volatility changes). As
η → 0 we recover the naı̈ve diversification portfolio, and as η → ∞ the weight
on the asset with the lowest volatility approaches 1. Setting η > 1 should help
compensate for the information loss caused by ignoring the correlations. We refer
to the portfolio in equation (11) as the VT(η) portfolio.

2. Reward-to-Risk Timing

The VT strategies of Section II.C.1 ignore information about conditional
expected returns. It is natural to ask, therefore, whether we can improve upon
their performance by incorporating such information. Suppose we again consider
a scenario in which all of the estimated pair-wise correlations between the excess
risky-asset returns are 0. The weights for the sample TP in this case are given by

ω̂it =
(μ̂it/σ̂

2
it)∑N

i=1(μ̂it/σ̂
2
it)
, i = 1, 2, . . . ,N,(12)

where μ̂it is the estimated conditional mean for the ith asset. Thus, if Σ̂t is re-
stricted to be diagonal for all t, the investor will follow a simple RRT strategy.

Because expected returns are typically estimated with less precision than
variances, the strategy in equation (12) is likely to entail significantly higher levels
of estimation risk than the VT strategies. Setting the off-diagonal elements of Σ̂t

to 0 reduces the tendency for the sample TP to be characterized by extreme long
and short weights, but we could still see extreme weights if μ̂it is negative for some
assets because this could cause the denominator of the fraction on the right-hand
side of equation (12) to be close to 0. We address this possibility by assuming that
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the investor has a strong prior belief that μit ≥ 0 for all i and therefore constructs
the RRT weights as

ω̂it =
(μ̂+

it/σ̂
2
it)∑N

i=1(μ̂
+
it/σ̂

2
it)
, i = 1, 2, . . . ,N,(13)

where μ̂+
it = max (μ̂it, 0). This is equivalent to assuming that the investor elimi-

nates any asset with μ̂it ≤ 0 from consideration in period t.
Using the same approach as in Section II.C.1, we can view equation (13) as

an example of a more general class of RRT strategies that have weights of the
form

ω̂it =
(μ̂+

it/σ̂
2
it)
η∑N

i=1(μ̂
+
it/σ̂

2
it)
η
, i = 1, 2, . . . ,N,(14)

where η ≥ 0. These strategies approach naı̈ve diversification across the assets
with positive estimated expected excess returns as η → 0 and put a weight that
approaches 1 on the asset with the maximum estimated reward-to-risk ratio as
η →∞. We refer to the portfolio in equation (14) as the RRT(μ+

t , η) portfolio.

III. Estimating the Conditional Moments of Returns

To implement the portfolio strategies, we must estimate μt and Σt for each
portfolio rebalancing date t. For our baseline analysis we use fixed-window rolling
estimators of μt and Σt. This allows us to directly compare our results to those
of DeMiguel et al. (2009). In the case of the RRT strategies, we also consider an
alternative estimator of μt that is designed to reduce estimation risk by exploiting
the predictions of asset pricing theory.

A. Rolling Estimators

Using a rolling data window to estimate μt and Σt is designed to balance the
tradeoff between the efficiency gains from using more observations and the loss
in forecast precision from including less timely observations that are less likely
to reflect current market conditions. To implement this approach, we define our
estimators to be μ̂t = (1/L)

∑L−1
l=0 rt−l and Σ̂t = (1/L)

∑L−1
l=0 (rt−l−μ̂t)(rt−l−μ̂t)

′

for some window length L. Common choices of the window length for monthly
data are L = 60 and L = 120 (i.e., 5- and 10-year rolling windows). We follow
DeMiguel et al. (2009) and set L= 120.

Although rolling estimators of conditional expected excess returns have the
advantage of simplicity, using these estimators in portfolio optimization is likely
to entail a high level of estimation risk. It is well known that we need a long
time series of returns to estimate μt accurately (Merton (1980)). This is true even
if μt is time invariant. We therefore consider an alternative estimator of μt for
implementing the RRT strategies that should reduce estimation risk under the
circumstances described later.
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B. Alternative Estimator of Conditional Expected Returns

Many asset pricing models imply a direct relationship between the 1st and
2nd moments of excess returns. To see how we can exploit this relationship in
the context of RRT, suppose that a conditional version of the capital asset pricing
model (CAPM) holds. The conditional CAPM implies that the cross-sectional
variation in conditional expected excess returns is due to cross-sectional variation
in conditional betas. Since the market risk premium is just a scaling factor that
multiplies each of the conditional betas, we can express the weights for the RRT
portfolio as

ωit =
(β+

it/σ
2
it)
η∑N

i=1(β
+
it/σ

2
it)
η
, i = 1, 2, . . . ,N,(15)

where β+
it =max(βit, 0) and βit is the period t conditional market beta of asset i.

Replacing μ+
it with β+

it can potentially lower the sampling variation of the
weights. Consider, for illustration purposes, a scenario in which rt+1 ∼ i.i.d.
N(μ,Σ). Upon further simplification, equation (15) reduces to

ωit =
(ρ+

i /σi)
η∑N

i=1(ρ
+
i /σi)η

, i = 1, 2, . . . ,N,(16)

where ρ+
i =max(ρi, 0) and ρi is the correlation between the excess return on asset

i and the excess return on the market. Hence, we have replaced μ̂i with σ̂iρ̂i in
the sample version of the strategy. With a window length of L, the asymptotic
variances of μ̂i and σ̂iρ̂i are given by σ2

i /L and (σ2
i /L)(1− ρ2

i /2).
10

Now suppose in the alternative that the conditional CAPM does not hold, but
conditional betas capture at least some of the cross-sectional variation in condi-
tional expected returns. In this case, replacing μ̂it with σ̂itρ̂it will introduce bias.
The substitution may still prove beneficial, however, if we are replacing an un-
biased but high variance estimator with a biased but lower variance estimator.
Consider an estimator of the form μ̂t=μ0ι, where μ0 > 0 is a scalar. This estima-
tor is undoubtedly biased. Nonetheless, an investor who uses it, and imposes the
constraint ω′t ι = 1, holds the sample analog of the MV portfolio. This portfolio
often performs better than other sample efficient portfolios because its weights do
not depend on μ̂t, which reduces estimation risk (see, e.g., Jagannathan and Ma
(2003)).

This methodology can be extended to allow for multiple risk factors. Con-
sider a K-factor model, and let βij,t denote the period t conditional beta of the ith
asset with respect to the jth factor. With a single factor the portfolio weights do
not depend on the factor risk premium provided that ω′t ι= 1. This is not the case
for K > 1. Estimating the factor risk premiums would introduce additional errors

10To see this, let σ2
m and σim denote the variance of the excess market return and the covariance

between the excess return on asset i and the excess market return. It is easy to show that

√
L

(
σ̂2

m − σ2
m

σ̂im − σim

)
d→ N

([
0
0

]
,

[
2σ4

m 2σ2
mσim

2σ2
mσim σ2

mσ
2
i (1 + ρ2

i )

])
.

See, for example, Hamilton ((1994), p. 301). The asymptotic variance of σ̂iρ̂i = σ̂im/σ̂m follows
immediately via the delta method.
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that could easily overwhelm any benefits from employing the model. Instead, we
mimic the approach used to obtain the MV portfolio (i.e., we assume for the pur-
pose of computing the weights that the factors have identical risk premiums). The
resulting weights for the RRT strategy are

ωit =
(β̄+

it/σ
2
it)
η∑N

i=1(β̄
+
it/σ

2
it)
η
, i = 1, 2, . . . ,N,(17)

where β̄+
it =max(β̄it, 0) and β̄it = (1/K)

∑K
j=1 βij,t is the average conditional beta

of asset i with respect to the K factors. We refer to this portfolio as the RRT(β̄+
t , η)

portfolio.
We implement the RRT(β̄+

t , η) strategy using the Carhart (1997) 4-factor
extension of the Fama and French (FF) (1993) 3-factor model. The conditional
CAPM is not used for the empirical analysis because the literature finds little evi-
dence of a relationship between market betas and average returns after accounting
for size and book-to-market characteristics (FF). To estimate the conditional fac-
tor betas, we use a rolling estimator of the joint conditional covariance matrix of
the excess risky asset and factor returns with the same L used to estimate μt.

IV. Evaluating Portfolio Performance

Suppose a given data set contains T + L observations, where T is the length
of the out-of-sample period. After we compute the sequence {rpt}T+L

t=L+1 of out-of-
sample excess returns for each strategy considered, we evaluate the performance
of the strategies using 2 criteria. The first is the Sharpe ratio for the strategy, that
is, λp = μp/σp, where μp = E(rpt) and σ2

p =Var(rpt). We estimate this ratio using
the sample mean and variance of the excess returns for the out-of-sample period:
μ̂p = (1/T)

∑T+L
t=L+1 rpt and σ̂2

p = (1/T)
∑T+L

t=L+1(rpt − μ̂p)
2. The difference in the

estimated Sharpe ratios for any 2 strategies is one measure of relative performance
in the out-of-sample tests. We base the reported values of λ̂p on the annualized
values of μ̂p and σ̂p for each strategy.

Following Fleming et al. (2001), (2003), we also report a relative perfor-
mance measure based on quadratic utility. The assumption is that quadratic utility
is a 2nd-order approximation of the investor’s true utility function. Under this
approximation, the investor’s realized utility in period t + 1 can be expressed as

U(Rp,t+1) = Wt(1 + Rp,t+1)− 1
2
αW2

t (1 + Rp,t+1)
2,(18)

where Rp,t+1 = Rf ,t+1 + ω′ptrt+1 is the portfolio return in period t + 1, Wt is wealth
in period t, and α is the coefficient of absolute risk aversion. To facilitate com-
parisons across strategies, we hold αWt constant. This is equivalent to setting
the investor’s coefficient of relative risk, γt = αWt/(1 − αWt), equal to some
fixed value γ. Our performance measure is the fee (expressed as a fraction of
wealth invested) that would equate the expected utilities generated by 2 alternative
strategies.

Suppose, for example, that with aΔγ fee imposed on strategy j each period,
the strategies i and j yield the same expected utility (i.e., E[U(Rpit)] = E[U(Rpjt −
Δγ)]). The investor would be indifferent between these 2 alternatives, so we

https://doi.org/10.1017/S0022109012000117  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109012000117


452 Journal of Financial and Quantitative Analysis

interpretΔγ as the maximum per period fee the investor would pay to switch from
strategy i to strategy j. Recognizing that E[U(Rpit)] = E[U(Rpjt)] ⇐⇒ Δγ = 0,
it follows from the quadratic formula that

Δγ = − γ−1(1− γE[Rpjt]) + γ−1((1− γE[Rpjt])
2(19)

− 2γE[U(Rpit)− U(Rpjt)])
1/2.

We consider 2 levels of relative risk aversion (γ = 1 and γ = 5), specify naı̈ve
diversification as strategy i, and report Δ̂γ , the sample analog of Δγ , as an
annualized basis point value for each active strategy j considered.

A. Portfolio Turnover and Adjustments for Transaction Costs

Because naı̈ve diversification generates low turnover, active strategies that
generate high turnover are disproportionately affected by the imposition of
transaction costs. We document the impact of turnover by reporting a 2nd set
of results using returns measured net of transaction costs. The cost of rebalancing
to the desired period t + 1 weights is subtracted from the excess portfolio return
for period t. Our analysis assumes that the level of transaction costs is constant
across assets and over the sample period.

To illustrate, let R̃pt denote the portfolio return net of transaction costs for
period t. Under our assumptions, this return is given by R̃pt=(1+Rpt)(1−τptc)−1,
where c is the level of proportional costs per transaction. To a close approxima-
tion, the impact of imposing transaction costs can be deduced by subtracting τ̂pc
from the sample mean of Rpt, where τ̂p = (1/T)

∑T+L
t=L+1 τpt is our estimate of the

expected turnover. Because we report τ̂p for each strategy, the choice of c used to
compute the net returns is not critical. DeMiguel et al. (2009) follow Balduzzi and
Lynch (1999) and set c equal to 50 bp. We do the same to facilitate comparisons
with their results.

B. Statistical Inference

We conduct inferences about the relative performance of different strategies
using large-sample t-statistics. To illustrate, let λ̂pj and λ̂pi denote the estimated
Sharpe ratios for strategies i and j. If the 2 strategies have the same population
Sharpe ratio, then we have the large-sample approximation

√
T

(
λ̂pj − λ̂pi

V̂1/2
λ

)
a∼ N(0, 1),(20)

where V̂λ denotes a consistent estimator of the asymptotic variance of
√

T
(λ̂pj−λ̂pi).

11 To identify strategies that outperform naı̈ve diversification, we specify

11We use the generalized method of moments to construct this estimator. Let

et(θ̂) =

⎛
⎜⎜⎜⎝

rpit − σ̂pi λ̂pi

rpjt − σ̂pj λ̂pj

(rpit − σ̂pi λ̂pi )
2 − σ̂2

pi

(rpjt − σ̂pj λ̂pj )
2 − σ̂2

pj

⎞
⎟⎟⎟⎠ ,
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naı̈ve diversification as strategy i and report p-values for H0: λpj − λpi ≤ 0 based
on the previous t-statistic.

Because we have no evidence on the quality of the approximation in
equation (20), we compute the p-values using a block bootstrap approach. Each
bootstrap trial consists of 2 steps. Let y = (yL+1, yL+2, . . . , yT+L), where yt =
(rpit, rpjt), denote the set of out-of-sample excess returns for strategies i and j.
First, we construct a resample y∗ = (y∗L+1, y

∗
L+2, . . . , y

∗
T+L) using the stationary

bootstrap of Politis and Romano (1994). The resample is such that, in general,
if y∗s = yt, then y∗s+1 = yt+1 with probability π and y∗s+1 is drawn randomly from
y with probability 1 − π. This delivers an expected block length of 1/(1 − π).
Second, we calculate

ϑ̂∗ =
√

T

(
(λ̂∗pj
− λ̂∗pi

)− (λ̂pj − λ̂pi)

V̂∗1/2
λ

)
,(21)

where λ̂∗pi
, λ̂∗pj

, and V̂∗λ denote the estimates for the resample. After carrying out M
bootstrap trials in total, we compute the p-values for the t-statistic in equation (20)
using the observed percentiles of ϑ̂∗. We set M = 10, 000 and π = 0.9 for an
expected block length of 10. We use a similar approach to assess the statistical
significance of the estimated performance fees.

V. Data and Empirical Results

The data for the empirical analysis consist of monthly excess returns on
broadly based U.S. equity portfolios. The sample period is July 1963–December
2008 (T + L = 546 monthly observations with L=120). We consider 4 data sets in
total. Three are drawn from the data library maintained by Ken French, and one is
constructed using the Center for Research in Security Prices (CRSP) daily stock
file. The data library is also the source of the T-bill rate and the factor returns that
are used to estimate the beta coefficients for the 4-factor risk model.12 The risk
factors are the excess return on the market index and the returns on a set of 3 zero-
investment portfolios. These portfolios are designed to mimic the unobserved fac-
tors that lead to systematic differences in expected excess returns between small
and large capitalization stocks (SMB), low and high book-to-market equity stocks
(HML), and low and high momentum stocks (UMD).

We begin the analysis with a data set formed by sorting firms into 10 indus-
try portfolios (10 Industry). With similar data, DeMiguel et al. (2009) find that
none of the 14 portfolio selection methods considered performs better than naı̈ve
diversification by a statistically significant margin. Next, we consider a data set
formed by using market capitalization and book-to-market value to sort firms into
25 portfolios (25 Size/BTM). Sorting firms on these criteria is known to produce a

where θ̂ = (λ̂pi , λ̂pj , σ̂
2
pi
, σ̂2

pj
)′. Under suitable regularity conditions (see Hansen (1982)),

√
T(θ̂ −

θ)
a∼ N(0, D̂−1ŜD̂−1′), where D̂ = (1/T)

∑T+L
t=L+1 ∂et(θ̂)/∂θ̂′ and Ŝ = Γ̂0 +

∑m
l=1(1 − l/(m +

1))(Γ̂l + Γ̂ ′l ) with Γ̂l = (1/T)
∑T+L

t=L+l+1 et(θ̂)et−l(θ̂)
′. For the empirical analysis, we set m= 5 and

V̂λ = V̂22 − 2V̂21 + V̂11, where V̂ ≡ D̂−1ŜD̂−1′.
12See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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large cross-sectional dispersion in average returns. Finally, we consider 2 data sets
that are chosen based on their potential to provide improved timing opportunities.
The 1st is obtained by using a momentum measure to sort firms into 10 portfolios
(10 Momentum). The 2nd is obtained by using estimated return standard devia-
tions to sort firms into 10 portfolios (10 Volatility).13 All of the portfolios except
those in the 10 Volatility data set are value weighted. The 10 Volatility portfolios
are formed in January of each year and rebalanced monthly to equal weights.

A. Settings for the Empirical Analysis

Most of the settings for the empirical analysis are described earlier. The one
remaining task is to specify η for the timing strategies. Setting η = 1 is a natural
choice for the baseline analysis because it delivers the VT and RRT portfolios that
are implied by mean-variance optimization with a diagonal covariance matrix. We
also consider 2 other values of the timing aggressiveness parameter: η = 2 and
η = 4. These choices are motivated by our analysis of the effect of ignoring the es-
timated return correlations, which suggests setting η > 1 to mitigate information
loss. To document how the timing strategies perform relative to mean-variance op-
timization, we report results for 4 MVE strategies: the MV, OC, and TP strategies,
plus a version of the OC strategy that prohibits short sales (OC+). We implement
the OC and OC+ strategies by targeting the estimated conditional expected excess
return of the 1/N portfolio for each date t in the sample.14

B. Results for the 10 Industry Data Set

Table 2 documents the out-of-sample performance of the 1/N, timing, and
MVE strategies for the 10 Industry data set. The results for the 1/N strategy are
reported in the leading row of the table. In the absence of transaction costs, the
values of μ̂p and σ̂p are 5.80% and 15.04%, respectively, which translates into a
λ̂p of 0.386.15 As expected, the estimated expected turnover is quite low: 2.3%
per month. Thus, imposing transaction costs of 50 bp has a minor impact on
performance. Specifically, λ̂p falls from 0.386 to 0.376.

The results for the VT strategies are given in Panel A of Table 2. In the ab-
sence of transaction costs, λ̂p is 0.426 for η = 1, 0.454 for η = 2, and 0.463 for
η = 4. These values exceed the estimated Sharpe ratio for the 1/N strategy, and
the differences for η = 1 and η = 2 are statistically significant at the 5% level.
Moreover, the evidence suggests that risk-averse investors could reap substantial
benefits from VT. The value of σ̂p for the VT strategies is about 0.8 to 2.2 per-
centage points lower than for the 1/N strategy. As a consequence, Δ̂γ ranges from

13We are grateful to Richard Price for making these data available to us. The volatility portfolios
are constructed using the methodology developed in Crawford, Hansen, and Price (2009).

14See footnote 3 for additional details.
15Note that the results reported in Table 2 for this data set differ from those reported in Table 1

because the sample period is different and because the SIC codes included in each industry were
changed in 2004. See the data library Web page (http://mba.tuck.dartmouth.edu/pages/faculty/ken
.french/data library.html) for details.
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TABLE 2

Results for the 10 Industry Data Set

Table 2 summarizes the out-of-sample performance of the 1/N strategy (row 1), 3 volatility timing (VT) strategies (Panel A), 6 reward-to-risk timing (RRT) strategies (Panel B), and 4 mean-variance efficient (MVE)
strategies (Panel C) for the 10 Industry portfolios. It reports the following sample statistics for the time series of monthly excess returns generated by each strategy: the annualized mean ( μ̂p), the annualized
standard deviation (σ̂p), the annualized Sharpe ratio (̂λp), the average monthly turnover expressed as a fraction of wealth invested (τ̂p), the annualized basis point fee that an investor with quadratic utility and
constant relative risk aversion of γ = 1 and γ = 5 would be willing to pay to switch from the 1/N strategy to the timing or MVE strategy ( ̂Δγ ), the p-value for the difference between the annualized Sharpe ratio
produced by the timing or MVE strategy and the 1/N strategy (vs. 1/N p-val), and the p-values (p-val) of the basis point fees. The timing and MVE strategies are implemented using a 120-month rolling estimator
of the conditional mean vector and conditional covariance matrix of the excess returns, and the OC and OC+ strategies target the estimated conditional expected excess return of the 1/N portfolio each period
as described in Section II.B. The performance measures are reported assuming no transaction costs and assuming proportional transaction costs of 50 bp, and the p-values are determined from 10,000 trials of
a stationary block bootstrap with expected block length of 10. The values of μ̂p and σ̂p are not reported for the results with transaction costs. An entry of “—” for the TP strategy indicates that the corresponding
sample statistic cannot be computed. This occurs if there is no real value of the performance fee that makes the investor indifferent between the TP strategy and 1/N strategy, or if the turnover for the TP strategy
exceeds 20,000% in 1 or more months, which drives wealth to 0 under the assumed level of transaction costs. The sample period is July 1963–December 2008 (546 monthly observations). The first 120 observations
are held out to initialize the rolling estimators. See the text for a detailed description of each strategy.

No Transaction Costs Transaction Costs = 50 bp

vs. 1/N vs. 1/N

Strategy μ̂p σ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val τ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val

1/N 5.80 15.04 0.386 0.023 0.376

Panel A. Volatility Timing Strategies

VT(1) 6.04 14.18 0.426 0.015 37 0.119 89 0.004 0.024 0.416 0.016 36 0.124 90 0.004
VT(2) 6.12 13.48 0.454 0.040 54 0.196 147 0.012 0.028 0.442 0.046 51 0.209 145 0.013
VT(4) 5.93 12.81 0.463 0.163 44 0.355 172 0.083 0.036 0.446 0.187 36 0.378 166 0.090

Panel B. Reward-to-Risk Timing Strategies

RRT(μ+
t ,1) 5.01 15.30 0.328 0.908 −82 0.890 −99 0.883 0.077 0.298 0.960 −114 0.949 −131 0.934

RRT(μ+
t ,2) 5.00 15.65 0.320 0.865 −89 0.823 −129 0.880 0.089 0.285 0.929 −128 0.909 −169 0.932

RRT(μ+
t ,4) 5.06 16.35 0.310 0.830 −94 0.767 −181 0.902 0.119 0.266 0.914 −151 0.877 −241 0.957

RRT(β̄+
t ,1) 6.12 14.63 0.418 0.115 38 0.169 64 0.064 0.030 0.406 0.140 34 0.198 61 0.076

RRT(β̄+
t ,2) 6.20 14.41 0.430 0.130 49 0.190 88 0.065 0.040 0.413 0.174 39 0.247 78 0.091

RRT(β̄+
t ,4) 6.17 14.13 0.437 0.181 51 0.260 106 0.096 0.062 0.410 0.272 27 0.366 83 0.154

Panel C. Mean-Variance Efficient Strategies

MV 6.48 12.81 0.506 0.129 99 0.269 228 0.084 0.161 0.431 0.303 16 0.461 147 0.189
OC 5.96 13.35 0.447 0.290 40 0.407 139 0.211 0.285 0.317 0.683 −118 0.758 −20 0.542
OC+ 5.39 13.04 0.414 0.364 −13 0.539 104 0.212 0.109 0.363 0.561 −64 0.698 52 0.347
TP −14.86 59.02 −0.252 0.995 −3,717 0.985 −13,423 0.754 27.59 — — — — — —
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89 bp to 172 bp for γ = 5, and all of the estimates are statistically significant at
the 10% level. Of course the gains to VT are smaller for less risk-averse investors.
The values of Δ̂γ range from 37 bp to 54 bp for γ = 1, and none of the estimates
is statistically significant at the 10% level.

Importantly, all of the VT strategies have low estimated expected turnover.
It ranges from 2.4% with η = 1 to 3.6% with η = 4. These values are close to the
estimated expected turnover for the 1/N strategy, so imposing transaction costs
has little impact on relative performance. With transaction costs of 50 bp, λ̂p falls
to 0.416 for η = 1, 0.442 for η = 2, and 0.446 for η = 4, and the range of Δ̂γ
becomes 90 bp to 166 bp for γ= 5 and 36 bp to 51 bp for γ= 1. Thus, turnover is
not a concern for the VT strategies. The difference in the estimated Sharpe ratios
of the VT and 1/N strategies remains statistically significant at the 5% level for
η = 1 and η = 2, and all of the estimated performance fees for γ = 5 remain
statistically significant at the 10% level.

The results for the RRT strategies are given in Panel B of Table 2. First
consider the case in which we implement the strategies using the standard rolling
estimator of μt. The results are clearly less favorable than for the VT strategies: λ̂p

is 0.328 for η = 1, 0.320 for η = 2, and 0.310 for η = 4, and all of the estimated
performance fees are negative, ranging from −181 bp to −82 bp. Moreover, the
estimated expected turnover is higher than for the VT strategies. It ranges from
7.7% per month for η = 1 to 11.9% per month for η = 4. Hence, the performance
of the RRT strategies deteriorates when we impose transaction costs. The value
of λ̂p falls to 0.298 for η= 1, 0.285 for η= 2, and 0.266 for η= 4, and the values

of Δ̂γ range from −241 bp to −114 bp.
Although we find no support for RRT in these results, this may be because

the 10 Industry data set poses an especially difficult challenge for the RRT strate-
gies. Even if sorting firms according to SIC codes is a reasonable way to identify
different industries, there is no guarantee that the industries will display signifi-
cant cross-sectional variation in conditional expected excess returns. If the varia-
tion in conditional expected excess returns across assets is relatively low, then the
estimates of μt may convey little useful information. Our analysis suggests that
this plays a role in the unimpressive performance of the RRT strategies for the 10
Industry data set.

Consider, for instance, the evidence in Graph A of Figure 1. The plot on
the left side of the figure shows the cross-sectional dispersion in the annualized
sample mean of the excess industry portfolio returns. The sample means lie in a
relatively narrow range: 9%–14%. Moreover, 7 of the values are between 10%
and 13%. We would expect to find greater variation in these values if there were
substantial cross-sectional dispersion in conditional expected excess returns. In
contrast, the plot on the right side of the figure reveals that the dispersion in the
sample volatilities is considerably larger than the dispersion in the sample means.
The range is from 14.6% to 24.5%. This is consistent with VT outperforming
RRT for this data set.

To investigate further, we turn to the case in which we implement the RRT
strategies using an estimator of μt derived from our 4-factor risk model. Since
this estimator should display less sampling variation than the standard rolling
estimator of μt, we anticipate better performance from the RRT strategies. The
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FIGURE 1

Reward and Risk Characteristics of the Data Sets

Figure 1 summarizes the sample reward and risk characteristics for the 10 Industry data set (Graph A), 25 Size/BTM data
set (Graph B), 10 Momentum data set (Graph C), and 10 Volatility data set (Graph D). The 1st graph in each panel shows
the cross section of annualized mean returns, and the 2nd graph shows the cross section of annualized return standard
deviations. The sample period is July 1963–December 2008 (546 monthly observations). However, the reported statistics
correspond to the subperiod used to evaluate the out-of-sample performance of the portfolio strategies (i.e., observations
121–546).

Mean Return Volatility

Graph A. 10 Industry Portfolios

Graph B. 25 Size/BTM Portfolios

Graph C. 10 Momentum Portfolios

Graph D. 10 Volatility Portfolios

improvement in performance is substantial. In the absence of transaction costs,
λ̂p is 0.418 for η = 1, 0.430 for η = 2, and 0.437 for η = 4. The values of Δ̂γ
range from 38 bp to 51 bp for γ = 1 and from 64 bp to 106 bp for γ = 5. These
results are comparable to those for the VT strategies. Although the differences
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in the estimated Sharpe ratios of the RRT and 1/N strategies are not statistically
significant, the estimated performance fees for γ=5 are statistically significant at
the 10% level.

These findings point to a sizeable reduction in estimation risk from using
the 4-factor risk model. Additional evidence of this reduction can be found in the
estimates of expected turnover, which are roughly 1/2 as large as those generated
by using the standard rolling estimator of μt. The range is from 3.0% per month
for η = 1 to 6.2% per month for η = 4. As a consequence, imposing transaction
costs has a minor impact on performance. The value of λ̂p falls to 0.406 for η=1,
0.413 for η = 2, and 0.410 for η = 4 and the range of Δ̂γ becomes 27 bp to
39 bp for γ = 1 and 61 bp to 83 bp for γ = 5. Two of the 3 values of Δ̂γ for
γ = 5 remain statistically significant at the 10% level. Hence, we find that the
RRT strategies are capable of outperforming naı̈ve diversification, provided they
are implemented using our alternative estimator of μt.

The evidence in Panel C of Table 2, which documents the performance of
the MVE strategies, lends additional context to these findings. In the absence of
transaction costs, the MVE strategies deliver mixed results. The TP strategy dis-
plays the worst performance by far, with a negative μ̂p and a value of σ̂p that
exceeds the estimated volatility of every other MVE strategy by a factor of 4. Its
estimated Sharpe ratio is exceedingly low: −0.252. In comparison, the MV and
OC strategies have estimated Sharpe ratios of 0.506 and 0.447, respectively. Both
outperform the 1/N strategy, although the differences in the estimated Sharpe ra-
tios are not statistically significant. Prohibiting short sales causes the performance
of the OC strategy to deteriorate. Its estimated Sharpe ratio falls to 0.414.

It may seem odd that the performance gains for the MV and OC strategies,
which are larger than those for the VT strategies, are statistically insignificant.
This is explained by the correlation between the excess returns for the different
strategies. For example, the estimated correlation between the excess returns for
the 1/N and VT(1) strategies is 0.99, while that for the 1/N and OC strategies is
0.74. Since the standard error of λ̂pj − λ̂pi is decreasing in this correlation, it takes
a larger difference in the estimated Sharpe ratios to conclude that the OC strategy
outperforms the 1/N strategy. This is also the case for the estimated performance
fees. The values of Δ̂γ for the MV and OC strategies range from 40 bp to 228 bp,
but only one is statistically significant at the 10% level.

High turnover is the most troublesome aspect of the performance of the
MVE strategies. The TP strategy is clearly an outlier in this respect, with an
estimated expected turnover of 2,759% per month. This value exceeds the esti-
mated expected turnover for the other MVE strategies by 2 orders of magnitude.
Indeed, there are a number of months in which the turnover of the TP strategy ex-
ceeds 20,000%. Since this level of turnover implies that rebalancing costs would
consume all of the investor’s wealth, it is impossible to compute meaningful after-
transaction-costs values of the performance measures. This is indicated by a “—”
entry in Panel C of Table 2.

The remaining estimates of expected turnover are much more reasonable:
16.1% for the MV strategy, 28.5% for the OC strategy, and 10.9% for the OC+

strategy. Nonetheless, turnover is sufficiently high that there is substantial deteri-
oration in the performance of the strategies in the presence of transaction costs.
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The estimated Sharpe ratios for the MV and OC strategies fall to 0.431 and 0.317,
respectively, and the estimated performance fees are−118 bp and 16 bp for γ=1
and −20 bp and 147 bp with γ = 5. None of the performance gains is statisti-
cally significant at the 10% level. Note also that once we account for transaction
costs, the OC+ strategy has a higher Sharpe ratio than the OC strategy because
prohibiting short sales leads to a substantial reduction in turnover.

C. Results for the 25 Size/BTM Data Set

The results for the 10 Industry data set foreshadow the crucial role of turnover
in our investigation. With the exception of the TP strategy, all of the MVE strate-
gies perform better than naı̈ve diversification in the absence of transaction costs.
Although the analysis is inconclusive because most of the performance gains are
statistically insignificant, the picture that emerges from the initial evidence is gen-
erally supportive of mean-variance optimization. This is no longer true in the pres-
ence of transaction costs because the advantage of the MVE strategies is eroded
by high turnover. The results indicate, therefore, that controlling turnover is key
to improving mean-variance methods of portfolio selection. The timing strategies
are largely successful in this regard for the 10 Industry data set, but additional
evidence is needed to draw firm conclusions.

To develop this evidence, we turn to the 25 Size/BTM data set. If our hy-
pothesis regarding the relationship between the cross-sectional dispersion in con-
ditional expected returns and the performance of the RRT strategies is correct,
then we should find stronger support for RRT with this data set. As Graph B of
Figure 1 shows, the annualized sample mean of the excess returns for the size
and book-to-market portfolios ranges from 7.2% to 18.8%, which is more than
twice the range for the industry portfolios. The estimates of μt should therefore
have more value in this case than for the 10 Industry data set. We anticipate lit-
tle change in the performance of VT strategies, since the range of the annualized
sample volatilities is 15.3% to 28.4%, which is only a few percentage points larger
than that for the industry portfolios.

Table 3 documents the out-of-sample performance of the 1/N, timing, and
MVE strategies for the 25 Size/BTM data set. The layout of the table is identical
to that of Table 2. In the absence of transaction costs, the values of μ̂p and σ̂p for
the 1/N strategy are 8.25% and 17.64%, respectively, which translates into a λ̂p

of 0.468. Once again this strategy has low estimated expected turnover (1.7% per
month), so the impact of imposing transaction costs is quite small. The value of
λ̂p falls to 0.462.

The results for VT strategies, given in Panel A of Table 3, are similar to those
for the 10 Industry data set. In the absence of transaction costs, VT delivers higher
values of λ̂p than does naı̈ve diversification: 0.492 for η = 1, 0.496 for η = 2,
and 0.484 for η = 4. The difference in the estimated Sharpe ratios is statistically
significant at the 10% level for η= 1. The estimated performance fees range from
−39 bp to 15 bp for γ = 1 and from 81 bp to 111 bp for γ = 5. In the latter
case, all of the fees are statistically significant at the 10% level. Because the VT
strategies have low turnover (1.8%–3.1% per month), imposing transaction costs
does not alter the nature of these findings.
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TABLE 3

Results for the 25 Size/BTM Data Set

Table 3 summarizes the out-of-sample performance of the 1/N strategy (row 1), 3 volatility timing (VT) strategies (Panel A), 6 reward-to-risk timing (RRT) strategies (Panel B), and 4 mean-variance efficient (MVE)
strategies (Panel C) for the 25 Size/BTM portfolios. It reports the following sample statistics for the time series of monthly excess returns generated by each strategy: the annualized mean ( μ̂p), the annualized
standard deviation (σ̂p), the annualized Sharpe ratio (̂λp), the average monthly turnover expressed as a fraction of wealth invested (τ̂p), the annualized basis point fee that an investor with quadratic utility and
constant relative risk aversion of γ = 1 and γ = 5 would be willing to pay to switch from the 1/N strategy to the timing or MVE strategy ( ̂Δγ ), the p-value for the difference between the annualized Sharpe ratio
produced by the timing or MVE strategy and the 1/N strategy (vs. 1/N p-val), and the p-values (p-val) of the basis point fees. The timing and MVE strategies are implemented using a 120-month rolling estimator
of the conditional mean vector and conditional covariance matrix of the excess returns, and the OC and OC+ strategies target the estimated conditional expected excess return of the 1/N portfolio each period
as described in Section II.B. The performance measures are reported assuming no transaction costs and assuming proportional transaction costs of 50 bp, and the p-values are determined from 10,000 trials of
a stationary block bootstrap with expected block length of 10. The values of μ̂p and σ̂p are not reported for the results with transaction costs. An entry of “—” for the TP strategy indicates that the corresponding
sample statistic cannot be computed. This occurs if there is no real value of the performance fee that makes the investor indifferent between the TP strategy and 1/N strategy, or if the turnover for the TP strategy
exceeds 20,000% in 1 or more months, which drives wealth to 0 under the assumed level of transaction costs. The sample period is July 1963–December 2008 (546 monthly observations). The first 120 observations
are held out to initialize the rolling estimators. See the text for a detailed description of each strategy.

No Transaction Costs Transaction Costs = 50 bp

vs. 1/N vs. 1/N

Strategy μ̂p σ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val τ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val

1/N 8.25 17.64 0.468 0.017 0.462

Panel A. Volatility Timing Strategies

VT(1) 8.24 16.74 0.492 0.074 15 0.312 81 0.002 0.018 0.486 0.078 14 0.317 81 0.002
VT(2) 8.01 16.15 0.496 0.178 2 0.498 109 0.012 0.021 0.488 0.192 −1 0.518 108 0.013
VT(4) 7.51 15.52 0.484 0.382 −39 0.698 111 0.081 0.031 0.472 0.430 −47 0.731 104 0.093

Panel B. Reward-to-Risk Timing Strategies

RRT(μ+
t ,1) 9.17 17.15 0.535 0.001 101 0.002 137 0.000 0.036 0.522 0.001 90 0.004 127 0.000

RRT(μ+
t ,2) 9.41 16.96 0.555 0.001 128 0.004 178 0.000 0.050 0.537 0.004 108 0.015 159 0.001

RRT(μ+
t ,4) 9.58 16.84 0.569 0.003 147 0.013 206 0.001 0.080 0.540 0.019 109 0.050 167 0.004

RRT(β̄+
t ,1) 9.00 17.17 0.524 0.001 83 0.004 118 0.000 0.018 0.518 0.001 83 0.004 118 0.000

RRT(β̄+
t ,2) 9.39 16.93 0.555 0.001 126 0.004 179 0.000 0.020 0.547 0.001 124 0.005 178 0.000

RRT(β̄+
t ,4) 9.68 16.72 0.579 0.002 158 0.008 226 0.000 0.029 0.568 0.004 152 0.011 220 0.000

Panel C. Mean-Variance Efficient Strategies

MV 11.45 13.43 0.853 0.021 386 0.068 664 0.003 0.789 0.496 0.443 −81 0.641 193 0.224
OC 14.19 14.11 1.006 0.006 651 0.018 892 0.001 0.996 0.569 0.300 56 0.435 283 0.175
OC+ 7.18 15.12 0.475 0.455 −65 0.752 110 0.143 0.164 0.409 0.789 −154 0.941 20 0.432
TP −58.80 777.8 −0.076 0.982 — — — — 233.8 — — — — — —
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As anticipated, the evidence on RRT, given in Panel B of Table 3, is more
compelling for the 25 Size/BTM data set than for the 10 Industry data set. In the
absence of transaction costs, using the standard rolling estimator of μt produces a
λ̂p of 0.535 for η = 1, 0.555 for η = 2, and 0.569 for η = 4. The increase in the
estimated Sharpe ratio relative to naı̈ve diversification is statistically significant at
1% in each case. Moreover, all the estimated performance fees, which range from
101 bp to 147 bp for γ = 1 and from 137 bp to 206 bp for γ = 5, are statistically
significant at 5%. Because the gains are achieved with little increase in turnover
relative to the 1/N strategy, they remain statistically significant in the presence
of transaction costs, with estimated performance fees that range from 90 bp to
109 bp for γ = 1 and from 127 bp to 167 bp for γ = 5.

Interestingly, switching to the estimator of μt derived from our 4-factor risk
model has little effect on the estimated Sharpe ratios for the RRT strategies. In
the absence of transaction costs, the value of λ̂p is 0.524 for η = 1, 0.555 for
η = 2, and 0.579 for η = 4. Because these values are nearly identical to those
obtained using the rolling estimator of μt, it may appear that there is no benefit
from employing the risk model. This is not the case, however. The estimated
expected turnover is 1.8% for η = 1, 2.0% for η = 2, and 2.9% for η = 4. These
values are 2 to 3 times lower than those obtained using the rolling estimator of μt.
Thus, the risk model achieves substantial reductions in turnover while delivering
comparable performance gains.

With such low levels of turnover, imposing transaction costs has little impact
on the performance of the RRT strategies. The value of λ̂p falls to 0.518 for η=1,
0.547 for η = 2, and 0.568 for η = 4. In each case, the increase in the estimated
Sharpe ratio relative to naı̈ve diversification is statistically significant at the 1%
level. All of the estimated performance fees, which range from 83 bp to 152 bp
for γ = 1 and from 118 bp to 220 bp for γ = 5, are statistically significant at the
5% level, and all but one are statistically significant at the 1% level.

The evidence for the MVE strategies, given in Panel C of Table 3, provides
additional perspective on these results. The performance of the TP strategy is
again exceedingly poor. In the absence of transaction costs, it has an estimated
annualized mean return of −58.8% and an estimated annualized volatility of
777.8%. This translates into an estimated Sharpe ratio of −0.076. Note that we
report “—” in Table 3 for the estimated performance fees. This is because the
results for the TP strategy are so poor that the quadratic equation used to find
the performance fees has no real roots. Thus, there is no fixed fee that equates
the estimated expected utilities generated by the TP and 1/N strategies. The TP
strategy is also characterized by extreme estimated expected turnover: 23,380%
per month.

In contrast, the MV and OC strategies perform well in the absence of trans-
action costs. Their estimated Sharpe ratios (0.853 and 1.006) are much higher
than the estimated Sharpe ratio of the 1/N strategy, and the differences are statis-
tically significant at the 5% level. Moreover, the estimated performance fees for
the MV and OC strategies, which are 386 bp and 651 bp for γ = 1 and 664 bp
and 892 bp for γ = 5, respectively, are statistically significant at the 10% level.
Thus, the evidence suggests that mean-variance optimization is superior to naı̈ve
diversification if transaction costs are 0.
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Notice, however, that imposing transaction costs leads to a marked reduction
in the performance of the MVE strategies. The estimated expected turnover for
the MV and OC strategies is 79% and 100%, respectively, per month. As a con-
sequence, λ̂p falls to 0.496 for the MV strategy and to 0.569 for the OC strategy.
These values are still higher than the estimated Sharpe ratio for the 1/N strat-
egy, but the differences are no longer statistically significant. This is also true for
the estimated performance fees. Unlike the timing strategies, the MVE strategies
simply generate too much turnover to be competitive with naı̈ve diversification.

D. Results for the 10 Momentum Data Set

In view of the results for the 25 Size/BTM portfolios, it seems clear that
performance of the timing strategies is influenced by data set characteristics.
This is not a surprise. Intuitively, we would expect the effectiveness of VT and
RRT to depend on both the cross-sectional and time-series variation in the con-
ditional means and volatilities. These characteristics are undoubtedly affected by
the scheme used to sort firms into portfolios. In the case of the 25 Size/BTM data
set, the sorting scheme is explicitly designed to increase the cross-sectional dis-
persion in conditional expected returns. To the extent that it does so, we should see
an improvement in the signal-to-noise ratio of our rolling estimator of μt, which
should benefit both the timing and MVE strategies.

To see if these findings hold more generally, we consider a data set obtained
by sorting firms into portfolios using a momentum measure. This is another case
in which the sorting scheme is explicitly designed to spread conditional expected
returns (see, e.g., Jegadeesh and Titman (1993)). The evidence in Graph C of
Figure 1 suggests that it succeeds in this respect. The annualized sample mean
for the momentum portfolios ranges from 0% to 17.9%. Since this is larger than
the range for the size and book-to-market portfolios, we again anticipate that the
RRT strategies will perform well relative to naı̈ve diversification. The range of
the annualized sample volatilities (15.4% to 27.0%) is comparable to that for both
the 25 Size/BTM and 10 Industry data sets.

Table 4 documents the out-of-sample performance of the 1/N, timing, and
MVE strategies for the 10 Momentum data set. In the absence of transaction costs,
the values of μ̂p, σ̂p, and λ̂p for the 1/N strategy are 4.70%, 16.68%, and 0.282,
respectively. Imposing transaction costs reduces the value of λ̂p to 0.276. In com-
parison, the value of λ̂p for the VT strategies, given in Panel A of Table 4, ranges
from 0.330 to 0.375 with no transaction costs, and the increase in the estimated
Sharpe ratio relative to naı̈ve diversification is statistically significant at the 1%
level in each case. These gains translate into estimated performance fees of 68 bp
to 128 bp for γ = 1 and 117 bp to 215 bp for γ = 5, all of which are statistically
significant at the 5% level. Because the estimated expected turnover is only 1.7%
to 2.6% per month, imposing transaction costs has little effect on the results.

The performance of the RRT strategies, given in Panel B of Table 4, is even
more compelling. In the absence of transaction costs, the standard rolling estima-
tor of μt produces a λ̂p of 0.455 for η = 1, 0.476 for η = 2, and 0.497 for η = 4.
The differences relative to naı̈ve diversification are statistically significant at the
1% level. This is also the case for the estimated performance fees, which range

https://doi.org/10.1017/S0022109012000117  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109012000117


K
irb

y
and

O
std

iek
463

TABLE 4

Results for the 10 Momentum Data Set

Table 4 summarizes the out-of-sample performance of the 1/N strategy (row 1), 3 volatility timing (VT) strategies (Panel A), 6 reward-to-risk timing (RRT) strategies (Panel B), and 4 mean-variance efficient (MVE)
strategies (Panel C) for the 10 Momentum portfolios. It reports the following sample statistics for the time series of monthly excess returns generated by each strategy: the annualized mean ( μ̂p), the annualized
standard deviation (σ̂p), the annualized Sharpe ratio (̂λp), the average monthly turnover expressed as a fraction of wealth invested (τ̂p), the annualized basis point fee that an investor with quadratic utility and
constant relative risk aversion of γ = 1 and γ = 5 would be willing to pay to switch from the 1/N strategy to the timing or MVE strategy ( ̂Δγ ), the p-value for the difference between the annualized Sharpe
ratio produced by the timing or MVE strategy and the 1/N strategy (vs. 1/N p-val), and the p-values (p-val) of the basis point fees. The timing and MVE strategies are implemented using a 120-month rolling
estimator of the conditional mean vector and conditional covariance matrix of the excess returns, and the OC and OC+ strategies target the estimated conditional expected excess return of the 1/N portfolio
each period as described in Section II.B. The performance measures are reported assuming no transaction costs and assuming proportional transaction costs of 50 bp, and the p-values are determined from
10,000 trials of a stationary block bootstrap with expected block length of 10. The values of μ̂p and σ̂p are not reported for the results with transaction costs. An entry of “—” for the TP strategy indicates that the
corresponding sample statistic cannot be computed. This occurs if there is no real value of the performance fee that makes the investor indifferent between the TP strategy and 1/N strategy, or if the turnover for
the TP strategy exceeds 20,000% in 1 or more months, which drives wealth to 0 under the assumed level of transaction costs. The sample period is July 1963–December 2008 (546 monthly observations). The
first 120 observations are held out to initialize the rolling estimators. See the text for a detailed description of each strategy.

No Transaction Costs Transaction Costs = 50 bp

vs. 1/N vs. 1/N

Strategy μ̂p σ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val τ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val

1/N 4.70 16.68 0.282 0.018 0.276

Panel A. Volatility Timing Strategies

VT(1) 5.27 15.96 0.330 0.004 68 0.017 117 0.001 0.017 0.324 0.004 69 0.017 119 0.001
VT(2) 5.55 15.63 0.355 0.004 102 0.018 173 0.001 0.018 0.349 0.004 102 0.019 174 0.001
VT(4) 5.77 15.38 0.375 0.005 128 0.022 215 0.001 0.026 0.365 0.006 123 0.026 211 0.002

Panel B. Reward-to-Risk Timing Strategies

RRT(μ+
t ,1) 7.62 16.75 0.455 0.000 290 0.000 285 0.000 0.058 0.434 0.000 266 0.000 260 0.000

RRT(μ+
t ,2) 8.14 17.09 0.476 0.000 336 0.000 306 0.001 0.061 0.454 0.000 310 0.000 279 0.002

RRT(μ+
t ,4) 8.64 17.41 0.497 0.000 381 0.000 328 0.002 0.068 0.473 0.001 351 0.001 298 0.005

RRT(β̄+
t ,1) 6.40 16.08 0.398 0.000 179 0.000 220 0.000 0.019 0.391 0.000 178 0.000 220 0.000

RRT(β̄+
t ,2) 7.23 16.19 0.447 0.000 261 0.000 295 0.000 0.024 0.438 0.000 257 0.000 292 0.000

RRT(β̄+
t ,4) 7.87 16.47 0.478 0.000 320 0.000 335 0.001 0.034 0.466 0.000 310 0.000 325 0.001

Panel C. Mean-Variance Efficient Strategies

MV 7.47 15.05 0.496 0.051 302 0.068 409 0.036 0.281 0.385 0.191 144 0.242 253 0.132
OC 9.18 15.59 0.589 0.015 465 0.018 536 0.013 0.348 0.454 0.096 266 0.112 337 0.081
OC+ 6.49 15.71 0.413 0.007 195 0.014 261 0.004 0.129 0.363 0.044 127 0.072 193 0.031
TP 8,321 5,680 0.146 0.680 — — — — 184.9 — — — — — —
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from 285 bp to 381 bp. The estimates of expected turnover (5.8%, 6.1%, and
6.8%) are higher than for the 1/N strategy, but the differences are not dramatic.
Hence, imposing transaction costs does not alter our inferences.

The results using the estimator of μt derived from our 4-factor risk model
are similar. In the absence of transaction costs, the value of λ̂p is 0.398 for η = 1,
0.447 for η = 2, and 0.478 for η = 4, and the estimated performance fees range
from 179 bp to 335 bp. All of the gains are statistically significant at the 1% level.
As with the other data sets, the estimates of expected turnover are 2 to 3 times
lower than those produced by the rolling estimator of μt. And, again, the impact
of imposing transaction costs is minimal.

We also find that the performance of the MVE strategies, given in Panel C
of Table 4, is more competitive for this data set. The TP strategy clearly delivers
extreme results: an estimated annualized mean return of 8,321%, an estimated
annualized volatility of 5,680%, and an estimated expected monthly turnover of
18,490%. However, the MV and OC strategies have estimated Sharpe ratios of
0.496 and 0.589, respectively, in the absence of transaction costs, and the esti-
mated performance fees range from 302 bp to 536 bp. All of the gains are statis-
tically significant at the 10% level. Turnover is still an issue, but the estimates are
considerably lower than for the 25 Size/BTM data set. Thus, the majority of the
performance gains remain statistically significant in the presence of transaction
costs.

E. Results for the 10 Volatility Data Set

The evidence for the 25 Size/BTM and 10 Momentum data sets suggests that
the performance of RRT strategies is related to the cross-sectional dispersion in
conditional expected excess returns. Accordingly, we posit that the performance
of the VT strategies is related to the cross-sectional dispersion in conditional re-
turn volatilities. To test this hypothesis, we consider a final data set that is obtained
by sorting firms into portfolios based on estimates of historical volatility. Graph D
of Figure 1 shows that the resulting cross-sectional dispersion in the annualized
sample volatilities, which range from 10.9% to 34.9%, is approximately twice
that for the other 3 data sets. The range for the annualized sample means, on the
other hand, is relatively narrow at 12.0% to 16.5%.

Table 5 documents the out-of-sample performance of the 1/N, timing, and
MVE strategies for the 10 Volatility data set. As anticipated, the VT strategies
perform particularly well. In the absence of transaction costs, the 1/N strategy has
an estimated Sharpe ratio of 0.477 and an estimated expected turnover of 1.7%.
The VT strategies have estimated Sharpe ratios that range from 0.576 to 0.712 and
estimated expected turnovers that range from 1.5% to 1.6%, as given in Panel A
of Table 5. The reductions in σ̂p relative to naı̈ve diversification, which are in the
3–7 percentage point range, would be quite valuable to risk-averse investors, even
in the presence of transaction costs. The estimated performance fees range from
296 bp to 498 bp with γ= 5, and all of the estimates are statistically significant at
the 1% level.

The RRT strategies also perform well, as indicated in Panel B of Table 5. In
the absence of transaction costs, the value of λ̂p ranges from 0.547 to 0.647 using
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TABLE 5

Results for the 10 Volatility Data Set

Table 5 summarizes the out-of-sample performance of the 1/N strategy (row 1), 3 volatility timing (VT) strategies (Panel A), 6 reward-to-risk timing (RRT) strategies (Panel B), and 4 mean-variance efficient (MVE)
strategies (Panel C) for the 10 Volatility portfolios. It reports the following sample statistics for the time series of monthly excess returns generated by each strategy: the annualized mean ( μ̂p), the annualized
standard deviation (σ̂p), the annualized Sharpe ratio (̂λp), the average monthly turnover expressed as a fraction of wealth invested (τ̂p), the annualized basis point fee that an investor with quadratic utility and
constant relative risk aversion of γ = 1 and γ = 5 would be willing to pay to switch from the 1/N strategy to the timing or MVE strategy ( ̂Δγ ), the p-value for the difference between the annualized Sharpe
ratio produced by the timing or MVE strategy and the 1/N strategy (vs. 1/N p-val), and the p-values (p-val) of the basis point fees. The timing and MVE strategies are implemented using a 120-month rolling
estimator of the conditional mean vector and conditional covariance matrix of the excess returns, and the OC and OC+ strategies target the estimated conditional expected excess return of the 1/N portfolio
each period as described in Section II.B. The performance measures are reported assuming no transaction costs and assuming proportional transaction costs of 50 bp, and the p-values are determined from
10,000 trials of a stationary block bootstrap with expected block length of 10. The values of μ̂p and σ̂p are not reported for the results with transaction costs. An entry of “—” for the TP strategy indicates that the
corresponding sample statistic cannot be computed. This occurs if there is no real value of the performance fee that makes the investor indifferent between the TP strategy and 1/N strategy, or if the turnover for
the TP strategy exceeds 20,000% in 1 or more months, which drives wealth to 0 under the assumed level of transaction costs. The sample period is July 1963–December 2008 (546 monthly observations). The
first 120 observations are held out to initialize the rolling estimators. See the text for a detailed description of each strategy.

No Transaction Costs Transaction Costs = 50 bp

vs. 1/N vs. 1/N

Strategy μ̂p σ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val τ̂p ̂λp p-val ̂Δ1 p-val ̂Δ5 p-val

1/N 8.96 18.79 0.477 0.017 0.472

Panel A. Volatility Timing Strategies

VT(1) 8.83 15.34 0.576 0.006 46 0.298 296 0.000 0.015 0.570 0.006 47 0.293 297 0.000
VT(2) 8.58 13.17 0.652 0.010 52 0.357 432 0.002 0.015 0.645 0.010 53 0.354 433 0.001
VT(4) 8.17 11.47 0.712 0.023 32 0.438 498 0.007 0.016 0.703 0.024 32 0.437 498 0.007

Panel B. Reward-to-Risk Timing Strategies

RRT(μ+
t ,1) 8.81 16.12 0.547 0.045 32 0.360 230 0.004 0.029 0.536 0.063 24 0.395 224 0.005

RRT(μ+
t ,2) 8.79 14.70 0.598 0.032 51 0.340 341 0.004 0.042 0.581 0.050 36 0.389 327 0.005

RRT(μ+
t ,4) 8.62 13.32 0.647 0.031 54 0.364 426 0.005 0.066 0.617 0.061 24 0.437 395 0.009

RRT(β̄+
t ,1) 8.88 17.07 0.520 0.017 22 0.329 154 0.001 0.017 0.514 0.017 22 0.326 154 0.001

RRT(β̄+
t ,2) 8.78 15.71 0.559 0.011 35 0.333 262 0.001 0.019 0.552 0.011 34 0.338 260 0.001

RRT(β̄+
t ,4) 8.51 13.67 0.623 0.012 38 0.380 390 0.002 0.027 0.611 0.015 32 0.399 384 0.002

Panel C. Mean-Variance Efficient Strategies

MV 8.09 10.56 0.766 0.078 34 0.462 541 0.034 0.350 0.566 0.324 −168 0.725 340 0.129
OC 10.84 11.66 0.930 0.008 296 0.146 751 0.006 0.547 0.641 0.176 −25 0.538 425 0.072
OC+ 8.31 13.52 0.615 0.032 21 0.448 381 0.006 0.237 0.508 0.322 −113 0.786 247 0.054
TP 138.5 242.6 0.571 0.338 −21,691 0.904 — — 191.1 — — — — — —
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the standard rolling estimator of μt and from 0.520 to 0.623 using the estimator of
μt derived from the 4-factor risk model. In each case, however, the RRT strategy
for a given η performs worse than the corresponding VT strategy. Apparently, the
μt estimates convey little information for the volatility portfolios, which is not
surprising given the low cross-sectional dispersion in the sample means. The esti-
mates of expected turnover are similar to those for the other data sets: 2.9%–6.6%
using the standard rolling estimator and 1.7%–2.7% using the 4-factor model.

The results for the MVE strategies, given in Panel C of Table 5, follow the
same general pattern as for previous data sets. If we ignore the TP strategy, the
evidence indicates that turnover is the primary barrier to outperforming naı̈ve
diversification. In the absence of transaction costs, the MV and OC strategies
have estimated Sharpe ratios of 0.766 and 0.930, respectively, and the differences
relative to naı̈ve diversification are statistically significant at the 10% level. The
estimated performance fees range from 34 bp to 751 bp. However, the estimates
of expected turnover are 35% and 54.7% per month, so performance deteriorates
sharply in the presence of transaction costs. The estimated Sharpe ratios fall to
0.566 and 0.641, and the differences relative to naı̈ve diversification are no longer
statistically significant.

VI. Closing Remarks

DeMiguel et al. (2009) raise serious questions about the value of mean-
variance optimization. Using a range of data sets, they investigate the out-of-
sample performance of the standard mean-variance model along with a large
number of variants developed in the literature to mitigate the impact of estima-
tion risk. They find that “there is no single model that consistently delivers a
Sharpe ratio or a CEQ return that is higher than that of the 1/N portfolio” and
conclude that “there are still many ‘miles to go’ before the gains promised by
optimal portfolio choice can actually be realized out of sample.”

We show that their analysis casts mean-variance optimization in such an
unfavorable light largely because the research design implicitly targets a con-
ditional expected return that greatly exceeds the conditional expected return of
the 1/N strategy. This magnifies estimation risk and leads to excessive turnover.
If the mean-variance model is instead implemented by targeting the conditional
expected return of the 1/N strategy, it generally performs better than naı̈ve di-
versification absent transaction costs. It is only after we consider the differences
in transaction costs across strategies that the mean-variance model has difficulty
outperforming the 1/N strategy by statistically significant margins.

Motivated by these findings, we propose 2 alternative methods of mean-
variance portfolio selection (VT and RRT) that exploit sample information in a
manner that mitigates the impact of estimation risk. Importantly, these methods
allow us to exercise some control over turnover, and hence transaction costs, via
a tuning parameter that can be interpreted as a measure of timing aggressiveness.
We find that both types of timing strategies outperform naı̈ve diversification for
a range of data sets. This is true even after we incorporate high transaction costs.
RRT appears to be a particularly promising strategy when it is implemented using
estimates of conditional expected returns obtained from a 4-factor risk model.
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