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Abstract
In the context of a motivating study of dynamic network flow data on a large-scale e-commerce website, we
develop Bayesian models for online/sequential analysis for monitoring and adapting to changes reflected
in node–node traffic. For large-scale networks, we customize core Bayesian time series analysis methods
using dynamic generalized linear models (DGLMs). These are integrated into the context of multivariate
networks using the concept of decouple/recouple that was recently introduced in multivariate time series.
This method enables flexible dynamic modeling of flows on large-scale networks and exploitation of par-
tial parallelization of analysis while maintaining coherence with an over-arching multivariate dynamic
flow model. This approach is anchored in a case study on Internet data, with flows of visitors to a com-
mercial news website defining a long time series of node–node counts on over 56,000 node pairs. Central
questions include characterizing inherent stochasticity in traffic patterns, understanding node–node inter-
actions, adapting to dynamic changes in flows and allowing for sensitive monitoring to flag anomalies. The
methodology of dynamic network DGLMs applies to many dynamic network flow studies.

Keywords: Bayesian model emulation, decouple/recouple, dynamic network flow time series, dynamic generalized linear
models, Internet traffic, parallel computing, state-space models

1. Introduction
Key areas of network science have successfully adopted and refined statistical modeling ideas and
methods from other fields, and stimulated new statistical developments of broader use. The gen-
eral area of dynamic networks has generated broad interest in questions of modeling changes in
time of network (and graph) structures from statistics andmachine learning perspectives; we com-
ment on a number of recent contributions (including Hanneke et al., 2010; Richard et al., 2014;
Newman, 2004, 2018; Holme & Saramäki, 2013; Holme, 2015; Giraitis et al., 2016; Bianchi et al.,
2018), and relevant Bayesian approaches (including Kim et al., 2018; Sarkar et al., 2007; Xing et al.,
2010; Xu & Hero, 2014) in Section 2.1.

Our interest is in studies of time-varying patterns of integer counts of traffic flowing between
nodes in a given network (as well as into and out of the network). This topic has broad application
but has not previously been well-addressed in statistical terms. Past work on so-called network
tomography (e.g. Tebaldi & West, 1998) and physical traffic flow forecasting (e.g. Tebaldi et al.,
2002; Queen & Albers, 2009; Anacleto et al., 2013a,b) are relevant, but our dynamic network flow
contexts present challenges that require new modeling approaches. We exploit perspectives of
Bayesian time series modeling and analysis to advance practicable methodology for character-
izing and monitoring dynamic network flows. The motivating context is in Internet traffic in
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e-commerce web-sites, where we present aspects of a case study based on the new modeling and
analysis framework.

Increasing access to streaming traffic data on networks drives interest in models to quantify
inherent levels of variation in flows of traffic between network nodes and into/out of the network
from other sources. There are two aspects of this. The first is natural and unpredictable variation,
the second is that of stochastic but sustained patterns in underlying trends over time. State-space
models directly address this: they couple observation (noise) models for unpredictable variation
with latent state processes representing the structure and relationships among nodes—and pat-
terns of time-variation in these relationships. Understanding and appropriately characterizing
normal patterns of variation in traffic flows is necessary to coherently address questions of mon-
itoring flows for potential anomalies, and then to intervene or otherwise respond to interesting
inferred changes.

Key technical challenges are to develop real-time/sequential analysis that is computationally
efficient and scalable with network size and data sampling rates. We address these questions
from a new perspective of Bayesian time series analysis, introducing to the network science lit-
erature approaches based on dynamic generalized linear models (DGLMs) of proven utility in
other fields for many years (e.g. Migon & Harrison, 1985; West et al., 1985; West & Harrison,
1997, Chapter 14). The class of DGLMs integrates non-Gaussian sampling models of traditional
generalized linear models with state-space evolution models for time series. The subclass of mod-
els based on conditional Poisson sampling distributions is especially relevant to dynamic network
flow studies as it to other problems involving monitoring and forecasting multivariate systems of
time series of counts (e.g. Berry &West, 2019; Berry et al., 2019).

We extend basic univariate DGLMs to the multivariate dynamic system generated by large-
scale networks. We do this using the modeling concept of decouple/recouple originally introduced
for multivariate time series in financial and economic applications (Gruber & West, 2016, 2017),
and that has been recently extended for network data with simple network flow models (Chen
et al., 2018). The latter reference represents our starting point here. The decouple/recouple idea is
combined with the use of Bayesian model emulation, which maps inferences from collated sets of
individual node–node flowmodels to an integratedmultivariate network. Thismodel enables us to
explore dynamics in network-level activity intensity, node-specific flow dynamics, and node–node
interactions over time with information from individual flow levels.

This new model class is quite general in admitting a range of possible state-space models for
link-specific flow evolutions. In our case study, we utilize one of the most important special cases
of (local) linear growth models for adapting to unpredictable changes in trends underlying flow
patterns. Other applications will involve special cases customized to context—such as dynamic
regressions on known predictors, seasonal structures, and other Bayesian state-space structures
used in time series analysis (e.g. West & Harrison, 1997; Prado &West, 2010).

Our case study concerns Internet traffic in e-commerce, where the flow data are counts of
visitors moving between nodes that are clusters of web pages corresponding to meaningful
categories in a commercial website. The network example has over 56,000 node pairs and data for
288 time points within one day. Online advertisers are interested in many statistical issues related
to traffic flow and site-segment content. The field has become quite sophisticated, and many
methods have been employed to explore related problems, for instance, complex recommender
systems (Koren et al., 2009), sentiment analysis (Pang & Lee, 2008), and text mining (Soriano
et al., 2013), etc. However, basic questions of statistical modeling to characterize, monitor, and
potentially understand dynamics in traffic across site-segments have not received as much
attention as they warrant. In particular, there is potential commercial value as well as inherently
interesting methodological concern in identifying and adapting to fluctuations in the changes of
a site’s popularity on short time scales. There is related interest in understanding the interactions
between sites with respect to traffic, and in model-based monitoring for subtle anomaly detection
in sub-networks. In such applications, one important focus is “ads pacing” which relates to the
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speed with which advertisers deplete the budget assigned to a specific ad. A good understanding
of traffic dynamics can help control the delivery of ads and budget spending, and thus improve
the matching between demand-side and supply-side to maximize revenue.

We extend the recent work of Chen et al. (2018) in terms of network context and goals. We
introduce the rich class of DGLMs for latent Poisson rates, with opportunities to substantially
advance methodology for time-varying flow characteristics on larger networks. In addition to
extending the statistical modeling methodology, analysis of historical patterns in flow rates is
enabled with extensions of existing Bayesian time series analysis with DGLMs to include retro-
spective posterior sampling of state vectors over time. This underlies the ability to map to the
time-varying parameters of so-called dynamic gravity models (DGMs) for inference on global net-
work flow rates, dynamics in node-specific rates, and dynamics in node–node relationships. The
application in this paper involves a large network that highlights the utility of the new models,
along with the technical advances in modeling and computation for larger problems.

Section 3 describes the network context, basic statistical setting and notation. It outlines the
concept of decoupling multivariate flows into those between univariate node–node pairs, as well
as dynamic parameter mappings for inference on node-specific and node–node interactions.
Section 4 details the class of conditionally Poisson DGLMs in a general setting, and then focuses
on the specific example of local linear growth models (LLGMs) for latent flow rates underlying
network counts. Linked to these models, the Appendix has three components. Appendix A sum-
marizes technical details for mapping of DGLM inferences to the context of DGMs. Appendix B
summarizes the standard online learning algorithm for DGLMs and a novel methodological
extension required for approximate posterior simulation of full-time trajectories of latent state
vectors. Appendix C provides further examples of inferred dynamics in node–node interaction
effects, illustrating potential insights for online advertising.

Our case study involves data from the Fox News website, where flows represent individuals
browsing web pages. Section 5 introduces the data and context, develops initial DGLM analysis
and discusses some comparisons with the prior approach in Chen et al. (2018). Section 6 dis-
cusses the mapping of posterior distributions from the DGLM analysis results to the time-varying
parameters of highly structured DGMs, the latter then defining inferences on node-specific and
node–node interaction effects and how they vary over time. Several highlights are discussed using
specific nodes from the news website. We give some concluding comments in Section 7.

2. Background
2.1 Related work
Dynamic network analysis is an increasingly active research area and includes a multitude of
network contexts and analysis goals. In statistics, for example, Hanneke et al. (2010) proposed
a family of statistical models extending traditional exponential random graph models (ERGMs)
to a dynamic setting, with interest in potential problems of testing for changes as well as classifi-
cation. Statistical and machine learning approaches have evolved to address the problem of link
prediction in time-evolving graphs (e.g. Richard et al., 2014). Perspectives from different areas of
the physical sciences have included approaches based on graph theory (e.g. Newman, 2004, 2018;
Holme & Saramäki, 2013; Holme, 2015), while dynamic network models are increasingly visible
in applied studies in areas including biology (e.g. Uetz et al., 2000; Giot et al., 2003), econometrics
and marketing (e.g. Giraitis et al., 2016; Bianchi et al., 2018).

Various Bayesian statistical models have also been developed for dynamic network studies with
state-space models (Kim et al., 2018). State-space models represent data with coupled observation
(noise, natural random variation) components and latent process (underlying state variables with
stochastic but sustained patterns over time). Conditionally linear, Gaussian models are amenable
to analytic computation using Kalman filtering-style analysis, and more extensive analysis using
broader classes of Bayesian state-spacemodels (e.g.West &Harrison, 1997). However, many/most
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Figure 1. Network schematic and notation for flows at time t.

problems of network inference in dynamic contexts involve non-Gaussian data structures and
non-linear effects, so one needs computational methods such as Markov chain Monte Carlo (Xu
& Hero, 2014; Hoff, 2011). For example, Sarkar et al. (2007) map the dynamic co-occurrence data
to dynamic embeddings in low-dimension Euclidean space, while Xing et al. (2010) and Xu &
Hero (2014) extend well-known stochastic block models to study dynamic network tomography.
More closely allied to some of our main interests here are past works on the so-called network
tomography problem (e.g. Tebaldi & West, 1998) and state-space models for physical traffic flow
forecasting (e.g. Tebaldi et al., 2002; Queen & Albers, 2009; Anacleto et al., 2013a,b). Our work
presents a broader approach to such studies by exploiting rich classes of Bayesian state-space
models to characterize and analyze complex, time-varying flows on networks.

This paper extends the recent work of Chen et al. (2018) in terms of network context and goals.
Using an example of a small network (20 nodes), that work utilized a relatively simple smoothing
model for latent time-varying Poisson rates on node–node pairs, and introduced the key idea of
decouple/recouple to enable scaling.While based on a state-space approach, the simple smoothing
model is often unable to adequately capture trends or abrupt changes in network flows, and the
model structure is not flexible enough to incorporate other node/flow features. Such challenges
are addressed by DGLMs whose utility has been proven in other fields for many years (e.g. Migon
& Harrison, 1985; West et al., 1985; West & Harrison, 1997, Chapter 14).

2.2 Network structure and notation
Consider a closed network defined on I nodes with counts of traffic flowing between pairs of nodes
observed sequentially over equally-spaced time t = 1, 2, . . .. This defines a highly interdependent,
multivariate count time series. The counts represent units who individually enter the network at
one of the nodes at some specific time, transit to other nodes, may stay at a node for a period of
time, and may exit the network at some time point. The case study involves IP addresses (indi-
cating individuals) browsing a website comprised of disjoint sets of web categories (e.g., Arts &
Entertainment, Weather) so that these sets are the nodes. In this and other applications, an addi-
tional node indexed by 0 is needed to represent flows into, or out from, nodes in the core network.
At each time point t = 1:T, let nit be the number of occupants of node i, and let xijt be the flow
count from node i to j, including the in-flows x0it and out-flows xi0t , as shown in Figure 1.

3. Statistical Structure
3.1 Dynamic Poisson andmultinomial flow distributions
The natural class of dynamic models has hidden Markovian structures with latent rates defin-
ing transitions between nodes over time, the rates themselves being time-varying. We adopt
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conditionally independent Poisson models (Poi) for in-flows to the network coupled with con-
ditionally independent multinomials (Mn) for flows from each node, all with time-varying
parameters. That is, for t = 1:T, and network nodes i= 1:I,

x0it|φ0it ∼ Poi(φ0it) and xit|ni,t−1,�t ∼Mn(ni,t−1, θ it), (1)

where xit is the vector of outflows to all I nodes from node i at time t. In the notation here,
Poi(φ0it) denotes a Poisson distribution with mean φ0it , andMn(ni,t−1, θ it) denotes a multinomial
distribution with ni,t−1 trials and I + 1 cell probabilities in the vector θ it . The defining parameters
of these distributions are time t values of underlying latent processes: φ0jt is the time-varying
rate process governing flows into node j from the external node 0; θ it = (θi0t , θi1t , . . . , θiIt)′ is the
vector of time-varying transition probabilities from node i to all other nodes with j= 0 indicating
departure from the network.

Modeling flexibility and computational efficiency are key needs in large-scale dynamic network
analysis. In our case study, one goal of the end-user is to optimize online advertisement placement
by analyzing browsing patterns, and these decisions must be made in less than a second, demand-
ing fast and effective analysis. The theory underlying multinomial models allows us to address
this using decoupling of flow transitions to node–node pairs, enabling use of univariate DGLMs
in parallel, followed by theoretical recoupling for exact inference on the sets of multinomial prob-
abilities. In the decoupling step, network flows originating from nodes i= 1:I within the network
are implicitly conditionally independent Poisson random variables, denoted by

xijt|φijt ∼ Poi(mitφijt) with mit = ni,t−1/ni,t−2, (2)

where (i) the φijt are latent Poisson rates governing the outflows from node i to all other nodes
j= 0:I at time t, and (ii) the occupancy ratio mit provides appropriate scaling of outflows from
node i as its level of occupancy counts changes over time.

Decoupling allows individual flows to be updated independently, to achieve fast parallel com-
puting per unit of observation time. One aspect of recoupling is to then directly revert to the
fundamental time-varying multinomial transition probabilities of Equation (1) via θijt ∝mitφijt ∝
φijt subject to summing to 1 over j= 0:I. Given any set of the φijt simulated from posterior dis-
tributions, this trivial computation provides inferences on the multinomial transition probability
processes.

3.2 Mapping to dynamic gravity model
The recoupling aspect is to map inferences on the φijt to those of a separate DGM (e.g. West,
1994; Sen & Smith, 1995; Congdon, 2000). This mapping enables evaluation of flow patterns at
various levels of the network: (i) overall network level, (ii) the level of each individual node, and
(iii) for all pairs of nodes. The details follow Chen et al. (2018), and are summarized here, with
some additional technical detail in Appendix A. A DGM represents φijt as a product of four terms,
at each t and for each pair of nodes, viz

φijt = μtαitβjtγijt (3)

for each within-network node i= 1:I and all j= 0:I over all t = 1:T. Here the latent rates φijt are
mapped to: (i) a network-level flow rate process μt ; (ii) a multiplicative origin effect process αit for
each node i; (iii) a multiplicative destination effect process βjt for each node j; and (iv) an affinity
process γijt , a dynamic interaction term representing the directional attractiveness of node j as a
destination for flows from node i relative to the contributions of baseline and main effects.

Given posterior samples of the φijt over nodes and time, we can directly map to the DGM
parameters for more incisive inference on node-specific and node–node interactions over time. In
this sense, the flexible class of decoupled/recoupled DGLMs can be used as a Bayesian emulator
for inference in the DGM. Technical details of the mapping are given in Appendix A.
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4. Dynamic Generalized Linear Models (DGLMs)
DGLMs are generalized linear models (McCullough & Nelder, 1989; West, 1985) with time-
varying parameters defined by state-space evolutions of regression vectors. Time series observa-
tions are conditionally drawn from a sampling model in the exponential family, and the natural
parameter of the distribution is regressed on a time-evolving state-vector. These models build on
dynamic linear models and are central in Bayesian work in applied time series with non-Gaussian
data (West & Harrison, 1997; Prado & West, 2010). We focus here on the special example of
conditionally Poisson models for both the network inflow count time series and the decoupled
within-network flow series, i.e., xijt for all node pairs i, j ∈ 0:I and all times t = 1:T for which the
sampling models are xijt|φijt ∼ Poi(mitφijt) with m0jt = 1 for inflows from outside the network.
DGLMs are created via state-space models for the latent rate processes φijt .

Ignoring the node indices i, j for clarity, consider a single Poisson rate process λt . Suppose that
λt = log (φt) is defined via an underlying linear, state-space, Markov model in which

λt = F′
tθ t and θ t =Gtθ t−1 + ωt where ωt ∼ [0,Wt], (4)

with the following elements: (i) Ft is a known p× 1 regression vector of constants and/or known
values of predictors at time t; (ii) θ t is the corresponding p× 1 dynamic regression parameter
vector, known as the state-vector, at t; (iii)Gt is a known p× p state-evolution or transitionmatrix;
(iv) ωt is a random p× 1 innovation vector representing stochastic changes to the state at time t;
(v) the ωt are independent over time, and the notation indicates ωt is zero mean and has known
variance matrixWt .

Model specification depends on context, of course, and there are widely used subclasses in
which Ft and Gt take specific forms (e.g. Prado &West, 2010, Chapter 4). Some examples include
DGLMs when Ft includes values of known covariates (predictors), intervention indicators, and
constants representing groups and design variables, in which cases the corresponding entries in
θ t are dynamic regression coefficients. Natural evolution models then have corresponding rows
of Gt as zero but for the implied column index, so that the model indicates a random walk time
evolution for those parameters. Relevant to many applications are examples where both Ft ≡ F
and Gt ≡G are constant with specific forms chosen to define local smoothing and interpolation,
such as in modelsM1 andM2 defined by

M1: F =
(
1
0

)
and G=

(
1 1
0 1

)
,

M2: F =

⎛
⎜⎜⎝
1
0
0

⎞
⎟⎟⎠ and G=

⎛
⎜⎜⎝
1 1 0
0 1 1
0 0 1

⎞
⎟⎟⎠.

In modelM1, the latent state vector θ t = (λt , ρt)′ consists of the current level of the latent λt pro-
cess and the time t change in level (the discrete gradient, or “growth”) term ρt . This is a local linear
growth model (LLGM) and one of the most widely used DGLMs both alone or as a component
of more elaborate models. The model defines local linear interpolation of time-varying trends
that are otherwise regarded as unpredictable, and is key to retrospective smoothing of patterns in
time series. ModelM2 is a more elaborate local quadratic model in which the third element of the
state vector represents time-varying changes in gradient. More complicated local smoothing can
be defined by higher-order polynomial DGLMs with obvious extension (West & Harrison, 1997,
Chapters 7,10). The case study of this paper adopts the class of LLGMs defined by F,G as in model
M1 above.

Summary details—including algorithms for implementation—of Bayesian analysis of general
DGLMs are given in Appendix B. This includes details of sequential learning, i.e., forward filter-
ing to process data as it arrives and sequentially update prior-to-posterior summary information
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for the state vectors θ t over time. At any time t, this enables inference on the current state
and forecasts of coming data. This online analysis is most relevant to sequential learning and
monitoring of flows in many applications. Then, based on an observed time series of flows over
a period of time 1:T, key interests are addressed by retrospective analysis that examines infer-
ences on historical trajectories of state vectors, and any functions of them of interest. Bayesian
analysis here is best addressed using simulation of posteriors over historical trajectories, and the
implied posteriors for past evolution in patterns of substantively interesting parameters such as
those of DGMs than can be implied. Full technical and algorithmic details of this are summarized
in Appendix B. One key element of model specification is the extent and nature of time-variation
in the state vector as defined by the variance matricesWt . These are specified using the standard
discount factors method; see Chapter 6 of West & Harrison (1997) and Section 4.3.6 of Prado &
West (2010), and the additional technical details in Appendix B.

5. LLGM Analysis of Fox News Flow Data
5.1 Fox News flow data
The case study concerns flow data recording individual visitors (in terms of IP addresses) to well-
defined nodes of the Fox News website. Our sample of data here concerns traffic on September
17, 2015 (a Thursday) segmented to IP addresses linked to visitors from only the Eastern Daylight
Savings time zone. The website is structured by the Adex Category, a partition derived from text
mining the webpage content and widely used in online advertising for webpage analysis. There are
2,208 predefined categories, including 26main categories and different levels of subcategories. The
26 main categories are Arts & Entertainment, Computers & Electronics, Finance, Games, Home
& Garden, Business & Industrial, Internet & Telecom, People & Society, News, Shopping, Law &
Government, Sports, Books & Literature, Real Estate, Beauty & Fitness, Health, Autos & Vehicles,
Hobbies & Leisure, Pets & Animals, Travel, Food & Drink, Science, Online Communities,
Reference, Jobs & Education and World Localities. Although there can be web page content that
combines different categories, the Adex Category tool enforces a strict partition. Exploratory study
found little cluster structure among subcategories sharing the same main category.

Data are aggregated to 5-minute intervals, suggested by stability of exploratory analysis results
across temporal levels of data aggregation. This defines a time series with T = 288 time points
having the structure described in Section 3. At each time interval, over the directed network with
nodes classified by Adex Category, the data include counts of transitions of visitors between each
pair, incoming flows from outside the Fox News website to each node, as well as the total number
of people visiting each node. There are no relevant additional covariates available, so the analy-
sis focuses wholly on temporal trends in network, node-specific and node–node interactions as
evidenced through analysis of flexible DGLMs that allow and adapt to changes over time. This is
done using the special case of local linear growth DGLMS, i.e., the LLGM framework.

Most people spend nomore than 5minutes on a single web page (Jansen et al., 2007). Therefore,
visitors who spend more than 5 minutes in a node are deemed inactive and handled as if they
have left the website. Also, user information is unavailable before and after September 17, so the
inactivity rule means the first and last 5-minute intervals are eliminated from the time series,
which now has length T = 284. Then, there are some categories with little or no traffic during the
entire day, so only those categories with sufficient data are considered in the analysis. By applying
a threshold of 1 for the total traffic across allT = 284 time periods, I = 237 out of an initial superset
of 2,208 categories are left for analysis.

5.2 Some initial DGLM analysis summaries
We focus on individual flows, and evaluate performance by comparing the accuracy of the one-
step-ahead predictions against predictions from the Bayesian Dynamic Flow Model (BDFM) of
Chen et al. (2018). In our LLGM analysis, for each individual flow, the latent state vector θ ijt has
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Figure 2. LLGM forward filtering of counts staying at node i= Arts & Entertainment on September 17, 2015. Upper: data
(crosses), filteredmean (solid) and 95% CI (shaded) of trajectories of φiit . Lower: filteredmean (solid) and 95% CI (shaded) of
local linear growth term ρiit . Two low-count values denoted by circles are mentioned in the text.

two components: the rate parameter on the log scale λijt and the local linear growth term ρijt . The
prior on λij0 is chosen with mean equal to the point estimate based on a simple average of data in
the 5 minutes prior to the beginning of the time series, and the prior mean for ρij0 is 0. The initial
prior variance matrix has zero covariances and diagonal entries 0.1. The levels of prior variance
represent a relatively diffuse initial prior that allows for swift adaptation to the data over the initial
few time points. The discount factor for all reported analyses is set as δ = 0.9, for all node pairs.
This level of discounting encourages smoothness but also allows the model to flexibly adapt to
changes, and variations (that have been explored) might marginally improve local descriptions
for some node pairs but are secondary to the interests and emphases here.

Decoupling allows us to apply LLGMs simultaneously to all of the flows. The LLGM analysis
of flows staying at the category Arts & Entertainment is used to illustrate the model performance.
Figure 2 shows the forward filtering results for both the rate parameter and the local linear growth
term, while Figure 3 shows the results as smoothed by backward sampling. In general, both the
sequential and retrospective analyses capture patterns of change over time well, and the efficacy of
retrospective analysis is highlighted.We note that the intervals representing uncertainty about tra-
jectories are very tight, indicating a high level of precision in estimating the underlying transition
processes. This is true in several of the following graphs for other model parameters.

There are periods when volatile patterns in the data challenge model adaptability. For example,
in the morning (8:00–10:00) and late at night (20:00–24:00), forward filtering analysis without
any intervention underestimates the swings in the rate parameter. The sequential analysis is more
sensitive to outliers. For instance, at around 16:00, there are two data points with low counts
compared to the data before and after; see the circles in Figures 2 and 3. These two data points
drive the rate down in the forward filtering. That said, the retrospective analysis is able to resolve
these two issues by using information from the later in the series. Looking back, retrospective
posterior analysis provides smoother and more accurate inference on the rate parameter.

Forward filtering and backward smoothing for the local linear growth term give insight into
how trends vary during the day. For example, at first the Poisson rate for people staying in Arts &
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Figure 3. As in Figure 2, but now showing full retrospective analysis.

Entertainment decreases at 0:00–4:00, but its decrease slows, reaching the minimum at around
4:00. Afterwards, the rate increases rapidly and reaches the first peak of the day at around 8:00
a.m., then maintains a steady, high level until around 19:00. The rate then reaches its second peak
at around 20:00, and after that, the activity level declines rapidly until midnight.

5.3 Comparison with BDFM
Some comparison of LLGM and the simple smoothing model (Chen et al., 2018), referred to as
a Bayesian dynamic flow model (BDFM), was made; one example concerns counts staying at
category Arts & Entertainment. The discount factor controlling adaptability is δ = 0.9 for both.
Summaries here focus on forward filtering and one-step ahead forecasting for comparison. Both
models perform well when the trend is stable—between 8:00 and 19:00, the one-step ahead fore-
casts by both models agree closely with the true data. However, the BDFM tends to underestimate
the rate when the trend is rising and to overestimate when the trend is declining, as during
4:00–8:00 and 20:00–24:00, respectively. In contrast, the LLGM still provides good point-wise
prediction. Across nearly all flows, the LLGM outperforms the BDFM in terms of one-step ahead
forecast accuracy, illustrated in Figure 4.

6. Model Mapping Analysis
6.1 Daily fox news flows example
We now recouple, mapping the retrospective results for the log rate parameters λijt to the DGM.
The results provide insight into four aspects of flow dynamics: (i) the baseline process μt that
characterizes general activity intensity; (ii) the origin effects αit that relate to activity of outgoing
flows from node i; (iii) the destination effects βjt that relate to the attractiveness for incoming
flows to node j; and (iv) the directed pairwise affinity effects γijt , for interactions that impact the
rate functions governing flows from nodes i to j.
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Figure 4. Summary of analyses of counts staying at node i= Arts & Entertainment using both LLGMandBDFM. Data are from
September 17, 2015. Upper: Data (+) with one-step forecast means and 95% intervals from the LLGM analysis (solid/dark
gray) compared to the analysis using the standard BDFM (dashed/light grey). Lower: Mean absolute percentage error (MAPE)
over time from the LLGM analysis (solid) compared to the analysis using the standard BDFM (dashed).

6.1.1 Baseline level
We apply the DGM decomposition to the Fox News data on the network defined by Adex
Category for September 17, 2015. As expected, the baseline activity level reflects human routine—
high traffic during the day and early evening, and low traffic late at night, as shown in Figure 5.

The day starts at midnight when the overall mean intensity is 1.025. As users go offline, this
overall activity level decreases, reaching aminimum at around 4:00. Then themean increases until
around 8:00, when the trend becomes flat. During the day (8:00–16:00), the website maintains a
relatively high level of activity with three small bumps at around 10:00, 12:30, and 15:00, which are
typical times for work breaks. There is a slight decreasing trend from 16:00 to 18:00, presumably
as people travel home. After dinner time, the trend increases to a peak at around 20:00, and then
declines as people retire.

6.1.2 Origin and destination effects
For most categories, the origin and destination trends are similar so we focus here on the former.
Trajectories of origin effects αit exhibit several general patterns, varying by Adex Category. Three
examples of each appear in Figure 6.

First, categories such as Arts & Entertainment, News, and Shopping show trends similar to the
overall activity level μt . The origin effect increases to a high level during the early morning, is
steady during the day and early evening, and then declines. These categories are among the most
popular in the network.
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Figure 5. DGM-based inference on smoothed trajectories of the baseline activity level μt for Fox News data on September
17, 2015 with a 95% credible interval. The+ symbols indicate empirical values from the raw data.
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Figure 6. Smoothed trajectories of selected node-specific origin effectsαi,1:T with 95%CIs. The+ symbols indicate empirical
values from the raw data.

Second, categories such as Health, Beauty & Fitness, and News/Weather show high activity
during the day, but drop to a low level in the evening and at night. This is reasonable for weather,
since many people want to know the forecast before leaving for work. It also seems reasonable
for the other categories, which are oriented towards a narrow focus that is not entertainment or
relaxation.

https://doi.org/10.1017/nws.2019.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.10


Network Science 303

Time (hour)
0 4 8 12 16 20 24

x ij
t &

 
ij

t

0

50

100

150

200

250

Time (hour)
0 4 8 12 16 20 24

x ij
t/n

i,t
-1

 &
 

ij
t

0.05

0.1

0.15

0.2

0.25

0.3

Time (hour)
0 4 8 12 16 20 24

it

1

1.05

1.1

1.15

1.2

1.25

1.3

Time (hour)
0 4 8 12 16 20 24

jt

1

1.05

1.1

1.15

1.2

1.25

1.3

Time (hour)

0 4 8 12 16 20 24

ij
t

0

50

100

150

Time (hour)
0 4 8 12 16 20 24

p

0

0.05

0.1

0.15

0.2

Figure 7. Posterior summaries for DGMparameters for transitions staying at node i= Finance/Investing.Upper left:Posterior
trajectory for the φiit with raw counts (crosses). Upper right: Posterior trajectory for the θiit with raw frequencies (crosses).
Center left: Posterior trajectory for the origin (outflow) process αit . Center right: Posterior trajectory for the destination
(inflow) process βit . Lower left: Posterior trajectory for the self-affinity process γiit . Lower right: Corresponding trajectories
of Bayesian credible values assessing support for γiit near 1.

Third, categories such as Games, Online Communities/Social Networks, and Food &
Drink/Food/Baked Goods show a different trend in origin effect—a pattern that increases from
about 4:00. to late evening, peaks at around 22:00, and exhibits local peaks at other times. Topics
on games and social networks pertain to relaxation, which is a reasonable evening activity. The
food category has two peaks, in the morning and the late afternoon, which may reflect people
looking at recipes in themorning to plan grocery purchases, and then later when preparing dinner.

6.1.3 Affinity effects
Affinity effects capture interaction between pairs of categories. Pairs with strong affinity may indi-
cate that people interested in one tend to be interested in the other, which would be potentially
valuable in computational advertising. There are four kinds of affinity effects: (i) staying at a cer-
tain category γiit ; (ii) entering the network γ0jt ; (iii) leaving the network γi0t ; and (iv) moving
between two different categories γijt . We discuss these separately. For all four kinds of affinities,
we show representative trend patterns, with more extensive examples summarized in Appendix C.

Self-affinities: A high self-affinity implies that users tend to stay at that category. A trend that
shows times of day when people linger is useful to advertisers since it suggests readers have more
leisure time and thus could be tempted to click on ads.

A representative trend pattern features high activity during the business day, and then
lower level in the evening. Such categories include Finance/Investing and Computers &
Electronics/Software (Figures 7 and 8, respectively). The self-affinity of Finance/Investing has
three peaks: one around 10:00, one around 15:00, and one around 20:30. Computers &
Electronics/Software is interesting since, for most categories, self-affinity drops a bit after 8:00
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Figure 8. Posterior summaries for DGM parameters for transitions staying at node i= Computers & Electronics/Software,
with details as in Figure 7.

and is not very high at noon, while the affinity of Computers & Electronics/Software increases
over the morning and peaks at noon. This trend indicates people spent more time reading related
contents compared with other times of the day, and should inform ad buy decisions during those
peak times.

Entering affinities: A category with high entering affinity draws users from outside the Fox
News website. Ads shown on such categories may be more cost-effective. The probability θ0it of
users entering the network at node i is a measure of a category’s overall popularity.

Entering affinities show interesting patterns identified in trajectories. One such pattern peaks
in the early morning; e.g., flows into News/Weather and News/Politics. The peak for both is
around 6:00, as in Figures 9 and 10. For News/Weather the insight is obvious. For News/Politics,
September 17 is the day after a US national political debate, which may drive extra interest. That
said, this peak pattern is sustained on other weekdays, indicating that many people access news
sites in the morning. Advertisers should generally avoid placing ads at this time, since people are
not in shopping mode.

Exiting affinities: Categories with high exiting affinities tend to be the last stop for users nav-
igating the Fox News website. Such categories are the last chance to show an ad, and if grocery
store checkout lines are any guide, a good opportunity for impulse purchases.

One interesting trend increases over the morning, peaks at about 8:00 and then stays sta-
ble with high intensity until evening. Often, these categories are the only categories visited by a
user. Examples include Arts & Entertainment and Food & Drink/Cooking & Recipes (Figures 11
and 12). Though the affinity intensity is stable, there is an interpretable bump during 16:00–18:00
for Food & Drink/Cooking & Recipes which is probably related to dinner preparation.

Distinct node pair affinities: High levels of affinity between distinct category pairs indicate
interaction, which could reasonably influence advertising strategy.
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Figure 9. Posterior summaries for DGM parameters for transitions entering node i= News/Weather. Upper left: Posterior
trajectory for the φ0it with raw counts (crosses). Upper right: Posterior trajectory for the θ0it with raw frequencies (crosses).
Center left: Posterior trajectory for the external origin (outflow) process α0t . Center right: Posterior trajectory for the
News/Weather destination (inflow) processβit . Lower left:Posterior trajectory for theNews/Weather entering affinity process
γ0it . Lower right: Corresponding trajectories of Bayesian credible values assessing support for γ0it near 1.

In all patterns of such affinities, the one with a bump is the kind in which we are most inter-
ested. The bump indicates that users are only active in moving between those categories in a short
window, while they remain inactive during the rest of the day, and thus this short window is the
best time that related ads should be displayed. Examples include Online Games to Video Games
and Home & Garden to Reference/General Reference/How to DIY & Expert Content.

The affinity from Online Games to Video Games (Figure 13) has a bump in the evening and
at night (16:00–24:00) during which the average is six times higher than the usual intensity level.
This strongly indicates that users who read about online games are also interested in computer
and video games during this period.

The affinity from Home & Garden to Reference/General Reference/How to DIY & Expert
Content (Figure 14) has a bump around 8:00–12:00. Moreover, both of the origin effect of Home
& Garden and the destination effect of Reference/General Reference/How to DIY & Expert
Content are low, while the affinity effect between them is large, which indicates strong interaction.
Obviously, people plan home projects in the morning, and seek information on how to implement
them.

7. Closing Comments
The case study demonstrates the value of this new class of dynamic network flow models on a
large network. The specific special case of DGLMs adopted—the LLGM—is just one example of
the broader class, but the analysis examples highlight the ability of this family to characterize
and adapt to quite heterogeneous patterns of change over time in latent flow patterns. An impor-
tant element of the analysis is that full Bayesian inference, based on computationally efficient
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Figure 10. Posterior summaries for DGM parameters for transitions entering node i= News/Politics with details as in
Figure 9.

retrospective sampling analysis, defines not only point estimates of trajectories of key dynamic
parameters, but also uncertainties about them from posterior samples.

A critical component of the analysis is the strategy of decoupling/recoupling. This has two
aspects. First, the individual univariate DGLMs for dynamic Poisson flows are learned by forward
filtering updates at each time step, and then for all within-network nodes these are theoreti-
cally recoupled to define inferences on the dynamic transition probability vectors in the inherent
conditional multinomial distributions governing flows, so inferring node dependencies. The
decoupling/recoupling strategy also provides an ideal structure to perform parallel computation,
enabling scalable and efficient analysis for increasingly large dynamic networks. Using a computer
with K cores, the computational demands for a series of length T on a network with I nodes scales
only as O(I2T/K). A 2018 Matlab implementation running on a standard laptop (2.3 GHz CPU,
16 Gb memory) took 52 minutes to run our analysis with T = 286, I = 2,208.

The second aspect of recoupling analysis is the use of the set of DGLM-based models as an
emulator for a multivariate DGM that is explicitly parametrized in terms of network-wide, node-
specific and node pair interaction effects, all potentially time-varying. The Fox News web study
shows a number of examples of the use of this mapping to uncover—again with full Bayesian
posterior uncertainty measures—interpretable patterns in time trajectories of node main effects
(impacting both incoming and outgoing traffic) and node–node pair interactions (in terms of
affinities of one node for another that impact traffic flows between them). We have noted the
potential for such information to be exploited by online advertisers in the case study, and formal
inferences will be of interest in other applications.

The DGM mapping also enables investigation of network grouping structures over time by
clustering nodes using the dynamic node–node pair affinities, with potential for deeper future
study. With the overall network intensity and node main effects removed by DGM, the affinity
between a pair of nodes is an inherently interesting measure of the “closeness” of nodes; at one
level, it can be regarded as a coherent statistical summary of node–node relationship and their
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Figure 11. Posterior summaries for DGM parameters for transitions exiting from node i= Arts & Entertainment. Upper left:
Posterior trajectory for the φi0t with raw counts (crosses). Upper right: Posterior trajectory for the θi0t with raw frequencies
(crosses). Center left: Posterior trajectory for the Arts & Entertainment origin (outflow) process αit . Center right: Posterior tra-
jectory for the external destination (inflow) process β0t . Lower left: Posterior trajectory for the Arts & Entertainment leaving
affinity process γi0t . Lower right: Corresponding trajectories of Bayesian credible values assessing support for γi0t near 1.
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Figure 12. Posterior summaries for DGM parameters for transitions exiting from node i= Food & Drink/Cooking & Recipes
with details as in Figure 11.
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Figure 13. Posterior summaries for DGM parameters for transitions from node i= Games/Online Games → j=
Games/Computer & Video Games. Upper left: Posterior trajectory for the φijt with raw counts (crosses). Upper right: Posterior
trajectory for the θijt with raw frequencies (crosses). Center left: Posterior trajectory for the Games/Online Games origin (out-
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right: Corresponding trajectories of Bayesian credible values assessing support for γijt near 1.
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Figure 14. Posterior summaries for DGM parameters for transitions from node i=Home & Garden→ j= Reference/General
Reference/How to DIY & Expert Content with details as in Figure 13.
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patterns over time (and much preferred to any raw data summary). We note, in addition, that the
node-specific main effects for inflows can be regarded as statistical quantities of node importance
or centrality; inflows and outflows together reflect the scale of importance of a node in terms of
numbers and flow intensities with neighbors in the network. Traditional summary network topol-
ogy measures may be of interest in other contexts, but for dynamic network traffic analysis these
model-derived quantities are foremost, and their inferred trajectories over time are of primary
interest.

The case study exploits and highlights the adaptability and utility of the LLGM class of mod-
els as a key driver of the overall decouple/recouple and emulation analysis. This is, of course,
just one special subclass of the full class of DGLMs, and other forms are applicable in other
areas. Future studies with available covariate information might include, for example, Internet
traffic studies with known interventions, dynamic traffic flow with geographical and structural
information, or brain network data with known or hypothesized connectivity information. Such
studies can be expected to exploit more general DGLMs that include node-specific covariates or
dummy variables representing intervention effects (e.g., for known ad placements in e-commerce
examples, or network structure changes in others). This work offers benefits in other applications
through the flexibility to customize the DGLMs to the context. The overall model framework and
approach needs only customization of details in the specification of the state-space elements Ft ,Gt
(which will in some extensions be specific to pairs of nodes as well as time-varying), as the analysis
described here and illustrated in the case study applies generally to the full DGLM class.
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Appendix A. Recouple Mapping to Dynamic Gravity Model
The mapping from the DGLM flow model to DGM parameter processes of Section 3.2 follows developments in Chen et al.
(2018), summarized as follows. We work on logged DGM parameters ht = log (μt), ait = log (αit), bjt = log (βjt), and gijt =
log (γijt). To ensure identification and a one-one mapping between the models, the traditional zero-sum constraint is adopted
for the main effects and interactions at each time. Then, given the full set of φijt values in the DGLM flow model, define
fijt = log (φijt) for each i= 1:I, j= 0:I, at each time t = 1:T. The recoupling step is then implemented by computing DGM
parameters as below. In the notation, subscript + indicates summation over the relevant index i or j. For each t,

• compute μt = exp (ht) where ht = f++t/I(I + 1); then,
• for each i= 1:I, compute αit = exp (ait) for ait = fi+t/(I + 1)− ht ; then,
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• for each j= 0:I, compute the destination node main effect βjt = exp (bjt) for bjt = f+jt/I − ht ; finally,
• for each i= 1:I and j= 0:I, compute the affinity (interaction) effect γijt = exp (gijt) where git = fijt − ht − ait − bjt .

This is applied to all simulated φijt values from the posterior analysis under the DGLMs to create implied posteriors for the
DGM parameter processes.

Appendix B. Bayesian Analysis of Poisson DGLMs
Analysis is based on sequential Bayesian computation that combines variational Bayes approximation with linear Bayes
updates (West & Harrison, 1997; Hartigan, 1969; Goldstein, 1976), along with retrospective sampling of posteriors for state
vector trajectories, extending earlier algorithms for DGLM analysis.

As in Section 4, we focus on one node pair but ignore the node indices, so that we have a Poisson DGLM for xt with mean
φt where λt = log (φt) is defined via the underlying linear, state-space, Markov model of Equation (4).

Sequential analysis: Forward filtering and learning
At time t = 0, specify a prior mean vectorm0 and variance matrixC0 for the pre-initial state vector, denoted by θ0 ∼ [m0,C0].
Then, over every future time point t > 0, the evolution over t − 1 to t, prediction of xt from time t − 1 and posterior update
based on observing xt follows the standard evolve/predict/update cycle of Bayesian state-space model analyses. In DGLMs,
we use two approximations in the cycle. First, as the evolution noise distribution is specified only in terms of first and second
order moments, the modeler is free to constrain implied state and predictive distributions to chosen forms; DGLMs use
the variational Bayes concept to constraint to conjugate forms enabling fast and efficient computation, as well as defining
predictive distributions of contextually appropriate (for count time series) negative binomial forms. This is coupled with the
use of decision-theoretic linear Bayes approximations to feed back data information in the prior-posterior update (filtering)
step at each time step, appropriately conditioning the mean vector and variance matrix for the state vector as new data is
processed. Details are summarized below.

1. At time t − 1, given all the previous data and informationDt−1 the mean vector and variance matrix of the posterior
for θ t−1 are available as θ t−1|Dt−1 ∼ [mt−1,Ct−1].

2. By the state evolution equation, the implied time t − 1 prior for θ t has moments θ t |Dt−1 ∼ [at , Rt], where at =
Gtmt−1 and Rt =GtCt−1G′

t +Wt .
3. This implies that λt = log φt has prior mean and variance given by ft = F′

tat and qt = F′
tRtFt , respectively.

4. The implied prior for the latent Poisson rate is constrained to a conjugate gamma form based on the above
information—a variational Bayes decision and constraint. That is, the modeling choice is made to specify φt|Dt−1 ∼
Ga(rt , ct) with defining parameters consistent with the prior information, i.e., consistent with the moment con-
straints about on λt = log φt . Matching these moments to the gamma prior implies that rt , ct are given as solutions
to the equations ft = γ (rt)− log ct and qt = γ̇ (rt), respectively, where γ ( · ) is the digamma function and γ̇ ( · ) is
the trigamma function. These equations are easily solved numerically (most efficiently using the Newton–Raphson
method) to give the values of rt , ct .

5. Forecasting xt from time t − 1, the conjugate Poisson/gamma structure implies a negative binomial predictive
distribution p(xt |Dt−1).

6. On observing xt at time t, the implied posterior for the latent Poisson rate is the conjugate form φt |Dt ∼Ga(rt +
xt , ct +mt) (where mt is the relevant occupancy correction factor). For the natural parameter λt = log φt , this
implies posterior moments λt |Dt ∼ [f ∗t , q∗

t ] given by

f ∗t = γ (rt + xt)− log (ct +mit) and q∗
t = γ̇ (rt + xt)

and these are trivially calculated.
7. Using linear Bayes decision theory arguments, the posterior mean vector and variance matrix for the state vector θ t

are conditioned on the new information xt via the predictor-corrector forms that adjust the prior moments based
on forecast accuracy. Specifically, the time t − 1 to t posterior update of moments [m∗, C∗] required to complete the
time t filtering steps are given by

mt = at +At(f ∗t − ft)/qt and Ct = Rt −AtA′
t(qt − q∗

t )

where At is the adaptive coefficient vector At = RtFt/qt .

Discount specification of evolution variance matrices
Specification of the evolution variance matrix Wt at each time uses the standard single-discount factor approach in which
Wt = (GtCt−1G′

t)(1− δ)/δ. This corresponds to the time t − 1 posterior variance matrix V(θ t−1|Dt−1)=Ct−1 evolving to
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the prior variance matrix V(θ t |Dt−1)= Rt−1 =GtCt−1G′
t +Wt = (GtCt−1G′

t)/δ. That is, following the deterministic com-
ponent (defined byGt) of the state evolution, the stochastic innovation term ωt in the evolution increases uncertainties about
the state by “discounting” historical information at a rate defined by δ. The discount factor δ is a tuning parameter to be
chosen. See, for example, West & Harrison (1997, Chapter 6) and Prado &West (2010, Section 4.3.6).

Retrospective analysis
The above analysis provides for sequential learning, i.e., forward filtering to process data as it arrives and sequentially update
prior and posterior mean and variance matrices for the state vector θ t over time. At any time t, this enables inference on the
current state and forecasts of coming data. For most network studies this is most relevant to online learning and monitoring
of flows. Then, having processed data up to any time T, a key interest is in looking back over time to update inferences on
the historical trajectories of state vectors, and any functions of them of interest. This is called retrospective analysis and can
be best addressed in terms of simulation of posterior distributions over the full past history of states. This is enabled using
DGLM extensions of the standard “backward sampling” algorithm for conditionally Gaussian, dynamic linearmodels. That is,
exploiting the retrospective extrapolation of posterior mean vectors and variance matrices, and adopting the variational Bayes
concept again to constrain the implicit backward innovations to multivariate normal distributions with moments defined
by the linear Bayes retrospection, we impute and simulate historical trajectories of sets of states θ1, . . . , θT by recursing
backwards in time as follows.

• At time t = T, sample the approximating normal posterior θ t|DT ∼N(mT ,CT).
• Recurse back over times t = T − 1, T − 2, . . . , 1, at each stage sampling the variational Bayes normal approximation to
p(θ t |θ t+1,DT).

• At t = 1, save the sampled trajectory of states.
• Repeat to generate a random sample of trajectories.

From a Monte Carlo sample of trajectories, we can then directly map to any functions of the state vectors for inference.
Centrally, this includes mapping to the sampled Poisson rate parameters and then to the network-wide, node-specific and
node–node interaction parameter processes of the DGMs.

In terms of implied computation, the retrospective theory simplifies considerably in the single discount DGLM. Summary
computations for simulation at time t of the state vector θ t from the implied conditional normal for θ t |θ t+1,DT has mean
vector and variance matrix given by simplified versions of the general expressions in dynamic linear models (e.g. Prado &
West, 2010, Sections 4.3.5 and 4.3.6). In detail, the conditional moments are simply

E(θ t |θ t+1,DT)= (1− δ)mt + δG−1θ t+1 and V(θ t |θ t+1,DT)= (1− δ)Ct ,

and the implied approximate normal distribution is trivially simulated.

Appendix C. More Examples of Affinity Effects
Self-affinities
Another pattern in self-affinities that is common across nodes resembles the overall activityμt ; category Arts & Entertainment
is a good example (Figure A1). Levels are high during the day and evening (8:00–20:00) with a large bump around 20:00. We
also see a pattern that increases throughout the day and peaks at night; the category Arts & Entertainment/TV & Video is one
of the few examples (Figure A2).

Entering affinities
Beyond the examples in Section 6.1, another pattern in entering affinities, exemplified by the categories Health/Pharmacy/-
Drugs & Medications and Finance/Investing (Figures A3 and A4), has several bumps during the workday (8:00–16:00), and
is relatively low otherwise; this again has implications for selecting ad content.

A further pattern in entering affinities has high intensity in the morning and then is stable during the day. The entering
affinity of Shopping is a good example—see Figure A5. But things may be complex—perhaps someone on this website at a
non-standard time is more apt to purchase than a casual browser.

One additional pattern in entering affinities is notable for multiple pronounced peaks. Beauty & Fitness/Fashion & Style
(Figure A6) has three peaks, at about 7:00–8:00, at about 12:00–16:00, and at about 20:00–24:00. September 17 is during the
New York Fashion Week, which may lead to atypical behavior.
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Figure A1. Posterior summaries for DGM parameters for transitions staying at node i= Arts & Entertainment with details as
in Figure 7.
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Figure A2. Posterior summaries for DGM parameters for transitions staying at node i= Arts & Entertainment/TV & Video,
with details as in Figure 7.

https://doi.org/10.1017/nws.2019.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.10


314 X. Chen et al.

Time (hour)
0 4 8 12 16 20 24

x ij
t &

 
ij

t

0

20

40

60

80

100

Time (hour)
0 4 8 12 16 20 24

x ij
t/n

i,t
-1

 &
 

ij
t

0

0.005

0.01

0.015

Time (hour)
0 4 8 12 16 20 24

it

0

2

4

6

8

10

12

Time (hour)
0 4 8 12 16 20 24

jt

0.96

0.98

1

1.02

1.04

Time (hour)
0 4 8 12 16 20 24

ij
t

0

2

4

6

8

10

Time (hour)
0 4 8 12 16 20 24

p

0

0.05

0.1

0.15

0.2

Figure A3. Posterior summaries for DGMparameters for transitions entering node i=Health/Pharmacy/Drugs&Medications
with details as in Figure 9. An interesting bump is noted in the afternoon (about 12:00–16:00).
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Figure A4. Posterior summaries for DGM parameters for transitions entering node i= Finance/Investing with details as in
Figure 9. Note a maintained high level during the day (8:00–16:00).
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Figure A5. Posterior summaries for DGM parameters for transitions entering node i= Shopping with details as in Figure 9.
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Figure A6. Posterior summaries for DGM parameters for transitions entering node i= Beauty & Fitness/Fashion & Style with
details as in Figure 9.
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Figure A7. Posterior summaries for DGM parameters for transitions exiting from node i= News/Weather with details as in
Figure 11.

Time (hour)
0 4 8 12 16 20 24

x ij
t &

 
ij

t

0

100

200

300

400

Time (hour)
0 4 8 12 16 20 24

x ij
t/n

i,t
-1

 &
 

ij
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (hour)
0 4 8 12 16 20 24

it

1

1.05

1.1

1.15

Time (hour)
0 4 8 12 16 20 24

jt

0

2

4

6

8

10

12

Time (hour)
0 4 8 12 16 20 24

ij
t

0

10

20

30

40

Time (hour)
0 4 8 12 16 20 24

p

0

0.05

0.1

0.15

0.2

Figure A8. Posterior summaries for DGM parameters for transitions exiting from node i= Arts & Entertainment/Music &
Audio with details as in Figure 11. Note the peak at night.
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Figure A9. Posterior summaries for DGMparameters for transitions fromnode i=News→ j=News/Local Newswith details
as in Figure 13.
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Figure A10. Posterior summaries for DGMparameters for transitions fromnode i=News/Technology News→ j= Shopping
with details as in Figure 13.
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Exiting affinities
Other patterns have been detected in trajectories of exiting affinities. One has a peak, but is otherwise low, as in the exiting
affinity for News/Weather (Figure A7). Clearly, people are visiting this site only to learn about the weather forecast, and then
leave for work.

A third pattern in trajectories of exiting affinities increases from 4:00 in the morning until the evening, indicating that
these categories are increasingly losing users throughout the day. Such categories include Arts & Entertainment/Music &
Audio (Figure A8).

Distinct node pair affinities
The affinity from News to News/Local News (Figure A9) has three peaks in the day. The first is around 8:00, the second
around noon, and last around 20:00. The peaks indicate that people who are interested in national news also check the local
news, and that the timing coincides with leisure.

The last example is the affinity from News/Technology News to Shopping (Figure A10). This peaks around 20:00, which
suggests the users who have read technology news start to explore technology purchase, and should be a clear signal for ad
display.
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