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1. Introduction

A remarkable result of [6] says that a smooth cubic surface over Q is unirational if
and only if it has a rational point. [4, II.2] observed that similar arguments work for
higher dimensional cubic hypersurfaces satisfying a certain genericity assumption over
any infinite field. [2, 2.3.1] extended the result of Segre to any normal cubic hypersurface
(other than cones) over a field of characteristic zero. It is also clear that the result should
hold for all sufficiently large finite fields, though the details were not worked out in
general. [4, IV.8] settles the cubic surface case for finite fields with at least 34 elements.
The aim of this note is to observe that a variant of the Segre–Manin method works for
all fields and for all cubics.

Theorem 1.1. Let k be a field and X ⊂ Pn+1 a smooth cubic hypersurface of dimension
n � 2 over k. Then the following are equivalent:

(1) X is unirational (over k); and

(2) X has a k-point.

Similar results hold for singular cubic hypersurfaces, with a few exceptions.

Theorem 1.2. Let k be a perfect field and X ⊂ Pn+1 an irreducible cubic hypersurface
of dimension n � 2 over k which is not a cone over an (n − 1)-dimensional cubic. Then
the following are equivalent:

(1) X is unirational (over k);
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(2) X has a k-point; and

(3) X has a smooth k-point.

Non-perfect fields. Over non-perfect fields of characteristic 3, there are non-singular
cubic hypersurfaces of arbitrary dimension which are not unirational but do have a k

point (Proposition 4.1). (Note that over a non-perfect field, smooth and non-singular are
not equivalent notions.) I have not been able to find similar examples in characteristic 2.

An inspection of the proof shows that if k is not perfect, the three parts of Theorem 1.2
are equivalent if one of the following conditions holds:

(1) char k � 5;

(2) char k = 3 and X has no triple points over k̄; and

(3) char k = 2 and there is a smooth k point p ∈ X such that projection from p is
separable.

Question 1.3. Unirationality of varieties is very poorly understood in general and there
are very basic open questions. We do not even have a list of unirational surfaces and very
few examples are known in higher dimensions. For instance, let X be a smooth projective
variety over k such that X is unirational over k̄. Assume for simplicity that k is infinite
and consider the following properties:

(1) X is unirational (over k);

(2) X(k) is dense in X; and

(3) X has a k-point.

It is clear that each property implies the next. They are equivalent for cubic hypersurfaces
by Theorem 1.1. It is extremely unlikely that they are always equivalent, but no counter
examples are known.

Proof of (1) ⇒ (2) ⇒ (3) for Theorem 1.2. Theorem 1.2 (1) ⇒ Theorem 1.2 (2) is
clear for infinite fields. For finite fields it follows from [5].

Assume that Theorem 1.2 (2) holds and let x ∈ X be a k-point. We are done if X is
smooth at x. Otherwise x is a double point and we can choose affine coordinates such
that x = (0, . . . , 0) and X is given by an equation q(x1, . . . , xn)+c(x1, . . . , xn) = 0 where
q is quadratic and c is cubic. Assume that there is a point (p1, . . . , pn) ∈ kn such that
q(p1, . . . , pn) �= 0. Then the line connecting the origin and (p1, . . . , pn) intersects X in
a single point outside the origin and this is a smooth k-point of X. Thus we are done
unless q vanishes everywhere on kn.

However, if a homogeneous polynomial f of degree d vanishes on kn and |k| � d, then
f is identically zero. �
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Unirationality of cubic hypersurfaces 469

2. Unirationality constructions

The interesting part is to show unirationality starting with a smooth k-point. The con-
struction is presented in three stages, successive version working in greater and greater
generality. At least in retrospect, all of this is only a slight modification of the works of
Segre.

First unirationality construction. Let X ⊂ Pn+1 be a cubic and p ∈ X a point. Let
Cp denote the intersection of X with the tangent plane at p. We expect that usually Cp

is an irreducible cubic with a double point at p. If this is indeed the case, then the inverse
of the projection from p gives a birational map πp : Pn−1 ��� Cp. If p ∈ X(k), then Cp

is birational to Pn−1 over k.
Assume next that we have two points p, q ∈ X and Cp, Cq are both irreducible with a

double point at p (resp. q). Define the ‘third intersection point’ map

φ : Cp × Cq ��� X

as follows. Take u ∈ Cp, v ∈ Cq. If the line connecting u, v is not contained in X, it
has a unique third intersection point with X; call it φ(u, v). Under very mild genericity
assumptions (Lemma 3.2) this is a well defined dominant map. Thus we get that X is
unirational via

Φ : Pn−1 × Pn−1 πp×πq��� Cp × Cq
φ��� X.

Definition 2.1 (restriction of scalars). Let L/K be a finite degree field extension.
Restriction of scalars (or Weil restriction) is a way to associate to an L-variety U a K-
variety RL/KU such that there is a natural identification of the L-points of U with the
K-points of RL/KU . This dictates that dimRL/KU = deg(L/K) · dim U (see [1, 7.6] for
details).

This can be done very explicitly in the affine case as follows. Let U ⊂ An be an affine
variety defined over L. Choose equations fi(x1, . . . , xn) for U and let e1, . . . , ed ∈ L be a
K-basis. Choose new coordinates yij : i = 1, . . . , n, j = 1, . . . , d, and set xi =

∑
j ejyij .

We can then write

fk(x1, . . . , xn) =
∑

�

e�fk�(yij), where fk� ∈ K[yij ].

Let RL/KU be the subvariety of And defined by the equations fk� = 0.
In particular we see that RL/K(An) ∼= Adn. In the projective case, RL/K(Pn) is incon-

venient to describe by explicit equations but we at least get that RL/K(Pn) is birational
to Pdn over K. (They are not isomorphic for d > 1.)

Second unirationality construction. Let X ⊂ Pn+1 be a cubic defined over k and
k′ ⊃ k a quadratic extension. Let p ∈ X(k′) be a point and p̄ ∈ X(k′) its conjugate.
(Let us ignore that k′ ⊃ k may be inseparable in characteristic 2.) We have conjugate
birational maps πp : Pn−1 ��� Cp and πp̄ : Pn−1 ��� Cp̄. If u ∈ Pn−1(k′), then πp(u) and
πp̄(ū) are conjugate points of X, thus the line connecting them is defined over k. Hence
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φ(u, ū) ∈ X(k). Putting this invariantly, we obtain a rational map (defined over k)

Φ : Rk′/kPn−1 ��� X

which is dominant under mild genericity assumptions.

Even in the surface case, there are some examples when neither the first nor the second
unirationality construction applies.

Example 2.2. Let S be the cubic surface (x3
0 + x3

1 + x3
2 + x3

3 = 0). By [3] over the fields
F2, F4, F16 all the points are on the 27 lines. Hence the second unirationality construction
does not work over F2 and F4. (It does work over F16.)

Final unirationality construction. Assume now that X is a cubic defined over k and
x ∈ X is a smooth k-point. Let L be a line through x. If L is not contained in X, then
it intersects X in a point pair {p, q}. These points are usually not in k, but they are
conjugate over k and lie in a quadratic extension k′ = k′(L) of k. Hence, under some
genericity assumptions, we obtain a dominant map

Φ : Rk′/kPn−1 ��� X

which shows that X is unirational. There are very few problems if k is infinite, since
then a general choice of L should work. (Extra work is needed in characteristic 2.) The
situation is less clear over finite fields since there may not be enough room to choose L

general (see, for example, Example 2.2).
To avoid this difficulty, we do not choose any line, rather we work with all lines simul-

taneously. We should obtain a map

Ψ :
⋃

x∈L⊂Pn+1

Rk′(L)/kPn−1 ��� X.

We are in good shape if we can identify the left-hand side with a product Pn×Pn−1×Pn−1,
at least birationally. Once this problem is settled, it is enough to check dominance over
the algebraic closure where the previous arguments work. It seems best to give an explicit
algebraic description.

Algebraic description of Ψ . We work in affine coordinates, assuming that the origin
is a smooth point of X. Thus the equation of X can be written as

F = L(x1, . . . , xn+1) + Q(x1, . . . , xn+1) + C(x1, . . . , xn+1),

where L is linear, Q is quadratic and C is cubic. We may assume that ∂F/∂xn+1 is not
identically zero (for instance we can even assume that L = xn+1).

We write down a rational map

Ψ : A3n−2(u1, . . . , un, v1, . . . , vn−1, w1, . . . , wn−1) ��� X.

Later we check that it is dominant with a few exceptions.
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Consider the universal line through the origin (τu1, . . . , τun, τ). It intersects X in two
further points which correspond to the roots of the quadratic equation

L(u1, . . . , un, 1) + τQ(u1, . . . , un, 1) + τ2C(u1, . . . , un, 1) = 0.

The equation is irreducible if X is irreducible. Let its roots be t1, t2 ∈ k(u1, . . . , un).
The equation of the tangent space of X at p = (p1, . . . , pn+1) ∈ X is

∂F

∂x1
(p)(x1 − p1) + · · · +

∂F

∂xn+1
(p)(xn+1 − pn+1) = 0.

Thus the universal tangent line at (t1u1, . . . , t1un, t1) can be described parametrically as

x1 = t1u1 + σ(v1 + t1w1), . . . , xn−1 = t1un−1 + σ(vn−1 + t1wn−1),

xn = t1un + σ,

xn+1 = t1 − σ

(
∂F

∂xn+1
(t1u, t1)

)−1 n∑
i=1

∂F

∂xi
(t1u, t1)(vi + t1wi),

where we set vn = 1, wn = 0. Substituting the above parametric representation into F ,
we obtain a cubic equation in σ

3∑
j=0

σjHj where Hj ∈ k(u,v,w, t1).

H0 = H1 = 0 since we have a tangent line, thus the third intersection point corresponds
to the value σ = −H2/H3. Thus we obtain a point

Q1 ∈ k(u,v,w, t1)n+1.

Replacing t1 by its conjugate t2 we obtain another point Q2. The line connecting Q1 and
Q2 can be given parametrically as

L(λ) =
λ − t2
t1 − t2

Q1 +
λ − t1
t2 − t1

Q2,

and this is a parametrization over k(u,v,w). Evaluating F on the line we have that t1, t2
are roots, so

F (L(λ)) = (Aλ + B)(Cλ2 + Qλ + L).

Thus if we expand

F (L(λ)) =
3∑

j=0

λjGj , then Gj ∈ k(u,v,w),

and the third root is
−B

A
= −G2

G3
+

Q

C
.

Substituting this into the parametrization of the line gives

Ψ(u,v,w) ∈ X(k(u,v,w)).
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Depending on our definition of unirationality, we also need to check the following
lemma.

Lemma 2.3. For a k-variety X the following are equivalent:

(1) there is a dominant map φm : Am ��� X for some m; and

(2) there is a dominant map φm : Am ��� X for m = dimX.

Proof. Assume that m > dim X. There is a dense open set U ⊂ Am such that φm|U
is open with m − dim X dimensional fibres. Let u ∈ U be a point. If u ∈ Z ⊂ Am is
a hypersurface which does not contain the irreducible component of the fibre of φm|U
through u, then φm|Z : Z ��� X is dominant.

If k is infinite and m > dim X, then we can choose Z to be a general hyperplane.
Assume next that k is finite. Fix a prime 	 �= char k and let k′ be the composite of

all algebraic extensions of degree 	s of k. k′ is infinite, hence we can choose a point u =
(u1, . . . , um) ∈ U(k′). By permuting the coordinates we may assume that deg k(um)/k �
deg k(u1)/k, or, equivalently, k(um) ⊂ k(u1). This implies that um can be written as
a polynomial of u1, hence the ideal I(u) ⊂ k[x1, . . . , xm] contains a polynomial of the
form xm − p(x1). This implies that I(u) is generated by polynomials of the form xm −
P (x1, . . . , xm−1). Thus we can choose Z = (xm = P (x1, . . . , xm−1)) for suitable P . �

3. Proof of Theorem 1.2 (3) ⇒ Theorem 1.2 (1)

Let X be an irreducible cubic hypersurface. The set of all triple points of X(k̄) is a linear
space and it is defined over k if k is perfect. Thus X is a cone over a cubic hypersurface
without triple points. Therefore, X has no triple points over k̄.

Assume next that X is not normal. The non-normal locus has dimension (n − 1) and
the linear space spanned by it is in X. Thus the non-normal locus is a linear space
Ln−1 ⊂ Pn+1 which is defined over k if k is perfect. Projecting form L realizes X as a
Pn−1-bundle over P1, hence rational.

For the rest of the proof assume that X is normal. We need to check three conditions.
First we prove that Cx is irreducible with a double point at x for general x ∈ X(k̄).

This is done in Proposition 3.1.
Second, we need to check that the third intersection point map φ : Cp × Cq ��� X

is dominant. It is, however, not enough to check this for a general pair p, q. In our
construction p, q are the two intersection points of a line through x, hence dependent.
Assume that πx : X ��� Pn, the projection from x, is separable. Then for a generic
line x ∈ L we get 2 distinct intersection points and both intersections are transverse.
In particular, the tangent space of X at one point does not contain the other point. In
Lemma 3.2 we see that this is sufficient to guarantee that φ : Cp ×Cq ��� X is dominant.

Third, we need to consider the case when the projection πx : X ��� Pn is inseparable.
This can happen only in characteristic 2. Over a perfect field a purely inseparable map
induces a purely inseparable map in the reverse direction, hence in this case X is (purely
inseparably) unirational. Nonetheless, we check in Corollary 5.3 that we can always
choose a smooth k-point such that projection from it is separable. �
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Proposition 3.1. Let k be an algebraically closed field and X ⊂ Pn+1 a normal cubic
hypersurface over k without triple points. Then Cx is irreducible with a double point at
x for general x ∈ X.

Proof. Let x ∈ X be arbitrary. If Cx is irreducible with a triple point at x, then Cx is a
cone, hence there is an (n − 2)-dimensional family of lines through x. If Cx is reducible,
then either Cx contains an (n − 1)-dimensional linear space through x or a quadric cone
with vertex at x. In either case, there is an (n − 2)-dimensional family of lines through
x. Thus it is enough to prove that for a general x ∈ X the family of lines in X through x

has dimension at most n − 3. This is equivalent to proving that a general surface section
of X contains only finitely many lines.

X has no triple points, hence, by Bertini, a general surface section of X is also normal
with no triple points.

If S is a normal cubic surface without triple points, then there are only finitely many
lines through each double point. (Choose affine coordinates such that the equation
becomes q(x1, x2, x3) + c(x1, x2, x3) = 0. The lines through (0, 0, 0) correspond to the
solutions of (q = c = 0) ⊂ P2. If there are infinitely many solutions, then q and c

have a common factor, thus the surface is reducible.) Each line in the smooth locus has
self-intersection −1, hence rigid. Thus S has only finitely many lines. �

Lemma 3.2. Let X ⊂ Pn+1 be an irreducible cubic hypersurface. Let x, y ∈ X be
smooth points and Cx, Cy the corresponding intersections with the tangent hyperplanes.
Assume that

(1) Cx and Cy are irreducible; and

(2) x �∈ Cy and y �∈ Cx.

Then the third intersection point map φ : Cx × Cy ��� X is dominant.

Proof. Let us see first that φ is indeed defined. Pick a point u ∈ Cx which is a smooth
point of X. Pick v ∈ Cy which is a smooth point of X such that v does not lie on TuX.
If we now choose a general w ∈ Cx, then v does not lie on TwX and w does not lie on
TvX. Thus the line connecting u, w has a unique third intersection point with X. This
shows that φ is defined at the pair (v, w).

In order to prove dominance, we need to show that φ has at least one fibre of dimension
n − 2. Pick a point z ∈ X which is not on Cx ∪ Cy and let π : Pn+1 ��� TyX denote the
projection from z. Then φ−1(z) is the set of pairs (v, w) such that π(v) = w. Thus we
are done if

dim((Cy ∩ π(Cx)) \ (Cy ∩ Cx)) = n − 2.

For this it is sufficient to find one projection π′ : Pn+1 ��� TyX where this holds. Then
the same holds for a general projection and a general projection always corresponds to a
point of X. Pick any smooth point v ∈ Cy and let π′ be a projection such that π′(x) = v.
Then π′(Cx) and Cy intersect at v but they have different multiplicity there. Hence their
intersection has dimension n − 2. �
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4. An example in characteristic 3

The following example, valid in characteristic 3, shows that Theorem 1.2 does not hold
for every field.

Proposition 4.1. Let k be a field of characteristic 3 and ti algebraically independent
over k. Set K = k(t1, . . . , tn) and

Y :=
(

y3 − yz2 =
n∑

i=1

tix
3
i

)
⊂ Pn+1.

Then Y has the following properties:

(1) Y is non-singular;

(2) over K̄, Y is a cone over a cuspidal cubic curve;

(3) Y (K) = {(0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0), (1,−1, 0, . . . , 0)}; and

(4) Y is not unirational (over K).

Proof. Y is the generic fibre of the smooth variety
(

y3 − yz2 =
∑

i

tix
3
i

)
⊂ An

(t1,...,tn) × Pn+1
(y,z,x1,...,xn)

over An, thus Y is non-singular. Proposition 4.1 (2) holds since over K̄ we can write our
equation as (

y −
∑

i

3
√

tixi

)3

− yz2 = 0.

In order to see (3) we may as well assume that k is algebraically closed. Assume that
we have relatively prime polynomials f, g, hi ∈ k[t1, . . . , tn] such that

f3 − fg2 =
∑

i

tih
3
i .

We are done if h1 = · · · = hn = 0. Otherwise, we can make a substitution ti = cit for
i = 1, . . . , n and general ci to get a solution of

f(f − g)(f + g) = t · h3 with f, g, h ∈ k[t] and h �= 0.

We may assume that f and g are relatively prime. Thus two of the factors f , f −g, f +g

are cubes and the third is t times a cube. However, f +(f −g)+(f +g) = 0, hence if two
are cubes, then so is their sum which is minus the third factor. This is a contradiction.

Since Y has only three points in K, it does not contain any rational curves and so it
is definitely not unirational. �
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5. Some results in characteristic 2

Lemma 5.1. Assume that char k = 2. Let V ⊂ Pn+1 be the linear span of all points
p ∈ X(k) such that projection from p is a purely inseparable map X ��� Pn. Let (yi = 0)
be equations of V and xj coordinates on V . Then the equation of X can be written as

f :=
∑

j

	j(y)x2
j + g(y),

where the 	j are linear and g is cubic. If V �= ∅, then X is not smooth.

Proof. We can choose coordinates such that the points

p1 = (1 : 0 : · · · : 0), . . . , pm = (0 : · · · :
mth
1 : 0 : · · · : 0)

are in X(k) and projection from pi is a purely inseparable map for i = 1, . . . , m. pi is
inseparable if and only if xi occurs in the equation of X always with even exponent. This
gives the above equation.

∂f/∂xj is zero, and the equations ∂f/∂yi = 0 have a common solution. Since f =
3f =

∑
i(∂f/∂yi), these give singular points of X(k̄). �

Lemma 5.2. Let k be a perfect field of characteristic 2. Let X be a cubic of dimension
at least 2 given by an equation

f(x,y) :=
∑

j

	j(y)x2
j + g(y).

Then X has a smooth k-point with non-zero y-coordinate.

Proof. Assume first that we have at least two x-variables. If 	1 = c	2, then

	1x
2
1 + 	2x

2
2 = 	1(x1 +

√
cx2)2

thus we can change coordinates to eliminate one x-variable. Otherwise we can pick y0

such that 	1(y0) �= 0 and 	2(y0) = 0. Then

(
√

g(y0)/	1(y0), x2,y0) ∈ X(k)

for every x2. Since
∂f

∂yi
= x2

2 +
∂g

∂yi

the above point is smooth for suitable choice of x2.
Thus assume that there is only one x-variable and write the equation as y1x

2
1 + g(y).

Take any (p1, . . . , pn) ∈ kn. If p1 = 0 and g(p1, . . . , pn) = 0, then (x1 : p1 : · · · : pn) ∈
X(k) for any x1 and one of them is a smooth by looking at ∂f/∂y1.

If p1 �= 0, then p0 :=
√

−g(p1, . . . , pn)/p1 ∈ k and (p0 : p1 : · · · : pn) is a smooth point
unless

g(p1, . . . , pn) − p1
∂g

∂y1
(p1, . . . , pn) = 0.
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Thus we are done unless the following hold:

(1) g − y1(∂g/∂y1) is non-zero for y1 = 0, and

(2) g − y1(∂g/∂y1) is zero for y1 �= 0.

Write g =
∑

yi
1g3−i(y2, . . . , yn). Then

g − y1(∂g/∂y1) = y2
1g1(y2, . . . , yn) + g3(y2, . . . , yn).

g1 is a linear form thus it has a non-trivial zero (p2, . . . , pn). If g3(p2, . . . , pn) = 0, then
set p1 = 0 and if g3(p2, . . . , pn) �= 0, then set p1 = 1. �

Combining the above lemmas we obtain the following corollary.

Corollary 5.3. Let k be a perfect field of characteristic 2 and X ⊂ Pn+1 a cubic with
a smooth k-point. Assume that n � 2. Then there is a smooth point x ∈ X(k) such that
the projection from x is separable.

Acknowledgements. I thank J.-L. Colliot-Thélène and J. Ellenberg for helpful com-
ments and references. Partial financial support was provided by the NSF under grant
number DMS-9970855.

References

1. S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergebnisse der Math-
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