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ABSTRACT
Since Benacerraf’s ‘What Numbers Could Not Be,’ there has been a growing
interest in mathematical structuralism. An influential form of mathematical
structuralism, modal structuralism, uses logical possibility and second order
logic to provide paraphrases of mathematical statements which don’t quantify
over mathematical objects. These modal structuralist paraphrases are a useful
tool for nominalists and realists alike. But their use of second order logic and
quantification into the logical possibility operator raises concerns. In this paper,
I show that the work of both these elements can be done by a single natural
generalization of the logical possibility operator.
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1. Introduction

Since Benacerraf’s ‘What Numbers Could Not Be,’ Benacerraf (1965) there has
been a growing interest in mathematical structuralism. One of the most influ-
ential forms of structuralism is the modal structuralism developed in Geoffrey
Hellman’s Mathematics Without Numbers (Hellman 1994). Modal Structuralism
is a nominalist philosophy of mathematics which maintains that mathemati-
cians can systematically express truths even if there are no mathematical ob-
jects, by interpreting statements about mathematical objects as modal claims
about what is logically possible. Specifically, Hellman uses claims about logical
possibility and secondorder logic to provide intuitively correct truth conditions
for mathematical utterances without quantifying over mathematical objects
like numbers and sets.

I don’t ultimately find nominalism persuasive, and won’t defend it against
standard objections. However, I think that Hellman’s modal structuralist para-
phrases reveal a close relationship between logical possibility and pure math-
ematics which is of interest to realists and nominalists alike.1 For they show us
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how to systematically pair ordinary (platonistic) mathematical sentences with
modal sentences which have exactly the truth value a platonist would want
to ascribe to the original, but make claims about logical possibility rather than
quantifying over mathematical objects. So, for example, Hellman’s paraphrase
of ‘there are infinitely many primes’ is a modal sentence which is (intuitively)
true at all possible worlds and does not quantify over mathematical objects.

This is useful to, for example, deflationary realists who want to (somehow)
ground mathematical existence facts in logical possibility2 as well as to nomi-
nalists who want to deny the existence of mathematical objects. Also, one part
of Hellman’s story (his treatment of set theory) provides a natural way of de-
veloping an independently popular view about set theory called potentialism.
Philosophers like Charles Parsons, who have no truck with blanket nominalism
about mathematical objects, have been motivated by specific (i.e. specific-to-
set-theory) apparent paradoxes concerning the height of the hierarchy of sets
to understand higher set theory as an investigation of extendability (Parsons
2007). Thus, one might want to accept something like Hellman’s approach
to set theory while being a straightforward realist about other mathematical
objects and structures.

In this paper, I will show how to streamline Hellman’s modal structuralist
paraphrases for mathematics by appealing to a single, intuitively motivated,
notion of logical possibility given certain facts – thus avoiding the need for sec-
ond order quantification.3 In addition to its intrinsic interest, this simplification
provides expository and philosophical benefits over Hellman’s approach.

First, existing potentialist andmodal structuralist paraphrases for sentences
of set theory (including Hellman’s) involve quantifying in to the � of logical
possibility. That is, theyuse sentences like∃x�R(x), where the logical possibility
operator is applied to a formula with free variables. There are significant
controversies about the truth conditions, and indeed meaningfulness, of such
statements. For example, there is disagreement about whether any two things
that are actually distinct are necessarily distinct. There is also disagreement
about what to say about statements which quantify into a world where an
object doesn’t exist. For example, Kripke’s approach (which Hellman invokes)
allows sentences like (∃x)�[(∀y)Fox(y) ∧ ¬Fox(x)] to be true, a consequence
whichWilliamson andothers have argued is extremely counterintuitive.4 These
controversies can raise doubts about whether our intuitions about quantifying
in are reliable while, to my knowledge, no analogous paradoxes arise in the
system I lay out.5

There is also a Quinean strand of argument which claims that quantifying
into modal contexts is meaningless.6 Thus, it seems, at least, rhetorically desir-
able to demonstrate that Hellman’s program (as well as potentialist set theory)
doesn’t require quantifying in or similarly controversial notions.

Second, Hellman himself (Hellman 1996) has raised worries about whether
his use of second-order logic is nominalistically acceptable, and my modifica-
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tions show that his program7 can be accomplishedwithout second order logic,
using only concepts he relies on elsewhere in his program. This is not to say
that my modifications definitely render Hellman’s approach nominalistically
acceptable. Indeed, one might even take my demonstration that logical possi-
bility can fill in for second order logic as an argument against the nominalistic
acceptability of logical possibility itself. Rather, I show that Hellman can avoid
any extra burden imposed specifically by his use of second order logic. Either
my modifications render Hellman’s account nominalistically acceptable or the
very notion of logical possibility employed by Hellman is inherently nominal-
istically unacceptable and his program fails regardless of the role of second
order logic.

In later work Hellman considers8 a modification to his core story which
avoids second order quantification.9 However, this story relies on an additional
assumption (that ‘arbitrary [mereological] sums of any individuals indepen-
dently recognized’ exist) which my story and Hellman’s original story avoid.10

This later proposal also does not avoid the issues about quantifying in noted
above.

2. Modal structuralism: the core picture

The key idea behindmodal structuralism is to reformulatemathematical claims
about abstract (non-set-theoretic) objects, like the natural numbers, as claims
about how it is possible for objects to be related to one another. For example,
something like the twin prime conjecturemay be paraphrased as the claim that
it would be possible for there to be objects with the structure of the natural
numbers and that, necessarily, in any such structure there are infinitely many
twin primes. Note that the notion of possibility here isn’t that of metaphysical
possibility. For, as Charles Parsons points out, our willingness to talk in terms
of large mathematical structures (e.g. the reals or the Hilbert space of square
integrable functions) does not seem to be hostage to our conviction that it
would bemetaphysically possible for there to be that many non-mathematical
objects (Parsons 2007). Thus, it seems like the notion of possibility which the
modal structuralist is reaching for is something more like mathematical or
logical possibility.

In articulating his modal structuralism, Hellman invokes a primitive notion
of logical possibility which he does relatively little to describe. He does say
that, ‘[when evaluating logical possibility]we are not automatically constrained
to hold material or natural laws fixed.’ So it may be logically possible that
(∃x)(pig(x)∧flies(x)), but physically impossible. And he adds that, “we are free
to entertain the possibility of additional objects – even material objects – of a
given type”, which allows us to say that it’s logically possible for there to be
infinitelymany objects even if there are only finitelymany objects. Beyond this,
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however, he just suggests that his applications of logical possibility will make
the notion he has in mind clear.

I will abbreviate the claim that it is logically possible that φ as �φ, and the
claim that it is logically necessary that φ (i.e. ¬�¬φ as �φ). With this notion
of logical possibility in place, the modal structuralist proposes to understand a
mathematician’s claim that ψ holds in some mathematical structure (such as
the natural numbers), as really asserting a conjunction of two claims. First, it is
logically possible for there to be some objects with the relevant structure (e.g.
there could be an ω sequence of objects). And second, it is logically necessary
that if therewere such objects theywould satisfy the descriptionψ (e.g. if there
were an ω sequence of objects, a version ofψ would be true in it).

Hellman uses second-order quantification to give categorical descriptions11

of such structures, e.g. the ω sequence mentioned above. Employing these
descriptions allows Hellman’s paraphrase strategy to ensure (assuming second
order logic works in the usual way) that all well-formed claims about these
structures are either true or false. For example, let PA2 be the standard second
order categorical axiomatization of the natural numbers in terms of a successor
relation S12 (conjoined into a single sentence) and let φ be a sentence about
the natural numbers. Using φ(N/X)(S/f ) to denote the result of replacing
every instance ofN in φ with the second order variable X and every instance of
the successor relation13 S with the second order relation variable f Hellman’s
paraphrase of the mathematical claim φ becomes14:

�
[
(∃X)(∃f )PA2(N/X)(S/f )

]∧
�

[
(∀X)(∀f ) (PA2(N/X)(S/f ) → φ(N/X)(S/f )

)]

The first half of this sentence says that it is logically possible for some objects
to form an ω-sequence (with some relation f acting as the successor function).
The second half says that it is logically necessary that if some objects (those in
X ) form an ω-sequence (under f ) then φ (modified to use X and f instead of N

and S) is true of them.
This paraphrase strategy (assuming logical possibility and second order

quantification operate as Hellman expects15) captures the intended truth con-
ditions for most statements in pure mathematics. However, Hellman also
wishes toprovideparaphrases for statementsof appliedmathematics. Consider
the claim that there are a prime number of rats. One cannot give correct
truth conditions for this claim by only talking about what is logically possible
simpliciter – for the truth of ‘there are a prime number of rats’ is not determined
only by facts about what is logically possible. It also reflects contingent facts
about the world.

Hellman addresses this problem by replacing appeals to logical possibility
with appeals to logical possibility given the ‘material’16 facts. So, for example,
where the platonist takes ‘there are a prime number of rats’ tomean something
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like ‘there is a function which bijectively maps the rats to the natural numbers
below someprimep’, Hellmanwill translate this claimapproximately as follows.
It is logically possible, given the material facts, that there are objects which
behave likenumbers (in the senseof satisfyingPA2). And it is logically necessary,
given the material facts, that if there are objects which behave like numbers
then there is a function which bijectively maps the rats to the natural numbers
below p.

Hellman considers two approaches to understanding this crucial notion of
logical possibility given the material facts. The first is to leave it as a primitive,
“reject[ing] the demand” for further explanation of what it means to hold
material facts fixed. The second is to cashout thenotionof ‘holding thematerial
facts fixed’ by using an actuality operator @, read as ‘it is actually the case that.’
In either case, we see that Hellman is already committed to something like a
notion of logical possibility holding some facts fixed. The reader should bear
this in mind when considering the particular notion of logical possibility I offer
below.

3. Logical possibility sharpened and generalized

I will now introducemy preferred notion of logical possibility given certain facts.
Let me begin by calling tomind some features of the standard notion of logical
possibility which I take Hellman to be developing.

3.1. The conventional notion of logical possibility

It seems that we have an intuitive notion of logical possibility which applies
to claims like (∃x)(red(x) ∧ round(x)) and makes sentences like the following
come out true.

• It is logically possible that (∃x)(red(x) ∧ round(x))
• It is not logically possible that (∃x)(red(x) ∧ ¬red(x))
• It is logically necessary that (∀x)(red(x)) → ¬(∃x)(¬red(x))

Philosophers representing a range of different philosophies of mathematics
have made use of this notion17 and are comfortable applying it to non-first
order sentences aswell. If you are skeptical that there is such a notion, note that
it is definable in terms of the evenmore common notion of validity (something
is logically possible iff its negation is not logically necessary iff the inference
from the empty premise to its negation is not valid).

To evaluatewhether a claimφ requires something logically possible,wehold
fixed the operation of logical vocabulary (like ∃,∧,∨,¬), but abstract away from
any further constraints imposed by metaphysical necessity on the behavior of
particular relations. Thus, we consider all possibleways for relations to apply
whether or not these ways are describable in our language. For example, it
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is logically possible that (∃x)(Raven(x) ∧ Vegetable(x)), even if it would be
metaphysically impossible for anything to be both a raven and a vegetable.
During this evaluation we also abstract away from constraints on the size of
the universe,18 so that �(∃x)(∃y)(¬x = y) would be true even if the actual
universe contained only a single object.

This notion of logical possibility is generally regarded as a fundamental
notion19 conceptually distinct from syntactic consistency, i.e. the impossibil-
ity of proving a contradiction. Instead, it corresponds to our intuitive sense
that certain mathematical theories (like second-order Peano Arithmetic) re-
quire something coherent, while others (like Frege’s inconsistent theory of
extensions) do not – a sense which is not restricted merely to first-order
descriptions.

A core idea I will develop is that the above notion of logical possibility
can be naturally generalized. A (pure) logical possibility operator doesn’t allow
information to ‘leak out’, so merely adding such an operator to first order logic
does little to increase its ‘power.’ This can make it appear somewhat surprising
that, as we shall see, the tame-looking further step of considering logical
possibility holding certain facts fixed (a concept Hellman already appeals to) is
enough to let us relinquish our use of second order quantification. However,
we observed above that the concept of logical possibility goes far beyondwhat
is capturable in first order logic, so it’s not totally shocking that we can unlock
that power by letting some information pass through (but not free variables).

3.2. Logical possibility generalized

Let us now develop the notion of logical possibility discussed in the previous
section. Consider a sentence like, ‘Given what cats and baskets there are, it is
logically impossible that each cat slept in a distinct basket.’ There’s an intuitive
readingonwhich this sentencewill be true if andonly if there aremore cats than
baskets.20 This reading employs a notion of logical possibility holding certain
facts fixed (in this case, facts aboutwhat cats and baskets there are). Remember,
Hellman’s use of logical possibility given the material facts commits him to the
coherence of something very much like this notion.

Accordingly, I think we can intuitively understand a conditional logical
possibility operator�which takes a sentence φ and a finite (potentially empty)
list of relation symbols R1 . . . Rn and produces a sentence �(R1 . . . Rn)φ which
says that it is logically possible for φ to be true, given how the relations R1 . . . Rn
apply. For ease of reading, I will sink the specification of relevant relations into
the subscript as follows: �R1...Rnφ

Thus, for example, the claim, ‘given what cats and baskets there are, it is
logically impossible that each cat slept in a distinct basket’ becomes:
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(CATS)

�cat,basket¬
(
(∀x)

[
cat(x) → (∃y) (basket(y) ∧ sleptIn(x , y)

) ]
∧

(∀z)(∀w)(∀w′)
[
basket(z) ∧ cat(w) ∧ cat(w′)∧

sleptIn(w, z) ∧ sleptIn(w′, z) → w = w′])

Finally, note that by using this notion we can also make nested logical
possibility claims, i.e. claims about the logical possibility of scenarios which are
themselves described in terms of logical possibility. I have in mind sentences
like the following:

(�CATS)

��cat,basket¬
(
(∀x)

[
cat(x) → (∃y) (basket(y) ∧ sleptIn(x , y)

) ]
∧

(∀z)(∀w)(∀w′)
[
basket(z) ∧ cat(w) ∧ cat(w′)

sleptIn(w, z) ∧ sleptIn(w′, z) → w = w′])

This sentence says that it would be logically possible for there to be cats and
baskets such that it would be logically necessary, given (the structural facts
about) what cats and baskets there are in that scenario, that some cat lacked
its own basket to sleep in. Note that in a nested claim with this form (��Rψ ),
the subscript freezes the facts about how the relation R applies in the scenario
being considered, which may not be the state of affairs in the actual world.
For example,�CATS expresses ametaphysically necessary truth. For, whatever
the actual world is like, it will always be logically possible for there to be, say,
3 cats and 2 baskets. This scenario is one in which it is logically necessary
(holding fixed the structural facts about what cats and baskets there are) that:
if each cat slept in a basket then multiple cats slept in the same basket. So it is
metaphysically necessary that �CATS even if the actual world contains more
baskets than cats.

Inwhat follows, I will often usemathematical-looking symbols or schematic-
looking symbols (e.g. N, S) for relations appearing in logical possibility state-
ments rather than actual relations like ‘happy()’ and ‘loves()’. However, these
symbols should be regardedmerely as an abbreviation, so when I write�P(∀x)
(P(x) → Q(x)) it is shorthand for something like �Happy(∀x)(Happy(x) →
Elephant(x)).

Note that the specific choice of relations does not mater, as when a re-
lation occurs inside a � or � which does not subscript that relation, it con-
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tributes to the truth conditions for this sentence in exactly the same way
that any other relation with the same arity would. For example, the sen-
tence �Dog(∃x)(∃y)(Dog(x) ∧ Cat(y) ∧ ¬x = y) will hold if and only if �Dog

(∃x)(∃y)(Dog(x) ∧ Lemur(y) ∧ ¬x = y) does.
This reflects the fact that questions about logical possibility abstract away

from all specific facts about the relations in question (other than their arity).
Logical possibility involves considering all possibilities for the relations men-
tioned in the statement under consideration, whether we can describe them
or not (this is the analog of requiring second order quantifiers to range over all
possible collections). I emphasize this fact, because I will translate claims about
mathematical objects using claims about how it would be logically possible
for some arbitrarily chosen relations to apply (as Putnam does in Putnam 1967,
10–11) insteadof using variables boundby secondorder quantifiers asHellman
does.

Some readers may still have questions about how holding relations fixed
works. One could think about �R1...Rnφ claims as holding fixed the particular
objects in the extension of the relations R1 . . . Rn – and then asking whether
one could supplement them with other objects (and choose extensions for all
other relations) so as to make φ true.21 However, I take the intuitive notion of
preserving the structural facts about how some relations apply (that is, the facts
about what might be called the mathematical structure of the objects with
respect to some relations as opposed to facts about any particular objects) to
make sense without appeal to any notion of de re properties or object identity
across logically possible scenarios.

In terms of the CATS example, preserving the structural facts about how
cat and basket apply requires considering scenarios which agree with the
actual world on the number of objects satisfying cat(), the number of objects
satisfying basket() and the number of things in the extension of both cat() and
basket(). This does not require preserving facts about identity. For example, if
one cat died and an additional kitten was born, the structural facts about how
cat and basket apply would remain unaltered.

Speaking in set theoretic terms, wemight say that the ‘structural facts about
R1 . . . Rn’ are those facts which determine the isomorphism class of the objects
falling under22 some Rj . However, I take conditional logical possibility to be a
primitive notion which we can learn directly.

Note that this notion of relativized logical possibility is stronger than Hell-
man’s notion of unrelativized logical possibility supplemented by an actuality
operator in one important way. In Appendix 4, I show that we can capture the
same content Hellman expresses using his actuality operator by relativizing all
our possibility operators to the relations whose extension in the actual world
we wish to discuss.23 In contrast, merely using Hellman’s actuality operator
does not allow us to express claims about what is logically possible relative to
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scenarios which are themselves merely logically possible but not actual. This
feature turns out to be very useful, as we will see.

4. Reformulating Hellman’s simple paraphrases

Now we turn to demonstrating that Hellman’s paraphrases of mathematical
claims can be captured using only conditional logical possibility claims and
first order vocabulary.

4.1. Strategy

My translations will have approximately the same logical form as Hellman’s.
Given a descriptionD of amathematical structure and a statement φ about this
structure, my translation for φ will still assert that it would be logically possible
for the structure described by D to be realized, and that it is logically necessary
that if some objects have this structure than (a suitably modified version of) φ
will be true of them. However, we will need to replace all of Hellman’s use of
second order logic in his translations of mathematical statements with logical
possibility claims.

To illustrate this strategy, consider the case of mathematical statements
about the natural numbers (I describe how to generalize this approach in
Appendix 2). Recall that one can uniquely describe the intended structure of
the natural numbers by combining the first four PeanoAxioms (Weisstein 2013)
(which canbe expressed using only first order logical vocabulary)with a second
order Axiom of Induction, which can be expressed as follows24:

(∀X) (X(0) ∧ (∀n)(X(n) → X(S(n))) → (∀n)(N(n) → X(n))
)

Informally, this axiom says that if some property X applies to 0 and is closed
under successor,25 then it applies to all the numbers. We can express the same
idea using � (and a predicate we abbreviate as P26) as follows.

�N,S[P(0) ∧ (∀x)(∀y)(P(x) ∧ S(x , y) → P(y))] → (∀x)(N(x) → P(x))

This formula says that, given the facts about what is a number and a successor,
(i.e. how N and S apply), it would be logically impossible for P to apply to 027

and be closed under the successor operation but not apply to all the numbers.
Call the result of conjoining this sentence with the four first order axioms of
Peano arithmetic PA�.

Now we can slot this into Hellman’s paraphrase strategy, and so replace his
translation of any first order sentence of number theory φ.28 Thus,

�
[
(∃X)(∃f )PA2(N/X)(S/f )

]∧
�

[
(∀X)(∀f ) (PA2(N/X)(S/f ) → φ(N/X)(S/f )

)]
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becomes:

�
[
PA�(N/P)(S/R)

] ∧ �
[(
PA�(N/P)(S/R) → φ(N/P)(S/R)

)]

where P is an arbitrary one place relation and R is an arbitrary two place
relation. As noted above, logical possibility claims reflect facts about all possible
ways that a predicate P could apply - whether describable or not. Thus, my
translation of a sentence φ about the natural numbers intuitively has the
same truth value as Hellman’s translation of that sentence (assuming second
order quantification and logical possibility work as Hellman expects).29 In the
remainder of this paper, I will simply speak of the truth-values of Hellman’s
translations or Hellman’s intended truth-values, but in both cases I mean the
truth-values his translations would have if the above assumption were true.
A similar story can be told for mathematical structures other than the natural
numbers, as I show in Appendix 2.

Hellman argues for the bivalence of his translations by appealing to the
categoricity of the second order descriptions of the mathematical structures
under consideration. In other words, given any sentence ψ in the appropriate
language, either it or its negation will be necessitated by Hellman’s description
D of the relevant structure. If you accept that my translations of mathematical
sentences have the same truth-values as Hellman’s translations of these sen-
tences, thenmy translations of sentences about thesemathematical structures
will also be bivalent. However, we need not go through Hellman to see that
my translations yield bivalence in cases where it is intuitively desired (i.e. when
we seem to have a suitably definite conception of the relevant mathematical
structure).

To see how this plays out in the case of the natural numbers, note that
Hellman’s translations are intuitively bivalent because he uses second order
logic to express the idea that the numbers are as few as can be (and thereby
rule out nonstandard models which add ‘points at infinity’), by saying that any
second order X applying to 0 and closed under successor applies to all the
natural numbers. My translations do that same work by asserting that it would
be logically impossible for a predicate to apply to 0 and the successor of every
number it applies to without applying to all numbers. Intuitively this has the
same effect that Hellman intends his second order description to have, while
not presuming anything about the behavior of second order quantifiers.

5. Hellman’s potentialist set theory

Now let us turn to Hellman’s translations for statements of (pure) set theory,
which have a significantly different structure from his translations of claims
about ordinary mathematical structures.
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5.1. Motivations for potentialism

If we had a categorical description of the intended structure of the hierarchy
of sets (in the language of second order logic), we could nominalistically
paraphrase sentences in set theory using the strategy from the last section.

However, there are well-known reasons for doubting that we have any
coherent and adequate conception of absolute infinity (the supposed height of
the hierarchy of sets). The concern here is not simply that itmight be impossible
to cash the notion of absolute infinity out in other terms. After all, every theory
will have to take somenotions asprimitive. Rather, theworry is that our intuitive
notion isn’t even coherent – in the way that our naive conception of set is
incoherent (as demonstrated by Russell’s paradox).

One might like to say that the hierarchy of sets goes all the way up – so
no restrictive ideas of where it stops are needed to understand its behavior.
However, if the sets really do go ‘all the way up’ in this sense, then it would
seem that the ordinals should satisfy the following closure principle.

For any way some things could be well-ordered, there is an ordinal
corresponding30 to it.

But the ordinals themselves are well ordered, and there can be no ordinal
corresponding to this well-ordering. If the sets are a definite totality, i.e. a
logically possible collection of objects, this is a contradiction. Thus, this naive
closure principle can’t be correct.

In response, we might try to find some other characterization of the sets as
a definite structure (in particular, some other characterization of the intended
height of the hierarchy of sets31). However, it’s not clear that any intuitive
conception of the intended height of the sets remains once the paradoxical
well-ordering principle above is retracted. AsWright and Shapiro put it Shapiro
and Wright (2006), all our reasons for thinking that sets exist in the first place
appear to suggest that, for any given height which an actual mathematical
structure could have, the sets should continue up past this height. Thus, taking
set theory at face value can seem to force us to posit an unprincipled fact about
where the sets stop.32 This problem isn’t limited to realists, but applies to all
philosophers (including modal structuralists) who take set theory to be the
study of a single definite structure.

5.2. The potentialist approach to set theory

Potentialists, including Hellman, respond to this problemby taking a potential-
ist approach to set theory (along lines suggested by Putnam Putnam (1967)).
On this approach, mathematicians’ claims which appear to quantify over sets
should really be33 understood as claims about how it is (in some sense) possible
to extend initial segments of the hierarchy of sets, i.e. collections of objects
which satisfy our intuitive conception of the width of the hierarchy of sets
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but not the paradox-generating height requirement. Hellman, unsurprisingly,
understands the relevant notion of possibility in terms of logical possibility
(and I will follow him in so doing).34

The potentialist takes set theorists’ singly-quantified existence claims, like
(∃x)(x = x), to really be saying that it would be possible for a collection of
objects V0 to satisfy (a version of) ZFC2 while containing a suitable object x (in
this case, an x such that x = x). The potentialist takes set theorists’ universal
statements with a single quantifier like (∀x)(x = x), to really say that it is
necessary that any object x in a collection of objects satisfying ZFC2 would
have the relevant property.

The potentialist handles nested quantification using claims about how col-
lections of objects satisfying a version of ZFC2 could be extended. For example,
Hellman would offer the following translation of (∀x)(∃y)(x ∈ y): necessarily
if V1 satisfies ZFC2 and includes a set x , it is logically possible for there to
be an extension, V2,35 of V1, also satisfying ZFC2 and containing a set y such
that x ∈ y (in the sense of ∈ relevant to V2).36 Writing this out formally using
Hellman’snotionof logical possibilitygivesus the following sentence (implicitly
restricting V1 and V2 to range over collections of objects satisfying a version of
ZFC2 and using ≥ to denote extension):

�(∀V1)(∀x)[x ∈ V1 → �(∃V2)(∃y)(y ∈ V2 ∧ V2 ≥ V1,∧x ∈ y)]

Note that by adopting this potentialist understanding of set theory, we avoid
commitment to arbitrary limits on the intended height of the hierarchy of sets.
We also avoid the assumption that there is (or could be) any single structure
which contains ordinals witnessing all possible well-orderings, though every
possible well-ordering is realized in some possible initial segment of the sets.

6. Formulating potentialist set theory

Now let us turn to the problem of articulating a suitable replacement for
Hellman’s potentialist paraphrases which avoids second order quantification.
I will explain my version of these potentialist paraphrases informally, but the
interested reader should see Appendix 4 for more details. The appendix also
reviews why bivalence holds for my translations of sentences in set theory.37

To articulate potentialist paraphrases of set theory in terms of conditional
logical possibility, wemust first express the claim that some objects behave like
a standardwidth initial segment of the hierarchy of sets. Hellman expresses this
idea by using ZFC2, a second order version of the ZFC axioms of set theory. One
can show that ZFC2 suffices to pin down the intended width of the hierarchy
of sets (though not their height). It’s not too hard to write a version of ZFC2
in terms of my notion of conditional logical possibility, by using a version of
the trick for replacing second order quantification with claims about logically
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possible extendability demonstrated in Section 4 and generalized in Appendix
2. This approach lets us write out a sentence (as it were ZFC�[seti ,∈i]) using the
logical possibility operator which says that the objects satisfying seti under the
relation ∈i capture the behavior of an initial segment of the sets.

We now must duplicate the complex statements about extendability used
to handle nested quantification in Hellman’s paraphrases. It is straightforward
to define the claim that seti+1,∈i+1 extends seti ,∈i using only the logical
possibility operator and first order vocabulary. This allows us to talk about
possible extensions of initial segments of the sets. However, to fully represent
potentialist paraphrases, we also need to mirror Hellman’s claims which fix an
object x from among those which some relations seti ,∈i apply to, and talk
about how an element y in a potential extension seti+1,∈i+1 relates to x . As
stated, this claim involves quantifying in, but we must find another method.

The key idea behind my strategy is to require that each initial segment
of objects satisfying seti ,∈i be considered together with a relation Ri which
assigns each ‘variable’ from some countable collection38 to an object satisfy-
ing seti . Thus, Ri behaves like an assignment function which associates each
variable with some object within the initial segment Vi . We can then preserve
the behavior of this assignment function in relevant modal contexts by adding
Ri to the subscripts on relevant �s and �s and demanding that Ri+1 agree
with Ri everywhere except on the particular variable we want to select from
seti+1,∈i+1. This allows us to preserve our choice of some sets x , y and z within
seti ,∈i while considering ways that one could choose an additional object w
from within some logically possible seti+1,∈i+1 extending seti ,∈i . The overall
effect will be to duplicate what Hellman achieves via quantifying in, through
the use of the relations Ri .

7. Conclusion

In this paper I have shown how to streamline Hellman’s modal structuralist
approach to mathematics, by invoking a notion of logical possibility given
certain facts.We saw that Hellman already accepts a notion of logical possibility
holding the material facts fixed. Given this, it is only natural that he should also
accept my notion of conditional logical possibility. However, once one does
this there is no need to invoke second order quantification as an additional
primitive.

The streamlining I propose also helps us evaluate the two apparent prob-
lems formodal structuralismmentioned in the introduction.We have seen that
it is possible to completely eliminate the controversial practice of quantifying
in from Hellman’s paraphrases.

I think the technical work in this paper demonstrates that there is no
unavoidable special problem for modal structuralism caused by its reliance
on second order logic. This is not to say that modal structuralism is ontolog-
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ically innocent. Although logical possibility intuitively appears ontologically
innocent, whethermy simplification defendsmodal structuralism’s ontological
innocence or reveals that (despite our intuitions) logical possibility is itself un-
suitable for nominalist use depends on the right answer to certain controversial
background questions. Specifically, it depends on whether we ought to take
any other notionwhich does the samework as second order logic to be equally
ontologically committal.

If similarity of mathematical behavior doesn’t require (or make a strong
case for) similarity of ontological role, then my simplification allows modal
structuralism to shake off the aspersions that have been cast on its nominalistic
credentials. If it does, then we can respond by either giving up on the nomi-
nalistic acceptability of modal structuralism and admitting that the seemingly
innocentnotionof logical possibility (andpossiblymanyother notionswedon’t
suspect) is actually ontologically committal or by reevaluating our reasons for
thinking that second order logic is ontologically committal (since the results of
this paper show that although second order logic is similar to set theory which
looks ontologically committal, it is also similar to logical possibility which looks
non-committal).39

In conclusion, we’ve seen that by adopting a small generalization of Hell-
man’s notion of logical possibility (the meaningfulness of which he has already
endorsed), we can significantly streamline modal structuralism – and perhaps
solve some other problems as well.

Notes

1. The fact that you can capture logical possibility for first order sentences using
set theory is well known. Modal structuralist paraphrases attempt to show that
you can go the other way around and capture truth conditions for set theory as
a whole in terms of logical possibility.

2. By deflationary (ontological) realists, I mean philosophers who accept the ex-
istence of mathematical objects but don’t take these objects/existence facts
to be metaphysically fundamental (in terms of grounding). Such philosophers
could re-interpret Hellman’s paraphrases as bi-conditionals which explain how
existence facts about mathematical objects are systematically grounded in
facts about logical possibility (just as one might say that existence facts about
cities are systematically grounded in facts about what people are doing, while
believing that cities really exist).

3. I will focus onpuremathematics in this paper, butwewill see that the same strat-
egy can be used to streamline what Hellman says about applied mathematics
as well.

4. While this debate is commonly conducted in terms of metaphysical possibility,
it naturally raises similar concerns for logical possibility.

5. Specifically, my account of mathematics is compatible with taking Williamson
to show that any notion of possibility that allows quantifying in (such as meta-
physical possibility) must have a fixed domain – provided one thinks it doesn’t
make sense to quantify into logical possibility. Of course, it’s not compatiblewith
taking Williamson to show that every modal notion must have a fixed domain.

https://doi.org/10.1080/00455091.2017.1344502 Published online by Cambridge University Press

https://doi.org/10.1080/00455091.2017.1344502


212 S. BERRY

6. I takeQuine’s problemwithquantifying in, in ‘Reference andModality’, to be that
he dislikes the ‘Aristotelian essentialism’ of taking some properties to belong to
an object like the number 7 essentially (e.g. being less than 9) while others apply
only contingently (e.g. being the number of planets). As we will see, my system
eschews cross-world object identification of any kind (e.g. cross-world equality
or counterpart relations) as well as quantifying in. Thus criticisms like Quine’s
can’t even get off the ground.

7. It is striking that eliminating the second order quantifiers seems to result in no
significant loss of expressive power, i.e. if a structure is definable usingHellman’s
system then it is definable in my system as well.

8. See Hellman (1994) and Hellman’s later paper Hellman (1996).
9. These modified paraphrases work by assuming the logical possibility of an

(infinite) collectionof atoms and then consideringmereological fusions of atoms
and plural quantification over these fusions to mimic three layers of sets (and
functions) over this original infinite collection.

10. This assumption is controversial, as it not only commits us to the existence of
the mereological fusion of Lewis’ nose and the Eiffel tower (and the Chrysler
corporation and the Obamas’ marriage, if one believes in such non-concrete
objects) but requires we believe the same holds true in all logically possible
scenarios. Furthermore (even if Hellman is right about mereology), it can seem
unattractive to say that the true content of, say, real analysis commits one to
a generous Lewisian position on the problem of special composition (Lewis
1986) – or that mereological principles hold with logical necessity since, e.g.
this conflicts with the intuition that it would be logically possible for there to
be exactly 4 objects. For example, if arbitrary fusions exist, there could be 2
atoms and hence 3 total objects, or 3 atoms and hence 7 objects, but couldn’t
be exactly 4 objects.

11. Note that, by Lowenheim–Skolem considerations, no categorical description of
common mathematical structures such as the natural numbers can be given
using first order logic alone.

12. That is, PA2 is the result of replacing the induction schema in Peano Arithmetic
with a single induction axiom formulated in second order logic as described in
Weisstein (2013).

13. Although PA and PA2 are often formulated using a successor function, it is easy
enough to transform them into claims about a successor relation, by adding an
axiom asserting that every member of N has a unique successor in N.

14. Note, N is understood to express the property of being a number and S the
successor relation, sowe cannot use them as variables bywriting something like
(∃N)(∃S)PA2.

15. Obviously, if it isn’t really possible for there to be something satisfying PA2 (for
example because second order logic is ontologically committal and the neces-
sary second order objects can’t exist) then the paraphrase Hellman provides for
statements in arithmetic would fail.

16. Hellman’s notion of material facts seems to include (at least) the fundamental
physical facts, and definitely does not include facts aboutmathematical objects.

17. For example, see the discussion of the corresponding notion of consequence in
Field (1989) and Rayo (2013) alongside that of Hellman (1996).

18. See Etchemendy (1990) on the tension between standard Tarskian
reinterpretation-based accounts of logical possibility and the intuitive notion
of logical possibility regarding this point.
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19. At first glance, one might be tempted to simply identify claims about logical
possibility with claims about the existence of a set theoretic model. However,
philosophers such as Hartry Field have convincingly argued that, ‘We should
think of the intuitive notion of validity not as literally defined by the model
theoretic account, or in any other manner; rather, we should think of it as a
primitive notion.’ Field (2008) Very crudely, the issue is this: a key aspect of
our notion of logical possibility/validity is that what’s actual must be logically
possible. But, if we identify logical possibilitywith the existence of a set theoretic
model, then it looks puzzling why the inference from actual to possible is
permissible. After all the total universe can’t be represented as a set theoretic
model (as it contains all the sets, and hence is proper class sized) even though it
is actual.

20. Admittedly, there’s another reading of this sentence on which it expresses a
necessary falsehood. However, this is not the reading I have in mind.

21. This will give the right verdict if we assume that actually distinct objects are
distinct in all logically possible scenarios.

22. I say that an object x ‘falls under’ Rj iff it appears in some tuple in the extension
of Rj , i.e. ∃y1, . . . , ymRj(y1 . . . ym) ∧ (x = y1 ∨ x = y2 ∨ . . . ∨ x = ym).

23. Note, however, that the translations of a statement in appliedmathematics may
need to use relation symbols which do not occur in the original statement (as
per the Putnamian strategy of replacingmathematical vocabulary with arbitrary
otherwise unused relation symbols with the right arity discussed below).

24. Let P(0) be shorthand for (∃z)(∀w) (N(z) ∧ ¬S(w, z) ∧ P(z)
)
.

25. That is, X applies to a number that is not the successor of any number, and it
applies to the successor of every number it applies to.

26. P can be any one place predicate different from the predicate abbreviated byN.
27. By this I mean the unique number that isn’t a successor.
28. The strategy in Appendix 2 allows us to translate second order sentences of

number theory as well.
29. Note that I will not attempt to formally prove thatmy translations have the same

truth values Hellman intends his translations to have. Just as a formal proof is
of little value in verifying you’ve correctly formalized an English sentence into
predicate calculus, so too it is of little value in verifying my translations have the
same truth-values as Hellman’s translations (givenHellman’s assumptions about
second order logic etc.). Any formal proof would have to make assumptions
about what statements are equivalent on the intended interpretation of the
two languages – the very aspect most open to doubt.

30. By this I mean an ordinal with the same order-type as the well ordering in
question.

31. Note that theaxiomsofZFCor evenZFC2 don’t suffice to categorically determine
theheight of the set theoretic hierarchy. For example, if (asmostmathematicians
assume) the hierarchy of sets extends beyond the first inaccessible then the
initial segment of the hierarchy below that inaccessible will satisfy ZFC/ZFC2.

32. That is, it seems that facts about where the realist hierarchy of sets stops would
not be determined by anything in our conception of the sets (and maybe not
even by anything we can have knowledge of at all).

33. Strictly speaking, I take it, Putnamwould say these claims can be so understood.
34. However a number of other approaches are possible. See, for example, the

closely related accounts given by Linnebo Linnebo (2010) and Parsons Parsons
(1977).
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35. By this I mean that every element of V1 is an element of V2 and the second order
relation quantifier Hellman uses to give ∈ its meaning on V2 agrees with ∈ on
V1 (and, indeed, any element of V2 which is ∈2 an element of V1 is also in V1).

36. Actually, Hellman has a separate story about how to handle restricted quan-
tification in set theory which I elide for present purposes. See Hellman (1994)
Chapter 2 Section 2.

37. That is, if φ is a sentence in the language of set theory, either my translation of φ
or my translation of ¬φ will express a truth.

38. We can use the definition of the natural numbers to provide a countable
collection of ‘variables’ where we can use definite descriptions to uniquely refer
to each such variable. Specifically we can think about the variable symbols in the
language of set theory as being canonically associated with numbers, and use
the sentence uniquely defining the associated number to refer to the variable.

39. Most readers will probably find it immediately more attractive to say that both
second order logic and logical possibility are ‘guilty’ i.e. ontologically committal.
However, I think there’s a surprisingly attractive prima facie case for taking
the opposite approach. For, as we saw in the discussion of potentialism in 5.2,
there appears to be a simple and independentlymotivatedwayof grounding set
theoretic claims in claims about logical possibility (onewhich ismotivatedby the
Burali-Forti paradox). But, in contrast, wehave seen (in discussing Field’s remarks
in Section 3) that it does not seem possible to systematically ground facts about
logical possibility in facts about set theory. Onemight argue that these factsmil-
itate in favor of taking logical possibility to be themore grounding-fundamental
notion of the three, and therefore (perhaps) the onewhose apparent ontological
commitments reflect the true ontological commitments of everything else that
is grounded in it.

40. In this language the non-mathematical objects are taken to be ur-elements as
per (McGee 1997).

41. Our set theoretic approximation can give the wrong answers if there are ‘more’
actual objects than there are sets.

42. Note that if you are a potentialist about set theory in the sense advocated above,
these conditions do capture correct truth conditions for logical possibility but
can’t be used to define logical possibility on pain of circularity.

43. By this Imean apartial functionρ from the collection of variables in the language
of logical possibility to objects in M , such that the domain of ρ is finite and
includes (at least) all free variables inψ .

44. As usual I take � and ∀ to be abbreviations for ¬�¬ and ¬∃¬ respectively.
45. As usual φ[x/v] substitutes v for x everywhere where v occurs free in φ.
46. Remember φ can’t have any free variables.
47. For the reasons discussed in footnote 30, I haven’t tried to give a formal proof of

the fact that second order quantifiers can be replaced with conditional logical
possibility operators.

48. Officially, Hellman’s paraphrases take the form �D ∧ �(D → φ). But when D is
categorical this is equivalent to the form above.

49. That is we can assume all quantifiers are of either the form (∃x)(M(x) ∧ φ) or
(∀x)(M(x) → φ).

50. Hellman himself doesn’t give a very fleshed out story about how to handle
physical quantity statements, like ‘there is an object weighing more than 5
grams’ or say anything about how to handle probability statements (which
are especially challenging insofar as they seem to associate numbers with
something like sets of possible worlds, rather than any physical objects).
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51. We presume that the sentence to be translated does not unrestrictedly quantify
over all material objects, e.g. assert the finiteness of the material world, or
if it does there is a single predicate that applies to every material object.
Admittedly, there would be trouble if you wanted to translate a single sentence
that used all atomic vocabulary of the right arity. However, there is plenty of
atomic vocabulary that doesn’t occur in the kind of scientific applications of
mathematics which Hellman tries to capture (e.g. ‘angel’, ‘blesses’ etc.), so this is
unlikely to be a practical problem.

52. Unlike Hellman, I don’t propose to give potentialist translations of second order
statements about set theory, because unbounded second order quantification
over a potentialist hierarchy isn’t obviously meaningful. Hellman himself admits
(in Chapter 2 Section 3 of Hellman (1994)) that his translations of second order
sentences don’t behave the way we’d intuitively expect, e.g. his translation
of second order replacement doesn’t motivate his translation of first order
replacement. Also, those who like Hellman’s treatment of second order set
theory can use the techniques proposed here and in Appendix 2, in a fairly
straightforward way, to reproduce it.
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Appendix 1. A more formal approach to conditional logical
possibility
I take the notion of conditional logical possibility to be primitive and intuitive. However,
one can provide approximately correct truth conditions for sentences involving nested
applications of subscripted � and � operators, in terms of the more familiar language
of set theory with ur-elements.40

First let us define a formal language L, which I will call the language of logical
possibility (though this language may be not able to express all meaningful claims
involving logical possibility). Fix some infinite collection of variables and a collection of
relation symbols, and define L to be the smallest language built from these variables
using these relation symbols and equality closed under applications of the normal first
order connectives, quantifiers, � and � (where the latter two operators can only be
applied to sentences, so there is no quantifying in).

Specifically, if we ignore the possibility of sentences which demand something
coherent but wouldn’t have a model in the sets, (such as sentences which require
the existence of proper class many objects) and take all quantifiers appearing outside
a logical possibility operator to be implicitly restricted to some set sized domain of
non-mathematical objects41 we could say the following42:

Definition 1: A formula ψ is true relative to a model M and an assignment ρ which
takes the free variables in ψ to elements in the domain of M 43 just if the following
conditions obtain44 (note that only the last clause says something out of the ordinary):

• ψ = Ri(x1 . . . xk) and RM
i (ρ(x1), . . . , ρ(xk)) (as usual R

M
i is the interpretation of

Ri by M ).
• ψ = x = y and ρ(x) = ρ(y).
• ψ = ¬φ and φ is not true relative to M , ρ.
• ψ = φ ∧ ψ and both φ and ψ are true relative to M , ρ.
• ψ = φ ∨ ψ and either φ or ψ are true relative to M , ρ.
• ψ = ∃xφ(x) and there is an assignment ρ′ which extends ρ by assigning a value
to an additional variable v not in φ and φ[x/v] is true relative to M , ρ′45.

• ψ = �R1...Rnφ and there is another model M ′ and a bijection θ from

Ext(RM
1 , . . . , RM

n )
def=
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{y |
∨

1≤i≤n
1≤j≤ki

(∃x1, . . . , xki )
[
y = xj ∧ RM

i (x1, . . . , xki )
]
}

to Ext(RM ′
1 , . . . , RM ′

n ) such that

RM
i (x1, . . . , xki ) ⇐⇒ RM ′

i (θ(x1), . . . , θ(xki ))

and φ is true relative to M ′ and the empty assignment46.

Note that in the last clause the models M and M ′ need not share any elements.
Rather the structure Ext(RM

1 , . . . , RM
n ) (those elements appearing in some tuple in

the extension of some RM
i ) must be isomorphic (under the relations R1 . . . Rn) to

(Ext(RM ′
1 , . . . , RM ′

n )).
Set Theoretic Approximation: A sentence in the language of logical possibility is

true simpliciter iff it is true relative to a set theoretic model whose domain consists of
the actual objects (which the quantifiers in our original non-mathematical language
range over) and whose extensions for atomic relations reflects the actual extensions of
these relations and the empty assignment function ρ. Note that this definition gives
statements lacking any necessity operators the same truth values as they have in the
actual world.

Appendix 2. Modal structuralist paraphrases for regular mathe-
matics
In this appendix, I will give a general method for simplifying Hellman’s paraphrases of
non-set theoreticmathematics.47 Iwill followHellman in focusingon the casewhere the
mathematical structure under consideration has a categorical second order description
D, and provide a translation of Hellman’s paraphrases which we may assume is in the
following form48 (where all first order quantifiers in D and ψ are restricted to M49 and
no logical possibility operators appear in D or ψ ):

�(∃M)[D ∧ ψ]

We may ignore the difference between quantification over classes and quantification
over relations, by regarding class variables as unary relation variables. For visual clarity
we will use capital letters for second order quantification over relations. We will also
assume that no second order function quantifiers occur in D or ψ , though the same
mechanism can be easily extended to handle function quantifiers. Note that as all first
order quantifiers are restricted toM, we only need concern ourselves with the behavior
of relations and relation variables on elements ofM.

We may now define my translation of Hellman’s paraphrase �(∃M)[D ∧ ψ] to be
�t(D ∧ ψ)where t is defined via the following recursive definition (with t = t()).

t(R1...Rn)(∃Pφ) = �M,R1...Rn t(R1...Rn+1)(φ[P/Rn+1])]
t(R1...Rn)(∀Pφ) = �M,R1...Rn t(R1...Rn+1)(φ[P/Rn+1])]
t(R1...Rn)(¬φ) = ¬t(R1...Rn)(φ)

t(R1...Rn)(φ ∧ ψ) = t(R1...Rn)(φ) ∧ t(R1...Rn)(ψ)

t(R1...Rn)(φ ∨ ψ) = t(R1...Rn)(φ) ∨ t(R1...Rn)(ψ)
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t(R1...Rn)(∃xφ) = (∃x)[t(R1...Rn)(φ)]
t(R1...Rn)(∀xφ) = (∀x)[t(R1...Rn)(φ)]

t(R1...Rn)(Rk(x1, . . . xm)) = Rk(x1, . . . xm)

t(R1...Rn)(x1 = x2) = x1 = x2

We now argue that this translation preserves (intended) truth values. Except for the
first two lines the translation is entirely homophonic, so as long as those equalities
preserve (intended) truth values, the entire translation should do so. However, the first
and second equalities simply express the fact that, understand as Hellman intends,
second order relation variables on a domainM range over all logically possible relations
onM and vice versa. Finally, the same consideration (on a given domain, ∃M ranges over
exactly the collections it would be logically possible for a predicate to apply to) tells us
thatmoving between�(∃M)t([D∧ψ]) and�t(D∧ψ) shouldn’t change the truth value
(again assuming second order quantification operates in the usual fashion as Hellman
expects).

Appendix 3. Note about appliedmathematics
Although the aim of this paper is to simplify Hellman’s story about pure mathematics,
everything Hellman says about applied mathematics50 is also expressible using my
notion of conditional logical possibility. I only mention this fact because it means that
Hellman could adopt my simplifications without significant harm to his proposal.

As noted in Section 2, Hellman paraphrases sentences in applied mathematics, like
‘There are a prime number of rats’ with sentences of the form:

�(holding fixed all material facts)φ

where φ is a sentence asserting that if there are objects behaving like the numbers,
(or whatever mathematical objects are mentioned in the statement to be translated)
then theseobjects are related to thematerial objects in some (second-orderdescribable)
fashion. For instance,φmight assert that if some things behave like thenatural numbers,
then there is a functionwhichpairs up the rats in the actualworld in aone-to-one fashion
with those natural numbers up to some prime, thereby asserting that there are a prime
number of rats.

It is possible to do equivalent work usingmy notion of conditional logical possibility.
First we apply the technique outlined in Appendix 2 to replace second order quan-
tification with conditional logical possibility. We then add all the non-mathematical
relations mentioned in the sentence to be translated (in the example ‘there are a prime
number of rats’ this would just be the predicate ‘rat()’) as subscripts to all the � and �

operators in the sentence. The resulting sentence now simply holds fixed everymaterial
fact it actually makes use of, allowing it to be expressed in terms of conditional logical
possibility51 (without appeal to a notion of holding all the material facts fixed).

Appendix 4. Paraphrasing potentialist set theory
Potentialism about set theory replaces claims about a definite totality of setswith claims
about how initial segments of the sets can extend each other. Hellman considers initial
segments of the sets which satisfy ZFC2 and uses quantifying into formulate claims
about how these segments can be extended. We reformulate Hellman’s potentialist un-
derstanding of first order set theory.52 in the language of conditional logical possibility
in two steps.
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First, we replace the requirement that the initial segments satisfy ZFC2 with an
equivalent characterization ZFC� in terms of conditional logical possibility, using the
technique described in Appendix 2.

Secondly, we can reformulate claims about how initial segments can be extended
in a way that eschews quantifying in. Recall that potentialism translates sentences of
set theory by replacing quantifiers over the sets with statements about how it would
be possible to extend initial segments of the sets and choose elements from those
initial segments, e.g. if φ is quantifier free then ∃xφ(x) would translate to �[ZFC�(set,
∈ )∧ (∃x)(set(x)∧ φ(x))]where this says that it would be logically possible for there to
be an initial segment of the hierarchy of sets containing an object that satisfied φ.

To express potentialist truth conditionswithoutquantifying in, Iwill require that each
initial segment seti ,∈i be paired with an associated assignment relation Ri which (in
effect) assigns each of the countably many variables x1, x2…in the first-order language
of set theory to objects within seti . When we ask about the possibility of extending the
current initial segment (seti ,∈i ) we can place Ri in the subscript of all further � and �

expressions to pass along the information about variable assignments. We allow this
choice of assignments for variables to be modified to allow variables to be assigned
to objects in seti+1 (an initial segment extending seti ) by defining another assignment
Ri+1 whichmust agree with Ri everywhere except for on the (number representing) the
variable allowed to range over seti+1.

I will use V (Va) to abbreviate the claim that seta,∈a satisfy ZFC�(seta,∈a ) and Ra
behaves like (the relation corresponding to) an assignment function from the objects
satisfying N to those satisfying seta. More concretely this amounts to the conjunction
of the following three claims:

• ZFC�(seta,∈a ), i.e. Va behaves like an initial segment of the hierarchy of sets.
• N, S satisfy PA�.
• Ra behaves like a function from N to seta

Remember that, as discussed on page 12, schematic relation symbols (like ∈, seta and
P) are used as a mnemonic device in place of suitable non-mathematical relations with
the same arity.

Note thatmyonly reason for using PA� is that the natural numbers (under successor)
contain infinitely many definable objects, which we can use to represent variables, for
example 1 represents x1, 2 represents x2 etc. In what follows, I will use n, to abbreviate
the formula where n is replaced by a variable constrained to be the (unique) n-th
successor of 0. Thus, for example, a claim of the form φ(1) abbreviates (∀x)[S(0, x) →
φ(x)]. I will abbreviate the conditionalized logical possibility operators �setn ,∈n ,N,S,Rn
and �setn ,∈n ,N,S,Rn by �Vn and �Vn respectively.

I will use Va ≥i Vb to abbreviate the claim that the seta under ∈a extends the setb
under ∈b and the assignment of variables Rb agrees with Ra everywhere except on i
(where i is the code for xi ). Put more concretely, this is to say that

• V (Va)
• V (Vb)
• (∀x)[setb(x) → seta(x)]
• (∀x)(∀y)[seta(y) → (x ∈b y ↔ x ∈a y)]
• (∀n)[N(n) → n = i ∨ (∀y)(Ra(n, y) ↔ Rb(n, y))]

We can now translate the set theoretic utterance (∃x)(∀y)(x = y ∨ ¬y ∈ x) into a
claim about how it is logically possible for set1,∈1, R1 to be extended. First we rewrite
this set theoretic statement in a regimented language with numbered variables as
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(∃x1)(∀x2)[x1 = x2 ∨ ¬x2 ∈ x1]. Then we translate this sentence into:

�(V (V1) ∧ �V1 [V2 ≥2 V1 →
(∀z)(∀y)(R2(1, z) ∧ R2(2, y) → z = y ∨ ¬y ∈2 z)])

That is, such ∃x1∀x2 sentences can be understood as making a claim with the following
form. There could be a model of set theory set1,∈1 and a relation R1 assigning 1
(representing x1) to an element of set1 so that it is necessary (holding fixed set1,∈1, R1
and the numbers) than any model of set theory set2,∈2 extending set1,∈1 and relation
R2 assigning 2 to an element of set2 (while agreeing with R1 about the assignment
of 1) makes the interior of the above formula true when x1, x2 are replaced by the
assignments of 1, 2 by R2 and ∈ is replaced with ∈2.

The same strategy works more generally to produce paraphrases of arbitrary sen-
tences in the language of pure set theory. We can use recursive applications of the
following principles to translate every sentence in the first-order language of set theory
into a claim about logically possible extendability.

In particular we define tn as follows:

• tn(xi ∈ xj) is the claim that Rn assigns i to an object ∈n the object it assigns to j i.e.
(∀z)(∀z′)[Rn(i, z) ∧ Rn(j, z′) → z ∈n z′]

• tn(xi = xj) is the claim that Rn assigns i to the same object it assigns j to i.e.
(∀z)(∀z′)[Rn(i, z) ∧ Rn(j, z′) → z = z′]

• tn(¬φ) = ¬tn(φ)
• tn(φ ∨ ψ) = tn(φ) ∨ tn(ψ)
• for n ≥ 0, tn+1((∀xi)φ(x)) : �Vn [Vn+1 ≥i Vn → tn+2(φ)]
• for n ≥ 0, tn+1((∃xi)φ(x)) : �Vn [Vn+1 ≥i Vn ∧ tn+2(φ)]
• t0((∀x)φ(x)) : �[V (V0) → t1(φ)]
• t0((∃x)φ(x)) : �[V (V0) ∧ t1(φ)]

The translation of a set theoretic sentence φ is t0(φ). Note that the validity of the above
translation relies on the fact that for any two structures satisfyingZFC2 one is isomorphic
to an initial segment of the other. Hellman invokes a version of this claim in Chapter
2 Section 3 of Hellman (1994) and I think an analogous argument can be made within
my formal system, but reasons of space prevent me from demonstrating this here. Also
note that in the above definition we can replace Vj with Vj mod 2 without affecting the
truth value of the translation. This allows us to translate sentences with arbitrarily many
quantifier alternations using a fixed finite number of atomic relations.

Note that this translationhonors the intuitive bivalence of the languageof set theory.
Consider an arbitrary set theoretic sentence φ. t(φ) = t0(φ) and t(¬φ) = t0(¬φ) =
¬(t0(φ)). Thus either t(φ) or t(¬φ)will be true.
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