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VARIATIONS ON Δ1
1 DETERMINACY AND ℵ�1

RAMEZ L. SAMI

Abstract. We consider a seemingly weaker form of Δ1
1 Turing determinacy.

Let 2 � � < �CK
1 , Weak-Turing-Det�(Δ1

1) is the statement:
Every Δ1

1 set of reals cofinal in the Turing degrees contains two Turing distinct, Δ0
� -equivalent reals.

We show in ZF–:
Weak-Turing-Det�(Δ1

1) implies: for every � < �CK
1 there is a transitive modelM |= ZF– + “ℵ� exists”.

As a corollary:
If every cofinal Δ1

1 set of Turing degrees contains both a degree and its jump, then for every � < �CK
1 ,

there is a transitive model:M |= ZF– + “ℵ� exists”.
• With a simple proof, this improves upon a well-known result of Harvey Friedman on the strength of

Borel determinacy (though not assessed level-by-level).
• Invoking Tony Martin’s proof of Borel determinacy, Weak-Turing-Det�(Δ1

1) implies Δ1
1 determinacy.

• We show further that, assuming Δ1
1 Turing determinacy, or Borel Turing determinacy, as needed:

– Every cofinal Σ1
1 set of Turing degrees contains a “hyp-Turing cone”:{x ∈ D | d0 �T x �h d0}.

– For a sequence (Ak)k<� of analytic sets of Turing degrees, cofinal inD,
⋂
k Ak is cofinal inD.

Introduction. A most important result in the study of infinite games is Harvey
Friedman’s [3], where it is shown that a proof of determinacy, for Borel games,
would require ℵ1 iterations of the power set operation—and this is precisely what
Tony Martin used in his landmark proof [7].

Our focus here is on the Turing determinacy results of [3], concentrating instead on
the theory ZF–, rather than Zermelo’s Z. In the Δ1

1 realm, Friedman essentially shows
that the determinacy of Turing closed Δ1

1 games—henceforth, Turing-Det(Δ1
1)—

implies the consistency of the theories ZF– + “ℵ� exists”, for all � < �CK
1 . He does

produce a level-by-level analysis entailing, e.g., that the determinacy of Turing closed
Σ0
n+6 games implies the consistency of ZF– + “ℵn exists”.1,2

Importantly, it was further observed by Friedman (unpublished) that these results
extend to produce transitive models, rather than just consistency statements. See
Martin’s forthcoming book [9] for details, see also Van Wesep’s [13].

We forgo in this paper the level-by-level analysis to provide, in §3, a simple
proof of the existence of transitive models of ZF– with uncountable cardinals, from
Turing-Det(Δ1

1). In so doing, we show that the full force of Turing determinacy isn’t
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needed. The main result is Theorem 3.1, with a simply stated corollary. For context,
by Martin’s Lemma (see 1.2), Turing-Det(Δ1

1) is equivalent to:

• Every cofinal Δ1
1 set of Turing degrees contains a cone of degrees—i.e., a set

{x ∈ D | d0 �T x}.

Theorem (3.1). Let 2 � � < �CK
1 , and assume every Δ1

1 set of reals, cofinal in the
Turing degrees, contains two Turing distinct, Δ0

�-equivalent reals. For every � < �CK
1 ,

there is a transitive model:M |= ZF– + “ℵ� exists”.

Corollary (3.2). If every cofinal Δ1
1 set of Turing degrees contains both

a degree and its jump, then for every � < �CK
1 , there is a transitive model:

M |= ZF– + “ℵ� exists”.

In §4 several results are derived, showing that Turing-Det(Δ1
1) imparts weak

determinacy properties to the class Σ1
1, such as [4.4]:

• Every cofinal Σ1
1 set of degrees includes a set {x ∈ D | d0 �T x & x �h d0}, for

some d0 ∈ D.

Or, from Borel Turing determinacy, [4.3]:

• If (Ak)k<� is a sequence of cofinal analytic subsets of D, then ∩kAk is cofinal
in D.

I wish to thank Tony Martin for inspiring exchanges on the present results. He
provided the argument for Remark 2.3, below, and observed that my first proof of
Theorem 4.6 was needlessly complex. Parts of §4 go back to the author’s dissertation
[12], it is a pleasure to acknowledge Robert Solovay’s direction. Lastly, thanks are
due to the referee for thoughtful suggestions.

§1. Preliminaries and notation. The effective descriptive set theory we shall
need, as well as basic hyperarithmetic theory, is from Moschovakis’ [11], whose
terminology and notation we follow. For the theory of admissible sets, we refer
to Barwise’s [1]. Standard facts about the L-hierarchy are used without explicit
mention: see Devlin’s [2], or Van Wesep’s [13].

N = �� = N
N denotes Baire’s space (the set of reals), and D the set of Turing

degrees. Subsets of D shall be identified with the corresponding (Turing closed) sets
of reals. �T , �h , and ≡T , ≡h denote, respectively, Turing and hyperarithmetic (i.e.,
Δ1

1) reducibility, and equivalence.

1.1. The ambient theories. Our base theory is ZF–, Zermelo–Fraenkel set theory
stripped of the Power Set axiom.3 N or D may be proper classes in this context,
yet speaking of their ‘subsets’ (Δ1

1, Σ1
1, Borel or analytic) can be handled as usual,

as these sets are codable by integers, or reals. Amenities such as ℵ1 or L�1 aren’t
available but, since our results here are global (i.e., Δ1

1) rather than local, the reader
may use instead the more comfortable ZF– + “P2(�) exists”.

KP∞ is the theory Kripke–Platek + Infinity. Much of the argumentation below
involves �-models of KP∞ ––familiarity with their properties is assumed.

3All implicit uses of Choice herein are ZF–-provable.
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1.2. Turing determinacy. A set of reals A ⊆ N is said to be Turing-cofinal if, for
every x ∈ N , there is y ∈ A, such that x �T y. A Turing cone is a set Cone(c) =
{x ∈ N | c �T x}, where c ∈ N . For a class of sets of reals Γ, Det(Γ) is the statement
that infinite games G�(A) where A ∈ Γ are determined, whereas Turing-Det(Γ)
stands for the determinacy of games G�(A) restricted to Turing closed sets A ∈ Γ.
Recall the following easy, yet central:

Martin’s Lemma [6]. For a Turing closed set A ⊆ N , the infinite game G�(A)
is determined iff A or its complement contains a Turing cone. �

1.3. Constructibility and condensation. For an ordinal� > 0, andX ⊆ L�,HL�(X )
denotes the set of elements of L� definable from parameters in X, and HL�(X ) its
transitive collapse. ForX = ∅, one simply writesHL� andHL�. Gödel’s Condensation
Lemma is the relevant tool here. Note that, since L� = HL�(�) = HL�(�), all elements
of L� are definable in L� from ordinal parameters.

1.4. Reflection. The following reflection principle will be used a few times, to
make for shorter proofs.4 A property Φ(X ) of subsets X ⊆ N is said to be “Π1

1 on
Σ1

1” if, for any Σ1
1 relation U ⊆ N ×N , the set {x ∈ N | Φ(Ux)} is Π1

1.
A simple example of such a property: letA ⊆ N be Σ1

1, and set: Θ(X ) ⇔ X ∩ A =
∅. Θ(X ) is a Π1

1 on Σ1
1 property.

Theorem. Let Φ(X ) be a Π1
1 on Σ1

1 property. For any Σ1
1 set S ⊆ N such that Φ(S)

there is a Δ1
1 set D ⊇ S such that Φ(D).

Proof. See Kechris’ [5, §35] for a boldface version, easily transcribed to
lightface. �

§2. Weak-Turing-Determinacy. Examining what’s needed to derive the existence
of transitive models from Turing determinacy hypotheses, it is possible to isolate
a seemingly weaker statement. For 1 � � < �CK

1 , let x ≡� y denote Δ0
�-equivalence

on N , that is: x ∈ Δ0
�(y) & y ∈ Δ0

�(x). ≡1 is just Turing equivalence.

Definition 2.1. For a class Γ, and 2 � � < �CK
1 , define Weak-Turing-Det�(Γ):

Every Turing-cofinal set of reals A ∈ Γ has two Turing distinct elements x, y ∈ A
such that x ≡� y.

For any recursive � � 2, Weak-Turing-Det�(Δ1
1) will suffice to derive the existence

of transitive models of ZF– with uncountable cardinals. The property lifts from Δ1
1

to Σ1
1 ––note that it is, a priori, asymmetric.

Theorem 2.2. Let 2 � � < �CK
1 ,

Weak-Turing-Det�(Δ1
1) =⇒ Weak-Turing-Det�(Σ1

1).

Proof. Assume Weak-Turing-Det�(Δ1
1). Let S ∈ Σ1

1 and suppose there are no
Turing distinct x, y ∈ S such that x ≡� y, that is

∀x, y (x, y ∈ S & x ≡� y =⇒ x ≡T y).

4Longer ones can always be produced using Δ1
1 selection + Σ1

1 separation.
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This is a statement Φ(S), where Φ(X ) is easily checked to be a Π1
1 on Σ1

1 property.
Reflection yields a Δ1

1 set D ⊇ S such that Φ(D). By Weak-Turing-Det�(Δ1
1), D is

not Turing-cofinal; a fortiori, S isn’t either. �
Remark 2.3. One may be tempted to substitute for Weak-Turing-Det�(Δ1

1) a
simpler hypothesis:
Every Turing-cofinal Δ1

1 set of reals has Turing distinct elementsx, y, such thatx ≡h y.
It turns out to be too weak and, indeed, provable in Analysis. (Tony Martin, private
communication: building on his paper [8], he shows that every uncountable Δ1

1 set
of reals contains two Turing distinct reals, in every hyperdegree � Kleene’s O.)

The simpler, weaker, condition does suffice however when asserted about the
class Σ1

1, see Theorem 3.13, below.

§3. Transitive models from Weak-Turing-Determinacy. We state the main result,
and a simple special case. The proof is postponed towards the end of the present
section.

Theorem 3.1. Let 2 � � < �CK
1 , and assume Weak-Turing-Det�(Δ1

1). For every
� < �CK

1 , there is a transitive model:M |= ZF– + “ℵ� exists”.

Corollary 3.2. If every cofinal Δ1
1 set of Turing degrees contains both a degree and

its jump, then for every � < �CK
1 , there is a transitive model:M |= ZF– + “ℵ� exists”.

• Term models.

Given a complete5 theory U ⊇ KP∞ + (V = L), one constructs its term model.
To be specific: owing to the presence of the axiom V = L, to every formula �(v) is
associated �(v) such that U |− ∃v�(v) ⇔ ∃! v�(v), just take for �(v) the formula
�(v) ∧ (∀w <L v)¬�(w).

Let now (ϕn(v))n<� be a recursive in U enumeration of the formulas ϕ(v), in
the single free variable v, having U |− ∃! vϕ(v). Using, as metalinguistic device,
(�v)ϕ(v) for “the unique v such that ϕ(v)” set:

MU = {n ∈ � | ∀� < n, U |− (�v)ϕn �= (�v)ϕ�},
and define onMU the relation ∈U :

m ∈U n ⇐⇒ U |− (�v)ϕm ∈ (�v)ϕn.

(MU,∈U ) is a prime model of U and, U being complete, (MU,∈U ) �T U . Using
the canonical 1-1 enumeration � →MU , substitute � for MU and remap ∈U
accordingly. The resulting model MU = (�,∈MU ) shall be called the term model of
U. The function U �→ MU is recursive, and MU ≡h U , uniformly.

Whenever MU is an �-model, we say that a ⊆ � is realized in MU if there is
å ∈ � such that a = {k ∈ � | kMU ∈MU å}. We state, for later reference, a couple
of standard facts.

Proposition 3.3. Let U be as above. If MU is an �-model, and a ⊆ � is realized
in MU , then:

5Complete extensions are always meant to be consistent, and deductively closed.
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(1) For all x �h a, x is realized in MU .
(2) a �T U . Hence U is not realized in MU , lest the Turing jumpU ′ be realized in

MU , causing U ′ �T U . �
Note that ifU = Th(Lα), where α is admissible, then MU is a copy of HLα. Hence

MU
∼= L
 , for some 
 � α. The following easy proposition is quite familiar.

Proposition 3.4. Assume V = L. For cofinally many countable admissible α’s,
Lα = HLα, equivalently: MTh(Lα)

∼= Lα .

Proof. Suppose not. Let � be the sup of the admissible α’s having Lα = HLα,
and let κ > � be the first admissible such that � is countable in Lκ. Since � is
definable and countable in Lκ, � ∪ {�} ⊆ HLκ. It follows readily that Lκ = HLκ =
HLκ, a contradiction. �

• Cardinality in the constructible levels.

Set theory within the confines of L�, � an arbitrary limit ordinal, imposes some
contortions. For technical convenience, the notion of cardinal needs to be slightly
twisted—for a time only.

Definition 3.5.

(1) For an ordinal α, Card(α) = min��α(there is a surjection � → α).
(2) α is a cardinal if α = Card(α).
(3) Card� ⊆ L� is the class of infinite cardinals as computed in L�.

3.6. Note that, for � limit, from a surjection g : 
 → α in L�, one can extract
a ⊆ 
 and � ⊆ a × a such that g�a : (a,�)∼→ (α,∈),6 and both (a,�), g�a are
in L�. Further, if � is admissible, in L� the altered notion of cardinality and the
standard one coincide.

Convention 3.7. For simplicity’s sake, the assertion “ℵ� exists in L�” should be
understood as:

There is an isomorphism � + 1∼→ J , where J is an initial segment of Card�.
Note that its negation is equivalent inKP∞ to: There isκ � � such that Card� ∼= κ.

The notation ℵL�
� carries the obvious meaning.

We need the following result, readily proved using the Jensen techniques of [4]. A
direct proof is provided in the Appendix.

Proposition 3.8. For � a limit ordinal, if L� |= “� > � is a successor cardinal”
then L� |= ZF–.

• The theories T� .
Let M be an �-model of KP∞. The wellfounded part of OnM ‘includes’ �CK

1 .
For � < �CK

1 , pick e� a recursive index for a wellordering <e� of a subset of �, of
length �. Using e� , statements about � can tentatively be expressed in KP∞. In M,
the truth of such statements is independent of the choice of e� . Indeed,<e� is realized
in M, and its realization is isomorphic in M to the M-ordinal of order-type �, to be
denoted �M. For a formulaϕ(x, ...), we writeM |= ϕ(�, ...), instead of a ‘translated’
M |= ϕ∗(e� , ...).

6Herein, ‘∼→’ denotes isomorphism map.
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Definition 3.9. For � < �CK
1 , T� is the theory

KP∞ + (V = L) + “for all limit �,ℵ�+1 doesn’t exist in L�”.

This definition is clearly lacking: a recursive index e� coding the ordinal � is not
made explicit. This is immaterial, as we shall be interested only in �-models of T� .
They possess the following rigidity property.

Lemma 3.10. Let � < �CK
1 , and M1, M2 be �-models of T� . Let u ∈ OnM1 , and

w,w∗ ∈ OnM2 , for any two isomorphisms f : LM1
u

∼→ L
M2
w and f∗ : LM1

u
∼→ L

M2
w∗ ,

f = f∗.

Proof. By an easy reduction, it suffices to prove this for u, a limit M1-ordinal.
Let <1 denote the ordering of OnM1 in M1, and set Cu =

{c <1 u | M1 |= c ∈ Cardu}.
The relevant claim here is that (Cu, <1) is wellordered. Indeed, since M1 |= T� ,

M1 |= “ℵ�+1 doesn’t exist in Lu”.

Hence, as observed in 3.7, there is k ∈ OnM1 with

M1 |= k � � + 1 & Cardu ∼= k.
The isomorphism in M1 induces an actual isomorphism (Cu, <1) ∼= ({x | x <1 k},
<1). Since M1 is an �-model, �M1 (and hence, k) is in its wellfounded part, thus
the claim.

First, we check that f and f∗ agree on the M1-ordinals o <1 u, using induction
on Cu . Clearly, for o �1 �

M1 , f(o) = f∗(o). Set κu(o) = Card(o), as evaluated in
L
M1
u , and show by induction on c ∈ Cu :

for all o <1 u, κu(o) �1 c =⇒ f(o) = f∗(o).

The inductive hypothesis, for c′ <1 c, yields, for all o <1 c, f(o) = f∗(o), hence
f(c) = f∗(c). Let now o <1 u have κu(o) = c. Inside L

M1
u , (o,∈) is isomorphic to

an ordering s = (a,�), where a ⊆ c and � ⊆ c × c, (see 3.6). Since f and f∗ agree
on the M1-ordinals up to c, one readily getsf(s) = f∗(s). In M2 now, the common
value f(s) is isomorphic to both the ordinals f(o) and f∗(o), hence f(o) = f∗(o).

This entailsw = w∗ and L
M2
w = L

M2
w∗ . Now, any x ∈ L

M1
u is definable in L

M1
u from

M1-ordinals (see 1.3), thus f(x) and f∗(x) satisfy in L
M2
w the same definition from

equal parameters, hence f(x) = f∗(x). �
• Pseudo-wellfounded models.

A relation � ⊆ � × � is said to be pseudo-wellfounded if every nonempty Δ1
1(�)

subset of � has a �-minimal element. By the standard computation, this is a Σ1
1

property.7 Indeed, we may define it, for E ⊆ � × �, as:

pseudo-WF(E) ⇔def (∀X �h E )
(
X �= ∅ =⇒ (∃k ∈X )(∀m ∈X )¬(mE k)

)
.

7We shall use, in complexity computations, the classic result of Kleene: Given a Σ1
1 predicateS(x, y, –),

the predicate (∀y �h x )S(x, y, –) is Σ1
1—and dually for Π1

1. See [11, §4D.3] for a more general result.
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Definition 3.11. For � < �CK
1 , S� is the set of theories:

S� = {U | U is a complete extension of T� , and MU is pseudo-wellfounded}.

Easily, S� is Σ1
1. Indeed, the first clause in its definition is arithmetical, while the

second reads “pseudo-WF(∈MU ),” where the function U �→ ∈MU is recursive.
Note further: for U ∈ S� , MU is an �-model. The sets S� play a central role in

the proof. They are sparse, in the following sense.

Proposition 3.12. For � < �CK
1 , no two distinct members of S� have the same

hyperdegree.

Proof. Let U1, U2 ∈ S� have U1 ≡h U2, and let M1, M2 stand for MU1 , MU2 .
We’ll obtain U1 = U2 by showing M1

∼= M2. Define a relation between ‘ordinals’
u ∈ M1 and w ∈ M2:

u � w ⇐⇒ ∃f(f : LM1
u

∼→ L
M2
w ).

Set I1 = Dom(�), and I2 = Im(�). I1 and I2 are initial segments of OnM1 and
OnM2 , respectively. Using Lemma 3.10, the relation “u � w” defines a bijection
I1 → I2 which is, indeed, the restriction of an isomorphism

F : ∪u∈I1LM1
u

∼→∪w∈I2LM2
w .

Note that, by the same lemma,

u � w ⇐⇒ ∃!f(f : LM1
u

∼→ L
M2
w ).

The RHS here reads: ∃!fI(f,U1, u, U2, w), where I is a Δ1
1 predicate, hence:

u � w ⇐⇒ ∃f �h U1 ⊕U2(f : LM1
u

∼→ L
M2
w ).

By the standard computation, the relation “u � w” is Δ1
1(U1 ⊕U2) [ = Δ1

1(U1) =
Δ1

1(U2)]. Consequently, I1 and I2 are also Δ1
1(U1) [ = Δ1

1(U2)].M1,M2 being pseudo-
wellfounded, OnM1 – I1 and OnM2 – I2 each, if nonempty, has a minimum. Denote
m1, m2 the respective potential minima, and consider the cases:

– OnM1 – I1 and OnM2 – I2 are both nonempty. This isn’t possible, as F would
be the isomorphism F : LM1

m1
∼→ L

M2
m2 , entailing m1 ∈ I1 and m2 ∈ I2.

– I1 = OnM1 and OnM2 – I2 �= ∅. Here M1 = ∪u∈I1LM1
u , and F : M1∼→

L
M2
m2 . U1 is now the theory of L

M2
m2 , hence is realized in M2. Since U2 ≡h U1,

by Prop. 3.3(1), U2 is also realized in M2 (that’s MU2 ). This contradicts (2) of the
same proposition.

– The third case, symmetric of the previous one, is equally impossible.
– The remaining case: I1 = OnM1 and I2 = OnM2 . Here M1 = ∪u∈I1LM1

u and
M2 = ∪w∈I2LM2

w , thus F : M1∼→ M2 is the desired isomorphism. �
Proof of Theorem 3.1. Our hypothesis is Weak-Turing-Det�(Δ1

1), and we may
work entirely in L.

Fix any � < �CK
1 , towards a transitive model of ZF– + “ℵ� exists”.

Claim. There is a limit ordinal �, such that: ℵ�+1 exists in L�.
Suppose no such � exists. It follows that for all admissible α > �, Lα |= T� . This

entails that S� is Turing-cofinal: indeed, since V = L, using Proposition 3.4, given
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x ⊆ � there is an α > �, admissible, such that x ∈ Lα and MTh(Lα)
∼= Lα . Thus

x �T Th(Lα) and, MTh(Lα) being wellfounded, Th(Lα) ∈ S� .
Invoking now Weak-Turing-Det�(Δ1

1) and Theorem 2.2, Weak-Turing-Det�(Σ1
1)

holds. Hence, there are distinct U1, U2 ∈ S� such that U1 ≡� U2, contradicting the
previous proposition. �Claim

Let now � be as claimed, and set � = ℵL�
�+1. In L�, � is a successor cardinal hence,

by Prop. 3.8, L� |= ZF–. Further, for � � �, ℵL�
� < � and ℵL�

� is an L�-cardinal (now
in the usual sense), hence L� |= ZF– + “ℵ� exists”. �

Note the following byproduct of the previous proposition, and the proof just
given (substituting U1 ≡h U2 for U1 ≡� U2, in the proof)—in contradistinction to
Remark 2.3.

Theorem 3.13. Assume every Turing-cofinal Σ1
1 set of reals has two Turing distinct

elements x, y, such that x ≡h y. For every � < �CK
1 , there is a transitive model:M |=

ZF– + “ℵ� exists”. �
An easy consequence of the main result: Weak-Turing-Det�(Δ1

1) implies full
Δ1

1 determinacy. The proof proceeds via Martin’s Borel determinacy theorem: no
direct argument is known for this sort of implication—apparently first observed by
Friedman for Turing-Det(Δ1

1).

Theorem 3.14. For 2 � � < �CK
1 , Weak-Turing-Det�(Δ1

1) implies Det(Δ1
1).

Proof. Assume Weak-Turing-Det�(Δ1
1). LetA ⊆ N be Δ1

1, sayA ∈ Σ0
� where � <

�CK
1 . Applying Theorem 3.1, there is a transitiveM |= ZF– + “ℵ� exists”. Invoking

(non-optimally) Martin’s main result from [8] inside M, Σ0
� games are determined.

The statement “the game G�(A) is determined” is Σ1
2. By Mostowki’s absoluteness

theorem, being true in M, it holds in the universe: G�(A) is indeed determined. �

§4. Δ1
1 determinacy and properties of Σ1

1 sets. We proceed now to show that
Δ1

1 determinacy imparts weak determinacy properties to the class Σ1
1. In view of

Theorem 3.14, there is no point, here, in working from weaker hypotheses.

Definition 4.1. The hyp-Turing cone with vertex d ∈ D is the set of degrees

Coneh(d ) = Cone(d ) ∩ Δ1
1(d ) = {x ∈ D | d �T x & x �h d}.

Hyp-Turing-Det(Γ) is the statement: Every cofinal set of degrees A ∈ Γ contains a
hyp-Turing cone.

Theorem 4.2. Assume Turing-Det(Δ1
1). If (Sk)k<� is a Σ1

1 sequence of Turing-
cofinal sets of degrees, then ∩kSk �= ∅—and, indeed, ∩kSk contains a hyp-Turing
cone.

Proof. Let the Sk ’s be given as the sections of a Σ1
1 relation S ⊆ � ×N , and

assume∩kSk contains no hyp-Turing cone: ∀x ∈ N (Coneh(x) �⊆ ∩kSk), i.e.,

∀x ∈ N ∃y �h x(x �T y & y /∈ ∩k Sk).
This is a statement Φ(S), where Φ(X ) is a Π1

1 on Σ1
1 property of subsetsX ⊆ � ×N .

Reflection yields a Δ1
1 relation D ⊇ S such that Φ(D). Shrink D, if need be, to
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ensure that its sections Dk are Turing closed, preserving Φ(D) and D ⊇ S. Now,
Dk ⊇ Sk and ∩kDk contains no hyp-Turing cone. A contradiction ensues using
Turing-Det(Δ1

1) + Martin’s Lemma: each Dk , being cofinal in D, contains a Turing
cone hence, easily, so does∩kDk . �

The converse is immediate. Indeed, if Turing-Det(Δ1
1) fails, by Martin’s Lemma

there is a Δ1
1 set A ⊆ D, such that both A and ∼A are cofinal in D, and the Δ1

1
sequence 〈A,∼A〉 has empty intersection. Relativizing 4.2, one readily gets:

Corollary 4.3. Assume Borel Turing determinacy. If (Ak)k<� is a sequence of
cofinal analytic sets of Turing degrees, then ∩kAk is cofinal in D. �

An interesting special case of 4.2, where the ‘sequence’ (Sk)k<1 is a single Σ1
1 term.

Theorem 4.4. Turing-Det(Δ1
1) implies Hyp-Turing-Det(Σ1

1). �
In view of Theorem 3.14, the implication is an equivalence. A similar result obtains

for full determinacy.

Definition 4.5. For a game G�(A), a strategy � for Player I is called a hyp-
winning strategy if ∀� �h � (�∗� ∈ A), i.e., applying �, Player I wins against any
Δ1

1(�) sequence of moves by Player II.

Theorem 4.6. Assume Det(Δ1
1). For S ∈ Σ1

1, one of the following holds for G�(S),
(1) Player I has a hyp-winning strategy.
(2) Player II has a winning strategy.

Proof. Let S be Σ1
1, and assume Player I has no hyp-winning strategy for G�(S),

that is: ∀�∃� �h � (�∗� /∈ S). Much as in the proof of 4.2, Reflection yields a Δ1
1 set

D ⊇ S such that Player I has no hyp-winning strategy for G�(D), hence no winning
strategy. Invoking Det(Δ1

1), Player II has a winning strategy for G�(D) which is, a
fortiori, winning for G�(S). �

§5. Appendix. The point of the present section is to sketch a proof of Proposition
3.8, without dissecting the L construction—albeit with a recourse to admissible sets.
Finer results most certainly hold.

F is the set of formulas, F ∈ L�+1, and |=Lα is the satisfaction relation for Lα ,

|=Lα (ϕ, �s) ⇐⇒ ϕ ∈ F & �s ∈ L
<�
α & Lα |= ϕ[�s].

Apart from the classic Condensation Lemma (see 1.3), we shall need the following
familiar result: For any limit � > �, and 
 < �, |=L


∈ L�. See [13, §7.1].

Notation. Let X �� Y abbreviate ∃f ∈L�(f : X � Y ), where ‘�’ stands for
surjective map.

Reminder. Here, “� is an L�-cardinal” means: “for no � < �, does � �� �”
(see 3.5).

Lemma 5.1. Let � > � be limit. For 0 < α � 
 < �, and L
 = HL
(α), α<� �� 
 .

Proof. Observe that L
 = HL
(α), and 
 < �. In L
 , every � < 
 is the unique
solution of some formula ϕ(v, ��), where �� ∈ α<� . Thus, using |=L


∈ L�, one
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readily derives F × α<� �� 
 . Using an injection F × α<� → α<� in L�, one gets
α<� �� 
 . �

Proposition 5.2. Let � > � be a limit ordinal, and � < � < �, an L�-cardinal.

(1) For 0 < α < � � 
 < �, and L
 = HL
(α) : 
 < �.
(A downward Löwenheim–Skolem property).

(2) � is admissible.

Proof. We check (1) and (2) simultaneously, by induction on �.
(1) Set � = min���(�<� �� �). Note that, for � � �, (� �� � =⇒ �<� �� �<�),

it follows that � is an L�-cardinal, and clearly � < � � �.
We claim that � = �. If � = ℵL�

1 , then � = �. Else, if � < � then, by induction,
� is admissible, yielding an L�-definable map �� �<� . Whence ��� �<� �� �,
and thus ��� �, contradicting “� is an L�-cardinal.”

Now, given 0 < α < � � 
 < �, and L
 = HL
(α), the previous lemma yields
α<� �� 
 . Hence, since α < � = �, 
 < �.

(2) To show that � is admissible, only Δ0 Collection needs checking.
Say L� |= ∀x ∈ a∃yϕ(x, y, �p), where ϕ is Δ0, and a, �p ∈ L�. Pick α < � with

a, �p ∈ Lα and set L
 = HL�(α): L
 |= ∀x ∈ a∃yϕ(x, y, �p). Applying (1), 
 < �,
thus b =def

L
 ∈ L�. By Δ0 absoluteness, L� |= ∀x ∈ a∃y ∈ bϕ(x, y, �p). �
Proposition 3.8. For � limit, L� |= “� > � is a successor cardinal” =⇒

L� |= ZF–.

Proof. Set � = the cardinal preceding � in L�. We argue that � is the largest
cardinal in L�. Indeed, for � � � < �, pick 
 < � such that ∃f ∈ L
 (f : �� �),
and set L
 = HL
(� + 1). We get ∃f ∈ L
 (f : �� �) and, invoking 5.2(1), 
 < �.
Hence L� |= ∃f(f : � � �).

Next: � is regular in L�. The usual ZFC proof for the regularity of infinite
successors goes through here: for each nonzero � < �, using <L� , select f� ∈ L�,
f� : �� �, and note that the sequence (f�)0<�<� is in L�+1 ⊆ L�, etc.

Finally, to show L� |= ZF–: since by 5.2(2) � is admissible, using the standard
definable bijection �→ L�, it suffices to verify Replacement for L� class-functions
�→ �.

Let therefore F : �→ � be L�-definable, from parameters �p. Given a set of
ordinals s ∈ L�, s is bounded in �. By regularity of � in L�, F [s] is bounded as well.
Pick α < �, with F [s] ⊆ α and s, �p ∈ Lα : F [s] is definable over L� from s, �p ∈
Lα , and Lα ⊆ HL�(α) ≺ L�. Set L
 = HL�(α), applying 5.2(1), 
 < �, and thus
F [s] ∈ L
+1 ⊆ L�. �
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