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This paper investigates the effects of local leading-edge geometry on unsteady aerofoil
interaction noise. Analytical results are obtained by extending previous work for
parabolic leading edges to leading edges of the form xm for 0 < m < 1. Rapid
distortion theory governs the interaction of an unsteady vortical perturbation with
a rigid aerofoil in compressible steady mean flow that is uniform far upstream.
For high-frequency gusts interacting with aerofoils of small total thickness this
allows a matched asymptotic solution to be obtained. This paper mainly focusses
on obtaining the analytic solution in the leading-edge inner region, which is the
dominant term in determining the total far-field acoustic directivity, and contains the
effects of the local leading-edge geometry. Experimental measurements for the noise
generated by aerofoils with different leading-edge nose radii in uniform flow with
approximate homogeneous, isotropic turbulence are also presented. Both experimental
and analytic results predict that a larger nose radius generates less overall noise in
low-Mach-number flow. By considering individual terms in the analytic solution, this
paper is able to propose reasons behind this result.

Key words: acoustics, aeroacoustics

1. Introduction

Aerofoil turbulence interaction noise, also commonly known as leading-edge noise,
is a dominant contributor to overall levels of unwanted noise generated by aeroengines
due to rotor–stator interaction (Peake & Parry 2012), and is produced due to the
interaction of the wakes generated by a forward blade row with a subsequent blade
row. With increasingly tight European noise regulations, such as the Flightpath 2050
target of a 65 % aircraft noise reduction with respect to 2000 noise levels, it is
imperative we improve our understanding of noise generation within aircrafts and
develop new designs to reduce this noise.

† Email address for correspondence: L.J.Ayton@damtp.cam.ac.uk
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Effects of leading-edge radius 781

In one of the simplest (analytic) models, Sears (1941) predicts the far-field noise
generated by a single flat plate interacting with an unsteady vortical gust. This
is extended by Amiet (1975) to consider the effects of homogeneous isotropic
turbulence interacting with a flat plate in uniform flow. Realistic geometry effects are
now included in analytic solutions; Myers & Kerschen (1997) considers the effects of
angle of attack and camber, Tsai (1992) considers the effects of non-zero maximum
blade thickness, and Ayton (2016) combines maximum thickness, camber and angle of
attack effects, thus accounting for full aerofoil geometry. In the latest analytic models
(Tsai 1992; Myers & Kerschen 1997; Ayton 2016), only high-frequency, k � 1,
incident gusts are considered to allow matched asymptotic solutions to be found, and
the effects of geometry are parameterised by a single constant, ε� 1, which denotes
the global size of the mean flow perturbation from a uniform flow (hence ε denotes
the maximum thickness or camber of the aerofoil under consideration).

These analytic approaches use rapid distortion theory (Goldstein 1978) to separate
the unsteady flow field into two parts; a convective part that describes the distortion
of the gust in the mean flow, and a scattered part that contains the acoustic field due
to the interaction of the distorted gust with the rigid aerofoil. Acoustic pressure is
generated in two ways; the distorted vorticity acting as a source term, and the unsteady
vorticity interacting with the rigid surface. One benefit of analytic solutions is that they
can easily identify the effects on the far-field noise of these two different contributors.

A variety of numerical methods also consider the effects of geometry on unsteady
aerofoil interaction noise (Lockard & Morris 1998; Grace 2001; Allampalli et al.
2009; Glegg & Devenport 2009). With regards to the effects of thickness, these use
a single parameter denoting the maximum thickness of the aerofoil, and supposed
the aerofoils have parabolic leading edges (y ∼

√
x) (as do the analytic methods

Tsai (1992) and Ayton (2016)). It is found both numerically and analytically that
for high-frequency interactions, increasing maximum aerofoil thickness reduces the
total far-field noise, which is confirmed experimentally (Olsen & Wagner 1982).
There are, however, some contradictions between numerical and experimental results
– for example, Lockard & Morris (1998) find that the far-field directivity patterns
skew towards the upstream direction with increasing thickness, but this is not found
experimentally by Olsen & Wagner (1982). This could be due to difficulties in taking
experimental measurements directly upstream of the aerofoil due to the location of
the nozzle, or because the unsteady Kutta condition (Crighton 1985) is not imposed
in the inviscid results presented in Lockard & Morris (1998); neglecting the unsteady
Kutta condition is shown to significantly affect the upstream far-field directivity
pattern (Ayton, Gill & Peake 2016).

The idea that increased thickness can reduce high-frequency far-field noise led to
investigating the effects of leading-edge nose radius on unsteady interaction noise,
with experimental (Devenport, Staubs & Glegg 2010; Hall, Atassi & Gilson 2011;
Chaitanya et al. 2015) and numerical (Gill, Zhang & Joseph 2013) results both
showing trends of a reduction of far-field noise with increased nose radius. It is
proposed in Gill et al. (2013) that the distortions of the steady flow near the nose
of the aerofoil are the primary noise reduction mechanism for increasing maximum
thickness, and increasing nose radius. Typical outlet guide vane (OGV) geometries
have approximately 5 % thickness relative to aerofoil chord. To reduce the interaction
noise, increasing the total thickness is unrealistic due to its influence on aerodynamic
performance. Understanding how small changes in nose radius can lead to significant
changes in far-field-radiated noise is therefore key to realistically reducing aerofoil
interaction noise.
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782 L. J. Ayton and P. Chaitanya

In this paper we wish to improve the understanding of the effects of aerofoil
leading-edge geometry on gust–aerofoil interaction noise by obtaining an analytic
solution for the far-field acoustics, extending previous work based on rapid distortion
theory. In particular, the analytic solution found can separate the effects of volume
sources, the locally distorted mean flow, and unsteady vorticity interacting with the
rigid surface; hence, by considering these effects separately, we aim to develop a
broader understanding of the roles of each feature on noise generation. The analytic
results determine trends for single-frequency unsteady upstream perturbations that are
compared to the trends seen in (fully turbulent) experimental data.

In § 2 we discuss the analytic formulation of the problem, and how to extend
previous analytic results (Tsai 1992; Ayton 2016) to a more general leading-edge
geometry. In § 2.2 we solve the governing equations in a local inner region around
the aerofoil nose. This region contains the key terms contributing to the overall
solution that depend on the local leading-edge geometry. The experimental set-up is
discussed in § 3, and results are presented in § 4. We discuss our conclusions in § 5.

2. Analytic solution
We wish to find the acoustic field generated by a small unsteady vortical

perturbation interacting with an aerofoil with arbitrary leading-edge geometry and
chord length 2c∗ in steady flow which far upstream is uniform U = U∗

∞
ex (where ∗

denotes a dimensional quantity). From here on, lengths are non-dimensionalised by
semi-chord, c∗, and velocities by U∗

∞
. The boundary of the aerofoil is denoted as

εy(x) such that y(0) = y(2) = 0 and, since we consider only thin aerofoils, we have
an asymptotic parameter ε� 1 governing the maximum thickness of the aerofoil. We
consider leading-edge geometries y∼ εa0xm as x→ 0 for 0<m< 1 and a0 a suitable
O(1) constant.

2.1. Governing equations
Analytic solutions for high-frequency gust–aerofoil interaction noise exist in the
case of a parabolic leading edge, m = 1/2, for both symmetric (Tsai 1992) and
non-symmetric (Ayton 2016) aerofoils in steady flow that far upstream is uniform
with Mach number M∞. These are obtained by solving the rapid distortion theory
equations (Goldstein 1978) governing the acoustic field. Full derivation of these
equations (which are relevant still for arbitrary leading-edge geometry) can be found
in Tsai (1992), Myers & Kerschen (1995, 1997) and Ayton (2016), and therefore are
just quoted here. Whilst this work is valid for both symmetric and non-symmetric
aerofoils, for simplicity we shall restrict the analysis to the symmetric case only, since
it has been found that the effects of camber and angle of attack on aerofoil noise
in isotropic turbulence are relatively small in comparison to the effects of thickness
(Devenport et al. 2010).

As is typical in thin aerofoil interaction theory, we work in the coordinate system
(φ, ψ), which denote the potential and streamfunction of the steady mean flow, and
relate to Cartesian coordinates via

x+ iβ∞y= z+ εF(z), (2.1)

where z = φ + iψ , β∞ =
√

1−M2
∞

is the Prandtl–Glauert transformation factor
accounting for compressibility, and F is the complex potential of the mean flow. A
key benefit of this coordinate system is that the aerofoil boundary is now mapped to
ψ = 0.
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Effects of leading-edge radius 783

The complex potential, F(z), can be found by using thin aerofoil theory (Thwaites
1960)

q(φ, ψ)− iµ(φ, ψ)=
dF
dz
, (2.2)

where

(q− iµ)(z)=
1

πβ∞

∫ 2

0

y′(x)
z− x

dx, (2.3)

and the constant of integration for F is chosen such that F(0) = 0. The mean flow
around the aerofoil in our new coordinates is therefore (1+ εq)eφ .

We denote the convective vortical disturbance far upstream as νv∞ = ν(At, An, A3)

eik(φ+knψ+k3z−t), and require At +Anknβ∞+A3k3= 0. We set ν� ε so that the unsteady
perturbation is much smaller than the mean flow distortion due to the aerofoil, and
consider a high-frequency limit, k � 1, with a distinguished scaling εk = O(1), in
line with all previous analytical gust–aerofoil interaction models (Tsai 1992; Myers
& Kerschen 1995, 1997; Ayton 2016). We separate the total unsteady flow field into
two parts; the known evolution of the gust in the mean flow, νvg; and the unknown
response to the interaction with the aerofoil, νva= ν∇G, which contains the acoustics
that propagate to the far field. We suppose the flow is inviscid, non-heat conducting,
and a perfect gas.

We define the modified potential as

h(φ, ψ)=GeiM2
∞φ/β

2
∞−M2

∞εq, (2.4)

hence the linearised Euler equations become

∂2h
∂φ2
+
∂2h
∂ψ2
+ k2w2(1− 2β2

∞
εq)h+

(γ + 1)M4
∞
εq

β2
∞

(
∂2h
∂ψ2
+ 2ikδ

∂h
∂φ
+ k2(w2

+ δ2)h
)

−
(γ + 1)M4

∞
ε

β2
∞

∂q
∂φ

(
∂h
∂φ
− ikδh

)
= kεS(φ, ψ)eikΩ, (2.5a)

where

δ = 1/β2
∞
, w2

= (M∞δ)2 − (k3/β∞)
2, Ω = δφ + knψ + εg(φ, ψ), (2.5b−d)

and the forcing arising from vg is

S(φ, ψ)=
2
β2
∞

(
i(At − Anknβ

3
∞
)q+ i(β2

∞
knAt + Anβ∞)µ+

AtM2
∞

k
∂q
∂φ
+

AnM2
∞
β∞

k
∂q
∂ψ

)
.

(2.5e)
The function, g(φ, ψ), is Lighthill’s drift function,

g(φ, ψ)=−2
∫ φ

−∞

q(η, ψ) dη, (2.5f )

and the boundary condition of zero normal velocity on the aerofoil surface is given
by

∂h
∂ψ
+M2

∞
ε
∂q
∂ψ

h
∣∣∣∣
ψ=0

=

(
−

An

β∞
+ 2εµAt +

AnM2
∞
εq

β∞

)
eikΩ

∣∣∣∣
ψ=0

. (2.6)
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Outer region
(ii)

Outer region
(ii)

Transition region 

Leading inner 
region 

(i)

Leading inner 
region 

(i)

Trailing inner 
region (iv)

 (iv)
Trailing inner 

region

Trailing edge
transition region

(v)
Trailing edge

transition region
Transition region (iii)

(v)
Transition region (iii)

Transition region (iii)

(a)

(b)

(iii)

FIGURE 1. Asymptotic regions around the aerofoil: leading- and trailing-edge inner
regions, (i) and (iv); transition regions, (iii) and (v); and the outer region, (ii). (a) In
(x, y) space. (b) In (φ, ψ) space.

Pressure is obtained from the modified potential via

p=−
(
∂h
∂φ
− ikδh

)
e−ikδM2

∞φ, (2.7)

which is derived in Myers & Kerschen (1995, equation (2.7)).
The method of matched asymptotic expansions (Van Dyke 1975) is used to solve

(2.5a) subject to (2.6). There are five regions of interest; inner regions around the
leading and trailing edges, transition regions above the rigid surfaces and wake, and
an outer region. These are depicted in figure 1. For aerofoils with parabolic leading
edges, y∼

√
x as x→ 0, the solution in all regions can be found in Ayton (2016).

For high-frequency gusts, it is known that the leading-edge inner solution is
dominant in determining the far-field acoustic pressure (Tsai 1992). The trailing-edge
inner region produces an acoustic field that propagates to the outer region and acts
predominantly to enforce a continuity of pressure and velocity across the trailing
edge via a Kutta condition. This trailing-edge solution is O(k−1/2) smaller than
the leading-edge inner solution, propagates with a phase shift compared to the
leading-edge solution, and thus modulates the total far-field directivity. The transition
solutions do not propagate acoustics to the far field except at small downstream
angles θ = O(k−1/2). Therefore, if we wish to determine the effects of altering
the leading-edge geometry on the far-field noise it is sufficient to consider the
leading-edge inner region at O(1)+first-order correction (the size of which will be
discussed in the next section) in §§ 2.2 and 2.3, and the trailing-edge inner region at
O(k−1/2) (which is the leading-order term of the trailing-edge inner solution) in § 2.4.
We must also account for the distortion of the inner solutions as they propagate noise
to the far field, which is discussed in § 2.5.

2.2. Leading-edge inner region
In the leading-edge inner region, (i) in figure 1, we use leading-edge inner variables
(Φ, Ψ ) = k(φ, ψ), and define the leading-edge inner potential as H(Φ, Ψ ). The
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governing equation becomes

∂2H
∂Φ2
+
∂2H
∂Ψ 2
+w2(1− 2β2

∞
εq)H +

(γ + 1)M4
∞

β2
∞

εq
(
∂2H
∂Ψ 2
+ 2iδ

∂H
∂Φ
+ (w2

+ δ2)H
)

−
(γ + 1)M4

∞

β2
∞

ε
∂q
∂Φ

(
∂H
∂Φ
− iδH

)
=
ε

k
eiΩ̄S(Φ, Ψ ), (2.8a)

Ω̄ = δΦ + knΨ + kεg(Φ, Ψ ), (2.8b)

S(Φ,Ψ )=
2
β2
∞

(
iq(A∗t − Anknβ

3
∞
)+ iβ∞µ(β∞knA∗t + An)+ A∗t M2

∞

∂q
∂Φ
+ AnM2

∞
β∞

∂q
∂Ψ

)
,

(2.8c)
and the boundary condition becomes

∂H
∂Ψ
+M2

∞
ε
∂q
∂Ψ

H
∣∣∣∣
Ψ=0±

=
1
k

(
−

An

β∞
+ 2εµA∗t +

AnM2
∞
εq

β∞

)
eiΩ̄

∣∣∣∣
ψ=0

, (2.9)

for Φ > 0.
The inner governing equation and boundary condition contain small terms of size

O(εq). To determine the asymptotic scaling parameter required in the inner region we
need to determine the scaling of these small terms. Therefore, we consider (2.3) for
inner variable Z = kz to find

q− iµ∼ εa0k1−m m
Z1−mβ∞

(−1)m csc(mπ)+O(εk−m). (2.10)

Note this is singular at m= 1 since thin aerofoil theory is not appropriate for a sharp
wedge y∼ x. We find q=O(εk1−m)×O(m/ sin(mπ)), which is O(εk1−m) for 0<m.
0.8; therefore, we shall restrict our attention to values of m such that 0<m< 0.8, to
avoid unnecessary complexity of the asymptotic scaling parameter.

We therefore seek a solution

H(Φ, Ψ )=
1
k

e2ikεF(−∞)
(
H0 + εk1−m(H1 +H2 +H3)

)
. (2.11)

The O(εk1−m) term is separated into three components as done for the parabolic
(m= 1/2) leading-edge cases (Tsai 1992; Ayton 2016). The separate terms correspond
to different physical mechanisms which will be discussed as we present analysis for
each term.

2.2.1. Solution for H0

This is as if we had a gust impinging on a semi-infinite flat plate, and corresponds
to the effects of blocking the vertical gust velocity components. We must solve

D(H0)= 0, (2.12a)
∂H0

∂Ψ

∣∣∣∣
Φ>0
Ψ=0

=−
An

β∞
eiδΦ, (2.12b)

where D is the Helmholtz operator defined by D = (∂2/∂Φ2) + (∂2/∂Ψ 2) + w2. We
solve using the Wiener–Hopf method, obtaining

H0 =−
Ansgn(Ψ )

β∞2π
√
δ +w

∫
∞

−∞

e−iλΦ−|Ψ |
√
λ2−w2

(λ+ δ)
√
λ+w

dλ. (2.13)
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To convert back to (φ, ψ) variables from leading-edge variables, (Φ, Ψ ), we take an
outer limit and use the method of steepest descents (Bender & Orszag 1978). The
saddle point is at λ=−w cos θ , yielding

H0 ∼ L0(θ)
eikwr

√
kr
+O(k−3/2), (2.14a)

L0(θ)=−
Ane−iπ/4 cos θ/2

β∞
√

π
√
δ +w(δ −w cos θ)

. (2.14b)

This flat-plate solution is discussed in detail in Tsai (1992). The outer limit, equation
(2.14), represents the acoustic field propagating from the inner region to the outer
region, and provides a directivity function, L0(θ), for the acoustic pressure in the outer
region.

2.2.2. Solution for H1

This solution takes account of the effects of thickness on the boundary condition,
due to changing of the surface normal direction. We must solve

D(H1)= 0, (2.15a)

∂H1

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

=
sgn(Ψ )
πβ∞

Γ (1−m)Γ (1+m)
[

2A∗t sin(mπ)−
AnM2

∞

β∞
cos(mπ)

]
eiδΦ

Φ1−m

(2.15b)

≡ sgn(Ψ )C(m)
eiδΦ

Φ1−m
. (2.15c)

This yields

H1 =−
C(m)Γ (m)(−i)−m

2π

∫
∞

−∞

e−iλΦ−|Ψ |
√
λ2−w2

√
λ2 −w2(λ+ δ)m

dλ, (2.16)

which has outer limit

H1 ∼ L1(θ)
eikwr

√
kr
+O(k−3/2), (2.17a)

L1(θ)=
iΓ (m)C(m)e−πi/4eπim/2

√
2πw(δ −w cos θ)m

. (2.17b)

2.2.3. Solution for H2

We now take account of the volume source in (2.8), arising from the distortion of
the incident gust in the locally non-uniform flow at the leading edge. We must solve

D(H2) = eiδΦ+iknΨ

(
C1

R1−m
cos [(1−m)θ +mπ]+

C2

R1−m
sin [(1−m)θ +mπ]

+
C3

R2−m
cos [(2−m)θ +mπ]+

C4

R2−m
sin [(2−m)θ +mπ]

)
, (2.18a)
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∂H2

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

= 0, (2.18b)

where

C1 =
2iC
β2
∞

(A∗t − Anknβ
3
∞
), C2 =−

2iC
β∞

(An + knA∗t β∞),

C3 =−
CA∗t M2

∞
(1−m)
β2
∞

, C4 =−
2CAnM2

∞

β∞
,

 (2.18c)

with C= Γ (1−m)Γ (1+m)a0/(πβ∞).
We follow the same procedure as the parabolic leading-edge cases (Tsai 1992;

Ayton 2016); we split the solution into a particular solution, H2p, that solves for
the forcing in the governing equation, and a complementary solution, H2c, that
then enforces the correct boundary condition. We solve for H2p by taking Fourier
transforms in both the Φ and Ψ variables yielding;

H2p(Φ, Ψ ) =
−e−πim/2(1− e2πim)Γ (m)

16π(1−m)(δ2 + k2
n)

×

∫
∞

−∞

(
(δ + λ)f1(λ)+ ikn f2(λ)

√
λ2 −w2

− sgn(Ψ )f2(λ)

)
×

ea(λ,Φ,Ψ ) dλ
(λ+ δ)m(λ− λ1)(λ− λ2)

+
eiknΨ e−πim/2(1− e2πim)Γ (m)

16π(1−m)(δ2 + k2
n)

×

∫
∞

−∞

(
f1(λ)

(λ+ δ′)m
−

sgn(Ψ )f2(λ)

(λ+ δ)m

)
eh(λ,Φ,Ψ ) dλ

(λ− λ1)(λ− λ2)
, (2.19a)

where

f1(λ) = [C1(m− 1)− i(δ + λ)C3] (−k2
n +w2

+ δ2
+ 2δλ)

+ 2(δ + λ)kn [C2(m− 1)− i(δ + λ)C4] , (2.19b)
f2(λ) = [C2(m− 1)i+ (δ + λ)C4] (k2

n −w2
− δ2
− 2δλ)

+ 2(δ + λ)kn [iC1(m− 1)+ (δ + λ)C3] , (2.19c)

λ1,2 =−
δ

2

(
δ2
+ k2

n +w2

δ2 + k2
n

)
±

ikn

2

(
δ2
+ k2

n −w2

δ2 + k2
n

)
. (2.19d)

The acoustic phase is

a(λ, Φ, Ψ )=−iλΦ − |Ψ |
√
λ2 −w2, (2.19e)

and the hydrodynamic phase is

h(λ, Φ, Ψ )=−iλΦ − |Ψ |
√
(λ+ δ)(λ+ δ′). (2.19f )

For convergence, δ is assumed to have a small positive imaginary part, and δ′ has
a corresponding small negative imaginary part.
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We notice two types of solution; an acoustic and a hydrodynamic solution. It is
only the acoustic field that will provide pressure fluctuations in the far field. The
key functional difference between our solution for a general leading-edge geometry
and that for a parabolic leading edge is the (λ + δ)m poles present in both acoustic
and hydrodynamic terms. We can therefore obtain the complementary solution from
previous work that assumes m= 1/2 (Tsai 1992; Ayton 2016) by making the relevant
changes to these pole terms;

H2c(Φ, Ψ ) =
−sgn(Ψ )e−πim/2(1− e2πim)Γ (m)

16π(1−m)(δ2 + k2
n)

∫
∞

−∞

{
2(−δC4 + knC3)H

(
1
2
−m

)
−

( √
λ+wf2(λ)

(λ+ δ)m(λ− λ2)
+

√
λ1 +wf2(λ1)

(λ1 + δ)m(λ1 − λ2)

)
1

λ− λ1

+
(λ2 + δ)f2(λ2)+ ikn f1(λ2)

√
λ2 −w(λ2 + δ′)m(λ2 − λ)(λ− λ1)

}
ea(λ,Φ,Ψ )

√
λ+w

dλ. (2.19g)

This is obtained using the Wiener–Hopf method, with the Heaviside function, H
(defined such that H(0) = 1/2), occurring due to the entire function arising from
Liouville’s theorem. The outer limit, L2(θ)eikwr/

√
kr, for the acoustic contributions

can be obtained using steepest descents as before, and is given in appendix A.

2.2.4. Solution for H3

The final term to be found in our leading-edge inner solution arises due to the
distortion of the zeroth-order term, H0, as it interacts with the locally non-uniform
mean flow around the nose of the aerofoil. We must solve

D(H3) = 2β2
∞

w2qH0 −
(γ + 1)M4

∞

β2
∞

q
(
∂2H0

∂Ψ 2
+ 2iδ

∂H0

∂Φ
+ (w2

+ δ2)H0

)
+
(γ + 1)M4

∞

β2
∞

∂q
∂Φ

(
∂H0

∂Φ
− iδH0

)
, (2.20a)

∂H3

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

=−M2
∞

∂q
∂Ψ

H0. (2.20b)

We solve by splitting the solution into a particular, H3p, and a complementary
solution, H3c=H3c1 +H3c2 +H3c3 , as for the parabolic case. The solutions can be found
in appendix B along with their outer limits, L3p(θ)eikwr/

√
kr and L3c1,2,3(θ)e

ikwr/
√

kr.

2.3. Outer limit of the leading-edge inner solution
We have now completed the solution for the leading-edge inner region which
is dominant in determining the effects of leading-edge geometry on the far-field
acoustics. To summarise, the outer limit of the leading-edge inner solution yields

hl(r, θ) ∼
eikwr+2ikεF(−∞)

k3/2
√

r

(
L0(θ)+ εk1−m

[
L1(θ)+ L2(θ)+ L3p(θ)

+L3c1(θ)+ L3c2(θ)+ L3c3(θ)
])

(2.21a)

=
eikwr+2ikεF(−∞)

√
kr

Dl(θ), (2.21b)
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which gives the leading-edge directivity function, Dl(θ), correct to O(εk1−m), generated
by interactions at the leading edge. Note the phase function, 2ikεF(−∞), and
additional amplitude multiplier, k−1, have arisen due to the proposed form of the
leading-edge inner solution, equation (2.11).

We can use this solution, equation (2.21), to investigate the effects of altering
the leading-edge geometry on the far-field acoustics; in particular, the different
contributions to the solution can highlight the effects of different physical processes.

2.4. Trailing-edge solution
Here we discuss the solution in region (iv) of figure 1.

Trailing-edge coordinates are defined as (φt, ψt), where

φ = 2+ αt + φt, ψ =ψt, (2.22a,b)

with αt = Re(εF(2)). The inner acoustic potential is labelled Ht(Φt, Ψt), where
(Φt, Ψt)= k(φt, ψt) are trailing-edge inner coordinates.

We wish to find only the leading-order contribution to the trailing-edge inner
acoustic solution (in region (iv) of figure 1) which is O(k−1/2) smaller than the
leading-edge inner solution. The total trailing-edge inner acoustic solution arises from
the rescattering of the leading-edge acoustic field by the sharp trailing edge. If we
wish to retain only the first term, we only need to consider the rescattering of the
leading-order leading-edge solution, i.e. the flat-plate term associated to H0. This is
independent of nose geometry, and thus we can use the solution derived in previous
work (Tsai 1992; Myers & Kerschen 1995, 1997; Ayton 2016).

We therefore have an outer limit of the trailing-edge inner solution given by

ht ∼
sgn(ψ)eikwrt1p
√

2rtk2(δ −w)

(
eπi/4
| sin θt/2|

√
πw(δ −w cos θt)

+
√

k ie−2ikw(1−cos θ)erfc
[
e−πi/4

√
2kw(1− cos θ)

])
(2.23)

=
eikwrt

k2√rt
Dt(θt), (2.24)

where 1p denotes the leading-order pressure jump across the trailing edge due to the
leading-edge acoustic solution,

1p=
√

2i(δ −w)L0(0)eik(w−δM2
∞)(2+αt)+2ikεF(−∞). (2.25)

The phase terms arise in (2.25) due to the shift of coordinates from the leading edge
to the trailing edge, recalling that pressure, defined by (2.7), contains additional phase
factors. Dt is the trailing-edge directivity function.

2.5. Solution in the outer region
To construct an approximate solution in the outer region, (ii) in figure 1, we must
account for phase differences in the leading- and trailing-edge acoustic solutions. Both
solutions will undergo a phase distortion as they propagate from the inner regions to
the far field, and there will be a further phase shift between the two solutions due to
the differing positions of the leading and trailing edges. These phase effects are not
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a result of the precise geometry of the nose, and hence we can recover these effects
directly from Tsai (1992), Ayton (2016).

The asymptotic solution for the far-field acoustics, correct to O(k−3/2εk1−m, k−2), is
hence given by

h(r, t)∼
eikwr

k3/2
√

r

(
Dl(θ)+

1
√

k
Dt(θ)eikwσs

)
, (2.26)

where the phase shift is given by

σs = V(θ)αt cos θ + αt cos θ − 2εF(−∞), (2.27)

with

V(θ)=−
1

2w

(
2β2
∞

w2
−
(γ + 1)M4

∞

β2
∞

(δ −w cos θ)2
)
. (2.28)

The last two terms in (2.27) arise due to the different positions of the leading and
trailing edges, whilst the first term arises because of the (relative) distortion of the
inner acoustics as they propagate to the far field. We define the far-field directivity,
D(θ), as

D(θ)=
(

Dl(θ)+
1
√

k
Dt(θ)eikwσs

)
. (2.29)

3. Experimental set-up and procedure

We shall compare our analytical solution for a single high-frequency vortical
perturbation interacting with a leading edge of variable nose radius to experimental
results measuring the far-field noise generated by such aerofoils in a fully turbulent
stream. In this section we discuss the test facility, specific experimental set-up, and
extraction of results. Further details can be found in Chong, Joseph & Davis (2008)
and Narayanan et al. (2015).

3.1. Open-jet test facility and instrumentation
Far-field noise measurements were carried out at the Institute of Sound and Vibration
Research (ISVR)’s open-jet wind tunnel facility. Figure 2 shows a photograph of the
facility within the anechoic chamber of dimensions 8 m× 8 m× 8 m. The walls are
acoustically treated with glass wool wedges and the cutoff frequency of the chamber is
approximately 80 Hz. The nozzle is designed as a three-dimensional, 25:1 CR nozzle.
The inlet of the nozzle is a square section measuring 1.3 m× 1.3 m and the outlet
is rectangular shape measuring 0.15 m × 0.45 m. The axial length of the nozzle is
1.35 m. To maintain two-dimensional flow around the aerofoil, side plates are mounted
to the nozzle exit which also support the aerofoil. The nozzle dimensions are 15 cm×
45 cm. Aerofoils are located 0.15 m downstream of the nozzle to ensure that the entire
aerofoil is located well within the jet potential core, whose width is at least 0.12 m, as
shown in figure 11(a) in Chong et al. (2008). Chong et al. (2008) also shows that the
flow is two-dimensional (no spanwise variation) to within a deviation of approximately
4 %. The maximum jet speed investigated in this study is 80 m s−1.
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Microphone array

Nozzle

FIGURE 2. (Colour online) Photograph of jet nozzle and test set-up inside the ISVR
anechoic chamber.

3.2. Far-field noise measurements
Free-field noise measurements are made using 11 half-inch condenser microphones
(B&K type 4189) located at a constant radial distance of 1.2 m from the mid span of
the aerofoil leading edge. These microphones are placed at emission angles of between
40◦ and 140◦ measured relative to the downstream jet axis. Measurements are carried
out for a duration of 10 s at a sampling frequency of 50 kHz, and the noise spectra
are calculated with a window size of 1024 data points corresponding to a frequency
resolution of 48.83 Hz and a BT product of approximately 500, which is sufficient to
ensure negligible variance in the spectral estimate.

The acoustic pressure at the microphones is recorded at mean flow velocities of 20,
40, 60 and 80 m s−1 at the exit of the jet nozzle. Details of the calculation method for
deducing the Sound Pressure Level spectra (SPL), and the Sound Power Level spectra
(PWL) as functions of frequency, k, are presented in Narayanan et al. (2015).

3.3. Turbulence characterisation

A bi-planar rectangular grid with overall dimensions of 0.63 × 0.69 m2 located in
the contraction section of the nozzle is used to generate turbulence that is closely
homogeneous and isotropic. This bi-planar grid is designed based on empirical
equations presented in Roach (1987) and Hinze (1959). The grid is located 0.75 m
upstream of the nozzle exit. The streamwise velocity spectrum is measured using a
hot wire at a single on-axis position 0.145 m downstream from the nozzle exit. It is
found to be in close agreement with the von-Karman spectrum for homogeneous and
isotropic turbulence with a 2.5 % turbulence intensity and a 7.5 mm integral length
scale. The turbulence integral length scale is obtained by matching the theoretical
spectra to the measured streamwise velocity spectra and dividing by two, assuming
perfect isotropic turbulence. A comparison of the two measured streamwise velocity
spectra (Suu/U∗) plotted against non-dimensional frequency k together with the
theoretical von-Karman spectra are plotted in figure 3, where close agreement is
observed.
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 –45
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 –60

Grid 1

 –65

 –70
10010–110–2 102101

k

FIGURE 3. (Colour online) Comparison between the measured axial velocity spectra and
theoretical von-Karman spectra.

ε I m a0

0.06 0 0.83 2.3
0.06 6 0.44 1.1
0.06 10 0.32 0.95
0.12 0 0.83 2.3
0.12 6 0.44 1.1
0.12 10 0.32 0.96

TABLE 1. Table of values of m and a0 that correspond to I = 0, 6, 10 for NACA
aerofoils with maximum thickness of 6 % or 12 %.

3.4. Three-dimensional aerofoil models
In this study, six NACA symmetric aerofoils are produced using 3D printing
technology. We systematically vary thickness and nose radius of the aerofoils as
shown in figure 4. In the case of the NACA 4-digit aerofoils, the leading-edge nose
radius Re is related to maximum thickness by

Re = 0.5
[

0.2969
ε

0.2

(
I
6

)]2

, (3.1)

where I is a non-dimensional parameter that defines the shape of the leading edge,
as described in (Gill et al. 2013). I = 0, represents a sharp leading edge, represented
as NACA xxxx-03, whereas I = 10 represents blunt aerofoils, represented as NACA
xxxx-103 and I = 6 represents standard NACA profile geometries. Recall the analytic
description of the leading edge is y ∼ εa0xm, where m and a0 are used to alter the
leading-edge radius. The values of I used experimentally correspond to values and m
and a0 as given in table 1.

In order to prevent tonal noise generation due to Tollmien–Schlichting waves
convecting in the laminar boundary layer, and to ensure complete consistency between
the different cases, the flow near the leading edge of the aerofoil is tripped to force
transition to turbulence using a rough band of tape of width 0.0125 m located 16.6 %
of chord from the leading edge, on both suction and pressure sides. The tape has a
roughness of SS 100, corresponding to a surface roughness of 140 µm. Transition is
forced by the use of trip tape, which is many orders of magnitude rougher than the
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NACA 0006-03 NACA 0006-63 NACA 0006-103

NACA 0012-03 NACA 0012-63 NACA 0012-103

FIGURE 4. Symmetric aerofoil geometries considered in the study.

30

40

PW
L

 (
dB

)

50

60

70

80

10010–1 101

k

Total noise NACA 0006-03
Total noise NACA 0012-03
Self-noise NACA 0006-03
Self-noise NACA 0012-03

Self-noise 
dominates

FIGURE 5. (Colour online) The influence of self-noise on total noise for 6 % and 12 %
thickness to chord at a jet velocity of 60 m s−1 (M = 0.18).

aerofoil surface, and is therefore highly unlikely to affect transition. Previous noise
measurements in the facility have indicated that self-noise is insensitive to the method
of tripping.

4. Results
In this section we investigate the effects of altering the leading-edge geometry on

the far-field acoustic pressure solution found both analytically and experimentally.
We first validate the analytical solution by showing it agrees with the experimental
findings in § 4.1, then in § 4.2 we use the analytical solution to decompose the
acoustic flow field to investigate the different physical processes happening at the
aerofoil leading edge, and what the effects of altering nose radius are on these.

4.1. Comparison of experimental and analytical results
We first compare the analytical and experimental results for the set of test cases given
in table 1. In figure 7 we present results for the measured acoustic sound pressure
levels at each of the 11 microphone locations, for aerofoils with 6 % or 12 % thickness
that are modified forms of standard NACA 4-digit aerofoils, with leading-edge nose
radii described by (3.1). Two low-Mach-number mean flow velocities are used
corresponding to U∗ = 20, 80 m s−1 (M = 0.06, 0.24), and two non-dimensionalised
frequencies, k= 2.5, 5.

The total noise radiated by the aerofoil located within a turbulent flow is dominated
by leading-edge noise at these chosen frequencies but by trailing-edge noise at higher
frequencies. As it is very difficult to measure leading-edge noise and trailing-edge
self-noise separately, our experimental analysis was limited to the frequency region
where the interaction noise dominates trailing-edge self-noise. Figure 5 shows the
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FIGURE 6. Legend for experimental and analytical results in figures 7 and 8, with I
defined in (3.1). The corresponding values of m can be found in table 1 for aerofoil
thicknesses of 6 % and 12 %.

influence of self-noise on the total noise spectra. The spectra of radiated noise due
to trailing-edge self-noise alone is obtained by removing the turbulence grid. Sound
power levels are plotted against a non-dimensional frequency (k) for aerofoils with
two different thicknesses for the highest flow speed of M = 0.24. It is observed that
the thicker aerofoil has lower interaction noise and the self-noise starts dominating
the total noise at a relatively lower frequency compared to the thinner aerofoil. The
non-dimensional frequency (k) where self-noise starts to dominant the total noise
for NACA 0012 is around 6. Whereas for NACA 0006 it is greater than 10. These
frequencies are a function of incoming turbulence intensity, where in our present
study it is approximately 2.5 %. Below these frequencies the difference between total
noise and trailing-edge self-noise is greater than 5 dB, suggesting the dominance
of trailing-edge noise on total noise is negligible. Hence, in the frequency range
considered in this present study, leading-edge noise is the main contributor to the
total far-field noise measured.

For the highest frequency, k = 5, and 12 % thickness we see in figure 7 that as
nose radius increases (I increases), the magnitude of the acoustic pressure decreases.
The level of reduction is decreased for the higher mean flow. It is known from
Chaitanya et al. (2015) that the ratio of nose radius, Re (which contains both ε and
I dependence), to the hydrodynamic wavelength, U∗/k∗, is an important factor and
defines the extent of gust distortion, which in turn governs the far-field noise. With
the increase of jet velocity, we observe a decrease in k∗Re/U∗, resulting in a decrease
in level of noise reduction. For a thinner overall aerofoil, 6 % thickness, we see the
same trends as the 12 %-thickness aerofoils, although the reduction in magnitude
of the overall SPL is lower for an aerofoil of 6 % thickness than 12 % thickness.
At lower frequencies, k = 2.5, the trend continues; aerofoils with larger nose radii
generate less far-field noise, however the difference in SPL for the thinnest aerofoil
(6 %) at the highest mean flow speed (80 m s−1) is very small. We can summarise
these results by returning to the factor, k∗Re/U∗; greater values of k∗Re/U∗ produce
greater noise reductions.

We compare the experimental results of figure 7(a–h) to the analytical results
in figure 8, which plot the far-field acoustic directivity for low-Mach-number flow
(M = 0.06, 0.24) at two different frequencies k = 2.5, 5. The directivity, D(θ), is
defined in (2.29), and is restricted in figure 8 to the experimentally measured range,
θ ∈ [40◦, 140◦].

Analytically we focus on gusts with zero spanwise wavenumber, k3 = 0 and
A3= 0, since the experimental set-up is fundamentally two-dimensional. The dominant
contributor to leading-edge noise for symmetric aerofoils in homogeneous isotropic
turbulence arises from purely transverse disturbances (kn = An = 0) (Gill, Zhang &
Joseph 2014), thus we take kn = 0.

We require the gust to be solenoidal, therefore At + Anknβ∞ = 0, and to ensure we
ensure the magnitude of the incident gust vector far upstream is constant we set A2

t +

A2
n = 1. Specifying kn thus completely determines the incident gust.
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FIGURE 7. Sound pressure level measured experimentally against polar angle θ . Legend
given in figure 6.

We observe a good agreement between the experimental and analytical trends,
which overall indicate that an increased nose radius (blunter nose) reduces noise.

The analytical and experimental results agree well for k= 5, with the NACA 0006
indicating a linear reduction of noise with increasing nose radius, whilst the NACA
0012 results show the I = 10 result can produce more noise that the I = 6.
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FIGURE 8. Analytic far-field acoustic directivity, log10 |D(θ)|, against polar angle θ .
Legend given in figure 6.

The analytic k = 2.5 results show a weaker effect of altering nose radius on the
noise produced, in agreement with the experimental measurements. The analytic
results predict an increase of noise for a very blunt nose (I = 10) compared to
a very sharp nose (I = 0) in the upstream direction (θ = π being the directly
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upstream direction) except for 6 % thickness in the lowest speed flow, M = 0.06
(figure 8f ). This feature is only shown in the experimental results at the final
upstream microphone location for the 12 % aerofoils. We note the analytic results
neglect transition regions which heavily influence an O(k−1/2) polar angle region
directly upstream and downstream (Ayton 2016). This is equivalent to an angle of
36◦, thus we would expect potential inaccuracies at the extremities of the analytic
results for k = 2.5. Further, the amplitude errors elsewhere in the analytic solution
are O(k−1) as we assume k� 1. Thus we expect bigger errors in the lower-frequency
analytic results than the higher-frequency analytic results. We also see a difference
in overall pattern between the analytically predicted SPL for k= 2.5, M= 0.06 – the
analytic results do not decrease with increasing θ . We also attribute this to a lack of
inclusion of a transition region for the larger θ values.

4.2. Mechanisms for noise generation
Having determined the trends experimentally for increasing nose radius we see good
agreement with the analytical solution. We now use our analytical leading-edge
solution, equation (2.21), to investigate the individual flow features that could impact
the change of noise generation when nose radius is altered. We do so by considering
the individual terms in the leading-edge solution given by L1,2,3c1,2,3,3p(θ), as each
describes a different physical process occurring in the governing equations.

We previously considered only kn = 0; however, to get a full picture of the effects
of all leading-edge terms we shall consider two cases here, kn = 0, 1. We also
wish to determine the effects of higher-Mach-number flow, which are practically
relevant to the leading-edge noise problem, but due to facility restrictions could not
be investigated experimentally. We hence consider both low- and high-Mach-number
flows analytically, M = 0.3, 0.6. Finally, since a higher frequency leads to a greater
difference in noise generation with varying nose radius, and the analytic results
become increasingly accurate with increasing frequency, we shall focus on two
high-frequency cases, k= 5, 10.

We notice that kn does not explicitly feature in the terms L3p,ci in the leading-edge
solution (2.21), and An is an overall factor, since the H3 solution considers the
distortion of the flat-plate acoustics through a locally non-uniform flow at the nose –
a process that is independent of the gust. Therefore, the effect of altering kn on these
terms will be an overall scaling factor only (since altering kn alters the coefficient
An). The main influence of kn lies in the L1,2 terms which represent the effects of
the changing surface normal direction on blocking gust velocities, and effects of the
volume source generated by the gust in the locally non-uniform flow at the nose,
respectively. Both processes are clearly dependent on the gust normal wavevector
component. We therefore present |L1,2| for both kn = 0, 1, but |L3p,c1,2,3 | only for
kn = 0, in figures 10 and 11 when M∞ = 0.6, and |L1,2,3p,3ci | for kn = 0 at M∞ = 0.3
in figure 12. We consider five different leading-edge geometries, defined by m= 0.2,
0.3, 0.5, 0.7, 0.8, and all analytic plots share the legend shown in figure 9.

In figure 10 (kn = 0,M∞ = 0.6), figure 11 (kn = 1,M∞ = 0.6) and figure 12 (kn = 0,
M∞ = 0.3) the scaling parameter εa0k1−m is neglected, therefore we have removed
the thickness and frequency scaling of the locally non-uniform mean flow at the nose
(which as m increases to give a sharper nose, reduces in magnitude). Having removed
this asymptotic parameter, for each given m, the relative magnitude of the results in
figures 10–12 indicate the level of influence of that term in the total leading-edge
acoustic pressure. We see that by increasing m, the influence of L3c1,2,3 reduces, but
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FIGURE 9. (Colour online) Legend for analytic results.

the influence of L2,3p increases. This indicates that source terms (the volume source
for L2, and the flat-plate acoustics for L3p) become more important as the leading edge
is sharpened.

By considering the boundary condition for H1, equation (2.15b), we see it consists
of normal and tangential gust terms, An,t, multiplied by directional terms, sin(mπ)
and cos(mπ). In the case of kn= 0, the outer limit, L1 shown in figure 10(a), has no
tangential component (At = 0), thus the solution depends only on the (vertical)
directional term sin(mπ). The magnitude of L1 hence varies proportionally to
| sin(mπ)| as m varies, thus unlike L2,3 there is no trend of overall increase or
decrease with increasing m. When At 6= 0 in figure 11(a), we see L1 decreases
in magnitude for increasing m. Here the variation in size of the directional terms
sin(mπ) and cos(mπ) are less important, and the overall scaling in m arising from
the Fourier transform of Φm−1, which represents the rate of slowing of the steady
flow on approach to the frontal stagnation point, dominates. A smaller value of m
indicates a blunter nose, and hence a greater rate of slowing of the flow and a larger
magnitude of the solution L1.

Figure 11(b) illustrates the effects of an asymmetric incident field on a symmetric
aerofoil, as the gust distortion at the nose depends on the angle at which it approaches
the aerofoil. The overall trend as m varies agrees with the symmetric kn = 0 case
in figure 10(b), indicating for kn 6= 0 the volume source term is still promoted as m
increases.

We now consider the magnitudes of the L1,2,3p,3c1,2,3 for low Mach number, M∞=0.3,
in figure 12 and compare to the results for moderate Mach number, M∞ = 0.6
(figure 10). Overall all directivities are stretched horizontally for M∞ = 0.6 compared
to M∞ = 0.3 due to Doppler effects, but trends when varying m for each individual
directivity function remain the same. We also see that the relative sizes of certain
L1,2,3p,3c1,2,3 are decreased; in particular, at low Mach number, L1,3p are substantially
smaller than at moderate Mach number. Thus at low Mach number, any effects of
L1,3p will be less evident in the total far-field acoustic solution than at moderate Mach
number.

Finally, we plot the full pressure directivity, |D(θ)|, as given by (2.29). We focus
specifically on kn = 0 gusts. All aerofoils have the same maximum thickness, but
varying leading-edge geometry, as can be seen in figure 13, produced by taking the
standard NACA 4-digit profile but altering the first term from x0.5 to xm. To ensure
the maximum thickness is fixed across all aerofoils, different values of a0 have to
be chosen for different values of m. These are given in table 2. We see from this
table that the parameter εa0k1−m is similar across the range of m chosen for our two
chosen frequencies, k= 5, 10, therefore any effects seen altering the far-field noise are
not caused purely by the changing scaling of the steady flow at the nose, q (2.3).

Figure 14 gives the directivity for kn = 0 and M∞ = 0.3 at two gust frequencies,
k = 5, 10; we see that as the aerofoil nose becomes blunter (decreasing m) the
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FIGURE 10. (Colour online) Polar plot of L1,2,3p,3c1,2,3 for different leading-edge geometries,
for M∞ = 0.6, and kn = 0. Legend given in figure 9.

noise reduces across all angles for both frequencies (as also seen in figure 8 for the
comparison with experimental data). To cause this we would expect source terms,
indicated by solutions L2 and L3p, to add to the total noise, which is justified by the
consistent trends seen in figures 10(b,c) and 14. Terms L3c1,2,3 likely subtract. We see

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

59
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.594


800 L. J. Ayton and P. Chaitanya
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FIGURE 11. (Colour online) Polar plot of L1,2 for different leading-edge geometries, for
M∞ = 0.6, and kn = 1. Legend given in figure 9.

m a0 εa0 51−m εa0 101−m

0.2 0.567 0.123 0.215
0.3 0.683 0.126 0.205
0.5 1.000 0.134 0.190
0.7 1.517 0.147 0.182
0.8 1.933 0.160 0.184

TABLE 2. Table of values of m and a0 chosen to ensure equal total aerofoil thickness
ε = 0.06 for a modified NACA 4-digit profile, and asymptotic parameter εa0k1−m with
k= 5, 10.

similar results at frequency k = 5 as those seen at k = 10, since the only influence
of the frequency on the directivity is in the asymptotic scaling parameter εa0k1−m,
which affects the total size of the added thickness-related terms, but not the individual
effects seen by varying m in the L1,2,3 terms.

At higher Mach number, M∞= 0.6, figure 15 for frequencies k= 5, 10 shows more
significant modulation of the solution, due to the greater interference between leading-
and trailing-edge fields. At both frequencies we see an increase of noise in the
upstream region for a very blunt leading edges (m=0.2), although elsewhere the noise
is reduced as m is decreased. This upstream increase was observed experimentally in
figure 7 for a 12 % total thickness aerofoil in low-Mach-number flow. Analytically
the upstream increase is greatest for k= 10. By increasing the Mach number we have
increased the relative importance of terms L1,3p. We can determine that the L1 term
subtracts from the flat-plate term, L0, by considering the phase difference between
L1 and L0. Therefore, the rate of slowing of the flow on approach to the stagnation
point decreases far-field noise. Since L1 subtracts from the flat-plate term we do not
expect this term to be contributing to the increase of noise upstream. Instead we
notice that the L3p term for M∞= 0.6 in figure 10(c) shows an increase in magnitude
in the upstream region as m is reduced, which is more extreme than the distortion
to the upstream direction seen for M∞ = 0.3 in figure 12(c). We therefore attribute
the increase in noise upstream seen in figure 15 to the increased upstream distortion
seen in L3p at higher Mach numbers, which as a source term adds to the total noise.
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FIGURE 12. (Colour online) Polar plot of L1,2,3p,3c1,2,3 for different leading-edge geometries,
for M∞ = 0.3, and kn = 0. Legend given in figure 9.

Specifically, L3p accounts for the distortion of the volume source generated by the
flat-plate term due to the locally non-uniform mean flow around the nose. This locally
non-uniform flow is directed upstream, and increases with the bluntness of the nose –
thus as we decrease m we see a distortion of the acoustics from L3p to the upstream
direction, that is increasingly evident at higher Mach numbers.
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FIGURE 13. (Colour online) Full aerofoil shapes (with chord length 2) used for different
leading-edge geometries y∼ εa0xm. Legend given in figure 9.
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FIGURE 14. (Colour online) Polar plot of the far-field acoustic directivity, |D(θ)|, for
different leading-edge geometries, for kn = 0, M∞ = 0.3. Legend given in figure 9.
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FIGURE 15. (Colour online) Polar plot of the far-field acoustic directivity, |D(θ)|, for
different leading-edge geometries, for kn = 0, M∞ = 0.6. Legend given in figure 9.

5. Conclusions

In this paper we have considered the effects of local aerofoil nose geometry on
leading-edge noise, both analytically and experimentally. We have seen that increasing
the nose radius (to create a blunter nose) reduces the far-field noise generated for
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a fixed overall thickness of aerofoil for high-frequency interactions at low Mach
numbers. At higher Mach numbers, the analytic solution predicts an increase of noise
upstream for blunter aerofoils but a decrease downstream for blunter aerofoils. The
analytic solution for the far-field acoustics is correct to two orders of magnitude
in the amplitude and phase at all polar angles, θ > O(k−1/2). We have neglected
the transition regions formally required for a full matched asymptotic solution and
accuracy across all observer angles since these transition solutions have an effect only
at small downstream angles, θ =O(k−1/2).

The analytic solution, which extends previous analytic work for parabolic leading
edges, qualitatively agrees with the experimental findings, and has been used
to understand the reasons behind the noise generated by different leading-edge
geometries. Importantly, it is not just the overall steady flow speed near the nose (the
asymptotic scaling parameter εa0k1−m) that has an effect on the total noise; we have
seen that volume sources are promoted for sharper leading edges, increasing noise,
and the greater the rate of slowing of the steady velocity on approach to the nose
the lower the overall sound levels. There is also a difference in the importance of
acoustic generation mechanisms between low or moderate Mach numbers; the volume
source term and horizontal blocking term are substantially smaller than other terms
at low Mach numbers (M∞ = 0.3), but are comparable with other terms at moderate
Mach number (M∞= 0.6). At moderate Mach numbers, the analytic solution predicts
a blunter leading edge can increase far-field noise in the upstream direction for
high-frequency gusts. This upstream increase has also been observed when increasing
total aerofoil thickness in the numerical results of Lockard & Morris (1998) at
M∞ = 0.5.

Aerofoil thickness remains the main geometric parameter controlling turbulence
interaction noise (shown previously). Local leading-edge geometry, such as nose
radius, nevertheless is an important parameter for thin aerofoils at high frequencies,
particularly when the gust wavelength is comparable to nose radius. Therefore,
attempts to predict interaction noise based on single values of thickness-chord ratio,
ε, and frequency, k, are likely to be inaccurate for thin aerofoils since the nose-radius
parameter, m, also plays a key role. The ability to reduce aerofoil interaction noise
by increasing the nose radius but maintaining a constant overall thickness could be
very useful for controlling aeroengine noise, where increasing blade thickness is not
practical.
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Appendix A. Outer limit of H2 solution
Upon evaluating the acoustic parts of H2c,p using the method of steepest descents,

we obtained the outer limit as

H2 ∼
eikwr

√
kr

L2(θ), (A 1)

where

L2(θ) =
−e−πim/2(1− e2πim)Γ (m)

√
2πw| sin θ |e−πi/4

16π(1−m)(δ2 + k2
n)(δ −w cos θ)m(−w cos θ − λ1)(−w cos θ − λ2)
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×

(
(δ −w cos θ)f1(−w cos θ)+ ikn f2(−w cos θ)

√
(−w cos θ)2 −w2

− sgn(Ψ )f2(−w cos θ)
)

−
sgn(Ψ )e−πim/2(1− e2πim)Γ (m)

√
2πw| sin θ |e−πi/4

16π(1−m)(δ2 + k2
n)
√
−w cos θ +w

×

{
2(−δC4 + knC3)H

(
1
2
−m

)
−

( √
w+w cos θ f2(−w cos θ)

(δ −w cos θ)m(−w cos θ − λ2)
+

√
λ1 +wf2(λ1)

(λ1 + δ)m(λ1 − λ2)

)
1

−w cos θ − λ1

+
(λ2 + δ)f2(λ2)+ iknf1(λ2)

√
λ2 −w(λ2 + δ′)m(λ2 +w cos θ)(−w cos θ − λ1)

}
, (A 2)

with H denoting the Heaviside function.

Appendix B. Solution for H3c and H3p

Here we find the solution to (2.20). First, we evaluate the H0 terms in the governing
equation and boundary condition thus we must solve

D(H3) = −
Ansgn(Ψ )Cw2

β∞π
√
δ +w

(
Rm−1 cos((1−m)θ +mπ)

∫
∞

∞

[
1

(λ+ δ)
√
λ+w

−
(γ + 1)M4

∞

2β4
∞

w2

λ+ δ
√
λ+w

]
ea(λ,Φ,Ψ ) dλ

+
i(γ + 1)M4

∞

2β4
∞

w2
(1−m)Rm−2 cos((2−m)θ +mπ)

∫
∞

−∞

ea(λ,Φ,Ψ )

√
λ+ δ

dλ
)
, (B 1)

∂H3

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

=−
AnM2

∞
C(1−m) sin(mπ)

2πβ2
∞

√
δ +wΦ2−m

∫
∞

−∞

e−iλΦ

(λ+ δ)
√
λ+w

dλ. (B 2)

By considering a particular solution of the form

f (θ)
∫
∞

−∞

B(λ)ea(λ,Φ,Ψ ) dλ, (B 3)

with

f (θ) =
{

Rm−1 cos((1−m)θ +mπ), Rm−1 sin((1−m)θ +mπ),

Rm cos(−mθ +mπ), Rm sin(−mθ +mπ)} , (B 4)

we can find appropriate B(λ) functions to satisfy the forcing in the governing equation.
We obtain a particular solution

H3p =−
Ansgn(Ψ )Cw2

π
√
δ +w

[
Rm cos(−mθ +mπ)

∫
∞

−∞

iλ
2mw2

(
1

(λ+ δ)
√
λ+w

−
(γ + 1)M4

∞

2β4
∞

w2

λ+ δ
√
λ+w

)
ea(λ,Φ,Ψ ) dλ+ Rm sin(−mθ +mπ)
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×

∫
∞

−∞

−sgn(Ψ )
2mw2

(√
λ−w
λ+ δ

−
(γ + 1)M4

∞

2β4
∞

w2

√
λ−w(λ+ δ)

)
ea(λ,Φ,Ψ ) dλ

+Rm−1 cos((1−m)θ +mπ)

∫
∞

−∞

(γ + 1)M4
∞

4β4
∞

w4

λ
√
λ+w

ea(λ,Φ,Ψ ) dλ

+Rm−1 sin((1−m)θ +mπ)

∫
∞

−∞

i sgn(Ψ )(γ + 1)M4
∞

4β4
∞

w4

√
λ−wea(λ,Φ,Ψ ) dλ

]
.

(B 5)

This solution, like that for the parabolic leading edge, is singular as R→ 0, which
is not a permitted solution of the governing equation. To correct this singularity, we
introduce a homogeneous solution that has the required small R behaviour to cancel
the singularity. This process is very similar to that in Tsai (1992) and therefore not
repeated here. We find the additional solution we must include is

Hc
3p =

AnC
√

πeπi/4

m
√
δ +w

(γ + 1)M4
∞

8β4
∞

w2

×

[
i(2m− 3)Ha(5/2)−m(wΦ) cos

((
5
2 −m

)
θ +mπ

)
Γ
(

5
2 −m

) (w
2

)(5/2)−m

−
(−2δ +w− 2mw)Ha(3/2)−m(wΦ) cos

((
3
2 −m

)
θ +mπ

)
Γ
(

3
2 −m

) (w
2

)(3/2)−m
]
,

(B 6)

where Ha are Hankel functions of the first kind.
We now require a complementary solution to (B 1) that satisfies

∂H3c

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

= −
AnM2

∞
C(1−m) sin(mπ)

2πβ2
∞

√
δ +wΦ2−m

×

∫
∞

−∞

e−iλΦ

(λ+ δ)
√
λ+w

dλ−
∂H3p

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

−
∂Hc

3p

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

. (B 7)

Analogously to the parabolic case can write the boundary condition as

∂H3c

∂Ψ

∣∣∣∣
Φ>0
Ψ=0±

= d1(Φ)+ d2(Φ)+ d3(Φ), (B 8)

and define H3c =H3c1 +H3c2 +H3c3 so that H3ci satisfies the di term in the boundary
condition.

The di are defined as

d1(Φ)=
2AnCβ∞
√
δ2 −w2

sin(mπ)eiδΦ

(
iδΦm−1

−
1
m
(δ2
−w2)Φm

)
, (B 9)

d2(Φ) =
2AnCβ∞ w

√
π
√
δ +w(δ −w)

(
1
m
− 1
)

eπi/4+iwΦ sin(mπ)

×

(
1−

(γ + 1)M4
∞

2β4
∞

w2
(δ −w)2

)
1

Φ(3/2)−m
, (B 10)
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d3(Φ) =
AnCβ∞
√

π
√
δ +w

sin(mπ)eiwΦ

{
√

πe−3πi/4Φm−(3/2)

[(
1
m
− 2
)
−

2i
m
(δ − 2w)Φ

]
+
√

π
(γ + 1)M4

∞

2β4
∞

w2
eπi/4Φm−1

[(
4−

15
4m
−m

)
1
Φ5/2

+ i
(
−6w+

9w
2m
+ 2mw+ δ −

3δ
2m

)
1
Φ3/2

]}
−

2AnCβ∞w
√

π
√
δ +w(δ −w)

(
1
m
− 1
)

eiwΦ+πi/4 sin(mπ)

Φ(3/2)−m

−
AnCβ∞
√
δ2 −w2

sin(mπ)eiδΦ

[
iδΦm−1

−
1
m
(δ2
−w2)Φm

]
erfc

(
eπi/4

√
(δ −w)Φ

)
+

AnM2
∞

C

β∞
√
δ2 −w2

sin(mπ)

Φ2−m
eiδΦerf

(
eπi/4(δ −w)Φ

)
+

2AnCβ∞
√

πeπi/4

√
δ +wm

(γ + 1)M4
∞

8β4
∞

w2

sin(mπ)

Φ

×

[
−i
(

5
2 −m

)
(2m− 3)

Γ
(

5
2 −m

) Ha(5/2)−m(wΦ)
(w

2

)(5/2)−m

+
( 3

2 −m)(−2δ +w− 2mw)
Γ
(

3
2 −m

) Ha(3/2)−m(wΦ)
(w

2

)(3/2)−m
]
. (B 11)

The solutions for H3ci are then give by

H3ci =
−sgn(Ψ )

2π

∫
∞

−∞

F+i(λ)
ea(λ,Φ,Ψ )

√
λ+ δ

dλ, (B 12)

where

F+i(λ)=
1

2πi

∫
C+

dκ
√
κ −w(κ − λ)

∫
∞

0
di(x)eiκx dx, (B 13)

and C+ is a contour parallel to but slightly above the real line.
The outer limits of H3ci are

H3ci ∼ L3ci(θ)
eikwr

√
kr
, (B 14)

where

L3ci =−F+i(−w cos θ)sgn(θ) cos
θ

2
e−πi/4

√
π
. (B 15)

As with the parabolic leading-edge case, L3c2 is singular at θ = 0, indicating
the need for a uniformly valid far-field expansion of H3c2 for small θ values. The
leading-edge transition solution then exists in this region of small θ values and acts to
ensure the (total) normal velocity along the whole rigid aerofoil surface is zero. These
two features only take effect for small θ values, and since we do not calculate the
transition solution, we shall not calculate a uniformly valid expansion of H3c2 here.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

59
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.594


Effects of leading-edge radius 807

REFERENCES

ALLAMPALLI, V., HIXON, R., NALLASAMY, M. & SAWYER, S. D. 2009 High-accuracy large-step
explicit Runge–Kutta (HALE-RK) schemes for computational aeroacoustics. J. Comput. Phys.
228, 3837–3850.

AMIET, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41,
407–420.

AYTON, L. J. 2016 An analytic solution for gust-aerofoil interaction noise including effects of
geometry. IMA J. Appl. Maths 00, 1–25.

AYTON, L. J., GILL, J. R. & PEAKE, N. 2016 The Importance of the unsteady Kutta condition
when modelling gust-aerofoil interaction. J. Sound Vib. 378, 28–37.

BENDER, C. M. & ORSZAG, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers.
McGraw-Hill.

CHAITANYA, P., GILL, J., NARAYANAN, S., JOSEPH, P., VANDERWEL, C., ZHANG, X. &
GANAPATHISUBRAMANI, B. 2015 Aerofoil geometry effects on turbulence interaction noise.
In 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX, AIAA Paper 2015-2830.

CHONG, T. P., JOSEPH, P. F. & DAVIS, P. O. A. L. 2008 A parametric study of passive flow
control for a short, high area ratio 90◦ curved diffuser. Trans. ASME J. Fluids Engng 130,
111104-12.

CRIGHTON, D. G. 1985 The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 17, 411–445.
DEVENPORT, W. J., STAUBS, J. K. & GLEGG, S. A. L. 2010 Sound radiation from real airfoils in

turbulence. J. Sound Vib. 329, 3470–3483.
GILL, J., ZHANG, X. & JOSEPH, P. 2013 Symmetric airfoil geometry effects on leading edge noise.

J. Acoust. Soc. Am. 134, 2669–2680.
GILL, J., ZHANG, X. & JOSEPH, P. 2014 Reduced dimension modeling of leading edge turbulent

interaction noise. In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA Paper
2014-2321.

GLEGG, S. A. L. & DEVENPORT, W. 2009 Unsteady loading on an airfoil of arbitrary thickness.
J. Sound Vib. 319, 1252–1270.

GOLDSTEIN, M. E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary
obstacles. J. Fluid Mech. 89, 433–468.

GRACE, S. M. 2001 Unsteady blade response: the BVI model versus the gust model. In 7th
AIAA/CEAS Aeroacoustics Conference, Maastricht, AIAA Paper 2001-2209.

HALL, A. M., ATASSI, O. V. & GILSON, J. 2011 Effects of leading-edge thickness on high-speed
aerofoil-turbulence interaction noise. In 17th AIAA/CEAS Aeroacoustics Conference, Portland,
Oregon, AIAA Paper 2011-2861.

HINZE, J. O. 1959 Turbulence. McGraw-Hill.
LOCKARD, D. P. & MORRIS, P. J. 1998 Radiated noise from airfoils in realistic mean flows. AIAA J.

36, 907–914.
MYERS, M. R. & KERSCHEN, E. J. 1995 Influence of incidence angle on sound generation by

airfoils interacting with high-frequency gusts. J. Fluid Mech. 292, 271–304.
MYERS, M. R. & KERSCHEN, E. J. 1997 Influence of camber on sound generation by airfoils

interacting with high-frequency gusts. J. Fluid Mech. 353, 221–259.
NARAYANAN, S., CHAITANYA, P., HAERI, S., JOSEPH, P., KIM, J. W. & POLACSEK, C. 2015 Airfoil

noise reductions through leading edge serrations. Phys. Fluids 27, 025109.
OLSEN, W. & WAGNER, J. 1982 Effect of thickness on airfoil surface noise. AIAA J. 20, 437–439.
PEAKE, N. & PARRY, A. B. 2012 Modern challenges facing turbomachinery aeroacoustics. Annu.

Rev. Fluid Mech. 44, 227–248.
ROACH, P. E. 1987 The generation of nearly isotropic turbulence by mean of grid. Intl J. Heat

Fluid Flow 8, 82–92.
SEARS, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical applications.

J. Aero. Sci. 8, 104–188.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

59
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.594


808 L. J. Ayton and P. Chaitanya

THWAITES, B. 1960 Incompressible Aerodynamics: An Account of the Theory and Observation of
the Steady Flow of Incompressible Fluid Past Aerofoils, Wings, and Other Bodies. Dover
Publications.

TSAI, C-T. 1992 Effect of airfoil thickness on high-frequency gust interaction noise. PhD thesis,
University of Arizona.

VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic Press.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

59
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.594

	Analytical and experimental investigation into the effects of leading-edge radius on gust–aerofoil interaction noise
	Introduction
	Analytic solution
	Governing equations
	Leading-edge inner region
	Solution for H0
	Solution for H1
	Solution for H2
	Solution for H3

	Outer limit of the leading-edge inner solution
	Trailing-edge solution
	Solution in the outer region

	Experimental set-up and procedure
	Open-jet test facility and instrumentation
	Far-field noise measurements
	Turbulence characterisation
	Three-dimensional aerofoil models

	Results
	Comparison of experimental and analytical results
	Mechanisms for noise generation

	Conclusions
	Acknowledgements
	Appendix A. Outer limit of H2 solution
	Appendix B. Solution for H3c and H3p
	References


