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Abstract

By combining multiple input multiple output (MIMO) technology and multiple matched filters
with frequency diverse array (FDA), FDA-MIMO radar can be used to achieve two-dimensional
target localization with range and angle. In this paper, we propose two FDA-MIMO multi-pulse
target localization methods based on tensor decomposition. Based on the canonical polyadic
decomposition theory, the signal models of CPD-DP-FDA with double-pulse and CPD-SP-
FDA with stepped frequency pulses are established. By analyzing the signal processing proce-
dures of the two schemes, the indicator beampattern used for target localization is obtained.
The parameter estimation accuracy of the proposed method is investigated in single target
and multiple targets scenarios, and the proposed method is compared with the traditional dou-
ble-pulse method. The results show that the target localization method based on tensor decom-
position can effectively solve the problem of multi-target indication ambiguity. The target
positioning effect can be further improved by combining stepped frequency pulses. The deriv-
ation of Cramer–Rao Lower Bound (CRLB) demonstrates the superiority of the method.

Introduction

Unlike traditional phased array radar, multiple input multiple output (MIMO) radar not only
improves the reliability of target detection and the ability to detect stealth targets, but also has
the advantages of high resolution, high target parameter estimation accuracy, anti-interference,
and better target recognition capabilities. Antonik first proposed the concept of frequency
diverse array (FDA) radar at the IEEE International Radar Conference [1]. The beampattern
of FDA radar is range-angle-dependent, which provides the possibility for joint positioning of
the target’s range and angle parameters. Integrating the system characteristics of frequency
diverse array and MIMO radar, frequency diversity array MIMO (FDA-MIMO) radar
[2–5], a new type of radar system, has attracted widespread attention.

FDA-MIMO radar can form an equivalent transmit beampattern, so that the transmission
information can be integrated into the receiving end. It achieves a more flexible use of the
range-dimensional freedom and improves the capability of range-angle two-dimensional
joint signal processing. Making full use of the characteristics of FDA-MIMO can achieve
range-angle two-dimensional target localization [6] and anti-mainlobe false target interference
[7]. The influence of frequency offset error on the beamforming and target positioning per-
formance of FDA-MIMO radar is analyzed in [8]. In [9], the Cramer–Rao Lower Bound
(CRLB) of the FDA-MIMO radar was derived, and the transmitter was designed to minimize
the CRLB of the system on this basis. The target detection performance of the FDA-MIMO
system radar was analyzed in [10]. The performance of moving target parameter estimation
of frequency diverse array radar was analyzed in [11] and compared with the performance
of phased array radar. In [12], a double-pulse parameter estimation method based on fre-
quency diverse array radar was proposed. In [13], the double-pulse method was extended to
the FDA-MIMO radar system, which further improved the target range-angle localization per-
formance. A precise response control algorithm was proposed in [14] to achieve precise con-
trol of the range-angle beampattern to enhance the robustness of the FDA-MIMO radar
system. Based on the generalized likelihood ratio test criterion, the method of designing an
FDA-MIMO adaptive detector was studied in [15]. In [16], a range-dimensional interference
suppression adaptive beamforming method based on the FDA-MIMO radar system was pro-
posed to further improve the target positioning performance. In [17], the method of using
FDA-MIMO range-dependent adaptive beamforming to achieve range-dependent interference
suppression in target positioning was analyzed. The FDA-MIMO anti-jamming algorithm
based on eigenvalue projection and block matrix processing was proposed in [18]. Based on
the coherent frequency diversity array system, [19] designed a space-time filter for interference
suppression. In [20], the simulated annealing algorithm of the FDA-MIMO system was pro-
posed to combat the deception interference of the mainlobe range dimension. Combining
polarization characteristics, frequency diverse array and MIMO system, [21] explored ways
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to increase the output signal-to-interference and noise ratio to
enhance the radar’s anti-jamming performance. The time-
invariant problem of the beampattern during target indication
is also of interest. In [22], a leading group proposed two types
of time-modulated frequency diverse arrays to achieve time-
invariant focusing of multiple targets in space. Similarly, the con-
centration of energy at single or multiple target locations was
achieved in [23] by optimizing the time-modulated frequency
offset. However, the above method is designed with the idea of
obtaining a stable gain at the target position only, with the gain
remaining time-varying at other positions. Thus, [24] conducted
a reasonable analysis of the time parameters in the FDA system
based on the principle of wave propagation, which provide guid-
ance for the expansion of FDA-MIMO applications under consid-
eration of time parameters.

As a form of data representation, tensor is provided with rich
theoretical connotation by multilinear algebra theory. One of the
most important applications is the development of effective tensor
decomposition methods under the framework of multilinear the-
ory. In the past 10 years or so, two typical decompositions of ten-
sors, CPD and HOSVD, have been extensively studied in array
signal processing [25, 26]. As early as 2000, a DOA estimation algo-
rithm based on a uniform linear array in [27] was first proposed in
combination with CPD. In [28], CPD was extended to DOA esti-
mation based on MIMO radar, and the identification and estima-
tion performance of the algorithm were discussed under different
transmission modes and different signal models. Tensor decom-
position was applied to MIMO radar angle estimation in [29],
which realizes an algorithm that does not require spectral peak
search and angles are automatically paired. In [30], the DOA was
solved by modeling the MIMO radar covariance tensor. Recently,
the trilinear model in tensor theory has been introduced in [31]
for monostatic FDA-MIMO radar to achieve range and angle par-
ameter estimation. This is a good example of the promising appli-
cation of tensor theory in FDA radar.

In this paper, a double-pulse target localization scheme based
on canonical polyadic decomposition (CPD-DP-FDA) is proposed
by introducing tensor decomposition into FDA-MIMO. After
receiving the data containing the target information, the tensor sig-
nal model is used to replace the traditional signal model for pro-
cessing. By using the correspondence of the factor matrix in
tensor decomposition, the problem of ambiguity in multi-target
localization in traditional double-pulse FDA is effectively solved
[12]. Finally, a stepped frequency pulse target localization scheme
based on tensor decomposition (CPD-SP-FDA) is proposed.
Finally, the effects of the two CPD-based schemes and the trad-
itional double-pulse scheme are compared, and the numerical
simulation demonstrates the superiority of the proposed scheme.

Notation: Boldfaced lowercase letters, such as l, represent vec-
tors, and boldfaced uppercase letters, such as L, denote matrixes.
The letter variants, such as ℓ, represent tensors. ° denotes the
outer product operation on the vector, while ⊙ denotes the
Hadamard product. The transpose, conjugate, and conjugate
transpose of a matrix or a vector are denoted by ( ⋅ )T, ( ⋅ )*, and
( ⋅ )H, respectively, while ⊗ denotes the Kronecker product.

Mechanism of tensor decomposition

The target information is implicit in the received sample, and the
received sample or sample covariance needs to be decomposed.
Tensor decomposition is a means to achieve low-rank approximation
of tensors. Compared with matrix factorization, the difference is:

because tensor factorization mines the structure information of the
data more, it has better identification or achieves more accurate
decomposition. These advantages make it be introduced into the
field of array signal processing to improve the performance of
DOA estimation. The canonical polyadic decomposition (CPD)
used in this paper is introduced below.

Consider a tensor ℓ with rank K and dimension R.

ℓ =
∑K
k=1

lk1 ◦ lk2 ◦ . . . ◦ lkR, (1)

where lkr is the kth component k = 1, 2, …, K corresponding to the
rth dimension.

The purpose of CPD is to represent a tensor as a sum of rank 1
tensors. The number of rank 1 tensors is the rank of the entire
tensor. The schematic diagram of CPD based on the third-order
tensor is shown in Fig. 1.

CPD directly decomposes the tensor into the sum of each rank 1
tensor, and uses the structural information of the tensor to decom-
pose it into the various factors themselves. Taking a third-order ten-
sor as an example, if it can be expressed by (1), then the r-module
matrix expansion along the three dimensions can be expressed as

ℓ(1) = L1(L2 ⊙ L3)
T (2a)

ℓ(2) = L2(L3 ⊙ L1)
T (2b)

ℓ(3) = L3(L2 ⊙ L1)
T (2c)

where L1 = [l11, l
2
1, . . . , l

K
1 ], L2 = [l11, l

2
2, . . . , l

K
2 ], L3 = [l13, l

2
3, . . . ,

lK3 ] are the matrix factors that constitute the tensor. Equation
(2) shows the relationship between the tensor and the matrix fac-
tors obtained after the modulus r is expanded. For the received
sample of the multi-dimensional array, assuming that the array
size is I1 × I2 × ⋅ ⋅ ⋅ × IR, the sample received by an element in
the array at time t can be expressed as [32]

xi1,...,iR (t) =
∑K
k=1

li1 . . . liR(mk)sk(t)+ ni1,...,iR, (3)

where lir denotes the irth element in the rth dimension in the array,
sk(t) denotes the sampling at the time t of the kth signal, n(t)
denotes the noise item received at the time t, and μk denotes the par-
ameter vector of the kth signal. The specific form is decided. The
steering vector of the kth signal corresponding to the rth dimension
of the array is lr(μr,k). Then the sample vector x(t) [ C

PR
i=1Ii×1

received by the entire array at time t can be expressed as

x(t) =
∑K
k=1

l(mk)sk(t)+ n(t). (4)

The steering vector of the entire array can be expressed by the
Khatri–Rao product of the steering vectors of each dimension as

l(mk) = ⊙R
r=1

lr(mr,k), (5)
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where lr is the steering vector lr [ C
Ir×1 corresponding to the kth

signal in the rth dimension of the multi-dimensional array, Ir is
the size of the rth dimensional array, and μr,k denotes the param-
eter of the kth signal in the rth dimension of the multi-
dimensional array.

The received data of the entire array can be expressed as a ten-
sor form X (t) [ C

I1×I2×···×IR . For a total of T time samples, the
tensor mode of the array received data can be expressed by the
cascade of sub-tensors at each time as

X = X (1)<R+1 X (2)<R+1 . . .<R+1 X (T), (6)

where <R+1 denotes that two tensors are concatenated along the
rth dimension. Thus, the received data can be constructed as

X = L×R+1 S+N (7)

where X is the sample tensor form X [ C
I1×I2×···×IR×T of the

multi-dimensional array, L is the steering tensor of the multi-
dimensional array, whose dimension is L [ C

I1×I2×···×IR×K , S
denotes the signal matrix, and N denotes the noise contained
in the T samples received by the multi-dimensional array. Then
the steering tensor of the kth signal can be expressed by the
outer product of the steering vectors of each dimension as

Lk(mk) = l1(m1,k) ◦ l2(m2,k) ◦ . . . ◦ lR(mR,k). (8)

Thus, the estimation of the array steering vector can be
obtained by CPD.

Signal model of FDA-MIMO radar

Consider an FDA-MIMO scheme in which both transmit and
receive arrays are uniform linear arrays, as shown in Fig. 2. The
transmitted carrier frequency is f0, and the transmitted frequency
of the nth array element can be expressed as

fn = f0 + nDf . (9)

The transmitted signal of the nth element can be expressed as

sn(t) = rect
t
Tp

( )
cn(t)e

j2p(f0+nDf )t , (10)

where Tp is the pulse width, ψn(t) is the baseband envelope of the
nth transmitting array element signal, which satisfies the orthog-
onality condition as

∫
c∗
n1(t) · cn2(t − t) dt = 0, n1 = n2, ∀t. (11)

Assuming that there are K targets in the far field, the signal
returned from the position (r, θ) and received by the mth received
element can be expressed as

sn,m(t) = rect
t − tn,m

Tp

( )
cn(t − tn,m)e

j2p(f0+nDf )(t−tn,m), (12)

where τn,m is the propagation delay from the nth trans-
mitted element to the mth received element, which can be
expressed as

tn,m = 2rk/c− ndT sin uk/c−mdR sin uk/c (1 ≤ k ≤ K). (13)

Thus, after signal processing at the receiving end, the output
signal is obtained as

xn,m(t) ≈ rect
t − tn,m

Tp

( )

jse
j2p(−f0(2rk/c)−nDf (2rk/c)+f0((ndT sin uk)/c)+f0((mdR sin uk)/c)),

(14)

where ξs is the signal complex coefficient after matched filtering.
When only considering the equivalent transmit beampattern, the
above formula can be simplified as

xn,m(t) ≈ rect
t − tn,m

Tp

( )
jse

j2p(−f0(2rk/c)−nDf (2rk/c)+f0((ndT sin uk)/c)).

(15)

Fig. 1. Schematic diagram of the third-order tensor CPD.

Fig. 2. Schematic diagram of FDA-MIMO radar.
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Then the transmit steering vector can be expressed as

St(rk, uk) = a(rk, uk)

= [1, e j2p[−Df 2rk/c+f0dT sin uk/c], . . . ,

e j2p[−(N−1)Df 2rk/c+(N−1)f0dT sin uk/c]]T.

(16)

When the frequency increment Δf = 0 is considered, the transmit
steering vector is simplified to

St0(uk) = [1, e j2pf0dT sin uk/c, . . . , e j2p(N−1)f0dT sin uk/c]T. (17)

Double-pulse scheme for the localization of targets

A method for target localization using a double pulse frequency
diverse array is proposed in [12]. In this method, two steps are
required to separately estimate the angle and range parameters
of the target.

The first step is to use the FDA pulse with Δf = 0 to estimate
the target angle parameter. In this case, the data model of the
received signal can be written as

x = a0St0(uk)+ n, (18)
where α0 represents the complex amplitude of the signal, and n is
the additive white noise vector. The weight vector using non-
adaptive beamforming is expressed as

w = St0(uk). (19)

Thus, the formula used to estimate the angle parameter of the
target is

ûk = arg max
u

|wH · S(u)|2
{ }

. (20)

The second step is to estimate the range parameter based on
the angle parameter information of the first step. The data
model of the received signal can be written as

x = a0St(rk, ûk)+ n. (21)
The weight vector of beamforming can be expressed as

w = St(rk, ûk). (22)

Therefore, the formula that can be used to solve the target par-
ameter is

r̂k = arg max
r

|wH · x|2
{ }

. (23)

Double-pulse localization scheme based on CPD

The data model of the double pulses signal of the lth snapshot can
be written as

x(l) = St0(u1)⊗ St(r1, u1), St0(u2)⊗ St(r2, u2),
. . . , St0(uK )⊗ St(rK , uK )

[ ]
s(l)

+ n(l), (24)

where s(l) = [s1(l), s2(l), . . . , sK (l)]
T is composed of the ampli-

tude and phase generated by the K targets in the lth pulse. The
noise vector n(l) obeys the Gaussian distribution whose mean
value is zero and the variance is σ2INN. The entire array flow
matrix can be further expressed as

S = [St0(u1)⊗ St(r1, u1), . . . , St0(uK )⊗ St(rK , uK )]. (25)

Considering that the total sampling times is L, the data matrix
form outputted by matched filtering can be expressed as

X = (St0 ⊙ St)S
T + N , (26)

where X = [x(1), x(2), …, x(L)]∈ℂNN×L, S = [s(1), s(2), …, s(L)]
∈ℂL×K and noise matrix N∈ℂNN×L.

Since (26) satisfies the modulo n expansion form of the tensor
third-order PARAFAC model, canonical polyadic decomposition
(CPD) can be introduced to achieve target localization. The
third-order tensor constructed by the array received data repre-
sented by (26) can be expressed as

g(g, h, l) =
∑K
k=1

St0(g , k)St(h, k)S(l, k)+ h(g , h, l), (27)

where g = 1, 2, …, G, h = 1, 2, …, H, l = 1, 2, …, L. St0(g, k) repre-
sents the element at position (g, k) of the factor matrix St0, St(h, k)
represents the element at position (h, k) of the factor matrix St,
and S(l, k) represents the element at position (l, k) of the factor
matrix S. η is the third-order tensor representation of additive
white noise.

In the first step, since there is a coupling of range and angle in
the FDA’s equivalent transmit steering vector, it is necessary to
estimate the target angle parameter first. The CPD directly
decomposes the tensor into the sum of each rank-1 tensor,
which can use the structural information of the tensor to decom-
pose it into the various factors. Considering that the kth column
vector of the factor matrix St0 is 6tk, the phase obtained after nor-
malization to eliminate scale scaling can be expressed as

mtk = angle(6tk) = [0, p sin uk, . . . , (G− 1)p sin uk]
T . (28)

The weight vector of beamforming can be expressed as

wt0 = exp (jmtk) (29)

Thus, the formula that can be used to estimate the angle par-
ameter of the target can be written as

ûk = arg max
u

|wH
t0 · S(u)|

2
{ }

. (30)

The second step is to combine the factor matrix St and μtk in
the first step to estimate the range parameter. The kth column
vector of the factor matrix St is ξtk. The phase obtained after nor-
malization to eliminate scale scaling can be expressed as

ntk = angle(jtk)

= [0, −4Dfprk/c+ p sin uk, . . . , −4(H − 1)Dfprk/c

+ (G− 1)p sin uk]T , (31a)
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1tk = ntk − mtk

= [0, −4Dfprk/c, . . . , −4(H − 1)Dfprk/c]
T . (31b)

Thus, the weight vector of beamforming can be obtained as

wt = exp { j1tk(rk)}. (32)

The formula for solving the target parameter can be written as

r̂k = arg max
r

|wH
t · S(r, u)|2

{ }
. (33)

Stepped frequency pulses localization scheme based on CPD

The time frequency schematic diagram of the stepped frequency
pulses localization scheme is shown in Fig. 3. The total number
of pulses is P. The frequency of the pth pulse of the nth element
can be expressed as

fn,k = f0 + nDf + pDft , p = 0, 1, . . . , P − 1, (34)

where Δft is the unit increment of frequency between pulses.
Thus, the transmitted signal of the nth element can be

expressed as

sn(t) =
∑P−1

p=0

rect
t − pTp

Tp

( )
cn(t − pTp)e

j2p(f0+nDf+pDft)(t−pTp).

(35)

When observing a target point at (r, θ), the received signal related
to the nth transmit array element and the mth receive array elem-
ent can be expressed as

sn,m(t) =
∑P−1

p=0

rect

(
t − pTp − tn,m

Tp

)

cn(t − pTp − tn,m)e
j2p(f0+nDf+pDft )(t−pTp−tn,m)

. (36)

Thus, after signal processing and matched filtering at the
receiver, the approximate signal can be expressed as

xn,m(t) =
∑P−1

p=0

jse
j2p(−f0(2r/c)−nDf (2r/c)−pDft(2r/c) + f0((ndT sin u)/c) + f0((mdR sin u)/c))

.

(37)

The array factor can be expressed as

AF =
∑M−1

m=0

∑N−1

n=0

xn,m(t)

= jse
−j2pf0(2r/c)

∑M−1

m=0

∑N−1

n=0

∑P−1

p=0

jse
j2p(−nDf (2r/c)−pDft (2r/c)+f0((ndT sin u)/c)+f0((mdR sin u)/c)).

(38)

Thus, the steering vector of the entire array can be written as

S = a(r, u)⊗ p(r)⊗ b(u), (39)

where a(r, u), p(r), and b(u) can be denoted as

a(r, u) =[1, e j2p[−Df 2r/c+f0dT sin u/c], . . . ,

e j2p[−(N−1)Df 2r/c+(N−1)f0dT sin u/c]]T,
(40a)

p(r) = [1, e−j2pDft(2r/c), . . . , e−j2p(P−1)Dft (2r/c)]T, (40b)

b(u) = [1, e j2pf0((dR sin u)/c), . . . , e j2p(M−1)f0((dR sin u)/c)]T. (40c)

The transmit steering vector can be expressed as

St = a(r, u)⊗ p(r). (41)

To ensure the fairness of the comparison, according to the
analysis in [12], the equivalent transmit beampattern is still ana-
lyzed here. The data model of the received signal can be expressed
as

xr,u = a0St(r, u)+ n. (42)

After matched filtering, the data model of the lth snapshot
equivalent transmitter signal can be rewritten as

x(l) = [St(r1, u1), St(r2, u2), . . . , St(rK , uK )]s(l)+ n(l)

= a(r1, u1)⊗ p(r1), a(r2, u2)⊗ p(r2),

. . . , a(rK , uK )⊗ p(rK )

[ ]
s(l)+ n(l),

(43)

where s(l) = [s1(l), s2(l), . . . , sK (l)]
T is composed of the ampli-

tude and phase generated by the K targets in the lth pulse. The
noise vector n(l) obeys the Gaussian distribution whose mean
value is zero and the variance is s2INN . Thus the array flow matrix
can be further expressed as

S = [a(r1, u1)⊗ p(r1), . . . , a(rK , uK )⊗ p(rK )]. (44)

To introduce tensor operations, the above formula can be
rewritten in the form of the Khatri–Rao product as

S = a⊙ p. (45)

Considering that the total number of samples is L, the data
matrix form outputted by matched filtering can be expressed as

X = (a⊙ p)ST + N , (46)

where X = [x(1), x(2), . . . , x(L)] [ C
NN×L, S = [s(1), s(2), . . . ,

s(L)] [ C
L×K and noise matrix N [ C

NN×L.
Using CPD to obtain localization of the targets, the third-order

tensor generated from the data received by the array of (46) can be
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constructed as

4(i, j, l) =
∑K
k=1

a(i, k)p(j, k)S(l, k)+ h(i, j, l), (47)

where i = 1, 2,.…, I, j = 1, 2, …, J, l = 1, 2, …, L. a(i, k) represents
the element at position (i, k) of the factor matrix a, p( j, k)
represents the element at position ( j, k) of the factor matrix p,
and S(l, k) represents the element at position (l, k) of the factor
matrix S. η is the third-order tensor representation of additive
white noise.

In the first step, due to the coupling of range and angle equiva-
lent transmit steering vector in FDA, it is necessary to estimate
the target range parameter first. Considering that the kth column
vector of the factor matrix p is fk, the phase obtained after nor-
malization to eliminate scale scaling can be expressed as

wk = angle(fk)

= [0, −4pDftr/c, . . . , −4p(J − 1)Dftr/c]
T . (48)

The weight vector of beamforming can be expressed as

w = exp (jwk). (49)

Then the formula that can be used to estimate the range par-
ameter of the target can be written as

r̂k = arg max
r

|wH · x|2
{ }

. (50)

The second step is to estimate the angle parameter based on
the factor matrix a and wk in the first step. The kth column vector
of the factor matrix a is wk. Thus, the phase obtained after nor-
malization to eliminate scale scaling can be expressed as

zk = angle(wk)

= [0, −4Dfprk/c+ p sin uk, . . . ,

−4(J − 1)Dfprk/c+ (I − 1)p sin uk]
T ,

(51a)

dk = zk − wk = [0, p sin uk, . . . , (I − 1)p sin uk]
T . (51b)

The weight vector of beamforming can be obtained as

w = exp { jdk(uk)}. (52)

The formula for solving the target parameter can be written as

ûk = arg max
u

|wH · x|2
{ }

. (53)

CPD-based localization methods have an additional step of
tensor decomposition compared to the traditional method. Its
complexity is mainly reflected in iteratively solving the three fac-
tor matrices in equations (27) and (47). Assuming that the num-
ber of signals is K, the total number of iterations is Q and the
number of stepped frequency pulses is L. Then the total compu-
tational complexity of the three factor matrices after one iteration
in two CPD-based methods are O(3K3 + 3KN2Q + K(N2 + 2NQ)
+ 2K2(N2 + 2NQ)) and O(3K3 + 3KNLQ + K(NL +NQ + LQ) +
2K2(NL +NQ + LQ)), respectively. Finally, all three of the meth-
ods require a one-dimensional search. Assuming that the step
size of the search is γ, the computational complexity of the search
step is O(γ[N2(N2− K) +N2− K]). It indicates that the effect of
the variation in the number of array elements on the computa-
tional complexity of the CPD algorithm is extremely obvious,
and the performance advantage of the method is derived from
the higher computational complexity. Thus, it is important to
explore the low computational complexity of the decomposition
algorithm for the real-time implementation of the method in
this paper.

CRLB

Equation (42) can be rewritten as

xu =






SNR

√
· u(r, u)+ n, (54)

where SNR is the signal-to-noise power ratio. The mean and vari-
ance of the noise vector n denote all-zero vector and the identity
matrix, respectively. When the double pulses FDA scheme in [12]
is adopted, u(r, u) can be expressed as

uD(r, u) = [u(r, u)|vi
, u(r, u)|v0

]T . (55)

When the stepped frequency pulses FDA scheme is adopted,
u(r, u) can be denoted as

uS(r, u) = [a(r, u)|v0
, . . . , a(r, u)|vP−1

]T , (56)

where

u(r, u)|vi
= [1, e−j2pf0Dd sin u/c, . . . , e−j2p(N−1)f0Dd sin u/c], (57a)

u(r, u)|v0
= 1, e−j[2p(f0+Df )Dd sin u/c−2pDfr/c],

. . . , e−j[(N−1)2p(f0+Df )Dd sin u/c−(N−1)2pDfr/c]

[ ]
, (57b)

Fig. 3. Schematic diagram of stepped frequency pulse.
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u(r, u)|vP−1
=

1, e−j[2p[ f0+Df+(P−1)Dft ]Dd sinu/c−2pDfr/c−(P−1)2pDft r/c],

. . . , e−j[(N−1)2p[ f0+Df+(P−1)Dft ]Dd sinu/c−(N−1)2pDfr/c−(P−1)2pDft r/c]

[ ]
.

(57c)

The mean m and variance G of the data model xu can be
expressed as

m = u(r, u)






SNR

√
, (58)

G = I. (59)

Thus, the Fisher information matrix (FIM) can be obtained as

F = 2Re
dm∗

db
G−1 dm

dbT

[ ]
, (60)

where Re[·] stands for real value operation, b = [r, u]T . Thus, the
FIM of stepped frequency pulses FDA scheme can be written as

FS = 2 · SNR

·

∑P−1

p=0

∑N−1

n=0
[q2

p(n)]
∑P−1

p=0

∑N−1

n=0
[qp(n) · rp(n)]

∑P−1

p=0

∑N−1

n=0
[qp(n) · rp(n)]

∑P−1

p=0

∑N−1

n=0
[r2p(n)]

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,
(61)

where

qp(n) = n
2p[ f0 + Df + pDft]Dd cos u

c
, (62a)

rp(n) = −n
2pDfr

c
− p

2pDftr
c

. (62b)

Then the inverse matrix of the FIM can be expressed as

F−1
S = 1

F1,1F2,2 − F1,2F2,1

F2,2 −F2,1
−F1,2 F1,1

[ ]
. (63)

Thus, the CRLB of the angle dimension and the range dimen-
sion can be solved, which are expressed as

CRLBu = [F−1
S ]1,1 =

F2,2
F1,1F2,2 − F1,2F2,1

, (64a)

CRLBr = [F−1
S ]2,2 =

F1,1
F1,1F2,2 − F1,2F2,1

, (64b)

where [ ⋅ ]i,j represents the element in the ith row and jth column
of the matrix.

Simulation results

In this section, the performance of proposed target localization
scheme is verified by numerical simulation. Both single-target
and dual-target situations are considered, and a comparison
with the traditional double pulse FDA localization effects is
provided.

Simulation parameters are considered as follows: the number
of radar elements is N = 16, the reference frequency of the FDA
transmit signal is f0 = 6 GHz, the frequency offset increment
between elements is Δf = 2 kHz, and the frequency increment
between pulses is Δft = 2 kHz. In the simulation, Gaussian white
noise with the same variance and zero mean is used.

Detecting a single target is considered first. Assuming that the
target’s position information is (r1, u1) = (80 km, 0◦) under the
condition of a signal-to-noise ratio (SNR) of −10 dB. The equiva-
lent transmit beampattern of the traditional double-pulse FDA
(DP-FDA) is shown in Fig. 4. It can be seen that the first step
of DP-FDA is to use the phased array with Δf = 0 to estimate
the angle parameters of the target. Since the transmit beampattern
during Δf≠ 0 is coupled with range and angle parameters, the
angle parameter from the first step is used as the prior informa-
tion to estimate the range parameters of the target.

Figure 5 shows the equivalent transmit beampattern of
CPD-based double-pulse FDA (CPD-DP-FDA) and CPD-based
stepped frequency pulses FDA (CPD-SP-FDA). CPD-DP-FDA
can decouple the range and angle of the equivalent transmit
beampattern according to the data received by the radar. Thus,
the maximum peak position of the beam can be used to locate
the target. Since the radar’s multi-carrier frequency time-division
transmission provides a higher degree of freedom, the CPD-SP-
FDA can form an equivalent beampattern of decoupling range
and angle. Thus, the range parameter and angle parameter of
the target can be estimated directly according to the maximum
peak position of the beam.

Figure 6 shows the range and angle dimension beampatterns
for parameter estimation with the three schemes. It can be
observed that in the range dimension, the mainlobe of the
CPD-SP-FDA is narrower and the sidelobes are lower, which is
more conducive to the estimation of range parameters. In the
angle dimension, the tensor decomposition effectively extracts
the target angle information in the double pulse data, which
achieve the selectivity in the angle dimension. Thus, the mainlobe
of range-angle decoupling is formed in the beampattern, which
shows that CPD-DP-FDA has certain advantages in angle param-
eter estimation. By deriving CRLB, it can be found that the num-
ber of pulses P, the number of array elements N, the frequency
offset increment between array elements Δf, and the frequency
increment between pulses Δft will all affect the estimation accur-
acy of the range parameter.

Next, parameter estimation for multiple targets is considered.
Assuming that the coordinates of the two targets are
(r1, u1) = (70 km, 20◦) and (r2, u2) = (80 km, 0◦) respectively.
Figures 7 and 8 show the equivalent transmit beampatterns of
the three schemes when two targets are considered. Since the
two targets have different angle parameters, two angle parameters
will be obtained in the first step of the traditional double pulse
processing, as shown in Fig. 7(a). In the second step of estimating
the range parameter, it cannot be used as a priori information to
estimate the range parameter directly because the angle dimen-
sion peak information is not unique, as shown in Fig. 7(b). In
Fig. 8(a), since the factor matrix containing the target information
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after CPD is corresponding, CPD-DP-FDA realizes the automatic
matching of the two target parameter estimates. Thus, there is no
problem of ambiguity in parameter estimates. CPD-SP-FDA can
also correspond to the positions of the two targets to the peak

points, as shown in Fig. 8(b), which is conducive to parameter
estimation of multiple targets.

DP-FDA will obtain two angle parameters û1 = 0◦ and
û2 = 20◦ in the first step, and obtain four target points

Fig. 4. Traditional double-pulse FDA equivalent transmit beampattern. (a) The first step. (b) The second step.

Fig. 5. FDA equivalent transmit beampattern based on CPD. (a) CPD-DP-FDA. (b) CPD-SP-FDA.

Fig. 6. Comparison of beam performance. (a) Range dimension. (b) Angle dimension.
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(45 km, 0◦), (70 km, 20◦), (80 km, 0◦), (105 km, 20◦) in the subse-
quent parameter estimation in the second step. Thus, neither the
number of real targets nor the position information under this
scheme can be effectively distinguished. When CPD-DP-FDA
scheme is used, automatic matching of target parameters is
achieved during the solution process so that the parameters of

the two targets can be estimated. CPD-SP-FDA realizes the
decoupling of the beampattern by time-division transmission.
Thus, it can also estimate the parameters of the two targets.
Figure 9 is a schematic diagram of the estimation effect of the
first target. It can be found that the two CPD-based schemes
have a unique mainlobe in both the range dimension and the

Fig. 7. Traditional double-pulse FDA equivalent transmit beampattern. (a) The first step. (b) The second step.

Fig. 8. FDA equivalent transmit beampattern based on CPD. (a) CPD-DP-FDA. (b) CPD-SP-FDA.

Fig. 9. Performance comparison of the first target beampattern. (a) Range dimension (u = 20◦). (b) Angle dimension (r = 70 km).
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angle dimension, which can directly estimate the range and angle
parameters of the first target.

Figure 10 shows a schematic diagram of the estimation effect
of the second target. Similarly, the two CPD-based schemes
have a unique mainlobe in the range dimension and the angle
dimension, which have lower sidelobe levels. Thus, CPD-DP-
FDA can effectively solve the problem of unclear target indication
in DP-FDA. Then CPD-SP-FDA can also effectively estimate the
range and angle parameters of multiple targets. Moreover, the
half-power (−3 dB) contours of the equivalent target indication
patterns corresponding to DP-FDA, CPD-DP-FDA, and CPD-
SP-FDA are compared in Fig. 11. It is clearly shown that the
scheme based on tensor decomposition can effectively solve the
problem of uncertain multi-target parameter estimation, and
the improvement of target parameter estimation performance
brought by the stepped frequency pulse is also indicated. Table 1
shows the performance of beampattern in range and angle dimen-
sions with different FDA methods. It can be seen from Table 1 that
CPD-DP-FDA has the same BW with DP-FDA due to the same
parameter while it can accomplish the discrimination of multiple
targets. The BWr of CPD-SP-FDA is 3.1 km, which is much better
than that of other methods. In addition, due to the complex solu-
tion of factor matrices, the solution time of the CPD-based meth-
ods also grow.

Finally, Fig. 12 shows the CRLB performance comparison
between the range dimension and the angle dimension. Because
the traditional DP-FDA has ambiguity in multi-target parameter
estimation, the two CPD-based schemes are compared in the fig-
ure. It can be seen that the parameter estimation effect of
CPD-SP-FDA in the range dimension and the angle dimension
is better than that of CPD-DP-FDA. Considering that SP-FDA
uses two pulses, the performance of CRLB is still better than
DP-FDA due to the higher degree of freedom provided by mul-
tiple carrier frequencies. As the number of pulses increases to 8,

the selectivity of SP-FDA in the range dimension is further
improved, and CRLB performance is further optimized.
However, it should be noted that the increase in the number of
pulses increases the computational complexity of tensor decom-
position, which means that the number of pulses needs to be rea-
sonably selected according to the calculation ability in the actual
application of the solution.

Although the proposed method is superior to other methods,
the paper only considers scenarios with static targets. It means
that extending the model to moving target scenarios requires
the incorporation of new techniques. The introduction of cogni-
tive radar ideas into FDA radar has recently attracted scholarly
attention [33–36]. The cognitive-based processing model enables
the detection and tracking of dynamic targets. Thus, it provides a
reference for extending the model to dynamic target scenarios,

Fig. 10. Performance comparison of the second target beampattern. (a) Range dimension (u = 0◦). (b) Angle dimension (r = 80 km).

Table 1. Comparison of different FDA methods

Average BWr (km) Average BWu (°) Unambiguity Solution time (s)

DP-FDA 5 2.8 × 0.29

CPD-DP-FDA 5 2.8 √ 2.71

CPD-SP-FDA 3.1 3.2 √ 3.12

Fig. 11. Comparison of the −3 dB profile indicated by the equivalent beampattern.
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which is the next research focus of system applicability
enhancement.

Conclusion

In this paper, two new methods combined with tensor decompos-
ition are presented for the two-dimensional parameter estimation
of FDA-MIMO radar. The methods transform the traditional
expression form of received data into the expression form of
three-order tensor canonical polyadic decomposition, then the
signal model of CPD-DP-FDA is established. With the help of
the corresponding relationship of the factor matrix in the parallel
factorization, the problem of ambiguity in the target indication of
double pulse FDA is solved. To make full use of the advantages of
multi-dimensional signal processing of tensor decomposition, a
CPD-SP-FDA signal model based on stepped frequency pulses
is established. In this way, the decoupling of the range and
angle of the equivalent transmitting beam is realized, and the
effectiveness of the proposed method is verified by numerical
simulation. Compared with the performance of the traditional
DP-FDA, the results show that the newly proposed scheme has
better performance in terms of target indication and parameter
estimation accuracy.

Moreover, the use of stepped frequency pulses for target local-
ization results in high computational complexity. Thus, reason-
able selection of the number of pulses and research on more
efficient target parameter estimation methods become important
factors that need to be considered in the future. In future work,
applying the advantages of tensor signal processing to other
radar research directions also should be considered.
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