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SUMMARY
In this paper, two novel approaches to unmanned under-
water vehicle path planning are presented. The main idea of
the first approach, referred to as Constrained Optimisation
(CO) is to represent the free space of the workspace as a set
of inequality constraints using vehicle configuration varia-
bles. The second approach converts robot path planning into
a Semi-infinite Constrained Optimisation (SCO) problem.
The function interpolation technique is adopted to satisfy
the start and goal configuration requirements. Mathematical
foundations for Constructive Solid Geometry (CSG), Boo-
lean operations and approximation techniques are also
presented to reduce the number of constraints, and to avoid
local minima. The advantages of these approaches are that
the mature techniques developed in optimisation theory
which guarantee convergence, efficiency and numerical
robustness can be directly applied to the robot path planning
problem. Simulation results have been presented.

KEYWORDS: Robotics, Autonomous underwater vehicle; path
planning; obstacle avoidance; Non-linear programming; Semi-
infinite constrained optimisation.

1. INTRODUCTION
Unmanned Underwater Vehicles are extensively used for the
inspection, maintenance and repair of offshore structures in
both deep and shallow water.1-5 Current generation work-
class vehicles are generally equipped with one or two
manipulators with between 5 and 9 degrees of freedom
(DOF), and are exclusively tele-operated from the surface
(Figure 1). As the complexity, volume and depth of work
expands, the use of increased automation to cut costs has
become a research focus. Unlike manufacturing, the under-
water domain is an unstructured environment, where
reactive behaviour to unexpected events is required. This
requires relevant sensing, planning and control methods to
provide the vehicle with reasonable behaviours, and to avoid
frequent operator intervention.

This paper considers the problem of reactively planning

path for the vehicle through a cluttered environment, such as
around a subsea structure. Although seemingly trivial, it has
proved notoriously difficult to find techniques which work
reliably in the presence of multiple obstacles. The problem
is well known as a find-path problem which can be
described as follows: Given a subsea vehicle with an initial
configuration, a goal configuration, and a set of obstacles
located in the workspace, find a continuous, collision-free
path from the initial configuration to the goal configuration
for the vehicle.

A significant and varied effort has been made on this
seemingly simple, but in fact very complicated find-path
problem.6-25 Various methods for dealing with the basic find-
path problem and its extensions, such as Vgraph,14 Voronoi
diagram,12 exact cell decomposition,6 approximate cell
decomposition,12 potential field approach,10 genetic-based
approach,7 and optimisation-based approach16 have been
developed. A systematic discussion on these methods can be
found in references.5,12,21

The potential field approach was pioneered by Khatib11

and has been followed by many researchers.10,12,13 It was
thought more efficient than other traditional approaches. It
treats the robot as a point in configuration space under the
influence of an artificial field U, constructed around the
obstacles which present potential collision hazards in the
workspace. The potential function is typically defined as the
sum of an attractive potential pulling the robot toward the
goal configuration and a repulsive potential pushing the
robot away from the obstacles. Path planning is performed
iteratively. At each iteration, the direction of the artificial
force induced by the potential function at the current
configuration is regarded as the most promising direction of
motion, and the path generation proceeds along this
direction by some increment.

Potential field approach was originally developed as an
on-line collision avoidance technique when the robot does
not have a prior model of the obstacles, but senses them
during motion execution. Although efficient, it has some
disadvantages. First this approach is not a purely geometric
one. The potential field resulting from both the obstacles
and the goal point are artificial, depending on the choices of
the weighted parameters in the definitions. This means that
even for the same robot and environment, different defini-
tions of the potential field may lead to contrasting results.
Second, since an on-line potential field approach essentially
acts as a fastest descent optimisation procedure, it may get
stuck at a local minimum of the potential field rather than
reach the goal configuration. Dealing with local minima is
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the major issue one has to face. There has not been a sound
theoretical proof that the goal configuration is at least one of
the minimum points. It seems to be difficult to define a
versatile potential function which guarantees that the goal
point is the global minimum of the total potential field.

In this paper, we present two novel robot path planning
approaches based on optimisation theory which can over-
come the shortcomings of the potential field approaches but
maintain their efficiency. These approaches do not need the
definition of the potential fields for both the obstacles and
the desired goal configuration. We use Constructive Solid
Geometry (CSG) to represent the obstacles as a set of
inequalities. The ideas of the first approach, referred here to
as the Constrained Optimisation (CO) approach, include: 1.
the free space of the robot workspace is represented as
inequality constraints and 2. the goal configuration is
designed as the unique global minimum point of an
objective function. Thus the problem is transferred into a
constrained optimisation problem. The initial configuration
is treated as the start point for optimisation problem. Then
a numerical algorithm developed for solving nonlinear
programming problems can be applied to solve the robot
motion planning problem. Every immediate point generated
using the nonlinear optimisation search method is guaran-
teed to be in free space and therefore is collision free. The
second approach converts the robot path planning problem
into a Semi-infinite Constrained Optimisation (SCO) prob-
lem. This is realised by the use of function interpolation
technique satisfying the start and goal configuration require-
ments. 

In any robot path planning method, obstacle representa-
tion is the first thing to be considered. For more detailed
description of 3D object representation, see the refer-
ences.26-31 In this paper obstacles are represented as implicit
functions (inequalities) which lead to the use of efficient
search algorithms. The context of this paper covers a wide
range of subjects such as CAD, Computer Graphics and
nonlinear programming theory. We describe only the
necessary fundamentals therefore, relying on the references
for more detailed descriptions. Our focus will be on the
interconnection of these theoretical areas.

This paper is organised as follows: Section 2 gives a brief
description of the formulations for both the constrained
optimisation and semi-infinite constrained optimisation. In
Section 3, the principle of the potential field approach is
presented and the reason for local minima is discussed. The
Constructive Solid Geometry approach for representing
obstacles as inequalities is presented in Section 4. In Section
5, we show how to convert the robot path planning problem
into the CO problem and simulation results are presented.

Similarly we show how to convert the robot path planning
problem into the SCO problem in Section 6, and simulation
results are also given. Finally conclusions are presented in
Section 7.

2. TWO DIFFERENT FORMULATIONS OF
OPTIMISATION PROBLEMS
Optimisation concerns the minimisation or maximisation of
a function subject to different types of constraints (equality
or inequality). The function is referred to as the objective
function. Optimisation has a very sound theoretical back-
ground and many applications; finding the roots of a set of
nonlinear equations, detecting the intersections of solid
objects, curve fitting and so on. 

The main difficulty in solving nonlinear programming
problems is the need to develop a convergent, efficient, and
robust algorithm. This is also one of the problems faced by
the potential field approach. Fortunately, the development of
a systematic theory on optimisation with non-linear con-
straints has been an active field during the past thirty years,
and many efficient descent search approaches suitable for
various problems have been developed. Optimisation tech-
niques have now become a mature subject. In the following,
we give a brief introduction to optimisation problems
because the emphasis of this paper will be focused on how
to convert the path planning problem into a standard
nonlinear programming problem, rather than on the details
of the nonlinear programming theory which are easily
found.32-37

Most algorithms designed to solve large optimisation
problems are iterative in nature. Typically, in seeking a
vector that solves the optimisation problem, an initial vector
x0 is selected and the algorithm generates an improved
vector x1, which means that f(x0) ≤ f(x1), where f(x)
represents the objective function. The process is repeated
and a still better solution x2 is found. Continuing in this
fashion, a sequence of ever-improving points x0, x1, x2 , . . .,
xk , . . ., is found that approaches a solution point x*,
referred to as the minimum (maximum) point.

There are mainly four different types of optimisation
problem: Linear Programming, Unconstrained Problems,
Constrained Problems and Semi-infinite Constrained Prob-
lems. The last three parts together comprise the subject of
Nonlinear Programming. When applying optimisation
theory to a practical problem, the most important require-
ment is to formulate the problem as one of the standard
forms: then the algorithms specially developed for the
corresponding type of problem can be applied. 

MATLAB is a widely used software package for solving
problems encountered in control, signal processing, optimi-

Fig. 1. ANGUS 003, an unmanned underwater vehicle, and the Slingsby TA9, 7 degree of freedom manipulator.
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sation, and other scientific and engineering numerical
calculations.37 Many standard optimisation algorithms have
been implemented in the MATLAB optimisation toolbox
which can be used to eliminate the need for designers to
create and re-create commonly used programmes – a big
labour saving. There are many different optimisations, each
suitable for solving different problems. For completeness,
Tables I and II give the different problem formulations
provided by the MATLAB optimisation toolbox. Among
them, the most general two are the constrained optimisation
(CO) and the semi-infinite constrained optimisation (SCO),
both of which will be used for robot path planning. Below
is a brief description of the CO and SCO formulations.

2.1. Constrained optimisation (CO)
The general constrained optimisation problem can be
described as follows:

Find an optimal point x* which minimises the function f(x),
with xPRn, subject to:

gi(x) = 0, i = 1, 2, ....., m

gj(x) ≤ 0, j = 1, 2, ....., n

xl ≤ x ≤ xu

(1)

where x is an n-dimensional vector of unknowns, x=(x1,
x2, . . ., xn), and f, gi, i=1, 2, . . ., m and gj, j=1, 2, . . ., n, are
real-valued functions of the variables (x1, x2, . . ., xn). xl and
xu are the lower and upper bounds of x, respectively. The
function f is the objective of the problem, and the equalities
and inequalities are constraints.

2.2. Semi-infinite constrained optimisation (SCO)
The semi-infinite constrained optimisation problem is to
find the minimum of a semi-infinitely constrained scalar
function of several variables x starting at an initial estimate

xs. This problem is mathematically stated as:

Minimise f(x), xPRn, subject to:

g(x) = 0

Fj(x, wj) ≤ 0, j = 1, 2, . . . , n

xl ≤ x ≤ xu

for all w jPR2

(2)

where F j(x, wj ) is a continuous function of both x and an
additional set of variables, w1, w2, . . . , wn. The variables w1,
w2, . . . , wn are vectors of at most length two. The aim is to
minimise f(x) so that the constraints hold for all possible
values of Fj(x, wj). Since it is impossible to calculate all
possible values of Fj(x, wj), a region must be chosen for wj

over which to calulate an appropriately sampled set of
values. x is referred to as the unknown variable and wj as the
independent variable.

The difference between the two formulations is obvious.
The latter allows an extra set of independent variables w1,
w2, . . . , wn to be included in the constraints rather than only
the unknown variable x, as is the case in the former. Note
that the former is a special case of the latter, and the latter
cannot be converted into the former. For more details (see
reference 37).

The procedure for solving such a semi-infinite optimisa-
tion problem with nonlinear constraints is as follows:

(a) assign an initial guess point xs and a region for wj

(b) use a search algorithm to find the optimum solution x*
and the corresponding minimum objective function
f(x*).

3. POTENTIAL FIELD APPROACH
Potential field approach consists of defining a potential field
and then finding a search algorithm in order to reach the
goal configuration. The main issue for this approach is local

Table I: Nonlinear minimisation problems*

Type Notation

Unconstrained scalar min f(x)
Unconstrained min f(x)
Constrained min f(x) such that g(x) ≤ 0
Goal min g such that f(x) ≤ Goal
Minmax min{max f(x)} such that g(x) ≤ 0
Nonlinear least squares

min O {f(x).* f(x)}

Nonlinear equations f(x) = 0
Semi-finite constrained min f(x) such that g(x) ≤ 0 & F(x, w) ≤ 0 ; w

Table II: Matrix problems*

Type Notation

Non-neg. least squares min iAx-bi2 such that x ≤ 0
Quadratic program min{0.5xTHxT-cTx} such that Ax-b ≤ 0
Linear program min cTx such that Ax-b ≤ 0

* The routines are designed to work with sclars, vectors, and matrices. Matrices are indicated by
upper-case bold letters, vectors by lower-case bold letters, and scalars by plain lower-case letters.
The MATLAB notion. * indicates element-wise multiplications.
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minima. In this section, we examine the causes of local
minima and explain the difficulties encountered in avoiding
them. Some typical simulation results are also presented.

3.1. Principle of potential field approach
The potential field is generated in two stages. The first is the
definition of an attractive field which arises from the goal
point and functions as drawing the robot towards that point.
The next stage is the definition of a repulsive field which
arises from the obstacles and functions as pushing the robot
away from those obstacles. In the following we will show
that potential field approach is actually an unconstrained
opimisation problem. We shall furthermore examine the
factors which may cause local minima.

The purpose of the attractive potential field, fatt(q), is to
cause the robot to move towards the goal point, and
therefore it should have only one minimum at this point.
One simple solution is to use a parabolic well:12

fatt (q) = 0.5hr2
goal (q) (3)

where fatt(q) is the value of the field at configuration q, h is
a positive scaling factor and rgoal(q)=((q-qg)(q-qg)

T)0.5 is the
Euclidean distance between the configuration q and the goal
point qg.

The definition of the attractive potential field is not
unique. An alternative definition is the conical well:

fatt (q) = 0.5hrgoal (q) (4)

Figures 2(a) and (b) show a typical example of the attractive
field fatt (q) resulting from (3) and (4) respectively, when the
configuration of the robot is represented as a point moving
on a plane, i.e. q = (x, y).

The most-widely used definition for the repulsive poten-
tial is as follows:12

frep (q) =

0.5 m (
1

r(q)
2

1
r0

) if r(q) ≤ r0

0 if r(q) ≥ r0

(5)

where m is a positive scaling factor, r(q) is the smallest
distance between the configuration q and any obstacle, and
r0 is a positive constant. r0 is known as the distance of
influence of an obstacle, and defines the range over which an
obstacle will exert a repulsive force. Figures 3(a) and (b)
show the repulsive potential set up for an obstacle with both
a large and a small distance of influence.

Once the attractive and the repulsive potentials are
defined, the total potential field ftot(q) is found simply by
summing fatt(q) and frep(q).

ftot(q) = fatt(q) + frep(q) (6)

The aim of the potential field approach is to find the
minimum point of the total potential function (6) which, if
there are no other local minima, will be the goal point.
Treating the start point qstart as q0 an iteration of the
following form must be designed:

qi+1 = qi + ai Si (7)

where ai and si are determined as a correction to qi such that
ftot(qi+1) ≤ ftot(qi). One may imagine qi as a point in n
dimensional space and si as a direction of search emanating
from qi with qi+1 as the optimum point along this direction,
as shown in Figure 4. ai is usually chosen to minimise
ftot(qi + ai si). There are many choices for si. One of the
oldest methods is that of Steepest Descent in which si is
chosen simply as the downhill gradient vector si = 2 [ftot /
q1, ftot /q2 , . . ., ftot /qn ]. It is based on the fact that, local
to the current approximation, the direction si is that along
which ftot(qi + ai si) decreases most rapidly. Therefore the
potential field approach is actually formulating the robot
path planning problem as an unconstrained optimisation
problem.

3.2. Causes for local minima
From the above discussions we can see that, for the potential
field approach, the local minima are those of ftot (q). They
arise from the definition of the potential field function. In

Fig. 2. (a) Parabolic potential well, (b) Conical potential well.
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order to have no local minima, the goal point must be
designed either as a unique minimum point which is usually
called the global minimum point in optimisation theory, or
as a local minimum point within some neighbourhood of the
start point (there is a mathematically precise definition of
local minimum in optimisation). Figures 5, 6, 7 and 8 show
some typical simulation results using the potential field
approach with the following parameters:

• Parabolic attractive potential well
• Attractive potential scaling factor, h = 0.025
• Repulsive potential scaling factor, m = 100
• Obstacles’ distance of influence, r0 = 8.

In each figure, (a) gives the total potential and (b) presents
the path generated using steepest descent search. These
results indicate that potential field methods do work
sometimes, as shown in Figure 5. The obstacle is success-
fully avoided and no local minima are present. However,
when the start and the goal points are in the two opposite
sides of the obstacle, the potential field approach fails, as
shown in Figure 6. Even when both the start and the goal
points are located at the same side of the obstacle and the

goal point is close to the obstacle, a path can not be found
due to the inappropriate choice of the relative values of h
and m (see Figure 7). In Figure 8 the two obstacles are close
enough together for their repulsive fields to combine and
they act like a single concave obstacle. As a result, a local
minimum is found and the goal is not reached. When the
number of obstacles increases, the local minima problem
becomes more serious.

Many factors affect the distribution of the local minima:
the goal position, the position and shape of the obstacles and
the definition of the function type of both the attractive and
the repulsive potentials as well as the choice of values for
parameters h, m and r0. The arbitrariness of the number of
obstacles in the workspace, the distribution of these
obstacles and the positions of the start and goal points
means that it is difficult to design a robust potential field
which guarantees that the goal point is always a unique
global minimum point of the total potential field or at least
a local minimum within some neighbourhood of the start
point. Our experience has shown that even for the same
robot (start and goal) and environment (shape and position
of the obstacles), different definitions of the potential field
may lead to contrasting results. For example, one definition
may give a successful path and the other may report failure.
On the other hand, one definition of the potential field may
work for one kind of robot and environment, but fail for
another.

4. OBJECT REPRESENTATION USING
CONSTRUCTIVE SOLID GEOMETRY (CSG)
Clearly the first thing for robot path planning is to give each
of the objects in the workspace a mathematical representa-
tion. Modelling and manipulation of objects is the research
task of Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM), and Computer Graphics (CG). A
solid model should contain an informationally complete
description of the geometry and topology of a 3-D object.28

A successful modelling system, in addition to many other

Fig. 3. (a) Repulsive potential with r0 = 4, (b) Repulsive potential with r0 = 12.

Fig. 4. The search along a line for a minimum.
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Fig. 5. (a) Potential function (b) Path generated by using steepest descent search.

Fig. 6. (a) Potential function. (b) Path generated by using steepest descent search.
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Fig. 7. (a) Potential function. (b) Path generated by using steepest descent search.

Fig. 8. (a) Potential function. (b) Path generated by using steepest descent search.
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features, must be capable of representing the object’s
surface and be able to unambiguously determine whether a
point is on the “inside” or “outside” of the object. In CAD,
CAM and CG, there are three traditional categories of solid
modelling systems, namely boundary representation (B-
rep), spatial decomposition, and constructive solid geometry
(CSG). Different modelling approaches have their own
advantages and disadvantages. Chiyokura28 gives detailed
descriptions, comparisons, advantages, and disadvantages
of these and other modelling approaches. 

For the robot motion planning problem using nonlinear
programming theory, CSG together with the approximation
approach discussed later are used to represent the free space
as inequality constraints. The CSG approach seems to be
more natural and promising because most of the practical
objects can be described by very simple geometric surfaces
such as the half space, sphere and cylinder which are all
CSG primitives. In addition, Boolean operations are much
easier to apply to these primitives.27,31 The CSG approach
does not need a large amount of data to define surface points
as well as the topological relationships among surfaces,
edges and points. In CSG objects are built by moving,
joining, and cutting primitive objects. More specifically,
primitive solids such as half-spaces, spheres, cylinders,
cuboids, and superellipsoids are combined using Boolean
operations which include union, intersection, and differ-
ence. The resulting object has a single, smooth, and closed
expression for its surface. This approach is good, therefore,
for modelling typical subsea structures (manifolds, plat-
forms, pipelines, wellheads, benthic stations). It is,
moreover, a convenient representation used by CAD/CAM
modelling systems for structure design. Hence data for
typical environments could be readily available in an
appropriate form.

In the following, mathematical foundations of CSG and
the Boolean operations are presented. Particularly, attention
is focused on the problems encountered in the implementa-
tion of the approximation of the Boolean operations for
slabs. The definition of a defining function is first intro-
duced and then the Boolean operations using the defining
function are presented. An approximate method for the
Boolean operations (intersection and union) and some
examples are also given. The material presented in this
section is mainly based on.27,28,31

4.1. Definition of the defining function
For a solid S considered in the 3D Euclidean space E3, the
set of its interior points is denoted by I, the set of its
boundary points by B and the set of its exterior points by T,
with

I<B<T = E3 (8)

I>B = B>T = I>T = f (9)

A continuous function f(p), non-negative for every p in E3,
is called a defining function for a solid S if 0 < f(p)<1 when
p belongs to I, f(p)=1 when p belongs to B, and f(p)>1
when p belongs to T. For a given solid, many different
defining functions can be found. For example, if f(p) is a
defining function for a solid S, then ( f(p))m (m is a positive

real number) is also a defining function for S.
An interesting property of a defining function is that if

f(p) is a defining function for a solid S, then the reciprocal
of the function, (f(p))21 is a defining function for the solid
complement Sc as defined by Ic = T, Bc = B and T c = I Since
the defining function is always positive for all real points in
E3, the complement of the function is given by (f(p))21. The
points that have previously evaluated to less than one for
f(p) will thus be greater than one for (f(p))21, and vice versa.
This means that the exterior points for f(p) now become the
interior points for (f(p))21.

The definition of a defining function indicates that for a
solid S with f(p) as a defining function, its surface equation
is 

f(p) = 1 (10)

As an example, a possible defining function for a sphere
with radius R and its centre at the origin of the coordinate
system is

f(p) = (x/R)2 + (y/R)2 + (z/R)2 (11)

and f(p) = 1 defines the surface of the sphere.

4.2. Boolean operations (intersection and union)
One major goal of a solid modelling system is the ability to
construct complex objects from simple objects. The opera-
tions required (union, intersection, and difference) are
normally termed Boolean operations because they follow
the operations defined in set theory while retaining the
ability to unambiguously determine whether a point or
region is “inside” or “outside” the objects.

Given n defining functions f1(p), f2(p), . . ., and fn(p) for n
objects, respectively, the defining function for the inter-
section of the n objects is given by

f 1(p) = max( f1(p), f2(p), . . . , fn(p)) (12)

and the surface equation of the intersection of the n objects
is given by

max(f1(p), f2(p), . . . , fn(p)) =1 (13)

As an example, the intersection of the three infinite slabs
with defining functions

f1(p) = (x/r)2, f2(p) = (y/r)2, f3(p) = (z/r)2 (14)

has the following surface equation

max((x/r)2, (y/r)2, (z/r)2) = 1 (15)

which represents the surface of a cube centred at the origin
of the reference system.

Similarly, given n defining functions f1(p), f2(p), . . . , and
fn(p) for n objects, the defining function for the union of the
n objects is given by

f U(p) = min(f1(p), f2(p), . . . , fn(p)) (16)

and the surface equation of the union of the n objects is
given by 

min( f1(p), f2(p), . . . , fn(p)) = 1 (17)

4.3. Smooth approximation of intersection and union
operations
Although Eqs. (13) and (17) represent the exact surfaces of
the intersection and union of the n objects, they are not
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readily manipulated and computed. To realise a smooth
blending of the n objects into a final one, Eqs. (13) and (17)
must be approximated by means of suitable functions. A
certain degree of smoothing has been obtained in a
particular technique for the detection of intersections of 3D
objects,29 but this method does not apply to non-convex
objects. A currently widely-used method is the one reported
in Ricci.31 We use here that method. The intersection and
union can be smoothly approximated as:

f 1(p) = (f m
1 + f m

2 + . . . + f m
n )1/m (18)

f U(p) = ( f 2m
1 + f 2m

2 + . . . + f 2m
n )21/m (19)

where m is a positive real number. m is used to control the
accuracy of the smoothing approximation and thus is called
the control parameter. A larger m produces blending
surfaces that cling more closely to the primitive objects.
Ricci31 proved that when m→∞ , the approximations (18)
and (19) give the exact description of the intersection and
union respectively. These approximations have the follow-
ing advantages: 

1. Blending effects are primarily noticeable near surface
intersections.

2. f I(p) and f U(p) are differentiable which may avoid the
possible difficulties in computation due to the differ-
entiability of the max and min functions.

The resulting approximations of the surfaces for the
intersection and union of the n objects are respectively
represented as:

(f m
1 + f m

2 + . . . + f m
n )1/m =1 (20)

(f 2m
1 + f 2m

2 + . . . + f 2m
n )(21/m) = 1 (21)

4.4. Useful primitive solids and the choice of m
There are many useful defining functions. The most useful
ones include: 

Sphere: (x/R)2 + (y/R)2 + (z/R)2 =1 (22)

Ellipsoid: (x/a)2 + (y/b)2 + (z/c)2 = 1 (23)

Slabs, i.e. region bounded by two parallel planes:

(x/a)2 = 1, (y/b)2 = 1, (z/c)2 = 1 (24)

Circular or elliptical cylinder: 

(x/a)2 + (y/b)2 = 1 (25)

where a, b, c, and R are positive real number.
Another function which describes a broad family of

easily defined primitives is the super-ellipsoid proposed in
references.26,30 The super-ellipsoid is defined by the func-
tion

[(x/a)2/e1 + (y/b)2/e2]e2/e1 + (z/c)2/e2 = 1 (26)

where a, b, and c define the geometric extent while e1 and e2

specify the shape properties. e1 is the squareness parameter
in the north-south direction; e2 is the squareness parameter
in the east-west direction. It can be seen that the super-
ellipsoid can be constructed from the basic slabs given in
Eq. (24). 

One problem that has not been sufficiently investigated in
the previous literature is the choice of the control parameter
m in equations (20) and (21). Although Ricci31 and Barr26

suggested that any positive real number may be chosen as
the candidate, our experience has shown that when using
slabs as the basic primitives, some care must be taken. In
this case, m must be an integer, which leads to 2m as an even
number. Some examples are given below.

Figures 9(a) and (b) show two examples, using two slabs
f1 = x2, f2 = y2 as basic primitives to construct a rounded
square with different orders (control parameters). In Figure
9(a), m has been chosen to be an integer. When using m = 1
to approximate the intersection of f1 and f2, the result is a
circle. As m increases, the approximation to the intersection
f1 and f2 a square with length and width being 1, gets better.
It can be seen that when m = 8 or 16, the approximation is
very close to the square. In Figure 9(b), the values of m are
fractions rather than integers so that 2m is an odd number.
The resulting approximate implicit function is not, as could
be expected, a closed curve. Closed curve here means that
the number of real circuits is limited to one and that the
circuit does not extend to infinity.27 Only in the first
quadrant is it a good approximation of the intersection of f1

and f2. Note that in Barr.26 Franklin and Barr,30 the
superellipsoids with different m are plotted out using
symmetry rather than directly from the implicit function
(26). This is suitable for computer graphics, but not for
robot path planning. Furthermore, if m is chosen as a
decimal so that 2m is not an integer, then the resulting
approximate implicit function is of real value only in the
first quadrant:- see the figures given in Franklin and Barr.30

The above discussion also applies to the union operation.
If, on the other hand, a circle or an ellipse is used as the

primitive to construct a new object, any positive number m
will keep the closeness of the intersection and union
operation. Figures 10 and 11 give two examples. Similarly
as m increases, the approximation gets better.

4.5. Translation and rotation
The defining functions (22) to (26) describe the solids in
standard positions and orientations. It is usually necessary
to translate and rotate the objects to the desired configura-
tions. The rigid body transformations are invertible. Thus,
the original inside-outside function can be used after a
function inversion. For example, substituting the translation
x = (x2a) into the defining function (x/a)2 = 1 leads to a
new defining function [(x2a)/a]2 = 1, which describes the
surface of an infinite slab centred at x = a and with the same
thickness of 2a. More generally, let MPR33 3 denote the
desired rotation matrix and B = [b1, b2, b3] denote the
translation vector. Then the translated and rotated solid S is
given by:

x = Mx + B (27)

and the new inside-outside defining function is calculated
by inverting the transformation and substituting into the old
inside-outside function; i.e,

f(x, y, z) = f (x, y, z) (28)

where
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x
y
z

= M21

x2b1

y2b2

z2b3

(29)

M21 is the inverse of the rotation matrix. Because the
rotation matrix is always orthogonal, its inverse is the same
as its transpose, i.e. M21 = MT.

5. CONVERTING THE ROBOT MOTION
PLANNING PROBLEM INTO THE CONSTRAINED
OPTIMISATION PROBLEM 
For simplicity, and for the initial demonstration of the
methods, we will consider only the motion of the UUV,
limited to two dimensions. The results are readily extended
to higher degrees of freedom. The vehicle is considered as

a point moving in a plane, where the configuration variables
are q = (x, y).

5.1. Representing the free workspace as inequality
constraints on the configuration variables
The position of a point moving on a plane can be described
by two configuration variables: (x, y). An obstacle in the
plane can be described as

F1(x, y)=1 (30)

Then the free space determined by this obstacle can be
described by the following inequality constraint: 

Fig. 9. Illustration of Boolean operation: Intersection f1 > f2. f1 = x2, f2 = y2, ((x2)m + (y2)m)1/m = 1. (a) m = 1, 2, 4, 8, and 16 from inside to
outside, (b) m = 3/2, 9/2, and 33/2 from inside to outside.

Fig. 10. Illustration of Boolean operation: Intersection f1 > f2.
f1 = x2 + y2, f2 = (x21 )2 + y2. m = 0.6, 0.8, 1, 2, 5, and 25 from
inside to outside.

Fig. 11. Illustration of Boolean operation: Union f1 < f2.
f1 = [(x + 4)2 + y2]/32, f2 = [x2 + (y+4)2]/32. m = 8, 4, 2, 1, 0.8, and
0.5 from inside to outside.
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12F1(x, y) ≤ 0 (31)

Expressing the free space as the form of inequality
constraint (31) is necessary to make it consistent with the
requirements of MATLAB’s optimisation toolbox.37 The
necessary and sufficient condition for a point which is
collision-free with this obstacle is that it falls into the free
space and thus that inequality (31) is satisfied.

If there are n obstacles in the workspace and the surface
of the j th obstacle can be described as

Fj (x, y) = 1, j = 1, 2, . . ., n (32)

then the whole free space is determined by the following set
of inequalities

12Fj (x, y) ≤ 0, j = 1, 2, . . ., n (33)

In addition to the obstacles, path planning should also
consider the limits of the workspace. These can be described
as follows

xl ≤ x ≤ xu, yl ≤ y ≤ yu (34)

where xl (yl ) and xu (yu ) are the lower and upper bounds
respectively. Equations (33) and (34) are the inequality
constraints required in the formulation of the non-linear
programming problem for path planning.

5.2. Design of objective function
There are many ways to design the objective function. In the
nonlinear programming problem, this function must repre-
sent some meaning of the practical problem, for example,
minimum time, minimum distance, minimum energy, or
minimum cost. From a mathematical viewpoint, this
function must have a minimum lower bound. For the path
planning problem, the goal configuration must be designed
as the unique global minimum of the configuration
variables. We used a quadratic function of form (35)
as the objective function, with the goal configuration
point (xg, yg) being its unique global minimum point and
min f(x, y) = f(xg, yg) = 0.

f(x, y) = (x2xg)2 + (y2yg)2 (35)

where (xg, yg) is the goal point of the robot. (33), (34) and
(35) together form a constrained optimisation problem. If
we use the initial position (xs, ys) as the initial estimate of
the configuration variables, the optimum search for (x*, y*)
is equivalent to searching the goal point. If the algorithm is
convergent and the problem has a solution, then we will find
that x*=xg, y*=yg. The main reason for choosing Eq. (35)
as the objective function is that it represents the shortest
distance from the start point to the goal point. Simulation
results will be shown later.

In summary, the central idea for this approach is to
represent the free space of the robot workspace as inequality
constraints in a constrained optimisation problem using the
configuration variables. The goal configuration is designed
as the unique global minimum point of the objective
function. The initial configuration is treated as the start
point for the optimisation search. Then the numerical
algorithm developed for solving the constrained optimisa-
tion problem can be applied to solve the robot motion

planning problem. Every point generated using the non-
linear optimisation search method is guaranteed to be in free
space and therefore is collision free.

5.3. Algorithm implementation considerations
In the nonlinear programming problem, early methods were
based on penalty functions or barrier functions. Unfortu-
nately penalty and barrier methods suffer from severe
numerical difficulties due to possible ill-conditioned Hes-
sian matrices in addition to the inefficiency of the sequential
minimisation. Methods based on penalty and barrier
functions have attracted little interest for highly nonlinear
constrained problems therefore. A more direct and efficient
approach, known as the sequential quadratic method (SQP)
is to iterate on the basis of certain approximations to the
objective and constraint functions.34,37 The SQP method
represents the state of the art in nonlinear programming and
is used here to solve the robot path planning problem.

The implementation of the nonlinear optimisation pre-
sented herein is based on the constrained optimisation
toolbox,37 but some modifications were necessary. The first
was the control of the output. In the reference,37 only the
final result of the variable x* is provided. However, the
important criteria for the robot path planning problem is to
generate a smooth path. Therefore a new function which
outputs x at every iteration has been added. The second was
the change of the step length in the line search algorithm for
every iteration. Recall that the principle of developing an
algorithm in nonlinear programming is to minimise the
number of function evaluations which represents the most
efficient way for finding the optimum x*. Thus, the step
length is automatically chosen as long as possible to
minimise the objective function in the line search direction.
The disadvantage of this strategy when applied to path
planning is that it sometimes leads to a non-smooth path.
We will show this point later.

5.4. Simulation results with a quadratic function
Example 1: A circle with center located at the point (xc, yc)
can be described as 

(x2xc)
2 +(y2yc)

2 =R2 (36)

where R is its radius. If any point satisfies the inequality

R2 2 (x2xc)
2 2 (y2yc)

2 ≤ 0 (37)

then it must be collision-free with this circle. 
The workspace considered in example 1 is surrounded by

a rectangle with length 16 (28, 8) and width 12 (26, 6). It
contains five obstacles distributed as in Figures 12 and 13.
The obstacles are represented as circles. The boundary
expressions for them are represented as follows

x2 + y2 = 1, (x24)2 =1, x2 + (y 2 4)2 = 1

(x + 4)2 + y2 = 1, x2 + (y + 4)2 = 1
(38)

Then the free space can be represented as a set of the
following inequality constraints
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12 (x2 + y2) ≤ 0, 12 ((x + 4)2 + y2) ≤ 0,

12 ((x24)2 + y2)≤0, 12 (x2 + (y24)2) ≤ 0

12 (x2 + (y + 4)2) ≤ 0

28 ≤ x ≤ 8 & 26 ≤ y ≤ 6

(39)

The goal position is set at qg = [4, 4]. The objective function
is

f = (x24)2 + (y24)2 (40)

and the goal point is the only global minimum point.
Figure 12(a) shows the simulation results using the

original algorithm provided in Matlab. As mentioned above,
the whole path is not very smooth and overshooting occurs
at the transition from point (2.399, 1.7868) to point (4.946,
5.202). So in this implementation, we set the step length to
be a more appropriate size. Figure 12(b) shows the
simulation result using the modified algorithm, with the
same start and goal positions as those used in Figure 12(a).
It is clearly shown that the path smoothness is greatly
improved. For more details on the implementation of the
optimisation algorithm, see reference 37.

In order to demonstrate the convergence of the problem
formulation to the goal point, we have shown 9 different
start points in different quadrants:- see Figures 13(a) to (i).
These points represent the most difficult situations. In each
case, a smooth path from the start point to the goal point has
been generated. We have tested many other start points, and
the results are all quite satisfactory. If the start or the goal
points are located within the obstacles, the algorithm
terminates, indicating which inequality was not satisfied;
otherwise a smooth path can always be found.

In order to test the ability of this approach to negotiate
very narrow channels among obstacles (this is hard for the
potential field approach), the radius of obstacle 1 given in
Eq. (38) is modified as 2.998. In this case, the narrowest gap
among the obstacles is 0.002. Figure 14 illustrates the
successful simulation result for the start point (24, 24).

Similar tests have been carried out for other start points, and
the algorithm is always convergent to the goal point.

Example 2: In example 1, the distribution of the obstacles
is separated in the workspace. This may represent most of
the cases encountered in practice. In order to show the
potential of the CSG approximation approach discussed in
Section 4 for avoiding local minima and producing a
smooth path maintaining some safe distance from the
obstacles, we have artificially designed a critical obstacle
distribution in example 2. The radii of the obstacles 4 and 5
in example 1 are expanded to 3 in example 2, while the
shapes of the other obstacles are not changed. Thus, a local
minima for the objective function is created in the
intersection (22.707, 22.707) of obstacles 4 and 5. In this
way, the free space is expressed as

12 (x2 + y2) ≤ 0,

12 (x2 + (y24)2) ≤ 0,

92 (x2 + (y + 4)2) ≤ 0

12 ((x24)2 + y2) ≤ 0

92 ((x + 4)2 + y2) ≤ 0 (41)

Figures 15(a), (b) and (c) show the simulation results for
different start points. In Figure 15(a), the path planning
algorithm converges to the local minimum point (22.707,
22.707) because this point is in the path from the start
point to the goal point. However, in Figures 15(b) and (c),
the algorithm successfully finds the smooth path to the goal
point. Our experience indicates that the shaded region in
Figure 15(d) is the forbidden region for this arrangement of
objects. If the start point falls within this region, the path
planning algorithm will erroneously converge to the local
minimum. This experiment also indicates that if there is a
local minimum point between the start and the goal points,
this point is normally at an intersection between obstacles.
In the nonlinear programming problem, a way to escape the
local minimum is to choose another initial start point,
different from the original guess. For UUV path planning,
this can be applied by driving the vehicle to another
location, heuristically chosen, before re-starting the motion

Fig. 12. (a) Illustration of the overshooting occurred due to uncontrolled step length. S = (22.5, 24) and G = (4, 4), (b) Illustration of
the smooth path produced using the modified algorithm. S = (22.5, 24) and G = (4, 4). S = Start point, G = Goal point.

Underwater vehicle134

https://doi.org/10.1017/S0263574799002015 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002015


planning algorithms.
Although the strategy of choosing an immediate point

away from the local minimum to escape it may be adopted,
we have used another approach – the approximate Boolean
operation Union – to deal with the local minimum. Recall
that blending effects are primarily noticeable near the
surface intersections. This is a very useful feature for
eliminating unnecessary cusps, as shown in Figure 11. If we
choose m with different values, the cusp at the intersection
(22.707, 22.707) will be eliminated. As m decreases, the
forbidden regions for the start point in Figure 15(d) will
decrease. When m = 0.5, even for the most difficult start
point which is in the line of the goal point and the
intersection, say (28.28), the algorithm is able to

converge and produce a smooth path, as shown in Figure 16.
The advantages of the Boolean operations are therefore
twofold. First, they can reduce the number of the con-
straints, which leads to higher efficiency. Second, they can
be used to overcome the local minima problem. Note that
their only disadvantage is that both the start and goal points
must be outside the approximate Boolean function.

5.5. Adaptive objective function for eliminating local
minima
The simulation results given in Section 5.4 indicate that,
even if the objective function has a unique global minimum
at the goal point, for different obstacles and start point
distributions the search may converge to a local minimum of

Fig. 13. Simulation results with the same goal point G = (4, 4), but different start points (a) S = (26, 4), (b) S = (26, 2), (c) S = (26.5,
0), (d) S = (25, 24), (e) S = (24, 24), (f) S = (25, 24), (g) S = (0, 25.5), (h) S = (2, 24), and (i) S = (4, 24). S = Start point,
G = Goal point.
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the objective function rather than the goal point. This is due
to the fact that all the directions which decrease the potential
function are blocked by obstacles. Using Boolean opera-
tions is one strategy for escaping from the local minima. In
the following, we will develop an alternative strategy which
is capable of adaptively changing the shape of the objective
function.

Local minima of the objective function due to the
presence of the obstacles (inequalities) are a feature widely
recognised in nonlinear programming. They are different
from the minimum point of the objective function without

obstacles (although the global minimum of the objective
function is definitely a local minimum). Local minima are
produced due to the following three factors: the position of
the goal configuration, the location and shape of the
obstacles, and the definition of the objective function. For a
given value of the objective function f(x, y) in (35), Eq. (35)
represents a circle in 2D space, with its centre located at the
goal point. Figure 17(a) shows a contour plot with various
f(x, y) in 2D space. If there are obstacles in the work space
like those shown in Figure 17(b), then the upper intersection
point of the two circles is a local minimum point relative to
the objective function (35). This indicates an important
feature: local minima depend on the definition of the
objective function. That is, a local minimum relative to one
definition of the objective function may become a normal
point (non-local minimum) relative to another. Since the
position and shape of the obstacles are fixed (in the simplest
case), changing the definition of objective function may lead
to eliminating the local minima. As mentioned previously,
designing the goal point as the unique global minimum is a
necessary requirement. So a positive weighted factor w1 is
introduced to the objective function (35), resulting in the
following:

f(x, y, w1) = w1(x2xg)2 + (12w1)(y2yg )2 (42)

where w1 is a non-negative weighted factor which satisfiesFig. 14. Start point (24, 24) and goal point (4, 4)

Fig. 15. (a) Start point (27, 28) and goal point (4, 4), (b) Start point (22, 28) and goal point (4, 4), (c) Start point (29, 22) and
goal point (4, 4), (d) Illustration of the forbidden region for a start point, causing the optimisation search to terminate at the local
minimum point, as shown in Fig. 15(a).
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0 < w1 < 1 (43)

(35) is a special case of (42) when w1 =0.5. It is obvious that
the goal (xg yg) is still the unique global minimum point. If
objective function (35) is viewed as a series of circles with
different radii, the effect of the weighted factor w1 is
equivalent to scaling these circles simultaneously in both
the x and y directions. The resulting contour plot of the
objective function (42) represents a series of ellipses with
their major and minor axes always being in the x and y
direction. For different values of w1 and a fixed value of the
objective function f(x, y, w1) in (42), the contour plot is
given in Figure 17(c). Figure 17(d) shows the contour plot
when w1 is fixed, but f(x, y, w1) varies. Although the upper
intersection point of the two circles is still a local minimum

in Figure 17(d), the forbidden region for the start point has
decreased.

A more general expression of the objective function
which adds a rotation degree u into (42) has the following
form 

f(x, y, w1, u) = w1[(x2xg)cosu + (y2yg)sinu]2

+(12w1)[2 (x2xg)sinu+(y2yg)cosu]2

(44)

For a given value of f(x, y, w1, u), the objective function (44)
represents a general ellipse. (xg, yg) are the coordinates of
the centre of the ellipse and are still the unique minimum
point of the objective function (44), u is the rotation angle of
the major axis of the ellipse from the x-axis of the world
coordinate system, and w1 and (12w1) represent the lengths
of the major and minor axes of the ellipse, respectively. The
reason for choosing (44) as the objective function is two-
fold. First, whatever w1 and u are, the goal point is always
the unique global minimum point of the objective function
and, second, with the extra variables w1 and u, a local
minimum point for certain w1 and u will become the normal
point for other values of w1 and u Figure 17(e) shows a
contour plot with f(x, y, w1, u) and w1 fixed, but u varying
from 0° to 90°. From Figure 17(f), we can see that the local
minimum point of the intersection may be eliminated by
properly changing u.

So if we treat x, y, w1 and u as the variables of the
Constrained Optimisation problem, then a more general
formulation of the robot path planing as a Constrained
Optimisation problem has been developed. (44) is the

Fig. 16. Escape of the local minimum after CSG union operation
is added (m=0.5). Start point (28, 8) and goal point (4, 4).

Fig. 17. Contour plots to illustrate local minima relative to different definitions of the objective function.
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objective function, and (33), (34) and (43) are the inequality
constraints. The optimisation algorithm itself decides the
change of the extra variables w1 and u when dealing with
obstacles with various locations and shapes. Therefore (44)
is here referred to as the adaptive objective function. Figures
18(a) and (b) show the simulation results using the adaptive
objective function, with the same obstacles as those in
Figure 15.

6. CONVERTING THE ROBOT MOTION
PLANNING PROBLEM INTO THE SEMI-INFINITE
CONSTRAINED OPTIMISATION (SCO) PROBLEM
A path for a point mobile robot moving on a plane is a
curve. There are two ways to describe a curve in a plane.
The first is the implicit function which takes the form of
f(x, y) = 0. An explicit function y = f(x) is a special case of
the general implicit function f(x, y) = 0. The second is the
parametric form. The x and y are expressed as functions of
an auxiliary parameter u, so that x = x(u) and y = y(u). In this
section, we use both the implicit and the parametric forms to
formulate the robot path planning as a semi-infinite
constrained optimisation problem.

6.1. Undetermined coefficient approach with implicit
function representation
Given the start and goal positions (xs, ys) and (xg, yg) of the
robot, we use a polynomial to interpolate the values.
Suppose that there exists an nth-order implicit polynomial
which connects the start and the goal

y = a0 + a1 x + . . . + anxn = a•xT (45)

where a = [a0, a1, . . ., an] and x = [1, x, x2, . . ., xn]. It is
obvious that the polynomial must satisfy the boundary
conditions

ys =a0 + a1 xs + . . . + an xs
n (46)

yg =a0 + a1 xg + . . . + an xg
n (47)

If the obstacles are represented as a set of the inequalities
like (33), then substituting (45) into (33) leads to the
following inequalities

12Fj(x, a0 + a1 x + . . . + an xn) ≤ 0 (48)

Note that inequalities (48) includes two kinds of variables,
x and a where x varies over a region and a represents a point
in a n-dimensional space. The robot path planning problem
is to find the unknown coefficients a of the polynomial (45)
which guarantee that equalities (46), (47) and inequalities
(48) are simultaneously satisfied for all possible values of x.
That is, if we can find the unknown coefficients a such that
equalities (46), (47) and inequalities (48) are simultaneously
satisfied for all possible values of x then (45) must represent
a collision-free path. 

There may be more than one curve which satisfies (46),
(47) and (48), we choose the one which minimises the
following objective function 

f(a) =On

i=0

a2
i (49)

It is obvious that (46), (47), (48) and (49) together form a
semi-infinite constrained optimisation problem of the form
(2) with ai being the unknown variables and x being the only
one independent variable.

6.2. Undetermined coefficient approach with parametric
function representation
Similarly, given the start and goal positions (xs, ys) and
(xg, yg) of the robot, suppose that there exists an nth-order
parametric polynomial which connects the start and the
goal

x = b0 + b1u + . . . + bn un = b•uT (50)

y = c0 + c1u + . . . + cn un = c •uT (51)

where b = [b0, b1, . . ., bn ], c = [c0, c1, . . ., cn ], u = [1, u, u2,
. . ., un], and 0 ≤ u ≤ 1. u = 0 and u = 1 correspond to the
initial and goal positions of the robot, respectively. Thus

b0 = xs, c0 = ys (52)

On

i=0

bi = xg, On

i = 0

ci = yg (53)

If the obstacles are represented as a set of inequalities like

Fig. 18. Simulation results with the adaptive objective function (a) Start point = (28, 28) (b) Start point = (23, 23).

Underwater vehicle138

https://doi.org/10.1017/S0263574799002015 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002015


(33), then substituting (50) and (51) into (33) gives the
following inequalities

12Fj (b0 + b1u + . . . + bnu
n, c0 +c1u+ . . .+cnun) ≤ 0 (54)

(54) represents a set of inequalities with bi and ci being the
unknown variables and the parameter u as the independent
variable. If we can find the unknown coefficients b and c
such that equalities (52), (53) and inequalities (54) are
simultaneously satisfied for all possible values of u, then
(50) and (51) must represent a collision-free path. 

The objective function in this formulation is to minimise
the sum of the square of the coefficients b and c

f(b, c) =On

i=0

(b2
i + c2

i ) (55)

In this case (52), (53), (54) and (55) together form a semi-
infinite constrained optimisation problem of the form (2)
with bi and ci being the unknown variables and u being the
only one independent variable. 

In summary, the central idea for the undetermined
coefficient approach is as follows: first the interpolation
technique is used to fit the initial and final configuration
requirements, second the free space of the robot workspace
is represented as inequality constraints with the unde-
termined coefficients and one independent variable, and
finally an objective function of the undetermined coef-
ficients is designed. The above three parts form a
semi-infinite constrained optimisation problem. The numer-
ical algorithm developed for solving semi-infinite
constrained optimisation problem can be applied to solve
the undetermined coefficients. Once a solution is found, the
interpolation function must be a collision-free path connect-
ing the initial and the goal points.

6.3. Simulation results
6.3.1. Undetermined coefficient approach with implicit
function representation. In this simulation, the obstacles
are the same as those in the example 1 and therefore they are
represented by inequalities (39). The start and goal positions
are (xs, ys) = (24,24) and (xg, yg) =
(4, 4), respectively. The objective function is the same as
(49). The order of the parametric polynomial has been
chosen as n=7. The procedure for robot path planning using
this approach is to first randomly choose a set of estimated
coefficients of a, denoted as aie, and then run the semi-
infinite constrained optimisation algorithm. The output of
the algorithm is donated as a f*. The simulation results are
shown in Figures 19(a), (b), (c), and (d) for different aie. The
dashed curve represents the robot path from the estimated
coefficients aie using (45), and the solid curve represents the
generated collision-free path from the final coefficients a f*

using (45). Note that it is possible that the curve resulting
from the initial estimate a ie collides with the obstacles, as
shown in Figure 19.

In Figures 19(a), (b), and (c), although the estimated
coefficients a ie are different and the resulting final coef-
ficients a f* are also different, the shape of the collision-free
curves is quite similar. In Figure 19(d), the dashed curve

from coefficients a ie are far away from the start and goal
points, the generated collision free path shows a little
unexpected oscillation.

6.3.2. Undetermined coefficient approach with para-
metric function representation. In this simulation, the
obstacles are still represented by inequalities (39). The start
and goal positions are (xs, ys) = (24, 24) and (xg, yg) =
(4, 4), respectively. The objective function is chosen as (55).
The order of the parametric polynomial is chosen as n=7.
The procedure for robot path planning using this approach is
to first randomly choose a set of estimated coefficients for b
and c, denoted as bie and cie and then run the semi-infinite
constrained optimisation algorithm. The simulation results
are shown in Figures 20(a) and (b). The dashed curve
represents the robot path from the estimated coefficients bie

and cie using (50) and (51), and the solid curve represents
the generated collision-free path from the final coefficients
bf* and cf* using (50) and (51). In Figure 20(a) the initial
estimate for the coefficients of b and c in (50) and (51) are
chosen as bie = [24, 2, 2, 1, 2, 1, 0, 0] and cie = [24, 1, 1,
2, 1, 2, 1, 0] which satisfy the two equality constraints (52)
and (53). This can be seen in Figure 20(a) from the fact that
the dashed curve connects the start and the goal points. The
final coefficients after running the semi-infinite constrained
optimisation algorithm are bf* = [24, 2.1586, 1.7104,
1.3402, 1.0344, 0.7819, 0.5734, 0.4012] and cf* = [24,
0.3090, 0.6770, 0.9809, 1.2319, 1.4392, 1.6104, 1.7518].

In Figure 20(b) the initial estimate for the coefficients of
b and c in (50) and (51) are chosen as bie = [24, 3, 2, 1, 1,
0, 1, 21] cfe = [24, 1, 4, 2, 1, 21, 1, 1]. In this case only
one equality constraint of (52) is satisfied. The final
coefficients are bf* = [24, 0.3090, 0.6770, 0.9809, 1.2319,
1.4392, 1.6104, 1.7518], cf* = [24, 2.1586, 1.7104, 1.3402,
1.0344, 0.7819, 0.5734, 0.4012]. Both of them have given
satisfactory results, as shown in Figures 20(a) and (b).

7. CONCLUSIONS
In this paper, two systematic approaches to motion planning
for subsea vehicle using the optimisation techniques have
been presented. We have shown the principle of converting
the path planning problem into the standard Constrained
Optimisation and Semi-infinite Constrained Optimisation
problems. They are different from the traditional approaches
both in the representation of the objects and in the design of
the search algorithm. In traditional approaches, polygons
are normally used for object representation and the octree
search for finding the collision-free path. Although it is
possible to represent virtually any surface with sufficient
numbers of polygons, it is sometimes more convenient
to use the basic defining functions which lead to a
more compact representation and easier manipulation than
polygons. CSG and the Boolean operations have made it
possible to represent a wide range of objects such as
cylinders, spheres and even polyhedra (polyhedra may be
represented by the slabs and the transformation technique)
as a single algebraic function using the basic defining
functions. The problem of slow search speed with large
numbers of constraints may be overcome by the approx-
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Fig. 19. Simulation results using Semi-infinite Constrained Optimisation (SCO) approach with implicit function. Estimated robot path
(dashed curve) and generated collision-free path (solid). (a) aie = [0.50, 0.50, 20.10, 0, 0, 0, 0, 0], af* = [1.0000, 0.0000, 20.0002,
0.0007, 20.0014, 0.0042, 20.0002, 0.0000], (b) aie = [1.00, 1.00, 20.10, 0, 0, 0, 0, 0], af* = [1.0000, 0.0000, 20.0002, 0.0007,
20.0015  0.0042, 20.0002, 0.0000], (c) aie = [1.00, 1.00, 20.01, 0, 0, 0, 0, 0], af* = [1.0000,0.0001,20.0002, 20.0001, 20.0042,
0.0035, 0.0000, 0.0000], (d) aie = [1, 1, 20.2, 0.3, 20.5, 0, 0, 0], af* = [2.1586, 1.7104, 1.3402, 1.0344, 0.7819, 0.5734  0.4012,
0.3090].

Fig. 20. Simulation results using Semi-infinite Constrained Optimisation (SCO) approach with parametric function. Estimated robot path
(dashed curve) and generated collision-free path (solid). (a) bie = [24, 2, 2, 1, 2, 1, 0, 0], cie = [24, 1, 1, 2, 1, 2, 1, 0]. bf* = [24, 2.1586,
1.7104, 1.3402, 1.0344, 0.7819, 0.5734, 0.4012], cf* = [24, 0.3090, 0.6770, 0.9809, 1.2319, 1.4392, 1.6104, 1.7518]. (b) bie = [24, 3,
2, 1, 1, 0, 1, 21], cfe = [24, 1, 4, 2, 1, -1, 1, 1]. bf* = [24, 0.3090, 0.6770, 0.9809, 1.2319, 1.4392, 1.6104, 1.7518], cf* = [24, 2.1586,
1.7104, 1.3402, 1.0344, 0.7819, 0.5734, 0.4012].
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imate Boolean operations. The mature search techniques
developed in nonlinear programming enable us to concen-
trate on the new problems encountered in its application to
the path planning problem.

The advantages of the approaches are that mature
techniques developed in nonlinear programming theory
which guarantee convergence, efficiency and numerical
robustness can be directly applied to the robot path planning
problem. We have analysed the factors which may result in
local minima, the main issues for the potential field
approach, and discussed the difficulty in avoiding them. The
Constrained Optimisation approach with an adaptive objec-
tive function has the following advantages:

(i) The goal point is guaranteed to be the only global
minimum of the objective function.

(ii) Local minimum problems arising from the potential
field approach can be avoided.

(iii) The standard search techniques which have been
developed for more than thirty years in the nonlinear
programming field can be used.

(iv) The approach is suitable for on-line task planning.

From the viewpoint of efficiency, the CO approach is much
better than the SCO formulation. However, the second
formulation does not suffer the local minima problem. This
is its main advantage. On the other hand, an issue which
deserves further investigation for the second approach is the
choice of order of the polynomial which determines the
degrees of freedom left after the interpolation to the initial
and the goal requirements. Currently we used only one
polynomial to interpolate the initial and the goal points. In
order to have enough degrees of freedom after interpolation,
a higher order (normally more than 4) is used. However, as
has been seen, a polynomial of a higher order may cause
some unexpected oscillation. A possible solution could be
the use of lower order piece-wise polynomials (for instance,
cubic). These are topics for future research.

The research carried out in this paper has indicated that
robot path planning can be formulated as different optimisa-
tion problems. Although the fundamentals for both the
nonlinear programming theory and the CSG as well as the
Boolean operations have existed for many years, they have
not attracted enough attention for such applications. The
context presented in this paper covers a wide range of
subjects such as robot kinematics, CAD, CAM, Computer
Graphics and nonlinear programming theory, and a basic
framework has been developed. Our treatment is consistent.
The study presented in this paper has shown its great
potential as an on-line motion planner.
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