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The three-dimensional effects of turbulence cannot be neglected when the spanwise
wavelength of the incident turbulence is not effectively infinite with respect to the
chord, which may invalidate the strip assumption. Based on three-dimensional theory,
a general approach, expressed in terms of a two-dimensional Fourier transform of
the correlation of the buffeting force, is proposed to identify the two-wavenumber
spectrum and aerodynamic admittance of the lift force on an aerofoil. It is essential
that the approach presented can be validated in wind tunnel experiments. The
coherence of the lift force on an aerofoil in grid-generated turbulence is obtained by
simultaneous measurements of unsteady surface pressures around several chordwise
strips on a stiff sectional model, which controls the accuracy of results. For the
purpose of the Fourier transform, three empirical coherence models of the lift force
are presented to fit the experimental results. Compared with the linearized theory, the
two-wavenumber aerodynamic admittance can describe well the pressure distribution
and the pattern of energy transition in an isotropic turbulence field. Thus, the failure
mechanism of the traditional strip assumption can be demonstrated explicitly. In
addition, the results obtained also validate the theory proposed by Graham (Aeronaut.
Q., vol. 21, 1970, pp. 182–198; Aeronaut. Q., vol. 22, 1971, pp. 83–100). The present
approach can be extended to study the three-dimensionality of the buffeting force on
line-like structures with arbitrary cross-configurations, such as long-span bridges and
high-rise buildings.

Key words: aerodynamics, flow–structure interactions, isotropic turbulence

1. Introduction

The lift force on an aerofoil for non-uniform motion is one of the classic
aerodynamics issues. Sears (1941) proposed a linearized aerodynamic theory to
calculate the unsteady aerodynamic lift acting on a thin aerofoil in a one-dimensional
sinusoidal gust. Sears’ analysis yielded the famous one-dimensional transfer function,
the Sears’ function, which relates the lift per unit span to the incident downwash
amplitude. Liepmann (1952) introduced statistical concepts to formulate and study
the buffeting of an aerofoil of infinite span due to turbulent fluctuations. By treating
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The lift on an aerofoil in grid-generated turbulence 17

the atmospheric turbulence as a statistically stationary process and neglecting the
effects of the three-dimensionality in the turbulence, the lift acting on the aerofoil
is considered as the response of the linear system to a single random input (wind
fluctuations). Thus, the spectrum of the lift coefficient per unit span is given as

SCL(k)=
(2π)3

U2
|χ(2πkb)|2 Sw(2πk), (1.1)

where k = n/U, n is frequency (unit: Hz), U is mean wind velocity, b is half-cord,
|χ(2πkb)|2 is Sears’ function, usually called the aerodynamic admittance, and Sw(2πk)
is the spectrum of the vertical turbulence velocity.

Taking the spanwise variations into account, this statistical approach was extended
by Liepmann (1955) and Diederich (1956) to study the three-dimensional problem
of a finite aerofoil in homogeneous turbulence by introducing the indicial admittance
h(t, y) and two-wavenumber spectrum of turbulence Sw(k1, k2). Liepmann believed that
the admittance χ(k1, k2), the two-dimensional Fourier integral of indicial admittance
h(t, y), had to be derived from thin-wing theory and represented essentially a
generalization of Sears’ results to wings of finite span. In practical gust-loading
problems, a simplified assumption was often made that the spatial description of
the gusts can be taken as representative of the spatial distribution of the lift force
when a thin aerofoil passes through a transversely fully coherent gust (the spanwise
wavelength of the incident turbulence is infinite), which is essentially the strip
assumption (Fung 1969). In this case, the two-wavenumber aerodynamic admittance
χ(k1, k2) can always be replaced by Sears’ function. However, the strip assumption
is certainly not correct, because it eliminates all effects due to the semi-infinite
extensions (Hakkinen & Richardson 1957). The lift force on a thin aerofoil with
a larger chord compared to the vertical scale of gusts was also observed to be
more correlated than the incident fluctuations by Nettleton (Etkin 1971), which
indicated the invalidation of the strip assumption. In such a situation, the spanwise
variations of the lift forces cannot be ignored when the chordwise dimension is
similar to or larger than the scale of the turbulence. This phenomenon was further
confirmed by some wind tunnel tests concerning the correlation of the lift force on
a bluff body (Hjorth-Hansen, Jakobsen & Strømmen 1992; Sankaran & Jancauskas
1993; Jakobsen 1997; Kimura et al. 1997; Larose 1997; Larose & Mann 1998;
Ma 2007). Bearman (1971, 1972) considered that the larger spanwise coherence
of the unsteady aerodynamic force could be generated due to the distortion of the
turbulence approaching the flat-plate, including the stretching and rotation of the
vortex line filaments. In order to describe the spatial distribution of the unsteady
force on an aerofoil, it is necessary to apply three-dimensional theory to take the
spanwise variations of turbulence into consideration.

A more general formalism of the problem for application to three-dimensionally
varying turbulence was suggested by Ribner (1956). The mean-square lift caused by a
homogeneous turbulent field can be represented as a superposition of plane sinusoidal
waves of all orientations and wavelengths:〈

L2
〉= ∫∫∫ ∞

−∞
|χ(k)|2 Sw(k)dk1dk2dk3, (1.2)

where k is the wavenumber vector having components k1, k2, k3 in the x, y and z
directions respectively. For a surface of infinitesimal thickness, |χ(k)|2 can be written
as

|χ(k)|2 = |χ(k1, k2)|2 . (1.3)
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18 S. Li, M. Li and H. Liao

Inspired by Ribner’s (see Ribner 1956) suggestion, Graham (1970, 1971) numerically
calculated the exact two-wavenumber aerodynamic admittance based on lift-surface
theory for an aerofoil of infinite span length due to gusts with arbitrary horizontal
wavevectors (k1, k2), which can describe the three-dimensionality of lift force.
Independently, Filotas (1969a) derived an approximate close-formed expression for
the two-wavenumber aerodynamic transfer function of a aerofoil passing through
an inclined sinusoidal gust, which was accurate in the high-frequency limit or very
low-frequency limit. In addition, Filotas (1969b) compared his theoretical admittance
function with the experimental results of Hakkinen & Richardson (1957) and Lamson
(1957). However, these results show a great deal of scatter. Experimental verification
of Graham’s theoretical results for a fixed single aerofoil with a NACA 0015
section was provided by Jackson, Graham & Maull (1973). In their experiment,
the spectrum of the lift induced by grid-generated turbulence was measured and
the one-wavenumber aerodynamic admittance instead of |χ(k1, k2)|2 was obtained
to validate Graham’s theory indirectly. Unfortunately, a direct approach to identify
the two-wavenumber aerodynamic admittance of lift has not been developed yet.
Based on previous studies, the three-dimensional theory, taking the effects of
three-dimensionality of the gusts into account, is adopted here to develop a general
approach to identify the two-wavenumber spectrum and aerodynamic admittance of
the lift force on an aerofoil in a uniform grid-generated turbulent field with a chord
larger than the vertical length scale of the oncoming turbulence. One of the main
aims of the present work is to validate Graham’s theory directly and reveal the
three-dimensional characteristics of the lift force on an aerofoil.

The outline of our paper is as follows. In § 2.1, we begin by presenting the
mathematical formulation to describe the three-dimensional homogeneous turbulence
field. The proposed theory of the two-wavenumber aerodynamic admittance and the
lift force on an aerofoil is given in § 2.2. In § 3, an experiment on a NACA 0015
aerofoil in grid-generated turbulence is carried out to validate the present approach.
In this section, we also discuss the sensitivity of the results to the choice of different
empirical models proposed in § 2.2. In § 4, the application of the proposed approach
is discussed and the extension to a bluff body is also demonstrated. Finally in § 5,
we conclude with a short discussion.

2. Description of the approach
2.1. Three-dimensional theory of homogeneous turbulence

When the length scale of turbulence is not large compared with the dimensions
of the aerofoil, the one-dimensional turbulence model needs to be replaced by
appropriate formulae for two-dimensional lateral turbulence. Thus, the corresponding
distance r in the chordwise direction x will only be assumed to have components
(r1, r2) in the chordwise and spanwise (x, y) directions, respectively. In this case, the
three-dimensional correlation function for the vertical turbulent component can be
defined as

Rw (r1, r2)= 〈w(x, y)w (x+ r1, y+ r2)〉, (2.1)

where Rw is the autocorrelation function of the vertical turbulence velocity, w(x, y) is
the vertical turbulence velocity at position (x, y), and 〈 〉 signifies an ensemble average.
In most cases, Rw should be independent of the orientation of the two points relative
to each other and depends only on the distance between them. Therefore, by assuming
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The lift on an aerofoil in grid-generated turbulence 19

the vertical turbulence to be asymmetric, (2.1) can be expressed in terms of the one-
dimensional correlation function as follows:

Rw (r1, r2)= Rw

(√
r2

1 + r2
2

)
. (2.2)

Likewise the wavenumber k will be replaced by its components (k1, k2). In order
to obtain the two-wavenumber spectrum of vertical turbulence, the following Fourier
transform relation proposed by Taylor (1965) will be applied:

Sw(k1, k2)= 2σ 2
w

∫∫ ∞
−∞

cos(2πk1r1 + 2πk2r2)Rw

(√
r2

1 + r2
2

)
dr1dr2, (2.3)

where σ 2
w is the mean square of the turbulence velocity in the vertical direction, and

k1 and k2 are chordwise and spanwise wavenumbers, respectively; k1 = n/U (n is
frequency in units of Hz and U is mean wind velocity). It should be noted that the
turbulent velocity could be assumed to be the same at any position over the span of
the aerofoil if the scale of the turbulence is large enough compared with the aerofoil
(approaching k2= 0). Thus, (2.3) would become the one-wavenumber case as follows:

Sw(k)= 4σ 2
w

∫ ∞
0

cos(2πkr)Rw(r)dr. (2.4)

By switching to polar coordinates, the double integral (2.3) can be reduced to
(Taylor 1965)

Sw(k1, k2)= 4πσ 2
w

∫ ∞
0

J0 (2πkr)rRw(r)dr (2.5)

where J0 is a Bessel function of the first kind, r = √r2
1 + r2

2 and k = √k2
1 + k2

2.
Obviously, Sw(k1, k2) is the Hankel transformation of the corresponding autocorrelation
function Rw(r). Thus, it is convenient to obtain the two-wavenumber spectrum of
turbulence once Rw(r) has been obtained. Bullen (1961) has proposed the following
lateral autocorrelation function:

Rw(r)=
[
(r/a)n /2n/Γ (n)

] [
2Kn (r/a)− (r/a)Kn−1 (r/a)

]
, (2.6)

where a and n are parameters governing the shape and scale of the expression, Kn
and Kn−1 are modified Bessel functions of the second kind and Γ (n) is the Gamma
function. If the turbulent flow is isotropic, the scale of the turbulence L and parameter
a have the following relation:

L= [√πΓ
(
n+ 1

2

)/
Γ (n)

]
a. (2.7)

In order to obtain the one- and two-wavenumber spectra of turbulence, the Fourier
and Hankel transformations including the modified Bessel function of the second kind
are required. Gradshteyn & Ryzhik (2007) proposed a series of general formulae of
infinite integral involving a complicated fractional function and Bessel functions as
follows:

F (b)=
∫ ∞

0
xµKµ (cx) cos(bx)dx= 1

2

√
π (2c)µ Γ

(
µ+ 1

2

) (
b2 + c2

)−µ−(1/2)
(2.8)
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20 S. Li, M. Li and H. Liao

with the basic condition as [b> 0, c> 0,Reµ>−(1/2)], and

F (b)=
∫ ∞

0
xµ+ν+1Jν (cx)Kµ(bx)dx= 2µ+νcνbµ

Γ (µ+ ν + 1)(
b2 + c2

)µ+ν+1 (2.9)

with the basic condition as [Re ν > |Reµ| − 1, Re b> |Im c|]. In the above equations,
Kµ are modified Bessel functions of the second kind, Jν are Bessel functions of the
first kind, Re represents the real part and Im the imaginary part. Obviously, (2.8) and
(2.9) are Fourier and Hankel transformations of Kµ, respectively.

Substituting (2.6) into (2.5), the one- and two-wavenumber spectra of the vertical
turbulence velocity can be obtained by means of the above relations (2.8) and (2.9),
respectively:

Sw(k1)= 2σ 2
wL
[
1+ 8π2a2k2

1 (n+ 1)
]

[1+ (2πak1)]n+(3/2) , (2.10)

Sw(k1, k2)= 32σ 2
wπ3a4n (n+ 1)

(
k2

1 + k2
2

)[
1+ 4π2a2

(
k2

1 + k2
2

)]n+2 . (2.11)

As mentioned above, n is introduced to determine the spectral shape of the
turbulence. If n= 1/2, the turbulence models described by (2.10) become identical to
the empirical formula proposed by Dryden et al. (1937); if n = 1/3, (2.10) will be
consistent with the spectrum model proposed by von Kármán (1948).

The two-wavenumber spectrum (2.11) demonstrates the spatial three-dimensionality
of the turbulence field, so the spatial coherence of the vertical turbulent velocity can
be defined by the following non-dimensional two-wavenumber spectrum:

Φw(k1, k2)= Sw(k1, k2)

Sw(k1)
. (2.12)

2.2. Two-wavenumber spectra analysis of the lift force on a thin aerofoil
The idea of three-dimensional theory can be extended to identify the spatial
distribution of unsteady gust loading. Using the coordinate systems defined in figure 1
and assuming the turbulent field to be a stationary random function of position in the
X–Y plane, Taylor’s hypothesis is validated for the aerofoil through the turbulent field
w(x, y). Therefore, the time series could be converted into a ‘space series’, x = Ut.
For a thin aerofoil with a lift slope C′L, the unsteady lift at an arbitrary spanwise
position y can be defined as in Diederich (1956) and Hakkinen & Richardson (1957):

FL(x, y)= ρUbC′L

∫∫ ∞
−∞

φ(ξ, |η− y|)w(x− ξ, η)dξdη, (2.13)

where ρ is air density, b is the half-chord of the aerofoil, and φ(ξ, y− η) is defined
as the influence function for lift per unit span at y produced by a unit impulse of the
turbulence located at position (ξ , η) with respect to the aerofoil. The correlation of
the lift for two identical strips of the aerofoil at different spanwise locations can be
defined as

RL(1x, 1y)= 〈FL(x, y)FL (x+1x, y+1y)〉, (2.14)
where, 1x=U1t, and 1y is the spanwise separation between two unit strips on the
aerofoil (see figure 1). Substituting (2.13) into (2.14) yields the correlation function
of the lift:

RL = (ρUbC′L)
2
∫∫∫∞

−∞ φ (ξ1, y− η1) φ (ξ2, y+1y− η2)

× 〈w (x− ξ1, η1)w (x+1x− ξ2, η2)〉dξ1dξ2dη1dη2. (2.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.162


The lift on an aerofoil in grid-generated turbulence 21

U
c

y
Y

X

Aerofoil

FIGURE 1. Coordinate systems and sketch of the lift influence function. XY is a global
coordinate system and ξη is a local coordinate system on the aerofoil.

If the turbulence field is homogeneous in the X–Y plane, the ensemble average over
the velocity products Rw[1x+ (ξ1 − ξ1), (η1 − η2)] is independent of x and can be
expressed in terms of a Fourier transform of the two-wavenumber power spectrum
Sw(k1, k2) as

Rw [1x+ (ξ1 − ξ1), (η1 − η2)]

=
∫∫ ∞
−∞

Sw(k1, k2)exp {i [k1 (1x+ ξ1 − ξ)+ k2(η1 − η2)]}dk1dk2. (2.16)

Substituting (2.16) into (2.15), and interchanging the order of integration gives

RL(1x, 1y) = (ρUbC′L
)2
∫∫ ∞
−∞

dk1dk2Sw(k1, k2)exp {i (k11x+ k21y)}

×
∫∫ ∞
−∞

φ (ξ1, y− η1) exp
{

i
[
k1ξ1 + k2 (y− η1)

]}
dξ1d(y− η1)

×
∫∫ ∞
−∞

φ (ξ2, y+1y− η2)

× exp
{−i

[
k1ξ2 + k2 (y+1y− η2)

]}
dξ2d (y+1y− η2) . (2.17)

When the two-wavenumber aerodynamic transfer function is defined as

χ(k1, k2)=
∫∫ ∞
−∞

φ (ξ1, y− η1) exp
{

i
[
k1ξ1 + k2 (y− η1)

]}
dξ1d (y− η1) (2.18)

the lift correlation function (2.17) can be written

RL(1x, 1y)= (ρUbC′L
)2
∫∫ ∞
−∞
|χ(k1, k2)|2 Sw(k1, k2)exp {i (k11x+ k21y)}dk1dk2,

(2.19)
where |χ(k1, k2)|2 is the magnitude of the aerodynamic transfer function, which is
also defined as the two-wavenumber aerodynamic admittance function (3D AAF). It is
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apparent that RL(1x, 1y) is a function of the separations 1x and 1y and not of the
location or orientation of the strips. For the lift, the two-wavenumber spectrum can
be expressed in the form of a Fourier transform, i.e.

SL(k1, k2)= 4
∫∫ ∞

0
RL(1x, 1y) cos(2πk11x+ 2πk21y)d1xd1y. (2.20)

Comparing (2.19) with (2.20), we have the following lift power spectrum from the
uniqueness of the Fourier transform:

SL(k1, k2)=
(
ρUbC′L

)2 |χ(k1, k2)|2 Sw(k1, k2), (2.21)

where Sw(k1, k2)=Φw(k1, k2)Sw(k1).
For 1y= 0, it is apparent that the traditional one-wavenumber of lift force can be

written as

SL(k1)= 2
∫ ∞

0
RL(1x, 0) cos (2πk11x)d1x. (2.22)

The one-wavenumber spectrum of the lift force at an arbitrary strip along the span
of the aerofoil can be obtained from the two-wavenumber spectrum by integrating out
the variable, thus

SL(k1)=
∫ ∞
−∞

SL(k1, k2)dk2. (2.23)

This relation is also valid with respect to the vertical turbulence velocity, and then
we have

Sw(k1)=
∫ ∞
−∞

Sw(k1, k2)dk2. (2.24)

Substituting (2.21) into (2.23), the one-wavenumber spectrum of the lift force can
now be written

SL(k1)=
(
ρUbC′L

)2 |χ(k1)|2Sw(k1), (2.25)

where

|χ(k1)|2 =
∫ ∞
−∞
|χ(k1, k2)|2 Φw(k1, k2)dk2; (2.26)

|χ(k1)|2 is defined as the one-wavenumber lift aerodynamic admittance (1D AAF)
of an arbitrary strip on the aerofoil, which is usually obtained directly by the
pressure measurement method in a wind tunnel test. The relationship between the one-
and two-wavenumber aerodynamic admittance can be determined by (2.26), which
has been applied by Jackson et al. (1973) to validate Graham’s two-wavenumber
aerodynamic transfer function (3D AAF) indirectly. By linearized aerodynamic
theory and the Kutta–Joukowski condition, Sears (1941) found an expression for
the aerodynamic admittance of the lift on a thin aerofoil immersed in a sinusoidal
gust field as follows:

|χ(k1)|2 =
∣∣∣∣∣∣
J0

(
k̃1

)
K1

(
ik̃1

)
+ iJ1

(
k̃1

)
K0

(
ik̃1

)
K1

(
ik̃1

)
+K0

(
ik̃1

)
∣∣∣∣∣∣

2

, (2.27)

where k̃1= 2πk1B/2, B being the chord of the aerofoil; J0, J1 are Bessel functions of
the first kind and K0, K1 are modified Bessel functions of the second kind. For k̃1> 2,
this function is roughly circular but with a slowly decreasing radius as k̃1 increases.
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The lift on an aerofoil in grid-generated turbulence 23

Of particular interest in the following discussion is the square of the amplitude, which
has been approximated by Liepmann (1952) as

|χ(k1)|2 ≈ 1

1+ 2πk̃1

, (2.28)

which bears a close resemblance to the exact function throughout k̃1 > 0. For cases
in which neither the aerofoil span nor the spanwise wavelength of the incident
turbulence is effectively infinite with respect to the chord (Blake 1986), a variety of
attempts have been made to find a proper aerodynamic transfer function to describe
the pressure distribution on the aerofoil. Reissner & Stevens (1947a,b) introduced
a correction factor to the basic function of the two-dimensional theory to study
the effect of three-dimensionality of the flow and gave the corresponding methods
for the numerical evaluation of the results. Based on lift-surface theory, Graham
(1970, 1971) numerically computed the exact loading functions for a thin aerofoil of
infinite span and varying k̃2 due to arbitrary yawed sinusoidal gusts in incompressible
flow. Furthermore, Mugridge (1970, 1971) determined an approximate closed-form
expression for the lift aerodynamic admittance in terms of a correlation factor to
the traditional Sears’ function, which is of high accuracy for the lower wavenumber
range (k1 < 1/π) compared with Graham’s exact result, that is

|χ(k1, k2)|2 ≈ 1

1+ 2πk̃1

∣∣∣F (k̃1, k̃2

)∣∣∣2 , (2.29)

where the correlation function is

|F(k1, k2)|2 =
[

k̃2
1 + 2/π2

k̃2
1 + k̃2

2 + 2/π2

]
. (2.30)

An approximate closed-form expression for the 3D AAF of the lift force derived
by Filotas (1969a) is given as

χ(k1, k2)=
exp
{
−ik̃

[
sin β − πβ (1+ 0.5 cos β)

1+ 2πk̃ (1+ 0.5 cos β)

]}
√

1+πk̃
(

1+ sin2 β +πk̃ cos β
) , (2.31)

where k̃ =
√

k̃2
1 + k̃2

2 and sin β = k̃1/k̃. This formula was derived for an aerofoil of
infinite span and its magnitude was approximated by Filotas (1969b) as

|χ(k1, k2)|2 =
√

k̃2
1 + k̃2

2√
k̃2

1 + k̃2
2 +π

(
πk̃3

2 + k̃2
2 +πk̃1k̃2 + 2k̃2

1

) . (2.32)

Filotas’ approximate expression, based on linearized incompressible lifting surface
theory, is asymptotically exact in the limiting cases where the reduced frequency is
either very small or very large. For use in approximations, Blake (1986) proposed a
closed-form expression by fitting Graham’s exact calculation as follows:

|χ(k1, k2)|2 = 1

1+ 2πk̃1

 1+ 3.2
(

2k̃1

)1/2

1+ 2.4
(

2k̃1

)2 + 3.2
(

2k̃1

)1/2

 . (2.33)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.162


24 S. Li, M. Li and H. Liao

Blake’s approximation agreed with Graham’s exact values to within 20 % when
k̃1 > k̃2/2. Previous studies of the two-wavenumber unsteady aerodynamic force
on an aerofoil (Reissner & Stevens 1947a,b; Filotas 1969a,b; Graham 1970, 1971;
Mugridge 1970, 1971), especially the two-wavenumber transfer function (aerodynamic
admittance), were mainly derived theoretically based on potential flow and lift-surface
theory. In this paper, a direct approach is proposed to study the two-wavenumber
spectrum and aerodynamic admittance of the lift on a stationary aerofoil immersed
in grid-generated turbulent flow by wind tunnel test. For a given type of turbulence
field, the cross-spectrum of the lift force can be measured either by pressure scanners
or by a force-measuring balance. Therefore, the two-wavenumber lift spectrum on an
aerofoil could be expressed in terms of the Fourier transform of the experimentally
determined spanwise cross-spectrum of the lift force SL(k1, 1y) as

SL(k1, k2)= 2
∫ ∞

0
SL(k1, 1y) cos(2πk21y)d1y, (2.34)

where SL(k1, 1y) is the cross-spectrum of the lift force between two locations along
the span separated by 1y. By introducing the coherence function of the lift force,
SL(k1, 1y) can be defined as

SL(k1, 1y)=CohL(k1, 1y)SL(k1), (2.35)

where CohL(k1, 1y) is the spanwise coherence of the lift force. Inserting (2.35) into
(2.34) yields

SL(k1, k2)=ΦL(k1, k2)SL(k1), (2.36)

where ΦL(k1, k2) is the two-wavenumber coherence of the lift force. Substituting (2.25)
into (2.36), SL(k1, k2) can be expressed in terms of ΦL(k1, k2) and the one-wavenumber
aerodynamic admittance |χ(k1)|2, such that

SL(k1, k2)=
(
ρUbC′L

)2 |χ(k1)|2ΦL(k1, k2)Sw(k1). (2.37)

Comparing (2.21) with (2.37), the physical property of the two-wavenumber
aerodynamic admittance can be indicated by the following relation:

|χ(k1, k2)|2
|χ(k1)|2 =

ΦL(k1, k2)

Φw(k1, k2)
. (2.38)

In contrast with the one-wavenumber aerodynamic admittance, the two-wavenumber
aerodynamic admittance can describe the effects of secondary spanwise flow and
consequently the redistribution of the surface pressure. In other words, the ratio
between |χ(k1, k2)|2 and |χ(k1)|2 reflects the degree to which the lift force on an
aerofoil departs from the strip assumption, which varies with frequency k1 and k2.
Thus, the influence factor describing the three-dimensionality of the turbulence can
be defined as

ϑ(k1, k2)= |χ(k1, k2)|2
|χ(k1)|2 . (2.39)

Assuming the validity of the strip assumption, which means the spanwise length
is indefinite (k2 = 0), the 3D AAF of lift force is independent of k2 and can be
represented by Sears’ function. Consequently, the 1D AAF |χ(k1)|2 also matches
Sears’ function according to (2.26). Therefore, the influence factor is unity, which
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explains the traditional conclusion that the correlation of the buffeting force can
be represented by that of the turbulence. In fact, this assumption always fails
as the characteristic length of the structures approaches the scales of the vertical
gusts. Several wind tunnel tests on aerofoils and bluff bodies have confirmed that
the unsteady lift was more correlated than the incident wind (Hjorth-Hansen et al.
1992; Sankaran & Jancauskas 1993; Jakobsen 1997; Kimura et al. 1997; Larose
1997; Larose & Mann 1998; Ma 2007), which indicated the invalidity of the strip
assumption. In this case, CohL(k1, 1y) cannot be represented by the coherence
of turbulence. Moreover, it cannot be deduced theoretically, similar to isotropic
turbulence. So it is better to determine CohL(k1, 1y) by wind tunnel tests. According
to (2.21) and (2.36), the 3D AAF |χ(k1, k2)|2 can be expressed in terms of ΦL(k1, k2),
so it is necessary to develop a relatively accurate mathematical coherence model of the
buffeting force. Fortunately, a series of empirical coherence models of the buffeting
force (Hjorth-Hansen et al. 1992; Jakobsen 1997; Kimura et al. 1997; Larose &
Mann 1998) can be applied. To be convenient for Fourier transform, Jakobsen’s,
Kimura et al.’s and Dryden et al. (1937)’s empirical models are adopted to describe
the coherence of the buffeting lift force. Jakobsen’s model is defined in exponential
form, leaving some floating parameters to fit the results obtained from the wind tunnel
test. The formulation is modified slightly to be convenient for Fourier transformation
as follows:

Coh1/2
LJakobsen

(k1, 1y)= exp{−A1y} , (2.40)

where

A=
(√

c2
2 + (c3k1)

2

)c1

(2.41)

and c1, c2, c3 are floating parameters that need to be fitted.
Kimura et al. (1997) referred to the von Kármán root coherence function and

modified the length scale of turbulence and the frequency based on wind tunnel tests.
Thus, the following empirical coherence model of the lift force is proposed in a form
similar to Kimura et al.’s approach, taking the Fourier transform into consideration:

Coh1/2
LKimura

(k1, 1y)= 21/6

Γ (5/6)

(
η5/6K5/6 (η)− η

11/6K1/6 (η)

B1

)
, (2.42)

where

η= A11y, (2.43)

A1 = C
α1Lx

w

√
1+ (2π/C)2

[
(k1U)β1

(
α1Lx

w

U

)]2

, (2.44)

B1 = 1+ 8
3
(2π/C)2

[
(k1U)β1

(
α1Lx

w

U

)]2

(2.45)

C=√π
Γ (5/6)
Γ (1/3)

, (2.46)

and U is mean wind velocity, K5/6, K1/6 are modified Bessel functions of the second
kind, α1, β1 are floating parameters determined by wind tunnel tests, and Lx

w is
the integral length scale of turbulence. It should be noted that the coherence of
vertical gusts can be represented by (2.42) where the parameters α1 = 2 and β1 = 1.
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Therefore, the Fourier transform of (2.42) is absolutely consistent with (2.12) with
n = 1/3, which provides another approach to obtain the two-wavenumber spectrum
of the turbulence. This approach is of significance for natural atmospheric turbulence.
Referring to the theoretical study proposed by Vickery (1965), Dryden et al.’s
coherence model is defined similarly to Kimura et al.’s model as

Coh1/2
LDryden

(k1, 1y)= θK1 (θ)− θ
2

B2
K0 (θ) , (2.47)

where

θ = A21y, (2.48)

A2 = 1
α2Lx

w

√
1+ (2π)2

[
(k1U)β2

(
α2Lx

w

U

)]2

, (2.49)

B2 = 1+ 3
[

2π (k1U)β2

(
α2Lx

w

U
,

)]2

(2.50)

and U and Lx
w are defined as in (2.42), K0, K1 are modified Bessel functions of the

second kind, and α2, β2 are floating parameters determined by wind tunnel tests. In
addition to (2.8), the following Fourier transform relation is necessary to obtain the
two-wavenumber spectrum of the lift force (Jakobsen’s empirical model):

F (b)=
∫ ∞

0
e−ax cos(bx)dx= a

(
a2 + b2

)−1
. (2.51)

Substituting (2.40)–(2.50) into (2.34)–(2.36), and applying the Fourier transform
relations (2.51) and (2.8), respectively, the two-wavenumber coherence of the lift on
an aerofoil can be obtained:

ΦLJakobsen(k1, k2)= 2A[
A2 + (2πk2)

2] , (2.52)

ΦLKimura(k1, k2)= 2Γ (4/3)
Γ (5/6)

√
πA5/3

1

{[
1+ 5/(3B1)

]
(2πk2)

2 + (1− 1/B1) A2
1[

(2πk2)
2 + A2

1

]7/3

}
, (2.53)

ΦLDryden(k1, k2)= 2Γ (3/2)
√

πA2
2

{
(1+ 2/B2) (2πk2)

2 + (1− 1/B2) A2
2[

(2πk2)
2 + A2

2

]5/2

}
. (2.54)

In terms of the two-wavenumber coherence of the lift force and the corresponding
one-wavenumber spectrum, SL(k1, k2) can be obtained conveniently. Then, applying
(2.11) and (2.21), the two-wavenumber aerodynamic admittance |χ(k1, k2)|2 can be
derived directly as follows:

|χ(k1, k2)|2 = SL(k1, k2)

(ρUbC′L)
2 Sw(k1, k2)

. (2.55)

3. Experimental validation
Wind tunnel tests were carried out in a closed-circuit-type wind tunnel with a 2.4 m

(width) × 2 m (height) working section (XNJD-1). The turbulence is generated by
uniform grid with a mesh size of 0.33 m × 0.33 m and a bar size of 0.07 m, installed
4.2 m upstream of the model. The flow field characteristics are measured by a Cobra
Probe and the wind fluctuations in three directions could be measured simultaneously.
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FIGURE 2. (Colour online) (a) Spectrum of the vertical wind fluctuations for grid
turbulence (u). Solid line: fit of von Kármán’s spectrum using (2.10) with n= 1/3; dashed
line: fit of Dryden et al.’s spectrum using (2.10) with n=1/2. (b) Comparison of spanwise
correlation coefficient of vertical turbulence, w, between Bullen’s theoretical results (solid
line) and experimental results (A), where η is spanwise distance.

The model, with a NACA 0015 cross-section and chord length of 0.5 m, is made
of glass fibre with several transverse ribs to increase its stiffness. The 0.7 m long
centre portion (action model) of the model is instrumented to measure the unsteady
surface pressures on six strips along the span. Two 0.4 m long pseudo-models and
end plates are installed at each end of the action model to ensure two-dimensionality
of the flow and to render end effects unimportant. The unsteady surface pressures
on the aerofoil section are measured synchronously by DMS 3400 pressure scanners,
which are mounted inside the model to keep the tubing length (0.2 m) to a minimum,
ensuring a good frequency response up to 256 Hz. For the convenience of calculating
aerodynamic admittance, the sampling frequency of the Cobra Probe and fluctuating
pressures are all set to 256 Hz. A total of 11 spanwise separations ranging from 0.014
to 0.5 m are investigated to define the spanwise distribution of the turbulence. The
tests in the wind tunnel were typically conducted at a mean wind speed of 11.5 m s−1.

As shown in (2.55), we know that an adequate description of the two-wavenumber
spectrum of the turbulence is of great significance to identify the 3D AAF |χ(k1, k2)|2.
The two-wavenumber spectrum of the vertical fluctuations is related to Sw(k1) as
shown in (2.24) and Rw(r), which is its Hankel transform. Thus, the one-wavenumber
spectrum Sw(k1) is compared in figure 2(a) with the theoretical result (2.10).
Compared with Dryden et al.’s spectrum model, it is found that the measured results
agree particularly well with (2.10) with n= 1/3 (von Kármán’s spectrum). Figure 2(b)
demonstrates that the measured correlation coefficients of the w component are
consistent with the theoretical result (2.6) with n = 1/3 proposed by Bullen (1961),
which indicates that the grid-generated field satisfies the homogeneous isotropic
turbulence assumption. The measured results of the turbulence field confirm that the
indirectly measured two-wavenumber spectrum of w is of high accuracy.

The spectrum of the lift measured on an arbitrary strip is plotted in figure 3(a).
Figure 3(b) shows that the lift force is better correlated than the vertical fluctuations,
which is consistent with Nettleton’s experimental results (Etkin 1971) and also
confirms the invalidity of the strip assumption. In order to further assess the
correlation of the lift force and the turbulence, the width of the correlation is evaluated.
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FIGURE 3. (Colour online) (a) Spectrum of the buffeting lift force on an arbitrary strip.
(b) Comparisons between the spanwise correlation coefficients of the lift force (@) and
the w component of turbulence (A), where η is spanwise distance.

Empirical model Jakobsen’s model Kimura et al.’s model Dryden et al.’s model

Parameter c1 c2 c3 α1 β1 α2 β2

0.9265 1.8302 1.2404 9.5655 0.6523 10.1800 0.6790

TABLE 1. Parameters of the empirical models fitted by the measured results.

The spanwise width of the correlation defined by Larose (1997) is represented by the
integral length scales as follows:

Ly =
∫ ∞

0
R12(1y)d1y, (3.1)

where R12 is the correlation coefficient. The correlation width of the lift force and
vertical turbulence can be obtained from figure 3(b). It is found that Ly

L is 3.9 times
Ly

w (L
y
w = 0.054 m), which approaches Nettleton’s result Ly

L = 3.6Ly
w (Larose 1997).

In the present approach, the coherence of the lift force is of great significance and
needs to be fitted by the proposed empirical coherence model. In other words, the
accuracy of the identified 3D AAF mainly depends on the description of the spanwise
correlation of the lift force. Therefore, the three proposed empirical models are fitted
by the measured results in figure 4 to evaluate the sensitivity of the results to the
choice of model. The parameters in the empirical models, obtained by a nonlinear
least-squares fit of the measured coherence of the lift force, are given in table 1.

Kimura et al.’s and Dryden et al.’s models are close to the experimentally
measured values when the spanwise distance 1y/Ly

w ranges from 1.3 to 8. Dryden
et al.’s model has exceptionally good agreement with the measured results for lower
frequency when 1y/Ly

w < 2. Kimura et al.’s model agrees relatively well with the
experimental results either at low frequency or in high frequency when 1y/Ly

w< 8. In
contrast, Jakoben’s model poorly describes the spanwise correlation of the lift force
for 1y/Ly

w < 2, and its accuracy improves gradually with an increase of 1y/Ly
w from

3 to 6. Compared with Kimura et al.’s and Dryden et al.’s models, Jakobsen’s model
has similar accuracy when 1y/Ly

w ranges from 6 to 8, and excellent agreement is
observed as 1y/Ly

w approaches 13. In conclusion, Jakobsen’s model is more suitable
for large spanwise distance, and Kimura et al.’s and Dryden et al.’s models have
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FIGURE 4. (Colour online) Comparisons between direct measurements of the spanwise
coherence of the lift force (u) and the empirical models of Jakobsen (dash-dotted), Kimura
et al. (dashed) and Dryden et al. (solid). (a) 1y/Ly

w=1.3; (b) 1y/Ly
w=2; (c) 1y/Ly

w=3.3;
(d) 1y/Ly

w = 6; (e) 1y/Ly
w = 8; (f ) 1y/Ly

w = 13.

similar accuracy when 1y/Ly
w < 8, and are important for lower frequency and higher

frequency, respectively.
In order to study the three-dimensionality of the turbulence, the influence

factor ϑ(k1, k2) is presented in figure 5(a). When the reduced frequencies k1B
and k2B are close to zero, ϑ(k1, k2) reaches its maximum, which means that the
aerofoil tends to extract energy from larger-scale vortices in the turbulence. The
two-wavenumber coherence of w is obtained from (2.12) as shown in figure 5(b).
The contours show that the correlation of the vertical turbulence mainly depends
on narrow-band reduced frequencies in the chordwise and spanwise directions
(0.2 < k1B < 1.1, 0.2 < k2B < 1). Taking Kimura et al.’s empirical model for
instance, the two-wavenumber coherence of lift can be derived from (2.42) as given
in figure 5(c), and has similar characteristics to the incident turbulence w. Comparing
the coherence of w with lift force, it is found that the correlation of the lift force
depends on a larger range in the chordwise direction (0.03 < k1B < 1.2) and lower
reduced frequency in the spanwise direction (0.03< k2B< 0.3). This phenomenon can
precisely be interpreted by the influence factor ϑ(k1, k2).

Based on (2.11) and (2.35), the two-wavenumber spectrum of vertical turbulence
and lift force on the aerofoil model can be obtained as shown in figure 6(a,b). The
variation trends of Sw(k1, k2) and SL(k1, k2) (taking Kimura et al.’s empirical model
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FIGURE 5. Contours of the influence factor, spectrum of vertical turbulence and lift force.
(a) Two-wavenumber influence factor ϑ(k1, k2) associated with reduced wavenumbers.
(b) Two-wavenumber coherence of vertical turbulence Φw(k1, k2). (c) Two-wavenumber
coherence of lift force ΦL(k1, k2).
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FIGURE 6. (a) Contours of the two-wavenumber spectrum of vertical turbulence Sw(k1, k2).
(b) Contours of the two-wavenumber spectrum of lift force SL(k1, k2). (c) Measured 3D
AAF of lift force |χ(k1, k2)|2.

for instance, though in fact the three empirical models have similar results) are
in accordance with Cohw(k1, k2) and CohL(k1, k2) as presented in figures 5(b) and
5(c), respectively. Furthermore, the 3D AAF |χ(k1, k2)|2 can be obtained directly
from (2.55) as presented in figure 6(c), which indicates that the aerofoil may be
regarded as a low-pass filter, transferring the energy from higher to lower frequency.
According to Bearman’s theory, this pattern of energy transition may be explained as
the spanwise vortex line filaments being stretched and rotated when the turbulence
passes though the aerofoil. Consequently, the energy is transferred to the larger-scale
vortices (lower frequency), while the smaller-scale vortices diminish in this process.

In § 2.2, we presented a series of theoretical 3D AAF models of thin aerofoils
(Filotas 1969a,b; Graham 1970, 1971; Mugridge 1970, 1971; Blake 1986). It is not
convenient to compare the measured 3D AAF with the theoretical results directly,
so we validate our proposed theory by comparing the 1D AAF obtained by the
measured 3D AAF, defined as in (2.26), with those obtained by empirical 3D AAF
models. Since Graham did not provide an explicit expression for 3D AAF, Filotas’,
Mugridge’s and Blake’s 3D AAF models are applied. Figure 7 compares the directly
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FIGURE 7. (Colour online) Comparisons between experimentally measured 1D AAF (solid
line) from (2.25) and theoretical calculations from (2.26):E, the 1D AAF calculated from
the measured 3D AAF; a, Mugridge’s 3D AAF (2.29); ‘, Filotas’s 3D AAF (2.31);
F, Blake’s 3D AAF (2.33). The inset shows the comparison between the theoretical 3D
AAF (Graham’s result, solid line) with k2 = 0, which is consistent with Sears’ function,
and the experimentally obtained results based on the empirical models of Jakobsen (@),
Kimura et al. (E) and Dryden et al. (A).

measured 1D AAF (2.25) with the calculated results derived from four different 3D
AAF models (2.26). The 1D AAF calculated from the measured 3D AAF agrees
exceptionally well with the directly measured results and matches Filotas’ result at
very low and very high frequency. This result is also consistent with Mugridge’s result
at low frequency (k1< 1/π). Compared with Graham’s exact 3D AAF, Mugridge’s 3D
AAF has high accuracy at low frequency, and Filotas’ model is asymptotically exact
when the frequency is either very small or very large (Mugridge 1971). Therefore,
the proposed approach in this paper can be proved to be of high accuracy. Then,
Graham’s theory can be validated by an experimental approach directly. With respect
to Blake’s 3D AAF, there are few studies to assess its accuracy explicitly. Compared
with the 1D AAF derived by the other two theoretical 3D AAF models, Blake’s
result has higher accuracy although the reduced frequency is very low.

The inset in figure 7 compares the identified 3D AAF based on the three proposed
empirical coherence models of lift force with Sears’ function when k2= 0. The trends
of these results are consistent with Sears’ function (solid), and approach it at higher
frequency. The results indicate that Sears’ function deduced from fully coherent gusts
(one-dimensional sinusoidal gusts) can also possibly be identified in an isotropic
turbulent field (grid-generated turbulence). In addition, the results indicate that the 3D
AAF in fully coherent gusts is sensitive to the empirical coherence models. Compared
with Jakobsen’s model, Dryden et al.’s and Kimura et al.’s empirical models are more
accurate at lower reduced frequency and have similar accuracy to Jakobsen’s at higher
reduced frequency. The deviation of the results obtained at low reduced frequency
may be caused by the following three factors: (i) the effect of aerofoil thickness
(Sears’ function is derived for a thin aerofoil with no chamber); (ii) the effect of the
viscosity of the fluid; (iii) the accuracy of the empirical coherence model of the lift
force.
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4. Application of the identification approach to other configurations
In the above discussion we confirmed that the proposed theory is of high

accuracy for aerofoils. In fact, it is not hard to extend this approach to study the
two-wavenumber spectrum and aerodynamic admittance for a bluff body with arbitrary
cross-section, such as a streamlined bridge deck. In this case, the contribution
of the longitudinal turbulence cannot be neglected. Based on the traditional gust
loading model suggested by Scanlan (1978), it is not hard to derive the general
two-wavenumber spectrum of the buffeting force, taking the lift force for instance:

SL(k1, k2)= (ρUb)2|χ(k1, k2)|2
[
4C2

LSu(k1, k2)+ (C′L +CD)
2Sw(k1, k2)

]
, (4.1)

where CL, CD are the lift and drag coefficients, respectively and Su(k1, k2) is the two-
wavenumber spectrum of the longitudinal turbulence. Therefore, once the
two-wavenumber spectrum of the lift force and the incident wind fluctuations are
identified by the proposed approach, the two-wavenumber aerodynamic admittance
can be obtained directly. It should be noted that these empirical coherence models
of lift force were originally applied to bluff bodies: Jakobsen’s model is for a
streamlined deck and Kimura et al.’s model is for a rectangular cylinder. Hence,
these empirical coherence models are universal for line-like structures with arbitrary
sections. However, the parameters in the empirical coherence models may not be
constant, was they are related to the integral length scale of turbulence and the
dimension of the structure. Thus, the parameters should be determined as a function
of Lw by large numbers of wind tunnel tests with variations of Lw. For the buffeting
drag force and overturning moment, similar results could be derived.

The two-wavenumber number spectrum of longitudinal turbulence can also be
expressed in terms of the Fourier transform of the spanwise coherence. Referring
to the theoretical model based on von Kármán’s theory, the coherence model for
longitudinal turbulence can be defined as

Coh1/2
u (k1, 1y)= 21/6

Γ (5/6)

(
η5/6K5/6 (η)− η

11/6K1/6 (η)

2

)
, (4.2)

where

η= A31y, (4.3)

A3 = C
α3Lx

w

√
1+ (2π/C)2

[
(k1U)β3

(
α3Lx

w

U

)]2

, (4.4)

and U, Lw, C are defined as in (2.42), K5/6 and K1/6 are modified Bessel functions
of the second kind, and α3, β3 are floating parameters determined by wind tunnel
tests. For isotropic turbulence, (4.2) is absolutely consistent with the theoretical
result proposed by Roberts & Surry (1973) when the parameters α3 = 2, β3 = 1. If
the turbulent flow is not entirely isotropic, the parameters need to be identified by
experimental measurements. Thus, the two-wavenumber coherence of the longitudinal
turbulence can be expressed in terms of a Fourier transform as

Φu(k1, k2)= Γ (4/3)
3Γ (5/6)

√
πA5/3

3

{
11 (2πk2)

2 + 3A2
3[

(2πk2)
2 + A2

3

]7/3

}
. (4.5)

In this case, the coherence of vertical turbulence can be identified by (2.42)
based on wind tunnel tests. With respect to line-like structures with arbitrary
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cross-configurations, the 3D AAF can be identified based on the proposed approach
in the following four steps: first, the parameters in empirical coherence models for the
turbulence and buffeting force should be determined by experimental measurements as
proposed in this paper; secondly, the two-wavenumber spectrum of the turbulence and
buffeting force can be obtained by the presented models; thirdly, the static coefficients
should be measured by section model tests; finally, the 3D AAF can be identified
directly based on the proposed two-wavenumber gust loading models, such as (4.1).

5. Conclusion

Based on three-dimensional theory, a general approach is proposed to identify
the two-wavenumber spectrum of lift and aerodynamic admittance on an aerofoil
directly, which can be applied conveniently with the use of traditional simultaneous
measurements of the surface pressure method on a section model. The wind tunnel
tests confirm that this approach is of high accuracy and efficiency. Comparisons
between the two-wavenumber spectra of lift force and w indicate that a spanwise
vortex line filament would be stretched when the turbulence passing over the
aerofoil has a similar or smaller dimension compared with that of aerofoil. Thus,
energy is transferred from higher frequency to lower frequency. The 3D AAF can
explicitly describe the mechanism of energy transition and the three-dimensionality
of the lift force, which also validates Graham’s theoretical results directly. Also,
the characteristics of other closed-form approximations of the 3D AAF are further
confirmed when compared with Graham’s exact result.

In fact, the accuracy of this approach mainly depends on the empirical coherence
model of the unsteady aerodynamic force. In particular, the 3D AAF for fully
coherent gusts is sensitive to the empirical coherence model. However, the parameters
in the coherence models may not be constant, but be related to the dimensions of
the turbulence and the structure, and they need to be further improved based on a
large number of experiments. In addition, the approach proposed in this paper can be
extended to study the three-dimensionality of the buffeting force on line-like structures
with arbitrary configurations, such as long-span bridges and high-rise buildings, in a
more precise way.
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