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Abstract

Draw-down time for a stochastic process is the first passage time of a draw-down level
that depends on the previous maximum of the process. In this paper we study the
draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes.
Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously
stayed below the dynamic draw-down level for a fixed amount of time. We introduce
the draw-down Parisian ruin time and solve the corresponding two-sided exit problems
via excursion theory. We also find an expression for the potential measure for the pro-
cess killed at the draw-down Parisian time. As applications, we obtain new results for
spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.
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1. Introduction

The concept of Parisian stopping time was first proposed in [5] for option pricing in
mathematical finance. The papers [13] and [12] later introduced Parisian ruin time for lin-
ear Brownian motion and the Cramér–Lundberg risk processes to model the ruin problem
with implementation delay, where expressions for the Parisian ruin probability were provided.
Intuitively, for a risk process, the Parisian ruin time is the first time when the surplus process
has stayed below level 0 continuously for a time period of a predetermined duration r.

The Parisian ruin problem has since been studied extensively under the framework of spec-
trally negative Lévy processes. By considering spectrally negative Lévy processes of bounded
and unbounded variation, [9] found the respective expressions for the Parisian ruin proba-
bility. The authors of [21] revisited the Parisian ruin probability and provided an expression
which is considerably simpler than that of [9], and unifies the results for spectrally negative
Lévy processes of bounded and of unbounded variation. In [20], the result of [21] was further
extended to refracted Lévy processes. The Parisian-ruin-related dividend optimization prob-
lem was investigated in [10], where the barrier dividend strategy turned out to be the optimal
strategy. Work on a variant of the above model in which the duration r is random can be found
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Draw-down Parisian ruin 1165

in [17], [2], and [14]. Recent work concerning the Parisian ruin with an ultimate bankruptcy
level can be found in [8], [11], and [6].

Results on Parisian ruin are often expressed using the scale functions and the marginal
density for the spectrally negative Lévy process. The approaches in the previous literature on
Parisian ruin for Lévy risk processes typically involve arguments concerning fluctuation iden-
tities if the underlying Lévy process has sample paths of bounded variation. Approximation
and limiting arguments are further needed to handle the case of unbounded variation.

More recently, in [22] a novel approach is adopted by connecting the desired Parisian ruin
fluctuation quantity with the solution to the Kolmogorov forward equation for a spectrally
negative Lévy process to find the joint Laplace transform of the Parisian ruin time and the
Parisian ruin position, as well as an expression for the q-potential measure of the process killed
at the Parisian ruin time.

Since Parisian ruin is defined using excursions of the underlying process, one would expect
excursion theory to play a role in its investigation. But we are not aware of any previous studies
of Parisian ruin problems via excursion theory.

A general draw-down time for a stochastic process is a downward first passage time of
a dynamic level that depends on the previous supremum of the process. It generalizes the
classical ruin time of first passage from a fixed level and helps to understand the path-dependent
relative downward fluctuations from the previous supremum for the underlying process.

The draw-down time was first studied for diffusions in [18]. Some early work on draw-
down time for spectrally negative Lévy processes can be found in [24]. In [1], draw-down
exit problems were studied for taxed spectrally negative Lévy processes using both excursion
theory and an approximation approach. More recent fluctuation results concerning the draw-
down times for spectrally negative Lévy processes such as the associated joint distribution, the
potential measure, and creeping behaviors were obtained in [19] via excursion theory. Many
ruin-time-related results for spectrally negative Lévy risk processes can be generalized to the
associated draw-down time setting, and at the same time, the obtained expressions are in terms
of scale functions that remain semi-explicit. We refer to [27] for recent work on draw-down
reflected spectrally negative Lévy processes.

In the study of ruin problems with implementation delay in actuarial risk theory, it is inter-
esting to take into consideration the historical performance of the surplus process and adjust
the delay accordingly. Given the previous results on both the Parisian ruin probability and the
draw-down time, it comes naturally to introduce the general draw-down feature to the Parisian
ruin problem for spectrally negative Lévy risk processes. In this way the Parisian ruins can be
associated to the previous historical high of the process, which makes it possible to pose more
elaborate Parisian ruin problems and leads to better understanding of fluctuation behaviors
for Parisian ruin. In this paper we are going to implement this idea and generalize the known
results on Parisian ruin time to those concerning the general draw-down Parisian ruin time.

We recently noticed that the two-sided exit problem involving the draw-down Parisian
ruin time was studied in [26] for the classical draw-down process using fluctuation theory;
the author investigated only the classical draw-down rather than the general draw-down. We
remark that the solution to the two-sided exit problem in [26] can be recovered from one of our
results; see Remark 4.2 concerning the general draw-down.

More precisely, for spectrally negative Lévy risk processes we find solutions to the two-
sided exit problems associated to the draw-down Parisian ruin times. We also find an expression
for the potential measure associated to the draw-down Parisian ruin time. In addition, we obtain
recursive expressions for moments of accumulated time-discounted increments of the running
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supremum up to the draw-down Parisian ruin time. As applications, we recover a previous
result and obtain new results on Parisian ruin for a spectrally negative Lévy risk process with
a constant dividend barrier.

To prove the main results, we adopt the excursion theory approach, which we find very
handy for draw-down fluctuation arguments for spectrally negative Lévy processes. To this
end, we first identify the associated exit quantity under the excursion measure for the excursion
process of a reflected spectrally negative Lévy process from its running supremum. Since the
draw-down-related quantities can be expressed using the excursion process, the desired results
then follow from compensation formulas. A similar approach can be found in [19]. To the best
of our knowledge, this paper represents the first attempt at applying excursion theory to the
study of Parisian ruin problems.

The rest of the paper is arranged as follows. After the introduction in Section 1, in Section 2
we briefly review the spectrally negative Lévy process, the associated scale functions, the
draw-down time, and several draw-down fluctuation results. Section 3 introduces the excursion
process of the spectrally negative Lévy process reflected from its previous supremum, together
with results on the excursion measure related to the Parisian ruin time. The main results and
proofs are contained in Section 4. In Section 5, we apply the main results to spectrally negative
Lévy processes with Parisian ruin and dividend barrier, thereby recovering previously known
results and obtaining new results.

2. Preliminaries on spectrally negative Lévy processes and Parisian ruin problems

We first briefly introduce spectrally negative Lévy processes, the associated scale functions,
and some fluctuation identities. Write X ≡ {X(t); t ≥ 0}, defined on a probability space with
probability laws {Px; x ∈ (− ∞,∞)} and natural filtration {Ft; t ≥ 0}, for a spectrally negative
Lévy process that is not a purely increasing linear drift or the negative of a subordinator. Denote
its running supremum process by

X̄(t) := sup
0≤s≤t

X(s), t ≥ 0.

The Laplace exponent of X is given by

ψ(θ ) := lnEx

(
eθ(X(1)−x)

)
= γ θ + 1

2
σ 2θ2 −

∫
(0,∞)

(
1 − e−θx − θx1(0,1)(x)

)
ν(dx),

where the Lévy measure ν satisfies
∫

(0,∞)

(
1 ∧ x2

)
ν(dx)<∞. It is known thatψ(θ ) is finite for

θ ∈ [0,∞), and it is strictly convex and infinitely differentiable. As in [3], the q-scale functions
{W(q); q ≥ 0} of X are defined as follows. For each q ≥ 0, W(q) : [0,∞) → [0,∞) is the unique
strictly increasing and continuous function with Laplace transform∫ ∞

0
e−θxW(q)(x)dx = 1

ψ(θ ) − q
, for θ >�q,

where�q is the largest solution of the equationψ(θ ) = q. Further define W(q)(x) = 0 for x< 0,
and write W for the 0-scale function W(0). Note that W(q)(0 +) = 0 if and only if the process X
has sample paths of unbounded variation.

For p, p + q ≥ 0, y> 0, and x ∈ (− ∞,∞), define two more scale functions as

W(p,q)
y (x) := W(p)(x) + q

∫ x

y
W(p+q)(x − w)W(p)(w)dw
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and

Z(p)(x) := 1 + p
∫ x

0
W(p)(w)dw.

For any x ∈R and ϑ ≥ 0, define an exponential change of measure for the spectrally negative
Lévy process by

dPϑx
dPx

∣∣∣∣Ft

= eϑ(X(t)−x)−ψ(ϑ)t.

Furthermore, note that under the probability measures Pϑx , the process X remains a spectrally

negative Lévy process. From now on we denote by W(q)
ϑ and Wϑ the q-scale function and

0-scale function, respectively, under the measure P
ϑ
x .

For the process X, define its first up-crossing time and down-crossing time of level
a ∈ (− ∞,∞) by

τ+
a := inf{t ≥ 0 : X(t)> a} and τ−

a := inf{t ≥ 0:X(t)< a},
respectively. It can be found in [16] that

Ex

(
e−qτ+

a 1{τ+
a <τ

−
0 }
)

= W(q)(x)

W(q)(a)
, x ∈ (− ∞, a]. (1)

In addition, it follows from [28] that

lim
x→∞

W(q)′(x)

W(q)(x)
=�q and lim

y→∞
W(q)(x + y)

W(q)(y)
= e�qx. (2)

A function ξ : (− ∞,∞) → (− ∞,∞) is called a draw-down function if ξ (x)< x for all the
values of x that are of concern. Define the ξ -draw-down time τξ of X as

τξ := inf{t ≥ 0 : X(t)< ξ (X̄(t))},
with the convention that inf ∅ := ∞. We call ξ (X̄(τξ )) the associated draw-down level. By [19],
for ξ̄ (z) := z − ξ (z) we have

Ex

(
e−qτ+

a 1{τ+
a <τξ }

)
= exp

{
−
∫ a

x

W(q)′(ξ̄ (z))

W(q)(ξ̄ (z))
dz

}
, x ∈ (− ∞, a]. (3)

For r> 0 the Parisian ruin time is defined by

κr := inf{t> r : t − gt > r} with inf ∅ := ∞,

where
gt := sup{0 ≤ s ≤ t : X(s) ≥ 0} with sup ∅ := 0.

Given the draw-down function ξ , we define the ξ -draw-down Parisian ruin time of X as

κξr := inf{t> r : t − gξt > r} with inf ∅ := ∞,

where
gξt := sup{0 ≤ s ≤ t : X(s) ≥ ξ (X̄(s))} with sup ∅ := 0.
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From [21] and [10], we have

Px(κr <∞)= 1 −E(X(1))

∫∞
0 W(x + z)zP(X(r) ∈ dz)∫∞

0 zP(X(r) ∈ dz)
, x ∈ (− ∞,∞),

and

Ex

(
e−qτ+

a 1{τ+
a <κr}

)
= �

(q)
r (x)

�
(q)
r (a)

, x ∈ (− ∞, a], (4)

where

�(q)
r (x):=

∫ ∞

0
e−�qz+qrW(q)(x + z)

z

r
P
�q (X(r) ∈ dz)

=
∫ ∞

0
W(q)(x + z)

z

r
P (X(r) ∈ dz).

Note that �(q)
r can be treated as a scale function associated to the Parisian ruin.

Write �r := �
(0)
r for simplicity. Then

Px(κr <∞)= 1 − E (X(1))∫∞
0

z
rP (X(r) ∈ dz)

�r(x).

For b ∈ (0,∞), let

D(t) := (X̄(t) − b
)∨ 0, t ≥ 0, (5)

denote the accumulated amount of dividends paid until time t of the barrier strategy with barrier
at level b.

In this paper, we are interested in the following fluctuation quantities related to the draw-
down Parisian ruin time:

(i) The draw-down Parisian-ruin-time-related two-sided exit problem

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r ∧τη}

)
, x ∈ (− ∞,∞), a ∈ [x,∞),

where η is another draw-down function such that η(z)< ξ (z)< z for all z ≤ a.

(ii) The joint Laplace transform involving the draw-down Parisian ruin time, the position of
X at the draw-down Parisian ruin time, and its running supremum until the draw-down
Parisian ruin time:

Ex

(
e
−q
(
κ
ξ
r −r

)
eλX(κξr )−ψ(λ)rϕ(X̄(κξr ))1{κξr <τ+

a }

)
, x ∈ (− ∞, a], a ∈ (− ∞,∞),

where ϕ : (− ∞,∞) → (− ∞,∞) is an arbitrary bounded measurable function.

(iii) The potential measure of X involving the draw-down Parisian ruin time,∫ ∞

0
e−q(t−r)

Ex
(

f (X(t), X̄(t)); t< κξr ∧ τ+
a

)
dt, x ∈ (− ∞, a], a ∈ (− ∞,∞),

where f is an arbitrary bounded bivariate function which is differentiable with respect
to the first argument.
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(iv) The kth moment of the following integral involving D, which can be interpreted as
the accumulated amount of time-discounted dividends up to the draw-down Parisian
ruin time:

Vξk (x; b) :=Ex

(
[Db]k

)
, x ∈ (− ∞,∞), b ∈ (0,∞),

with

Db := Dξ,b :=
∫ κ

ξ
r

0−
e−qt dD(t).

Further let Vk(x) := Vξk (x; x), x ∈ (− ∞,∞). For ξ (x) = (x − b) ∨ 0 with b> 0, Db can
be interpreted as the accumulated discounted dividends paid according to the barrier
dividend strategy with barrier at level b until the draw-down Parisian ruin time.

We assume the differentiability of �(q)
r whenever needed. In fact, by (2) and the definition of

�
(q)
r , �(q)

r inherits the same differentiability as W(q). It is known that, when X has sample paths of
unbounded variation, or when X has sample paths of bounded variation and the Lévy measure
has no atoms, the scale function W(q) (and hence �(q)

r ) is continuously differentiable over (0,∞)
(resp. (− ∞,∞)). Moreover, if X has a nontrivial Gaussian component, then W(q) (and hence
�

(q)
r ) is twice continuously differentiable over (0,∞) (resp. (− ∞,∞)). The interested reader

is referred to [4] and [15] for more detailed discussions on the smoothness of scale functions.

3. Excursion process and Parisian-ruin-related quantities under excursion measure

In this section, we briefly recall basic concepts in excursion theory for the reflected process
{X̄(t) − X(t); t ≥ 0}, and we refer to [3] for more details. We also obtain new Parisian-ruin-
related results on the excursion measure.

For x ∈ (− ∞,∞), the process {L(t) := X̄(t) − x, t ≥ 0} is a local time at 0 for the Markov
process {X̄(t) − X(t); t ≥ 0} under Px. The corresponding inverse local time is defined as

L−1(t) := inf{s ≥ 0 : L(s)> t} = sup{s ≥ 0 : L(s) ≤ t}.
Further, let L−1(t −) := lim

s↑t
L−1(s). Define a Poisson point process {(t, εt); t ≥ 0} by

εt(s) := X(L−1(t)) − X(L−1(t −) + s), s ∈ (0, L−1(t) − L−1(t −)] (6)

whenever the lifetime of εt is strictly positive, i.e. L−1(t) − L−1(t −)> 0. If L−1(t) −
L−1(t −) = 0, define εt :=ϒ with ϒ being an additional isolated point. It is known that ε is
a Poisson point process taking values in the space of excursion paths with characteristic mea-
sure n if {X̄(t) − X(t); t ≥ 0} is recurrent; otherwise, {εt; t ≤ L(∞)} is a Poisson point process
stopped at the first excursion of infinite lifetime. Here, n is a σ -finite measure on the space E
of excursions, i.e. the space E of càdlàg functions f satisfying

f : (0, ζ ) → (0,∞) for some ζ ∈ (0,∞] and f (ζ ) ∈ (0,∞) if ζ <∞,

where ζ ≡ ζ ( f ) denotes the excursion length or lifetime; see Definition 6.13 of [16] for the
definition of E . Denote by ε( · ), or ε for short, a generic excursion belonging to the space
E of canonical excursions. The excursion height of a canonical excursion ε is denoted by
ε̄ = sup

t∈[0,ζ ]
ε(t).
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With a little abuse of notation, for a ∈ (0,∞) and t ∈ [0, ζ ], let

ga
t (ε) :=

⎧⎨
⎩

inf{s ∈ [0, ζ ] : s ≤ t, ε(w) ≥ a for all w ∈ [s, t]} if ε(t) ≥ a,

t otherwise;

and

da
t (ε) :=

{
sup{s ∈ [0, ζ ] : s ≥ t, ε(w) ≥ a for all w ∈ [t, s)} if ε(t) ≥ a,

t otherwise.

Write ζ a
t (ε) := da

t (ε) − ga
t (ε) for the length of the maximum time interval (containing t)

when the canonical excursion ε stays above the level a. Further define

α+
a (ε) := inf{ga

t (ε) : t ∈ [0, ζ ], ζ a
t (ε)> r},

with the convention that inf ∅ := ζ . Intuitively, α+
a (ε) is the starting time of the first time

interval of length more than r when the excursion path stays continuously above level a.
The following result gives the excursion measure of the event that there exists a time interval

with length at least r during which either the excursion process continuously stays above level
z> 0, or there is an excursion with height strictly greater than z + y for some y> 0.

Proposition 3.1. For any z, y ∈ (0,∞), we have

n
(
α+

z (ε)< ζ or ε > z + y
)= W ′(z)φ(y, r) + χ ′(z, y, r)

W(z)φ(y, r) + χ(z, y, r)
, (7)

where the derivative of χ is with respect to the first argument, and the Laplace transforms of
φ(y, r) and χ(x, y, r) (in r) are given, respectively, by∫ ∞

0
e−θrχ(x, y, r) dr = 1

θ

(
W(θ,−θ)

y (x + y)

W(θ)(y)
− W(x)Z(θ)(y)

W(θ)(y)

)

and ∫ ∞

0
e−θrφ(y, r) dr = Z(θ)(y)

θW(θ)(y)
.

Proof. It follows from Theorem 1 of [11] that

1 − Px
(
κr ∧ τ−−y <∞)=E (X(1))

(
W(x) + χ(x, y, r)

φ(y, r)

)
(8)

for any fixed positive y. By the strong Markov property, for a> x we have

Px
(
κr ∧ τ−−y <∞)= Px

(
τ+

a < κr ∧ τ−−y <∞)+ Px
(
κr ∧ τ−−y < τ

+
a

)
= Px

(
τ+

a < κr ∧ τ−−y

)
Pa
(
κr ∧ τ−−y <∞)+ 1 − Px

(
τ+

a < κr ∧ τ−−y

)
,

which together with (8) implies

Px
(
τ+

a < κr ∧ τ−−y

)= 1 − Px
(
κr ∧ τ−−y <∞)

1 − Pa
(
κr ∧ τ−−y <∞)

= W(x)φ(y, r) + χ(x, y, r)

W(a)φ(y, r) + χ(a, y, r)
. (9)

https://doi.org/10.1017/apr.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.36


Draw-down Parisian ruin 1171

Because {(t, εt); t ≥ 0} defined via (6) is a Poisson point process with intensity measure dt × dn,
we have

Px
(
τ+

a < κr ∧ τ−−y

)=Ex

( ∏
t≤a−x

1{α+
x+t(εt)=ζ (εt), εt≤x+t+y}

)

= exp

(
−
∫ a−x

0
n
(
α+

x+t(ε)< ζ or ε > x + t + y
)

dt

)

= exp

(
−
∫ a

x
n
(
α+

w (ε)< ζ or ε >w + y
)

dw

)
, (10)

where εt denotes the excursion height of εt. Combining (9) and (10) yields (7). �
We next prove a version of Proposition 3.1 for y = ∞.

Corollary 3.1. For any x ∈ (0,∞), we have

n
(
α+

x (ε)< ζ
)= �′r(x)

�r(x)
.

Proof. By definition we have∫ ∞

0
e−θr (W(x)φ(y, r) + χ(x, y, r)) dr = W(θ,−θ)

y (x + y)

θW(θ)(y)
. (11)

The definition of W(θ,−θ)
y (x + y) together with (2) yields

lim
y↑∞

W(θ,−θ)
y (x + y)

θW(θ)(y)
= e�θ x

(
1

θ
−
∫ x

0
W(w) e−�θw dw

)

=
∫ ∞

0
W(x + w) e−�θw dw, (12)

which coincides with the Laplace transform (in r) of �r(x) as follows:∫ ∞

0
e−θr�r(x) dr =

∫ ∞

0
e−θr

∫ ∞

0
W(x + z)

z

r
P (X(r) ∈ dz) dr

=
∫ ∞

0
e−θr

∫ ∞

0
W(x + z)P(τ+

z ∈ dr)dz

=
∫ ∞

0
W(x + z)E(e−θτ+

z )dz

=
∫ ∞

0
W(x + w) e−�θw dw, (13)

where we have used Kendall’s identity,

z

r
P (X(r) ∈ dz) dr = P(τ+

z ∈ dr)dz, z, r ≥ 0.

By (11), (12), (13), and the continuity of Laplace transforms, we have

lim
y↑∞ (W(x)φ(y, r) + χ(x, y, r))= �r(x).
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In fact, the same arguments as above lead to

lim
y↑∞

(
W ′(x)φ(y, r) + χ ′(x, y, r)

)= �′r(x).

Therefore,

n
(
α+

x (ε)< ζ
)= lim

y↑∞ n
(
α+

x (ε)< ζ or ε > x + y
)

= lim
y↑∞

W ′(x)φ(y, r) + χ ′(x, y, r)

W(x)φ(y, r) + χ(x, y, r)
= �′r(x)

�r(x)
,

which is the desired result. �
Remark 3.1. Applying Corollary 3.1 and a property of Poisson random measure, we have for
x< a that

Px
(
τ+

a < κr
)= Px

(
α+

x+t(εt) = ζ (εt), t ≤ a − x
)

= e− ∫ a−x
0 n(α+

x+t(ε)<ζ )dt = e− ∫ a−x
0

�′r (x+t)
�r (x+t) dt = �r(x)

�r(a)
.

Then (4) can be recovered via a change of measure.

Denote by εg the excursion (away from 0) for the reflected process {X̄(s) − X(s); s ≥ 0}
starting at time g in the time scale for X, i.e. g = L−1(t −)< L−1(t) for some t ≥ 0 and εg := εt.
In addition, denote by ζg := ζ (εt) and ε̄g := ε̄t its lifetime and its excursion height, respectively,
and write α+

a (εg) := α+
a (εt); see Section IV.4 of [3]. The following result gives the joint Laplace

transform involving α+
a under the excursion measure.

Proposition 3.2. For any q, λ ∈ [0,∞) and a, r ∈ (0,∞), we have

n
(

e−qα+
a (ε)eλ(a−ε(α+

a (ε)+r))−ψ(λ)r1{α+
a (ε)<ζ }

)

= �
(q)′
r (a)

�
(q)
r (a)

(
eλa − (ψ(λ) − q)

(
eλa

∫ a

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (a)ds

))

− λeλa + (ψ(λ) − q)

(
λeλa

∫ a

0
W(q)(z)e−λzdz + W(q)(a)

+
∫ r

0
e−ψ(λ)s �(q)′

s (a)ds

)
. (14)

Proof. Given q, λ≥ 0, r, a> 0, and a ≥ x, by Theorem 3.1 in [22] we have

Ex

(
e−q(κr−r)eλX(κr)−ψ(λ)r1{κr<τ

+
a }
)

= eλx − (ψ(λ) − q)

(
eλx
∫ x

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (x)ds

)

− �
(q)
r (x)

�
(q)
r (a)

(
eλa − (ψ(λ) − q)

(
eλa

∫ a

0
W(q)(z)e−λzdz

+
∫ r

0
e−ψ(λ)s �(q)

s (a)ds

))
. (15)
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By (4) and the compensation formula (see for example Corollary 4.11 of [3] or Theorem 4.4
of [16]), one gets

Ex

(
e−q(κr−r)eλX(κr)−ψ(λ)r1{κr<τ

+
a }
)

=Ex

⎛
⎝∑

g

e−qg
∏
h<g

1{α+
x+L(h)(εh)= ζh, x+L(g)≤a}e

−qα+
x+L(g)(εg)

× e
λ
(

x+L(g)−εg

(
α+

x+L(g)(εg)+r
))

−ψ(λ)r
1{α+

x+L(g)(εg)<ζg
}
)

=Ex

(∫ ∞

0
e−qw

∏
h<w

1{α+
x+L(h)(εh)= ζh, x+L(w)≤a}

∫
E

e−qα+
x+L(w)(ε)

× e
λ
(

x+L(w)−ε
(
α+

x+L(w)(ε)+r
))

−ψ(λ)r
1{α+

x+L(w)(ε)<ζ } n( dε) dL(w)

)

=Ex

⎛
⎝∫ a−x

0
e−qL−1(w−)

∏
h<L−1(w−)

1{α+
x+L(h)(εh)= ζh}

×
∫
E

e−qα+
x+w(ε)eλ

(
x+w−ε(α+

x+w(ε)+r
))−ψ(λ)r1{α+

x+w(ε)<ζ } n( dε) dw

)

=
∫ a

x
Ex

(
e−qτ+

w 1{τ+
w <κr}

)
n
(

e−qα+
w (ε)eλ(w−ε(α+

w (ε)+r))−ψ(λ)r1{α+
w (ε)<ζ }

)
dw

=
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

n
(

e−qα+
w (ε)eλ(w−ε(α+

w (ε)+r))−ψ(λ)r1{α+
w (ε)<ζ }

)
dw,

where εh(h ≤ g) denotes the excursion (away from 0) with left endpoint h for the reflected
process {X̄(t) − X(t); t ≥ 0}, and ζh and ε̄h denote its lifetime and excursion height, respectively.
Note that by (15),

�
(q)
r (x)

�
(q)
r (a)

n
(

e−qα+
a (ε)eλ(a−ε(α+

a (ε)+r))−ψ(λ)r1{α+
a (ε)<ζ }

)

= �
(q)
r (x) �(q)′

r (a)(
�

(q)
r (a)

)2

(
eλa − (ψ(λ) − q)

(
eλa

∫ a

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (a)ds

))

− �
(q)
r (x)

�
(q)
r (a)

(
λeλa − (ψ(λ) − q)

(
λeλa

∫ a

0
W(q)(z)e−λzdz + W(q)(a)

+
∫ r

0
e−ψ(λ)s �(q)′

s (a)ds

))
.

We thus obtain (14). �
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The following result gives an expression for the potential measure of the excursion process
until time α+

a + r under the excursion measure.

Proposition 3.3. For any q, λ ∈ [0,∞), a, r ∈ (0,∞) and any bounded differentiable function
f, we have

W(q)(0 +) eqrf (a) + n

(∫ ζ

0
e−q(t−r)f (a − ε(t) )1{α+

a (ε)>t−r}dt

)

= �
(q)′
r (a)

�
(q)
r (a)

(∫ r

0
eq(r−s)

Ea ( f (X(s)))ds −
∫ a

0
W(q)(a − z)Ez ( f (X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (a)ds

)

−
∫ r

0
eq(r−s)

E
(

f ′(a + X(s))
)
ds +

∫ a

0
W(q)′(a − z)Ez ( f (X(r)))dz

+ W(q)(0 +)Ea ( f (X(r)))+
∫ r

0
E ( f (X(r − s))) �(q)′

s (a)ds. (16)

Proof. Let eq be an exponentially distributed random variable with mean 1/q independent
of X. For q, λ≥ 0 and r, b> 0 with x ≤ a, we have∫ ∞

0
e−q(t−r)

Ex
(

f (X(t)); t<κr ∧ τ+
a

)
dt

=Ex

(∫ κr∧τ+
a

0
e−q(t−r)f (X(t)) d

(∫ t

0
1{X(s)=X̄(s)}ds

))

+ 1

q
Ex

(
eqrf (X(eq)) 1{eq<κr∧τ+

a }1{X(eq)<X̄(eq)}
)

:= h1(x) + h2(x). (17)

Note that ∫ t

0
1{X(s)=X̄(s)}ds = W(q)(0 +) X̄(t)

and that X(t) = X̄(t) implies t = L−1(L(t)) almost surely. Thus, the function h1(x) can be further
expressed as follows:

W(q)(0 +)Ex

(∫ ∞

0
e−q

(
L−1(L(t))−r

)
f (x + L(t))1{x+L(t)≤a, L−1(L(t))<κr}dL(t)

)

= W(q)(0 +)Ex

(∫ a−x

0
e−q

(
L−1(w)−r

)
f (x + w)1{L−1(w)<κr}dw

)

= W(q)(0+) eqr
∫ a−x

0
Ex

(
e−qL−1(w)1{L−1(w)<κr}

)
f (x + w)dw

= W(q)(0 +) eqr
∫ a−x

0
Ex

(
e−qτ+

x+w 1{τ+
x+w<κr}

)
f (x + w)dw
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= W(q)(0 +) eqr
∫ a

x
Ex

(
e−qτ+

w 1{τ+
w <κr}

)
f (w)dw

= W(q)(0 +) eqr
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

f (w)dw, (18)

where (4) is used in the final equality.
To further develop h2(x), note that X(eq)< X̄(eq) if and only if there is an excursion with left

endpoint g such that eq ∈ (g, g + ζg). Hence, by the compensation formula and the memoryless
property of the exponential random variable, h2(x) can be rewritten as

1

q
Ex

(∑
g

eqr
∏
h<g

1{α+
x+L(h)(εh)= ζh, x+L(g)≤a}

× f (x + L(g) − εg
(
eq − g

)
)1{α+

x+L(g)(εg)>eq−g−r, 0<eq−g<ζg}

)

= 1

q
Ex

(∑
g

e−q(g−r)
∏
h<g

1{α+
x+L(h)(εh)= ζh, x+L(g)≤a}

× f (x + L(g) − εg(eq))1{α+
x+L(g)(εg)>eq−r, eq<ζg}

)

= 1

q
Ex

(∫ ∞

0
e−q(w−r)

∏
h<w

1{α+
x+L(h)(εh)= ζh, x+L(w)≤a}

×
∫
E

f (x + L(w) − ε
(
eq
)

)1{α+
x+L(w)(ε)>eq−r, eq<ζ }n( dε) dL(w)

)

= 1

q
Ex

(∫ a

x
e−q(τ+

w −r)1{τ+
w <κr}

∫
E

f (w − ε
(
eq
)

)1{α+
w (ε)>eq−r, eq<ζ }n( dε) dw

)

=
∫ a

x
Ex

(
e−qτ+

w 1{τ+
w <κr}

)
n

(∫ ζ

0
e−q(t−r)f (w − ε(t) )1{α+

w (ε)>t−r}dt

)
dw

=
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

n

(∫ ζ

0
e−q(t−r)f (w − ε(t) )1{α+

w (ε)>t−r}dt

)
dw. (19)

It follows from (17), (18), and (19) that

∫ ∞

0
e−q(t−r)

Ex
(

f (X(t)); t< κr ∧ τ+
a

)
dt

= W(q)(0 +) eqr
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

f (w)dw

+
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

n

(∫ ζ

0
e−q(t−r)f (w − ε(t) )1{α+

w (ε)>t−r}dt

)
dw. (20)

https://doi.org/10.1017/apr.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.36


1176 W. WANG AND X. ZHOU

Meanwhile, by Theorem 4.4 of [22] we know that

∫ ∞

0
e−q(t−r)

Ex
(

f (X(t)); t< κr ∧ τ+
a

)
dt

=
∫ r

0
eq(r−s)

Ex( f (X(s)))ds −
∫ x

0
W(q)(x − z)Ez ( f (X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (x)ds

− �
(q)
r (x)

�
(q)
r (a)

(∫ r

0
eq(r−s)

Ea ( f (X(s)))ds −
∫ a

0
W(q)(a − z)Ez ( f (X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (a)ds

)
. (21)

Combining (20) and (21), we obtain (16). �
Remark 3.2. For any b ∈ (− ∞,∞), if we replace f (x) with f (x, b) in Proposition 3.3, by
similar arguments we have

W(q)(0 +) eqrf (a, b) + n

(∫ ζ

0
e−q(t−r)f (a − ε(t), b)1{α+

a (ε)>t−r}dt

)

= �
(q)′
r (a)

�
(q)
r (a)

(∫ r

0
eq(r−s)

Ea ( f (X(s), b))ds −
∫ a

0
W(q)(a − z)Ez ( f (X(r), b))dz

−
∫ r

0
E ( f (X(r − s), b)) �(q)

s (a)ds

)

−
∫ r

0
eq(r−s)

E

(
∂

∂x
f (a + X(s), b)

)
ds +

∫ a

0
W(q)′(a − z)Ez ( f (X(r), b))dz

+ W(q)(0 +) Ea ( f (X(r), b))+
∫ r

0
E ( f (X(r − s), b)) �(q)′

s (a)ds

)
. (22)

Remark 3.3. Letting f (x) := eλx−ψ(λ)r in Proposition 3.3, we have

n

(∫ ζ

0
e−q(t−r)eλ(a−ε(t))−ψ(λ)r1{α+

a (ε)>t−r} dt

)
+ W(q)(0 +) eqreλa−ψ(λ)r

= �
(q)′
r (a)

�
(q)
r (a)

(
eλa

(
1 − e−(ψ(λ)−q)r

)
ψ(λ) − q

− eλa
∫ a

0
W(q)(z)e−λzdz −

∫ r

0
e−ψ(λ)s �(q)

s (a)ds

)

− λeλa
(
1 − e−(ψ(λ)−q)r

)
ψ(λ) − q

+ λeλa
∫ a

0
W(q)(z)e−λzdz + W(q)(a)

+
∫ r

0
e−ψ(λ)s �(q)′

s (a)ds.
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4. Main results

In this section we present several results concerning the draw-down Parisian ruin. The first
result below solves a draw-down Parisian-ruin-based two-sided exit problem. It generalizes
Theorem 1 of [11].

Theorem 4.1. Given any a, let η be another draw-down function such that η(z)< ξ (z)< z for
z ≤ a. For any x ∈ (− ∞, a), we have

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r ∧τη}

)

= exp

(
−
∫ a

x

W(q)′(ξ (w))φ�q
(ξ (w) − η(w), r) + χ (q)′(ξ (w), ξ (w) − η(w), r)

W(q)(ξ (w))φ
�q

(ξ (w) − η(w), r) + χ (q)(ξ (w), ξ (w) − η(w), r)
dw

)
,

where the Laplace transforms of φ�q
(y, r) and χ (q)(x, y, r) := e�qxχ�q

(x, y, r) with respect to
r are given, respectively, by∫ ∞

0
e−θrχ (q)(x, y, r) dr

= 1

θ

(
W(θ+q,−θ)

y (x + y)

W(θ+q)(y)
− W(q)(x)e�qy

(
1 + θ

∫ y
0 e−�qwW(θ+q)(w)dw

)
W(θ+q)(y)

)
(23)

and ∫ ∞

0
e−θrφ

�q
(y, r) dr = e�qy

(
1 + θ

∫ y
0 e−�qwW(θ+q)(w)dw

)
θW(θ+q)(y)

; (24)

here, y ∈ (0,∞), the derivative of χ (q) is taken on the first argument, and φ�q
and χ�q

play the

roles of φ and χ for the process (X, P
�q
x ).

Proof. By (7) and an argument similar to that of (10) we have

Px
(
τ+

a < κξr ∧ τη
)

=Ex

( ∏
t≤a−x

1{α+
ξ(x+t)

(εt)=ζ (εt), εt≤η(x+t)}

)

= exp

(
−
∫ a

x
n
(
α+
ξ (w)

(ε)< ζ or ε > ξ (w) + ξ (w) − η(w)
)

dw

)

= exp

(
−
∫ a

x

W ′(ξ (w))φ(ξ (w) − η(w), r) + χ ′(ξ (w), ξ (w) − η(w), r)

W(ξ (w))φ(ξ (w) − η(w), r) + χ(ξ (w), ξ (w) − η(w), r)
dw

)
, (25)

where η(w) := w − η(w). By (25) together with a change of measure, one has

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r ∧τη}

)

= e−�q(a−x)
P
�q
x
(
τ+

a < κξr ∧ τη
)

= e−�q(a−x) exp

(
−
∫ a

x
n�q

(
α+
ξ (w)

(ε)< ζ or ε > η(w)
)

dw

)
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= e
−�q(a − x)− ∫ a

x

W′
�q

(ξ(w))φ�q
(ξ(w) − η(w),r) + χ ′

�q
(ξ(w),ξ(w) − η(w),r)

W�q (ξ(w))φ�q
(ξ(w) − η(w),r) + χ�q

(ξ(w),ξ(w) − η(w),r)
dw

= e
− ∫ a

x

W(q)′(ξ(w))φ�q
(ξ(w) − η(w),r) + χ(q)′(ξ(w),ξ(w) − η(w),r)

W(q)(ξ(w))φ�q
(ξ(w) − η(w),r) + χ(q)(ξ (w),ξ(w) − η(w),r)

dw

,

where
W�q (x) = e−�qxW(q)(x), χ�q

(x, y, r) = e−�qxχ (q)(x, y, r),

and n�q
represents the excursion measure under the new probability measure P

�q
x . �

We next provide a version of Theorem 4.1 for η≡ −∞.

Corollary 4.1. For x ∈ (− ∞, a), we have

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r }
)

= exp

(
−
∫ a

x

�
(q)′
r (ξ (w))

�
(q)
r (ξ (w))

dw

)
. (26)

Proof. By definition we have

W(θ+q,−θ)
y (x + y) = W(θ+q)(x + y) − θ

∫ x

0
W(q)(w)W(θ+q)(x + y − w) dw,

which together with (2) yields

lim
y↑∞

W(θ+q,−θ)
y (x + y)

θW(θ+q)(y)

= e�θ+qx
(

1

θ
−
∫ x

0
W(q)(w) e−�θ+qw dw

)

= e�θ+qx
(

1

θ
−
∫ ∞

0
W(q)(w) e−�θ+qw dw +

∫ ∞

x
W(q)(w) e−�θ+qw dw

)

=
∫ ∞

0
W(q)(x + w) e−�θ+qw dw. (27)

This coincides with the Laplace transform (in r) of e−qr�
(q)
r (x) as follows:∫ ∞

0
e−θre−qr�(q)

r (x) dr =
∫ ∞

0
e−(θ+q)r

∫ ∞

0
W(q)(x + z)

z

r
P (X(r) ∈ dz) dr

=
∫ ∞

0
e−(θ+q)r

∫ ∞

0
W(q)(x + z)P(τ+

z ∈ dr)dz

=
∫ ∞

0
W(q)(x + z)E(e−(θ+q)τ+

z )dz

=
∫ ∞

0
W(q)(x + w) e−�θ+qw dw, (28)

where we have used Kendall’s identity,

z

r
P (X(r) ∈ dz) dr = P(τ+

z ∈ dr)dz, z, r ≥ 0.
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From (23) and (24) one knows that

∫ ∞

0
e−θr

(
W(q)(x)φ�q

(y, r) + χ (q)(x, y, r)
)

dr = W(θ+q,−θ)
y (x + y)

θW(θ+q)(y)
. (29)

Combining (27), (28), and (29), one can conclude that

lim
y↑∞

(
W(q)(x)φ�q

(y, r) + χ (q)(x, y, r)
)

= e−qr�(q)
r (x).

By the same arguments, we have

lim
y↑∞

(
W(q)′(x)φ�q

(y, r) + χ (q)′(x, y, r)
)

= e−qr�(q)′
r (x).

Hence, we have

lim
c↑∞

W(q)′(ξ (w))φ�q
(c + ξ (w), r) + χ (q)′(ξ (w), c + ξ (w), r)

W(q)(ξ (w))φ�q
(c + ξ (w), r) + χ (q)(ξ (w), c + ξ (w), r)

= �
(q)′
r (ξ (w))

�
(q)
r (ξ (w))

.

It then follows easily from Theorem 4.1 that

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r }
)

= lim
c↑∞ Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r ∧τ−−c}

)

= exp

(
−
∫ a

x

�
(q)′
r (ξ (w))

�
(q)
r (ξ (w))

dw

)
,

which is the desired result. �
Remark 4.1. Letting ξ ≡ 0 in (26), one recovers (18) of [10]:

Ex

(
e−qτ+

a 1{τ+
a <κr}

)
= exp

(
−
∫ a

x

�
(q)′
r (w)

�
(q)
r (w)

dw

)
= �

(q)
r (x)

�
(q)
r (a)

.

Letting ξ (x) = kx − d with k ∈ (− ∞, 1) and d ∈ (0,∞) in (26), we have

Ex

(
e−qτ+

a 1{τ+
a <κ

ξ
r }
)
=
(
�

(q)
r ((1 − k)x + d)

�
(q)
r ((1 − k)a + d)

) 1
1−k

.

By (26), one can also obtain the draw-down Parisian ruin probability

Px
(
κξr <∞)= 1 − exp

(
−
∫ ∞

x

�′r(ξ (z))

�r(ξ (z))
dz

)
.
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The following result presents the joint Laplace transform involving the draw-down Parisian
ruin time, the position of X at the draw-down Parisian ruin time, and its running supremum
until the draw-down Parisian ruin time. It generalizes Theorem 3.1 in [22].

Theorem 4.2. For any q, λ∈ [0,∞), x ∈ (− ∞,∞), a ≥ x and any bounded measurable
function ϕ: (− ∞,∞) �→ (− ∞,∞), we have

Ex

(
e
−q
(
κ
ξ
r −r

)
eλX(κξr )−ψ(λ)rϕ(X̄(κξr ))1{κξr <τ+

a }

)

=
∫ a

x
eλξ (w)ϕ(w) exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

) [
�

(q)′
r (ξ (w))

�
(q)
r (ξ (w))

(
eλξ (w) − (ψ(λ) − q)

×
(

eλξ (w)
∫ ξ (w)

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (ξ (w))ds

))

− λeλξ(w) + (ψ(λ) − q)

(
λeλξ(w)

∫ ξ (w)

0
W(q)(z)e−λzdz

+ W(q)(ξ (w)) +
∫ r

0
e−ψ(λ)s �(q)′

s (ξ (w))ds

)]
dw. (30)

Proof. By (26) and the compensation formula, we have

Ex

(
e
−q
(
κ
ξ
r −r

)
eλX(κξr )−ψ(λ)rϕ(X̄(κξr ))1{κξr <τ+

a }

)

=Ex

(∑
g

e−qgϕ(x + L(g))
∏
h<g

1{α+
ξ (x+L(h))

(εh)= ζh, x+L(g)≤a}e
−qα+

ξ (x+L(g))
(εg)

× e
λ
(

x+L(g)−εg

(
α+
ξ (x+L(g))

(εg)+r
))

−ψ(λ)r
1{α+

ξ (x+L(g))
(εg)<ζg}

)

=Ex

(∫ ∞

0
e−qwϕ(x + L(w))

∏
h<w

1{α+
ξ(x+L(h))

(εh)= ζh, x+L(w)≤a}
∫
E

e
−qα+

ξ(x+L(w))
(ε)

×e
λ
(

x+L(w)−ε
(
α+
ξ (x+L(w))

(ε)+r
))

−ψ(λ)r
1{α+

ξ (x+L(w))
(ε)<ζ } n( dε) dL(w)

)

=Ex

( ∫ a−x

0
e−qL−1(w−)ϕ(x + w)

∏
h<L−1(w−)

1{α+
ξ (x+L(h))

(εh)= ζh}

×
∫
E

e
−qα+

ξ (x+w)
(ε)

e
λ
(

x+w−ε
(
α+
ξ (x+w)

(ε)+r
))

−ψ(λ)r
1{α+

ξ(x+w)
(ε)<ζ } n( dε) dw

)

=
∫ a

x
ϕ(w)Ex

(
e−qτ+

w 1{τ+
w <κ

ξ
r }

)

× n

(
e
−qα+

ξ(w)
(ε)

e
λ
(

w−ε
(
α+
ξ (w)

(ε)+r
))

−ψ(λ)r
1{α+

ξ (w)
(ε)<ζ }

)
dw
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=
∫ a

x
eλξ (w)ϕ(w) exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

)

× n

(
e
−qα+

ξ(w)
(ε)

e
λ
(
ξ (w)−ε

(
α+
ξ(w)

(ε)+r
))

−ψ(λ)r
1{α+

ξ (w)
(ε)<ζ }

)
dw,

which together with (14) yields (30). �
Remark 4.2. By Theorem 4.2, for any q ∈ [0,∞), x ∈ (− ∞,∞), and a ∈ [x,∞) we have

Ex

(
e
−q
(
κ
ξ
r −r

)
1{κξr <τ+

a }

)

=
∫ a

x
exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

) [
�

(q)′
r (ξ (w))

�
(q)
r (ξ (w))

(
Z(q)(ξ (w)) + q

∫ r

0
�(q)

s (ξ (w))ds

)

− q

(
W(q)(ξ (w)) +

∫ r

0
�(q)′

s (ξ (w))ds

)]
dw.

Letting a ↑ ∞ and then choosing ξ (w) = w ∨ y − a with 0 ≤ y − x< a<∞ gives

Ex

(
e
−q
(
κ
ξ
r −r

)
1{κξr <∞}

)

=
∫ y

x

∂

∂w

[
−�(q)

r (x − y + a)

�
(q)
r (w − y + a)

(
Z(q)(w − y + a) + q

∫ r

0
�(q)

s (w − y + a)ds

)]
dw

+ �
(q)
r (x − y + a)

�
(q)
r (a)

∫ ∞

y
exp

(
−
∫ w

y

�
(q)′
r (a)

�
(q)
r (a)

dz

) [
�

(q)′
r (a)

�
(q)
r (a)

(
Z(q)(a) + q

∫ r

0
�(q)

s (a)ds

)

− q

(
W(q)(a) +

∫ r

0
�(q)′

s (a)ds

)]
dw

=
[

−�(q)
r (x − y + a)

�
(q)
r (w − y + a)

(
Z(q)(w − y + a) + q

∫ r

0
�(q)

s (w − y + a)ds

)] ∣∣∣∣∣
w=y

w=x

+ �
(q)
r (x − y + a)

�
(q)′
r (a)

[
�

(q)′
r (a)

�
(q)
r (a)

(
Z(q)(a) + q

∫ r

0
�(q)

s (a)ds

)
− q

(
W(q)(a) +

∫ r

0
�(q)′

s (a)ds

)]

= Z(q)(x − y + a) + q
∫ r

0
�(q)

s (x − y + a)ds − q
�

(q)
r (x − y + a)

�
(q)′
r (a)

(
W(q)(a) +

∫ r

0
�(q)′

s (a)ds

)
,

which recovers Theorem 2.1 of [26]. It can then be checked via a change of measure that
Proposition 2.3 of [26] can also be recovered from our Theorem 4.2.

The following result gives the potential measure of X involving the draw-down Parisian ruin
time. It generalizes Theorem 4.4 in [22].

https://doi.org/10.1017/apr.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.36


1182 W. WANG AND X. ZHOU

Theorem 4.3. For any q, λ≥ 0, r> 0, a ≥ x and any bounded bivariate function f(x,y) that is
differentiable with respect to x, we have∫ ∞

0
e−q(t−r)

Ex
(

f (X(t), X̄(t)); t< κξr ∧ τ+
a

)
dt

=
∫ a

x
exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

) [
�

(q)′
r (ξ (w))

�
(q)
r (ξ (w))

(∫ r

0
eq(r−s)

E ( f (w + X(s),w))ds

−
∫ ξ (w)

0
W(q)(ξ (w) − z)E ( f (z + ξ (w) + X(r),w))dz

−
∫ r

0
E ( f (ξ (w) + X(r − s),w)) �(q)

s (ξ (w))ds

)

−
∫ r

0
eq(r−s)

E

(
∂

∂x
f (w + X(s),w)

)
ds

+
∫ ξ (w)

0
W(q)′(ξ (w) − z)E ( f (z + ξ (w) + X(r),w))dz

+ W(q)(0 +)E ( f (w + X(r),w))+
∫ r

0
E( f (ξ (w) + X(r − s),w))�(q)′

s (ξ (w))ds

]
dw.

Proof. For q, λ≥ 0 and r> 0 with a ≥ x, we have∫ ∞

0
e−q(t−r)

Ex
(

f (X(t), X̄(t)); t< κξr ∧ τ+
a

)
dt

=Ex

(∫ κ
ξ
r ∧τ+

a

0
e−q(t−r)f (X(t), X̄(t)) d

(∫ t

0
1{X(s)=X̄(s)}ds

))

+ 1

q
Ex

(
eqrf (X(eq), X̄(eq)) 1{X(eq)<X̄(eq), eq<κ

ξ
r ∧τ+

a }
)

:= I1(x) + I2(x). (31)

Note that ∫ t

0
1{X(s)=X̄(s)}ds = W(q)(0 +) X̄(t)

and that X(t) = X̄(t) implies t = L−1(L(t)) almost surely. The function I1(x) can be rewritten as

W(q)(0 +)Ex

(∫ ∞

0
e−q

(
L−1(L(t))−r

)
f (x + L(t), x + L(t))

× 1{x+L(t)≤a, L−1(L(t))<κξr }dL(t)

)

= W(q)(0 +)Ex

(∫ a−x

0
e−q

(
L−1(w)−r

)
f (x + w, x + w)1{L−1(w)<κξr }dw

)
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= W(q)(0 +) eqr
∫ a−x

0
Ex

(
e−qL−1(w)1{L−1(w)<κξr }

)
f (x + w, x + w)dw

= W(q)(0 +) eqr
∫ a

x
e
− ∫ w

x
�
(q)′
r (ξ(z))

�
(q)
r (ξ(z))

dz
f (ξ (w) + ξ (w), ξ (w) + ξ (w))dw, (32)

where (4) is used in the last equality. Using the compensation formula, the function I2(x) can
be rewritten as

1

q
Ex

(∑
g

eqr
∏
h<g

1{α+
ξ (x+L(h))

(εh)= ζh, x+L(g)≤a}

× f (x + L(g) − εg
(
eq − g

)
, x + L(g))1{α+

ξ(x+L(g))
(εg)>eq−g−r, 0<eq−g<ζg}

)

=1

q
Ex

(∑
g

e−q(g−r)
∏
h<g

1{α+
ξ (x+L(h))

(εh)= ζh, x+L(g)≤a}

× f (x + L(g) − εg(eq), x + L(g))1{α+
ξ(x+L(g))

(εg)>eq−r, eq<ζg}

)

=1

q
Ex

(∫ ∞

0
e−q(w−r)

∏
h<w

1{α+
ξ (x+L(h))

(εh)= ζh, x+L(w)≤a}

×
∫
E

f (x + L(w) − ε
(
eq
)
, x + L(w))1{α+

ξ(x+L(w))
(ε)>eq−r, eq<ζ }n( dε) dL(w)

)

=1

q
Ex

(∫ a

x
e−q(τ+

w −r)1{τ+
w <κ

ξ
r }

∫
E

f (w − ε
(
eq
)
,w)1{α+

ξ(w)
(ε)>eq−r, eq<ζ }n( dε) dw

)

=
∫ a

x
exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

)

× n

(∫ ζ

0
e−q(t−r)f (ξ (w) − ε(t)+ ξ (w), ξ (w) + ξ (w))1{α+

ξ (w)
(ε)>t−r}dt

)
dw. (33)

Combining (31), (32), (33), and (22) leads to the desired result. �
We have the following version of Theorem 4.3 when f is independent of y.

Corollary 4.2. For any q, λ≥ 0, r> 0, a ≥ x and any bounded differentiable function f,
we have∫ ∞

0
e−q(t−r)

Ex
(

f (X(t)); t< κξr ∧ τ+
a

)
dt

=
∫ a

x
exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

) [
�

(q)′
r (ξ (w))

�
(q)
r (ξ (w))

(∫ r

0
eq(r−s)

E ( f (w + X(s)))ds

−
∫ ξ (w)

0
W(q)(ξ (w) − z)E ( f (z + ξ (w) + X(r)))dz
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−
∫ r

0
E ( f (ξ (w) + X(r − s))) �(q)

s (ξ (w))ds

)

−
∫ r

0
eq(r−s)

E
(

f ′(w + X(s))
)
ds +

∫ ξ (w)

0
W(q)′(ξ (w) − z)E ( f (z + ξ (w) + X(r)))dz

+ W(q)(0 +) E ( f (w + X(r)))+
∫ r

0
E ( f (ξ (w) + X(r − s))) �(q)′

s (ξ (w))ds

)]
dw.

The following result gives the Laplace transform of the potential measure of X killed upon
up-crossing a (≥ x) or draw-down Parisian ruin.

Corollary 4.3. For any q, λ≥ 0, r> 0, and a ≥ x, we have

Ex

(∫ κ
ξ
r ∧τ+

a

0
e−q(t−r)eλX(t)−ψ(λ)rdt

)

=
∫ a

x
eλξ (w) exp

(
−
∫ w

x

�
(q)′
r (ξ (z))

�
(q)
r (ξ (z))

dz

) [
�

(q)′
r (ξ (w))

�
(q)
r (ξ (w))

(
eλξ(w)

(
1 − e−(ψ(λ)−q)r

)
ψ(λ) − q

− eλξ (w)
∫ ξ (w)

0
W(q)(z)e−λzdz −

∫ r

0
e−ψ(λ)s �(q)

s (ξ (w))ds

)

− λeλξ(w)
(
1 − e−(ψ(λ)−q)r

)
ψ(λ) − q

+ λeλξ(w)
∫ ξ (w)

0
W(q)(z)e−λzdz

+ W(q)(ξ (w)) +
∫ r

0
e−ψ(λ)s �(q)′

s (ξ (w))ds

]
dw.

Proof. Letting f (x) := eλx−ψ(λ)r in Theorem 4.3, or using the compensation formula together
with Remark 3.3, one can get the desired result. �

Recall the definition of Vξk (x; b) at the end of Section 2. The following result generalizes
(20) in [10] and Propositions 1 and 2 in [25].

Theorem 4.4. For any q ≥ 0 and k ≥ 1, we have

Vξk (x; b)=
∫ ∞

b
kVk−1(z) exp

(
−
∫ z

x

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r
(
ξ̄ (w)

) dw

)
dz, x ∈ (−∞, b] ,

where

Vk(x)=
∫ ∞

x
kVk−1(z) exp

(
−
∫ z

x

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r

(
ξ̄ (w)

) dw

)
dz, x ∈ (− ∞,∞),

with V0 (x)≡ 1.

Proof. For ε > 0 and any integer n ≥ 1, we have

Eb

((∫ τ+
b+ε

0
e−qsD (s)ds

)n

1{τ+
b+ε<κ

ξ
r }

)
= o(ε) (34)
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and

Eb

((∫ κ
ξ
r

0
e−qsdD (s)

)n

1{κξr <τ+
b+ε }

)
= o(ε). (35)

Actually, X
(
τ+

b+ε
)= b + ε implies D(s) ≤ ε for all s ∈ [0, τ+

b+ε]. Hence, the left-hand side of
(34) is less than

εn
Eb

[(∫ τ+
b+ε

0
e−qsds

)n

1{
τ+

b+ε<κ
ξ
r

}
]

≤ε
n

qn

(
Eb

[
1{
τ+

b+ε<κ
ξ
r

}]−Eb

[
e−qτ+

b+ε1{
τ+

b+ε<κ
ξ
r

}])

=ε
n

qn

(
exp

(
−
∫ b+ε

b

�′r
(
ξ̄ (w)

)
�r
(
ξ̄ (w)

)dw

)
− exp

(
−
∫ b+ε

b

�
(q)′
r
(
ξ̄ (w)

)
�
(q)
r
(
ξ̄ (w)

) dw

))
= o(ε).

which gives (34). By integration by parts, the left-hand side of (35) can be rewritten as

Eb

[(
e−qκξr D(κξr ) + q

∫ κ
ξ
r

0
e−qsD (s)ds

)n

1{κξr <τ+
b+ε }

]

≤ Eb

[(
εe−qκξr + ε

∫ κ
ξ
r

0
qe−qsds

)n

1{κξr <τ+
b+ε }

]

= εn

(
1 − exp

(
−
∫ b+ε

b

�′r
(
ξ̄ (w)

)
�r
(
ξ̄ (w)

)dw

))
= o(ε),

which gives (35). By (35), one has

Vk(b)=Eb

(
[Db]k 1{τ+

b+ε<κ
ξ
r }
)

+ o(ε).

Using the strong Markov property and the binomial theorem, one can rewrite the term

Eb

(
[Db]k 1{τ+

b+ε<κ
ξ
r }
)

as

Eb

⎡
⎣ k∑

i=0

Ci
k

(∫ τ+
b+ε

0
e−qsdD (s)

)i(∫ κ
ξ
r

τ+
b+ε

e−qsdD (s)

)k−i

1{τ+
b+ε<κ

ξ
r }

⎤
⎦

=Eb

⎡
⎣ k∑

i=0

Ci
k

(∫ τ+
b+ε

0
e−qsdD (s)

)i

1{
τ+

b+ε<κ
ξ
r

}(e−qτ+
b+ε
)k−i

Vk−i(b + ε)

⎤
⎦

=
k∑

i=0

Ci
kVk−i(b + ε)Eb

⎡
⎣(∫ τ+

b+ε

0
e−qsdD (s)

)i

e−(k−i)qτ+
b+ε1{τ+

b+ε<κ
ξ
r }

⎤
⎦
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=
k∑

i=0

Ci
kVk−i(b + ε)Eb

[
e−(k−i)qτ+

b+ε
i∑

j=0

Cj
iε

je−jqτ+
b+ε

×
(

q
∫ τ+

b+ε

0
e−qsD (s)ds

)i−j

1{τ+
b+ε<κ

ξ
r }

⎤
⎦

=
k∑

i=0

Ci
kVk−i(b + ε)

i∑
j=0

Cj
iε

j
Eb

[
e−q(k−i+j)τ+

b+εqi−j

×
(∫ τ+

b+ε

0
e−qsD (s)ds

)i−j

1{τ+
b+ε<κ

ξ
r }

⎤
⎦ , (36)

where the identity

Eb

⎛
⎝(∫ κ

ξ
r

τ+
b+ε

e−qsdD (s)

)i
∣∣∣∣∣∣Fτ+

b+ε

⎞
⎠

=Eb

⎛
⎝
(∫ κ

ξ
r

τ+
b+ε

e−qsd
(
(X̄(s) − (b + ε)) ∨ 0

))i
∣∣∣∣∣∣Fτ+

b+ε

⎞
⎠

= e−iqτ+
b+ε Vi(b + ε), i ≥ 0,

is used for the first equality in (36). By (34) and (35), one can keep only those summands with
j = i = 1 or j = i = 0 in (36), and then

Vk(b)=Vk (b + ε)Eb

[
e−kqτ+

b+ε1{
τ+

b+ε<κ
ξ
r

}]

+ kVk−1 (b + ε)Eb

[
εe−kqτ+

b+ε1{
τ+

b+ε<κ
ξ
r

}]+ o(ε)

= (Vk (b + ε)+ kεVk−1 (b + ε)) exp

(
−
∫ b+ε

b

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r

(
ξ̄ (w)

) dw

)
+ o(ε),

which can be rearranged as

0 =
(

Vk (b + ε)− Vk (b)

ε
+ kVk−1 (b + ε)

)
exp

(
−
∫ b+ε

b

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r

(
ξ̄ (w)

) dw

)

+ Vk (b)
−1 + exp

(
− ∫ b+ε

b
�
(kq)′
r (ξ̄ (w))

�
(kq)
r (ξ̄ (w))

dw

)
ε

+ o(1). (37)

Letting ε→ 0 in (37) we get

0 = V ′
k (b)+ kVk−1 (b)− Vk (b)

�
(kq)′
r

(
ξ̄ (b)

)
�
(kq)
r

(
ξ̄ (b)

) . (38)
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By the standard method of variation of constants, one can obtain the solution of (38) with
boundary conditions Vk (∞)= 0 and V0(x) = 1 as

Vk (b)=
∫ ∞

b
kVk−1(z) exp

(
−
∫ z

b

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r

(
ξ̄ (w)

) dw

)
dz.

For x ∈ (−∞, b] and k ≥ 1, we have

Vξk (x; b)=Ex

⎡
⎣
(∫ κ

ξ
r

τ+
b

e−qs d
(
X̄(s) − b

))k

1{τ+
b <κ

ξ
r }

⎤
⎦

=Ex

(
e−kqτ+

b 1{τ+
b <κ

ξ
r }
)

Vk(b)

= exp

(
−
∫ b

x

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r
(
ξ̄ (w)

) dw

) ∫ ∞

b
kVk−1(z) exp

(
−
∫ z

b

�
(kq)′
r

(
ξ̄ (w)

)
�
(kq)
r

(
ξ̄ (w)

) dw

)
dz.

The proof is complete. �
Remark 4.3. In the above proof, we borrow a binomial argument from [25]. But our arguments
related to the Parisian draw-down time are more involved because we need to keep track of the
running supremum process of X. In addition, we employ a differential equation argument.

Remark 4.4. For k = 1 we present an alternative, more transparent argument. Given a> b, by
(26) we have

V1(b) =Eb

(∫ ∞

0
1{L(t)<L(τ+

a ∧κξr )}e
−qt dL(t)

)

=
∫ ∞

0
Eb

(
e−qL−1(y)1{y<L(τ+

a )=a−b, y<L(κξr )}
)

dy

=
∫ a−b

0
Eb

(
e−qL−1(y)1{L−1(y)<κξr }

)
dy

=
∫ a

b
Eb

(
e−qτ+

z 1{τ+
z <κ

ξ
r }
)

dz

=
∫ a

b
exp

(
−
∫ z

b

�
(q)′
r (ξ (w))

�
(q)
r (ξ (w))

dw

)
dz. (39)

5. Application of draw-down Parisian ruin results to a spectrally negative Lévy process
reflected at its past supremum

Recall the dividend process D defined in (5). Let the corresponding risk process with
dividends deducted according to the barrier strategy with barrier level b be defined as

Y(t) := X(t) − D(t), t ≥ 0.

For fixed b ∈ (0,∞), if we choose the general draw-down function ξ such that

ξ (z) := ξb(z) = (z − b)∨ 0, z ∈ (− ∞,∞),
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then we have

κξr := inf{t> r:t − gξt > r}, where gξt := sup{0 ≤ s ≤ t : Y(s) ≥ 0};

i.e., κξr = κ
ξb
r degenerates to the classical Parisian ruin time for the risk process Y. In addition,

by the definition of τξ we have

τξb := inf{t ≥ 0 : Y(t) ≤ 0},

which is the ruin time for the risk process Y.
The following result gives the potential measure of Y upon the up-crossing time of level a

or the Parisian ruin time of Y.

Corollary 5.1. For b ∈ (0,∞), ξ = ξb, q, λ≥ 0, r> 0, a ≥ x, and bounded differentiable
function f, we have

∫ ∞

0
e−q(t−r)

Ex
(

f (Y(t)); t<κξb
r ∧ τ+

a

)
dt

=
[

− �
(q)
r (x)

�
(q)
r (w)

(∫ r

0
eq(r−s)

E ( f (w + X(s)))ds −
∫ w

0
W(q)(w − z)E ( f (z + X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (w)ds

)] ∣∣∣∣∣
w=a∧b

w=x

+ �
(q)
r (x)

�
(q)′
r (b)

(
1 − e

− �
(q)′
r (b)

�
(q)
r (b)

(a−b)
)[

�
(q)′
r (b)

�
(q)
r (b)

(∫ r

0
eq(r−s)

E ( f (b + X(s)))ds

−
∫ b

0
W(q)(b − z)E ( f (z + X(r)))dz −

∫ r

0
E ( f (X(r − s))) �(q)

s (b)ds

)

−
∫ r

0
eq(r−s)

E
(

f ′(b + X(s))
)
ds +

∫ b

0
W(q)′(b − z)E ( f (z + X(r)))dz

+ W(q)(0 +) E ( f (b + X(r)))+
∫ r

0
E ( f (X(r − s))) �(q)′

s (b)ds

]
1(b,∞)(a).

Proof. Replacing ξ and f (x,y) respectively with ξb and f (x − (y − b) ∨ 0) in Theorem 4.3
yields

∫ ∞

0
e−q(t−r)

Ex
(

f (Y(t)); t< κξb
r ∧ τ+

a

)
dt

=
∫ a

x
exp

(
−
∫ w

x

�
(q)′
r (z ∧ b)

�
(q)
r (z ∧ b)

dz

) [
�

(q)′
r (w ∧ b)

�
(q)
r (w ∧ b)

(∫ r

0
eq(r−s)

E ( f (w ∧ b + X(s)))ds

−
∫ w∧b

0
W(q)(w ∧ b − z)E ( f (z + X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (w ∧ b)ds

)
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−
∫ r

0
eq(r−s)

E
(

f ′(w ∧ b + X(s))
)
ds +

∫ w∧b

0
W(q)′(w ∧ b − z)E ( f (z + X(r)))dz

+ W(q)(0 +)E ( f (w ∧ b + X(r)))+
∫ r

0
E ( f (X(r − s))) �(q)′

s (w ∧ b)ds

]
dw

=
∫ a

x

∂

∂w

[
−�(q)

r (x)

�
(q)
r (w)

(∫ r

0
eq(r−s)

E ( f (w + X(s)))ds −
∫ w

0
W(q)(w − z)E ( f (z + X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (w)ds

)]
dw 1[x,b](a)

+
∫ b

x

∂

∂w

[
−�(q)

r (x)

�
(q)
r (w)

(∫ r

0
eq(r−s)

E ( f (w + X(s)))ds −
∫ w

0
W(q)(w − z)E ( f (z + X(r)))dz

−
∫ r

0
E ( f (X(r − s))) �(q)

s (w)ds

)]
dw 1(b,∞)(a)

+ �
(q)
r (x)

�
(q)
r (b)

∫ a

b
e
− �

(q)′
r (b)

�
(q)
r (b)

(w−b)
dw

[
�

(q)′
r (b)

�
(q)
r (b)

(∫ r

0
eq(r−s)

E ( f (b + X(s)))ds

−
∫ b

0
W(q)(b − z)E ( f (z + X(r)))dz −

∫ r

0
E ( f (X(r − s))) �(q)

s (b)ds

)

−
∫ r

0
eq(r−s)

E
(

f ′(b + X(s))
)
ds +

∫ b

0
W(q)′(b − z)E ( f (z + X(r)))dz

+ W(q)(0 +)E ( f (b + X(r)))+
∫ r

0
E ( f (X(r − s))) �(q)′

s (b)ds

]
1(b,∞)(a),

which gives the desired result. �
The following result gives the joint Laplace transform involving the Parisian ruin time of Y.

Corollary 5.2. For q, λ∈ [0,∞), a ∈ (− ∞,∞), and x ∈ (− ∞, a), we have

Ex

(
e
−q
(
κ
ξb
r −r

)
eλY(κ

ξb
r )1{κξbr <τ+

a }

)
= eψ(λ)r

[
− �

(q)
r (x)

�
(q)
r (w)

(
eλw − (ψ(λ) − q)

×
(

eλw
∫ w

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (w)ds

))] ∣∣∣∣∣
w=a∧b

w=x

+ eψ(λ)r
�

(q)
r (x)

�
(q)′
r (b)

(
1 − e

− �
(q)′
r (b)

�
(q)
r (b)

(a−b)
)

1(b,∞)(a)

[
�

(q)′
r (b)

�
(q)
r (b)

(
eλb − (ψ(λ) − q)

×
(

eλb
∫ b

0
W(q)(z)e−λzdz +

∫ r

0
e−ψ(λ)s �(q)

s (b)ds

))

−λeλb + (ψ(λ) − q)

(
λeλb

∫ b

0
W(q)(z)e−λzdz + W(q)(b) +

∫ r

0
e−ψ(λ)s �(q)′

s (b)ds

)]
.
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Proof. Letting ξ (w) = ξb(w) and ϕ(w) = e−λξb(w)+ψ(λ)r in Theorem 4.2 and using a similar
argument as the proof of Corollary 5.1, one arrives at the desired result. �

The following result, on the kth moment of the discounted total dividends paid according
to the barrier strategy with barrier b until the Parisian ruin time for Y, is a direct consequence
of Theorem 4.4. In particular, the corresponding result with k = 1 recovers the identity (20)
in [10].

Corollary 5.3. For b ∈ (0,∞), ξ = ξb, q ≥ 0, and k ≥ 1, we have

Vξb
k (x; b)= k! �

(kq)
r (x)

�
(kq)
r (b)

k∏
i=1

�
(iq)
r (b)

�
(iq)′
r (b)

, x ∈ (−∞, b] ,

and

Vk (x)=�(kq)
r (x)

(∫ b

x

kVk−1(z)

�
(kq)
r (z)

dz + k!
�
(kq)′
r (b)

k−1∏
i=1

�
(iq)
r (b)

�
(iq)′
r (b)

)
, x ∈ (− ∞, b],

with V0 (x)≡ 1. In particular, for k = 1 we have

Vξb
1 (x; b)= �

(q)
r (x)

�
(q)′
r (b)

, x ∈ (− ∞, b].

Proof. For x ∈ (− ∞, b], we have

Vk (x)=
∫ b

x
kVk−1(z) exp

(
−
∫ z

x

�
(kq)′
r (w)

�
(kq)
r (w)

dw

)
dz

+ exp

(
−
∫ b

x

�
(kq)′
r (w)

�
(kq)
r (w)

dw

) ∫ ∞

b
kVk−1(z) exp

(
−
∫ z

b

�
(kq)′
r (b)

�
(kq)
r (b)

dw

)
dz

= �(kq)
r (x)

(∫ b

x

kVk−1(z)

�
(kq)
r (z)

dz + k!
�
(kq)′
r (b)

k−1∏
i=1

�
(iq)
r (b)

�
(iq)′
r (b)

)
.

The proof is thus complete. �
Let

Dτξb :=
∫ τξb

0
e−qtdD(t),

represent the present value of the accumulated dividends paid until the time of ruin for Y. In
addition, for each k ≥ 1, we introduce the kth moment of Dτξb as

Uk(x; b) :=Ex

([
Dτξb

]k
)

.

The following result recovers Propositions 1 and 2 in [25].

Corollary 5.4. For b ∈ (0,∞), q ≥ 0, and k ≥ 1, we have

Uk(x; b) = k! W(kq) (x)

W(kq) (b)

k∏
i=1

W(iq) (b)

W(iq)′ (b)
, x ∈ (−∞, b] .
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In particular, when k = 1 we have

U1(x; b)= W(q)(x)

W(q)′(b)
, x ∈ (− ∞, b].

Proof. Note that τξb = lim
r→0

κ
ξb
r with probability 1. Note from (26) that

Ex

(
e−qτ+

b 1{τ+
b <κ

ξb
r }

)
= exp

(
−
∫ b

x

�
(q)′
r (w)

�
(q)
r (w)

dw

)
= �

(q)
r (x)

�
(q)
r (b)

, x ∈ (− ∞, b], (40)

and

Ex

(
e−qτ+

a 1{τ+
a <κ

ξb
r }
)

= exp

(
−
∫ b

x

�
(q)′
r (w)

�
(q)
r (w)

dw

)
exp

(
−
∫ a

b

�
(q)′
r (b)

�
(q)
r (b)

dw

)

= �
(q)
r (x)

�
(q)
r (b)

e
− �

(q)′
r (b)

�
(q)
r (b)

(a−b)
, x ∈ (− ∞, b], a ∈ (b,∞). (41)

By (40) together with (1), we have

lim
r→0

�
(q)
r (x)

�
(q)
r (b)

= lim
r→0

Ex

(
e−qτ+

b 1{τ+
b <κ

ξb
r }

)

=Ex

(
e−qτ+

b 1{τ+
b <τξb }

)
=Ex

(
e−qτ+

b 1{τ+
b <τ

−
0 }
)

= W(q)(x)

W(q)(b)
, x ∈ (− ∞, b]. (42)

By (3) we have

Ex

(
e−qτ+

a 1{τ+
a <τξb }

)
= exp

(
−
∫ a

x

W(q)′(ξ̄b(w))

W(q)(ξ̄b(w))
dw

)

= W(q)(x)

W(q)(b)
e
− W(q)′(b)

W(q)(b)
(a−b)

, x ∈ (− ∞, b], a ∈ (b,∞). (43)

Combining (41), (42), and (43), we arrive at

lim
r→0

�
(q)′
r (b)

�
(q)
r (b)

= W(q)′(b)

W(q)(b)
. (44)

The desired results follow from a combination of (42), (44), and Corollary 5.3. �

If we choose ξ such that ξ ≡ 0, then the draw-down Parisian ruin time κξr of X degenerates to
the Parisian ruin time κr of X. The following result gives a generalized version of the potential
measure for the process X killed upon up-crossing level a (≥ x) or the Parisian ruin time of X.

Corollary 5.5. For ξ ≡ 0, q, λ≥ 0, r> 0, a ≥ x, and bounded bivariate function f(x,y) which
is differentiable with respect to x, we have∫ ∞

0
e−q(t−r)

Ex
(

f (X(t), X̄(t)); t< κr ∧ τ+
a

)
dt

=
∫ a

x

�
(q)
r (x)

�
(q)
r (w)

[
�

(q)′
r (w)

�
(q)
r (w)

(∫ r

0
eq(r−s)

E ( f (w + X(s),w))ds

−
∫ w

0
W(q)(w − z)E ( f (z + X(r),w))dz
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−
∫ r

0
E ( f (X(r − s),w)) �(q)

s (w)ds

)

−
∫ r

0
eq(r−s)

E

(
∂

∂x
f (w + X(s),w)

)
ds +

∫ w

0
W(q)′(w − z)E ( f (z + X(r),w))dz

+ W(q)(0 +)E ( f (w + X(r),w))+
∫ r

0
E ( f (X(r − s),w)) �(q)′

s (w)ds

)]
dw.

Proof. This is a direct consequence of Theorem 4.3. �
The following result gives the solution for the kth moment of the accumulated discounted

dividend payout until the Parisian ruin time κr for X.

Corollary 5.6. For ξ ≡ 0, q ≥ 0, and k ≥ 1, we have

Vξk (x; b)= �(kq)
r (x)

∫ ∞

b

kVk−1(z)

�
(kq)
r (z)

dz, x ∈ (−∞, b] ,

where

Vk (x)= �(kq)
r (x)

∫ ∞

x

kVk−1(z)

�
(kq)
r (z)

dz, x ∈ (− ∞,∞),

with V0 (x)≡ 1.

Proof. The desired result is a direct application of Theorem 4.4, letting ξ ≡ 0. �

6. Examples

To illustrate how to apply the main results in Section 4 to obtain expressions or numerical
values for quantities related to the draw-down Parisian ruin, we compute in this section the
functions �(q)

r , χ (q), and φ�q
for two examples of spectrally negative Lévy processes: the drifted

Brownian motion and the Cramér–Lundberg risk model with exponential claims.

6.1. Small claims: Brownian motion

If X(t) =μt + σB(t) is a Brownian motion with drift μ ∈ (− ∞,∞) and volatility σ ∈
(0,∞), then

W(q)(x) = 1

σ 2δq

[
e(−w+δq)x − e−(w+δq)x],

with δq := σ−2
√
μ2 + 2qσ 2 and w :=μ/σ 2. Hence,

μ+ (− w + δq)σ 2 = −μ+ (w + δq)σ 2 =
√
μ2 + 2qσ 2

and

�(q)
r (x) =

∫ ∞

0
W(q)(x + z)

z

r
P (X(r) ∈ dz)

= 1

σ 2δqr

1√
2πσ 2r

∫ ∞

0

[
e(−w+δq)(x+z) − e−(w+δq)(x+z)]ze− (z−μr)2

2σ2r dz

= 1

σ 2δqr

1√
2πσ 2r

(
e(−w+δq)x

∫ ∞

0
ze

− (z−μr−(−w+δq )σ2r)2+μ2r2−(μ+(−w+δq)σ2)2r2

2σ2r dz
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− e−(w+δq)x
∫ ∞

0
ze

− (z−μr+(w+δq )σ2r)2+μ2r2−(μ−(w+δq)σ2)2r2

2σ2r dz

)

= 1

σ 2δqr

1√
2πσ 2r

(
e(−w+δq)x

∫ ∞

0
ze− (z−

√
μ2+2qσ2r)2−2qσ2r2

2σ2r dz

− e−(w+δq)x
∫ ∞

0
ze− (z+

√
μ2+2qσ2r)2−2qσ2r2

2σ2r dz

)

= eqr

σ 2δqr

[
e(−w+δq)x

(
σ
√

r√
2π

e−μ2+2qσ2

2σ2 r +
√
μ2 + 2qσ 2rN

(√
μ2 + 2qσ 2

√
r

σ

))

− e−(w+δq)x
(
σ
√

r√
2π

e
−μ2+2qσ2

2σ2 r −
√
μ2 + 2qσ 2rN

(−√μ2 + 2qσ 2
√

r

σ

))]
,

where N is the cumulative distribution function of a standard normal random variable.
Notice that to compute the draw-down Parisian ruin probability (see Remark 4.1), we only

need the expression for �r := �
(0)
r . To find the Laplace transform associated to the two-sided

exit solution (26), the kth moment of dividends (see Theorem 4.4), or the potential measure of
X (see Theorem 4.3) involving the draw-down Parisian ruin time, we also need the expression
for �(q)

r . If we want to compute the probability density of the draw-down Parisian ruin time, we

must first use the expression for �(q)
r to compute the right-hand side of (30), then numerically

invert it using the algorithms in [7] or the method of Fourier series expansion proposed by
[23], which has been proven to be an efficient method for the numerical inversion of Laplace
transforms. Furthermore, if we want to compute the Laplace transform associated to the gen-
eralized two-sided exit solution (see Theorem 4.1), we need to numerically compute χ (q) and
φ�q

via the algorithms of Laplace inversion in [7] or [23]. To this end, we need to compute the
right-hand sides of (23) and (24). In fact, one has�q = δq − w and

∫ x+y

y
W(q)(x + y − z)W(θ+q)(z)dz

= 1

σ 4δqδθ+q

∫ x+y

y

[
e(−w+δq)(x+y−z) − e−(w+δq)(x+y−z)][e(−w+δθ+q)z − e−(w+δθ+q)z]dz

= e−w(x+y)

σ 4δqδθ+q

(
eδq(x+y)

(
e(δθ+q−δq)(x+y) − e(δθ+q−δq)y

δθ+q − δq
+ e−(δθ+q+δq)(x+y) − e−(δθ+q+δq)y

δθ+q + δq

)

+ e−δq(x+y)
(

− e(δθ+q+δq)(x+y) − e(δθ+q+δq)y

δθ+q + δq
− e−(δθ+q−δq)(x+y) − e−(δθ+q−δq)y

δθ+q − δq

))

= e−w(x+y)

σ 4δqδθ+q

(
eδθ+q(x+y) − eδθ+qy+δqx

δθ+q − δq
+ e−δθ+q(x+y) − e−δθ+qy+δqx

δθ+q + δq

−eδθ+q(x+y) − eδθ+qy−δqx

δθ+q + δq
− e−δθ+q(x+y) − e−δθ+qy−δqx

δθ+q − δq

)

= e−w(x+y)

σ 4δqδθ+q

(√
μ2 + 2qσ 2

θ

(
eδθ+q(x+y) − e−δθ+q(x+y)

)
− eδθ+qy+δqx

δθ+q − δq
− e−δθ+qy+δqx

δθ+q + δq

+ eδθ+qy−δqx

δθ+q + δq
+ e−δθ+qy−δqx

δθ+q − δq

)
,

https://doi.org/10.1017/apr.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.36


1194 W. WANG AND X. ZHOU

which implies

W(θ+q,−θ)
y (x + y)

= W(θ+q)(x + y) − θ

∫ x+y

y
W(q)(x + y − w)W(θ+q)(w)dw

= 1

σ 2δθ+q

(
e(−w+δθ+q)(x+y) − e−(w+δθ+q)(x+y)

)
− θ e−w(x+y)

σ 4δqδθ+q

(
eδθ+qy−δqx

δθ+q + δq
+ e−δθ+qy−δqx

δθ+q − δq

+
√
μ2 + 2qσ 2

θ

(
eδθ+q(x+y) − e−δθ+q(x+y)

)
− eδθ+qy+δqx

δθ+q − δq
− e−δθ+qy+δqx

δθ+q + δq

)
.

One also finds that

1 + θ

∫ y

0
e−�qzW(θ+q)(z)dz = 1 + θ

σ 2δθ+q

∫ y

0
e(w−δq)z[e(−w+δθ+q)z − e−(w+δθ+q)z]dz

= 1 + θ

σ 2δθ+q

(
e(δθ+q−δq)y − 1

δθ+q − δq
+ e−(δθ+q+δq)y − 1

δθ+q + δq

)

= θ

σ 2δθ+q

(
e(δθ+q−δq)y

δθ+q − δq
+ e−(δθ+q+δq)y

δθ+q + δq

)
,

which implies

W(q)(x)e�qy
(

1 + θ

∫ y

0
e−�qwW(θ+q)(w)dw

)

= θ

σ 4δqδθ+q

[
e(−w+δq)x − e−(w+δq)x](e(δθ+q−w)y

δθ+q − δq
+ e−(δθ+q+w)y

δθ+q + δq

)

= θ

σ 4δqδθ+q
e−w(x+y)[eδqx − e−δqx]( eδθ+qy

δθ+q − δq
+ e−δθ+qy

δθ+q + δq

)

= θ e−w(x+y)

σ 4δqδθ+q

(
eδθ+qy+δqx

δθ+q − δq
− eδθ+qy−δqx

δθ+q − δq
+ e−δθ+qy+δqx

δθ+q + δq
− e−δθ+qy−δqx

δθ+q + δq

)
.

Therefore, the right-hand side of (23) becomes

W(θ+q)(x + y) − e−w(x+y)

σ 2δθ+q

(
eδθ+q(x+y) − e−δθ+q(x+y) − eδθ+qy−δqx + e−δθ+qy−δqx

)
θW(θ+q)(y)

=
e−(w+δq)x

σ 2δθ+q

(
eδθ+qy−wy − e−δθ+qy−wy

)
θ

1

σ 2δθ+q

(
e(−w+δθ+q)y − e−(w+δθ+q)y

) = 1

θ
e−(w+δq)x,

which together with (23) yields

χ (q)(x, y, r) = e−(w+δq)x, x ∈ (− ∞,∞), y ∈ (0,∞), r ∈ (0,∞).

https://doi.org/10.1017/apr.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.36


Draw-down Parisian ruin 1195

In addition, the right-hand side of (24) can be re-expressed as

1

δθ+q − δq
e(δθ+q−w)y + 1

δθ+q + δq
e−(δθ+q+w)y

e(−w+δθ+q)y − e−(w+δθ+q)y
,

which can be numerically inverted (to get φ�q
) using the algorithms in [7] or the method of

Fourier series expansion in [23].

6.2. Big claims: the Cramér–Lundberg risk model

Let X(t) = ct −∑N(t)
n=1 Cn be a linear drift with c> 0 minus a compound Poisson process

with jump intensity η and independent, identically exponentially distributed jump sizes (Cn)n≥1
with mean 1/α. Then

W(q)(x) = c−1(A+eq+(q)x − A−eq−(q)x),
with

A± := α + q±(q)

q+(q) − q−(q)
and q±(q) := q + η− αc ±√(q + η− αc)2 + 4cqα

2c
.

One can verify that

�(q)
r (x)= e−ηr

(
A+eq+(q)(x+cr) − A−eq−(q)(x+cr)

)
+ A+eq+(q)(x+cr)−ηr

cr

∞∑
m=0

(
αηr

q+(q)+α
)m+1

m!(m + 1)!

×
[

cr�
(
m + 1, cr(q+(q) + α)

)− �(m + 2, cr(q+(q) + α))

q+(q) + α

]
− A−eq−(q)(x+cr)−ηr

cr

×
∞∑

m=0

(
αηr

q−(q)+α
)m+1

m!(m + 1)!
[

cr�
(
m + 1, cr(q−(q) + α)

)− �(m + 2, cr(q−(q) + α))

q−(q) + α

]
,

where �(β, x) = ∫ x
0 e−wwβ−1dw is the gamma function. The Laplace transforms of χ (q) and

φ�q
in r, i.e. the right-hand sides of (23) and (24), can also be derived accordingly. The

corresponding computations are omitted because they are fairly lengthy.
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