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Abstract
Recently, there has been a surge in interest in exploring how common macroeconomic factors impact
different economic results. We propose a semiparametric dynamic panel model to analyze the impact
of common regressors on the conditional distribution of the dependent variable (global output growth
distribution in our case). Our model allows conditional mean, variance, and skewness to be influenced by
common regressors, whose effects can be nonlinear and time-varying driven by contextual variables. By
incorporating dynamic structures and individual unobserved heterogeneity, we propose a consistent two-
step estimator and showcase its attractive theoretical and numerical properties. We apply our model to
investigate the impact of US financial uncertainty on the global output growth distribution. We find that
an increase in US financial uncertainty significantly shifts the output growth distribution leftward during
periods of market pessimism. In contrast, during periods of market optimism, the increased uncertainty
in the US financial markets expands the spread of the output growth distribution without a significant
location change, indicating increased future uncertainty.
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1. Introduction
Researchers in applied fields often face the task of evaluating how common (macro) factors
influence various disaggregated or individual economic results. Examples include understand-
ing the impact of global liquidity changes on international capital movements (Avdjiev et al.
(2020)), assessing how changes in macroeconomic conditions alter the behaviors of banks and
firms (Jiménez et al. (2012); Gulen and Ion (2016)), and examining how US financial uncertainty
affects global economic growth (Carrière-Swallow and Céspedes (2013); Choi (2018); Berg and
Vu (2019); Bhattarai et al. (2020)). Analyzing these common factors is crucial for empirical studies
and can have significant policy implications.

Traditional empirical approaches estimate the effect of common regressors using conditional
mean regression models. This implicitly assumes that other conditional moments of the depen-
dent variable, besides the mean, remain unchanged in response to variations in the common
regressors. However, limiting the analysis to the mean can obscure the impact of these com-
mon regressors on the entire conditional distribution. Indeed, recent studies have found that
much economic data is left-skewed, indicating that downturns tend to be rapid and severe. For
instance, Adrian et al. (2022) demonstrate that financial conditions significantly affect the lower
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fifth percentile of conditional growth more than the median. Although rare, extreme events can
incur substantial economic costs. Therefore, it is important to broaden empirical analyses to
investigate the potential effects of common regressors on higher moments, which characterize
tail regions of the distribution of economic outcomes.

Moreover, common regressors may exhibit non-constant effects on the conditional distribu-
tion. For instance, financial instability in the US tends to have global repercussions, with its effects
potentially fluctuating over different periods. One possible reason is that a surge in domestic finan-
cial uncertainty can lead to tighter domestic or foreign credit conditions, which crucially depends
on market participants’ expectations, as we show in the empirical application. Since nonlinear-
ity can occur in all conditional moments under consideration, the common regressor can have
different effects on various parts of the conditional distribution.

In this paper, we introduce a semiparametric panel model, designed to investigate potential
time-varying effects of common regressors on the conditional distribution of economic outcomes.
Our model has three notable features. First, it allows common regressors to influence the condi-
tional distribution of the dependent variable through its mean, variance, and skewness functions.
This feature shares a similar spirit to a recent study by Badunenko and Henderson (2024), who
model heterogeneous variance and skewness in the noise distribution of production or cost func-
tions. Second, the impact of common regressors within each conditional moment function is
time-varying, driven by contextual variables we call effect modifiers. This specification enables
the coefficients of common regressors to be functions of the effect modifiers, facilitating empirical
investigation of the underlying drivers of time-varying effects. Third, our model addresses possi-
ble serial correlation by incorporating a dynamic structure, wherein the lagged dependent variable
enters the conditional mean function linearly along with other control variables. Additionally, our
model includes fixed effects to account for unobserved heterogeneity across individuals, thereby
mitigating potential issues related to omitted time-invariant variables.

Estimating our proposed model presents three econometric challenges. First, incorporat-
ing the effect of common regressors on the conditional distribution requires introducing a
skewed error component. The conditional moment functions (i.e., mean, variance, skewness)
of the skewed error are determined by the common regressors and their associated effect mod-
ifiers. Since a skewed random variable lacks a zero conditional mean, conventional estimators
cannot be directly applied because the model does not conform to a standard regression frame-
work. Second, the coefficient functions of common regressors are typically unknown in practice.
Conventionally, parameterized coefficient functions (e.g., linear functions of effect modifiers) of
common regressors are popular structures in applied studies. Though parsimonious, the linear
coefficient functions are pre-specified by empirical practitioners rather than guided by economic
theories. Misspecified parametric coefficient functions lead to inconsistent estimates and mislead-
ing conclusions. To address this issue, we increase the flexibility of our model by incorporating
nonparametric coefficient functions of common regressors in the conditional mean. The non-
parametrization allows for any nonlinear functional form of the time-varying effect to be revealed
by the data rather than being predetermined by arbitrary choices. We also employ flexible poly-
nomial functions in conditional variance and skewness to achieve model identification, given the
complex nature of higher-moment functions. Third, the presence of dynamic variables and indi-
vidual fixed effects in a semiparametric model introduces a non-negligible bias in our estimator,
requiring careful handling to achieve consistent estimation.

To address these methodological challenges, we introduce an innovative two-step procedure
for model estimation. In the first step, we estimate the unknown parameters governing the con-
ditional moment functions using a pseudo-maximum likelihood estimator (pseudo-MLE). Our
pseudo-MLE construction is based on a within-transformation that eliminates all common com-
ponents in the mean function, rendering it robust to potential misspecification of coefficient
functions. In the second step, we estimate nonparametrically the effect of common regressors in
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Macroeconomic Dynamics 3

the mean function using a profile local linear estimator. This two-step approach mitigates the risk
of misspecifying unknown model structures, thereby ensuring consistent estimates of interest.

We apply our model to investigate the effect of US financial uncertainty on the conditional
distribution of global future output growth. In our application, the effect modifier of US finan-
cial uncertainty reflects market participants’ economic expectations. Inspired by Huang and Luo
(2020b), we construct the effect modifier as the ratio of good to bad volatility in the US stock mar-
ket, based on the maximum and minimum monthly stock returns.1 Employing a panel dataset
of 30 developed and developing countries over nearly three decades, our findings reveal that US
financial uncertainty has notable time-varying and nonlinear effects on various aspects of the
conditional distribution of global future output growth. During periods of pessimism, US finan-
cial uncertainty shifts the entire conditional distribution downward, with a greater impact on the
lower percentiles, particularly the fifth percentile, compared to the ninety-fifth percentile. This
results in a left-skewed distribution, suggesting a higher likelihood of negative economic out-
comes. Conversely, during periods of optimism, heightened US financial uncertainty causes the
conditional distribution to stretch out while only slightly shifting to the left. In this scenario, an
increase in US financial uncertainty significantly decreases the fifth percentile but increases the
ninety-fifth percentile, indicating a rise in overall global economic uncertainty.

From an empirical perspective, our findings contribute to the literature by demonstrating that
heightened US financial uncertainty significantly affects global economic activities, influencing
not only the conditional mean but also the conditional variance and skewness of the global output
growth distribution. Our findings complement two key aspects of the recent empirical literature.
First, the link between macroeconomic and financial uncertainty has been identified in a domestic
context (Ludvigson et al. (2021); Caggiano et al. (2021)), and we find that this correlation extends
beyond the border. Our results indicate that global macro uncertainty, proxied by the second
moment of the conditional distribution of world output growth, also rises, therefore providing
empirical evidence for a global macro-financial uncertainty linkage. Second, financial conditions
have been found to affect tail risks for predicted GDP growth (Adrian et al. (2019); Adrian et al.
(2022)). In particular, Adrian et al. (2022) find that financial conditions have a larger effect on
the lower fifth percentile of conditional growth, called growth-at-risk (GaR), than the median.
We take financial conditions as the channel through which US financial uncertainty spills over
to the rest of the world, finding GaR to be more responsive compared to the median. Consistent
with existing empirical findings, our results highlight significant variations in both the lower and
upper percentiles due to the flexibility of our semiparametric model.

From a methodology viewpoint, we contribute to the literature by introducing a semiparamet-
ric dynamic skewed panel model. Our model accommodates the effects of common regressors
on the conditional distribution, allowing these effects to be nonlinear and time-varying, and
incorporates both a dynamic structure and country-specific unobserved heterogeneity. Using the
properties of common regressors, we propose a consistent two-step estimator for parametric and
nonparametric components while properly handling the bias introduced by the dynamic variables
and fixed effects. To broaden the appeal of the model, we characterize the asymptotic properties
of the two-step estimator and demonstrate its promising numerical properties through simulation
studies.

Our proposed empirical methodology provides a useful framework for understanding the
complexities of macroeconomic issues using microeconomic datasets. In our application, the
extent to which US financial uncertainty affects the global economy is likely shaped by dif-
ferent expectations among market participants, proxied using S&P 500 Index. Similarly, our
model can be utilized to investigate the impact of global liquidity drivers on international cap-
ital flows, analyzing how these drivers work through financial markets worldwide (Avdjiev et al.
(2020)). The use of more granular data can facilitate deeper insights. For example, Jiménez et al.
(2012) analyze the impact of monetary policy by employing loan-level data; Gulen and Ion
(2016) investigate how economic policy uncertainty affects investment using firm-specific data;
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4 Y.-F. Huang et al.

and Tarkom and Ujah (2023) examine how macroeconomic policy uncertainty influences firm
efficiency, which is intimately linked to firm productivity. In each case, our model extends beyond
the scope of existing studies by accommodating nonlinear changes in distribution–specifically
regarding mean, dispersion, and skewness–driven by common regressors, meanwhile exploring
how these changes interact with effect modifiers through micro-channels. Thus, our empirical
modeling approach can be helpful for analyses involving tail risk and may shed some new light on
various traditional issues.

The remainder of the paper is organized as follows. Section 2 introduces our proposed empiri-
cal model and outlines the estimation procedure. Section 3 characterizes the asymptotic properties
of the proposed estimators. Section 4 details the data and constructions of key variables in our
empirical application and presents empirical results evidence for the nonlinear effects of US
financial uncertainty. Finally, Section 5 concludes the paper. All proofs and simulation results
associated with the model estimator are relegated to the Online Appendix.

2. A semiparametric dynamic skewed panel model
This section presents an empirical approach to analyze the impact of typical macroeconomic vari-
ables on the distribution of key economic outcomes. The model is detailed in Section 2.1, with the
estimators illustrated in Section 2.2.

2.1. Model
Our empirical methodology is based on the following semiparametric dynamic skewed panel
model:

yi,t = β0 + xtβ(zt)+ ω�
i,tδ0 + α0i + ei,t , (1)

where i= 1, . . . , n and t = 1, . . . , T index a total of n individuals and T time units, respectively.
The dependent variable yi,t is the aggregate or disaggregate economic outcome variable. The com-
mon regressor, xt , represents a certain macroeconomic condition that affects all agents in the
economy. We generalize the effect of xt beyond a constant and let it vary with an effect modifier
zt through an unknown coefficient function β(·).2 While a common approach in applied stud-
ies assumes a parametric specification, i.e., β(zt)= ztβ1 known up to a constant coefficient β1,
such linearity assumptions are made a priori and may be difficult to justify given an unknown
data generation process. To address potential model misspecification, we specify the functional
form of β(·) nonparametrically, allowing an arbitrary nonlinear structure and nesting the lin-
ear structure as a special case. Additionally, we include a global constant β0, a random vector
of control variables ωi,t ∈ �dw that includes lagged dependent variable yi,t−1, and fixed effects
α0i capturing unobserved country heterogeneity. Here, we adopt a fixed effect model assuming
E(α0i|xt , zt ,ωi,t) �= 0, thus capturing arbitrary correlation between the fixed effects and all other
variables in the model.

It is clear that both xt and zt in (1) influence the conditional mean of yi,t . Building on our earlier
discussion, we extend the roles of both xt and zt to include their effects on conditional variance
and skewness, which are essential for capturing their joint influence on the entire conditional
distribution of yi,t . To achieve this, we specify a skew normal (SN) distribution for the error term
in (1), i.e.,

ei,t ∼ SN(ξt , σ (xt , zt), λ(xt , zt)) , (2)
where SN(ξt , σt , λt) denotes a SN distribution characterized by three time-varying functions: the
location function ξt indicates the central point around which ei,t is distributed either symmetri-
cally or asymmetrically; the scale function σt ≡ σ (xt , zt)> 0 measures the degree of dispersion
in a usual sense under a normal distribution; and the shape function λt ≡ λ(xt , zt) controls for
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Macroeconomic Dynamics 5

the degree of skewness, where λt > 0 (λt < 0) introduces right (left) skew in the density of ei,t . If
λt = 0 for a given t, the SN distribution degenerates into a normal distributionN(ξt , σt). Thus, we
set ξt = 0 in our study to “anchor” the location of the SN, ensuring that when there is no skew-
ness, ei,t ∼N(0, σt) satisfies a conventional normality assumption in MLE regression models. In
this way, a zero location point facilitates a straightforward comparison of tail differences between
the SN and conventional normal distributions.

Compared to alternative skewed distributions, we adopt the SN distribution for four main rea-
sons. First, it has well-established theoretical properties (Azzalini and Capitanio (2003)), allowing
its higher moments to be easily specified and estimated as parametric functions of variables of
interest. Second, its favorable characteristics have motivated numerous recent studies aimed at
characterizing asymmetric distributions in various contexts (e.g., Wang and Ho (2010); Huang
and Luo (2020b); Badunenko and Henderson (2024)). Third, for given parameters ξt and σt , a
nonzero λt smoothly transitions the distribution of ei,t from normal (with symmetric tails) to
skew normal (with asymmetric tails), effectively highlighting the roles of x and z in the tail regions
compared to a normal distribution as a benchmark. Finally, it can be skewed in either the right
or left direction, accommodating the unknown effects of variables on tails. This feature provides
greater flexibility than other asymmetric distributions, such as exponential, Gamma, chi-squared,
log-normal, Weibull, and logistic distributions, which have a fixed tail direction.

In general, both conditional variance and skewness in (2) are unknown functions of xt and
zt . To increase the flexibility of functional form, it would be appealing to allow σ (·) and λ(·)
to take a smooth coefficient structure as in the conditional mean of (1) (see, e.g., Henderson,
2007) for nonparametric estimation of higher conditional moments of inefficiency in the pro-
duction function). However, modeling both σ (·) and λ(·) nonparametrically leads to individual
identification problems.3 In our study, xt and zt are likely to influence both variance and skew-
ness of the distribution, so the separation of which is important for our empirical investigation.
Following the conventions in the literature, we consider the parametric structures in σ (·) and λ(·)
in (2) as

σ (xt , zt ; γ0σ )= exp (c0σ + xtγσ (zt)), λ(xt , zt ; γ0λ)= c0λ + xtγλ(zt), (3)

where for j ∈ {σ , λ}, γj(zt)=∑Kj
k=0 z

k
t γ0j,k measures the marginal effect of xt through a Kj-th

degree polynomial function of zt known up to a finite vector γ0j = (c0j, γ0j,0, γ0j,1, . . . , γ0j,Kj).
Compared to the nonparametric smooth coefficient β(zt) in the conditional mean function,
the coefficient of xt in the conditional variance and skewness functions is modified through
parametric coefficient functions γj(zt). The structure in (3) allows all parameters γ0j to be
uniquely identified while imposing the non-negativity constraint in σ (·) through an exponential
structure.

Our models (1)–(2) are appropriate for meeting our empirical goal. Through smooth coef-
ficient structures (either nonparametric in (1) or parametric in (2)), we allow xt to affect the
conditionalmean, variance, and skewness function of the distribution of yi,t in a nonlinear fashion.
The SN distribution of (2) deviates from the conventional normality assumption, facilitating our
investigation of skewness change driven by xt and zt through modeling their higher conditional
moments. Furthermore, the parametric structure of all moment functions provides a convenient
approach for connecting the higher moments of ei,t to variables of interest, and offer a viable
parametric alternative to distribution-free quantile regression (Mikkel and Thomas (2020)).

2.2. A two-step estimator
Ourmodel structure in (1) does not follow its conventional form in the literature (see, for instance,
Li et al. (2002)), since the nonlinear component only takes common variables (xt , zt), and the
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linear component takes both time and individual variant variables (wi,t) including a lagged depen-
dent variable. Furthermore, as n gets large, the fixed effect αi needs to be properly handled to avoid
the incidental parameter problem. We propose estimating αi using dummy variables, which is
consistent provided that T → ∞ is faster than n to offer sufficient information in time dimension
for each fixed effect (Wooldridge (2010)).

Let α0 = [α01, . . . , α0n]�. For identification purposes, we impose the normalization condition∑n
i=1 αi = 0 (Su andUllah (2006); Sun et al. (2009)). This forms a (n− 1)× 1 dummy vector di,−1,

which takes a value of −1 for i= 1, and 1 in the ith element and zero otherwise for i= 2, . . . , n.
Consequently, we replace α0 with α0,−1 removing the first element of α, so the first fixed effect
can be recovered through a01 = −∑n

i=2 α0i. As in (3), we define γ0 = (γ �
0λ, γ

�
0σ ) of dimension

Kλ +Kσ + 4 as the true coefficients that govern the distribution of ei,t . Let θ0 = (δ�
0 , γ

�
0 ) of

dimension dw +Kλ +Kσ + 4 combines all the parameters except fixed effects and β0, and define
ϑ0 = (θ�

0 , α�
0,−1). In the following, we propose a two-step estimator of ϑ0 and (β0, β(·)).

2.2.1. Step 1: estimating ϑ0 through pseudo-MLE
In the first step, we estimate ϑ0 using a pseudo-MLE. As mentioned above, the unknown coeffi-
cient function β(·) in (1) impedes direct implementation of conventional MLE for ϑ0. To proceed,
we perform a within-transformation with respect to individuals to wipe out common components
β0 and xtβ(zt) as

yi,t − 1
n

n∑
i=1

yi,t =
(

ωi,t − 1
n

n∑
i=1

ωi,t

)�
δ + d�

i,−1α0,−1 + ei,t − 1
n

n∑
i=1

ei,t , (4)

where the term n−1∑n
i=1 di,−1 is a zero vector by our construction above.4 Given our specifica-

tions in (3),

E(ei,t)≡ μ(xt , zt ; γ0)=
√

2
π

σ (xt , zt ; γ0)λ(xt , zt ; γ0)/
√
1+ λ(xt , zt ; γ0)2, (5)

which is known up to γ0. Let ζ̃i,t = ζi,t − ζ̄t be a shorthand notation for within-transformed vari-
able ζi,t with ζ̄t = 1

n
∑n

i=1 ζi,t . Since ēi,t in (4) is unobserved, we assume identical and independent
distribution (i.i.d,) over individuals, and replace ēi,t with its probability limit μ(xt , zt ; γ0) in (5)
by the weak law of large number. This implies that the SN distribution of ei,t is governed by ϑ0.
Define � as a compact parameter space whose interior points contain the true coefficient vector
ϑ0. For any ϑ ∈ �, we define pseudo residual e∗i,t(ϑ)= ỹi,t − ω̃�

i,tδ − d�
i,−1α−1 + μ(xt , zt ; γ ) and

construct the following conditional pseudo-likelihood function5

l(e∗i,t(ϑ); xt , zt)=
2

σ (xt , zt ; γσ )
ϕ

( e∗i,t(ϑ)
σ (xt , zt ; γσ )

)
�

(
λ(xt , zt ; γλ) e∗i,t(ϑ)

σ (xt , zt ; γσ )

)
.

Notice that we capture the possible serial correlation in ei,t by incorporating the lagged dependent
variable in linear componentωi,t . Assuming ei,t is i.i.d. conditioning on (ω�

i,t , xt , zt , αi), we estimate
ϑ0 by a pseudo-MLE ϑ̂ from

ϑ̂ = argmax
ϑ∈�

1
nT

n∑
i=1

T∑
t=1

ln l(e∗i,t(ϑ)|xt , zt). (7)

Remark 1. Estimation of ϑ0 in our skewed model crucially depends on the correct specifica-
tion of β(·), which is typically unknown in practice. We circumvent this issue by removing β(·)
through within-transformation in (4), thus making our pseudo-MLE estimator ϑ̂ in (7) invariant
to unknown functional form of β(·). This improves the likelihood estimator in conventional models
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Macroeconomic Dynamics 7

placing restrictive structure assumptions, such as linearity, on β(·), potentially subject to inconsis-
tent estimation upon model misspecification. Instead of applying the transformation in (4), one may
alternatively construct our pseudo-response e∗i,t(ϑ) by Taylor expanding β(·) and apply local MLE
(Kumbhakar et al. (2007)); however, such expansion introduces additional local parameters with
slower nonparametric convergence rate, generating non-negligible impact on the asymptotic distri-
bution of ϑ̂ . In contrast, the approximation error in our first step is minimum because ēt converges
to μ(xt , zt ; γ0) at a faster parametric rate of 1/

√
n.

Remark 2. The consistency of our proposed estimator ϑ̂ relies on the correct assumption that e
follows a SN distribution. If the true distribution is asymmetric but differs from the SN distribu-
tion in tail thickness, such as skew t (ST) or asymmetric Laplace (AL) distribution, then ϑ̂ becomes
inconsistent as the conditional likelihood function l(e∗i,t(θ); xt , zt) is misspecified.6 Consequently,
μt ≡ μ(xt , zt ; γ0) in (5) changes to μ̃t , the expectation under ST or AL distribution. Let Dt = μ̃t − μt
be the difference of the two mean functions. In Appendix 2.2, we show that the smaller Dt approaches
zero, the closer the skewness between the SN and ST (AL) distribution, leading to consistent
(improved) estimation for ϑ̂ . If the distribution of e exhibits heavier tails than the SN, we may
capture unconditional large kurtosis through a conditional time-varying scale function, following
similar arguments in Bai et al. (2003) and Carnero et al. (2004). Alternatively, we can implement
ϑ̂ under an ST or AL, as outlined in Appendix 2.2. Inspired by Henderson (2007), it would also
be desirable to avoid distributional assumptions by exploring nonparametric conditional moment
functions in a semiparametric dynamic panel model. We leave this topic for future research.

2.2.2. Step 2: estimating (β0, β(z)) through profile local linear estimator
In the second step, with the preceding estimates ϑ̂ = (θ̂�, α̂�−1), we estimate β0 and β(·) using
a profile local linear estimator. From (1), suppose that we knew Yi,t(ϑ0)= yi,t − ω�

i,tδ0 − α0i −
μ(xt , zt ; γ0). Averaging both sides of the equation yields the following regression model

Ȳt(θ0)= β0 + xtβ(zt)+ ε̄t , (8)
where Ȳt(θ0)= ȳt − ω̄�

t δ0 − μ(xt , zt ; γ0) depends only on θ0 = (δ�
0 , γ

�
0 ) due to our identifica-

tion condition
∑n

i=1 α0i = 0, and ε̄t = ēt − μ(xt , zt ; γ0) satisfies E(ε̄t|xt , zt)= 0. Assuming β(·) in
(8) is sufficiently smooth with its compact support Z ⊂ �. For any z ∈Z , a first-order Taylor
expansion on β(zt) around z yields xtβ(zt)≈Xt(z)�B(z), where Xt(z)= [xt , xt(zt − z)]� and
B(z)= [β(z), β(1)(z)]� with β(1)(z)≡ ∂β(zt)/∂zt|zt=z. Given that β0 is a global constant while
β(·) is locally approximated, β0 and β(·) converge at different rates and thus need to be estimated
separately. If β0 was known, we apply a local linear estimator B̂(z)≡ B̂(z; θ0, β0) from

B̂(z; θ0, β0)= argmin
B(z)∈�2

T∑
t=1

[
Ȳt(θ0)− β0 −Xt(z)�B(z)

]2
k
(
zt − z
b

)
, (9)

where k(v) is a symmetric kernel weighting function with bounded moments, and b→ 0 as
T → ∞ is a selected bandwidth controlling the distance between zt and z (see Remark (3) below).
Define T × 1 vectors Ȳ(θ)= [Ȳ1(θ), . . . , ȲT(θ)]� and ε̄ = [ε̄1, . . . , ε̄T]�, and a T × 2 matrix
X (z)= [X1(z), . . . ,XT(z)]� whose t-th row is given byXt(z)�. The analytical solution for B(z) in
(9) is

B̂(z; θ0, β0)=
[
X (z)�K(z)X (z)

]−1
X (z)�K(z)

(Ȳ(θ0)− β0
)
, (10)

where K(z)= diag
{
k
( zt−z

b
)}T

t=1 is a T × T diagonal matrix.
In practice, B(z; θ0, β0) in (10) is infeasible because both θ0 and β0 are unknown. To esti-

mate β0, observe first that (8) can be expressed in vector form as Ȳ(θ0)= ιTβ0 + βT(x, z)+ ε̄,
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8 Y.-F. Huang et al.

where ιT is a T × 1 vector of ones and βT(x, z)= [x1β(z1), . . . , xTβ(zT)]�. Using estimates in (7),
we replace θ0 in Ȳ(θ0) with θ̂ to construct Ȳt(θ̂)= ȳt − ω̄�

t δ̂ − μ(xt , zt ; γ̂ ).7 We implement (10)
with z ∈ {z1, . . . , zT} to approximate βT(x, z) by ST(Ȳ(θ̂)− ιTβ0), where ST is a T × T smoothing
matrix from

ST =

⎛
⎜⎜⎜⎜⎝

[x1, 0]�
(X (z1)�K(z1)X (z1)

)−1 X (z1)�K(z1)
...

[xT , 0]�
(X (zT)�K(zT)X (zT)

)−1 X (zT)�K(zT)

⎞
⎟⎟⎟⎟⎠ .

By re-arranging terms, we obtain the profile estimator for β0 as

β̂0 =
[
ι�T (IT − ST)�(IT − ST)ιT

]−1
ι�T (IT − ST)�(IT − ST)Ȳ(θ̂). (11)

Finally, we obtain coefficient function estimates by updating (10) as β̂(z)= [1, 0]�B̂(z; θ̂ , β̂0).

Remark 3. The intuition behind our second step estimator β̂(·) through (9) is as follows. β̂(·) is
designated as a “local linear” estimator due to the methodology of “locally” fitting a “linear” line
through neighboring observations around each evaluation point z ∈Z . The nearness is controlled
by the bandwidth b in the kernel function k

( zt−z
b
)
, which assigns higher (lower) weight for points

closer to (further away from) z. Consequently, an increased (decreased) bandwidth b results in a
more (less) uniform weight. As T → ∞, we require b→ 0 at a proper rate to ensure the local linear
estimator converges in mean square error.

3. Asymptotic characterization
Under mild conditions given in Appendix 1.1, Theorem 1 shows the consistency and asymptotic
normality of our first-step pseudo-MLE estimator θ̂ .

Theorem 1.

(a) Under assumptions A1–A3, as n, T → ∞ and n/T → 0,

θ̂
p→ θ0.

(b) Under assumptions A1–A4, as n, T → ∞ and n/T → 0,
√
nT
(
θ̂ − θ0

) d→N
(
0,H−1

θ0
�θ0H−1

θ0

)
,

where Hθ0 is a nonsingular negative definite matrix, and �θ0 is a positive definite matrix,
both defined in A4(4).

Remark 4. Theorem 1(a) indicates that using μ(xt , zt ; γ ) to approximate ēt results in an error that
is asymptotically negligible for the distribution of ϑ̂ . Theorem 1(b) shows that, as n→ ∞, the inci-
dental parameter problem due to α̂i does not generate an impact on the asymptotic distribution of
θ̂ . This result holds under the condition n/T → 0, implying a faster growth rate of T compared to n.
In Appendix 1.2, we show that α̂i converges at a slower rate of 1/

√
T compared to θ̂ at a faster rate

of 1/
√
nT. Furthermore, α̂i induces a nonzero bias of order 1/T in θ̂ due to noncentered skew error

ei,t and lagged dependent variable in ωi,t .8 In line with Arellano et al. (2007), this induced bias does
not vanish when T is either fixed or grows at the same rate with n, i.e., n/T → ρ �= 0. To eliminate
the bias, we set ρ = 0 by letting T grows faster than n, which is satisfied by our empirical dataset in
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Macroeconomic Dynamics 9

which T is larger than n by more than threefold. See numerical evidence through simulation studies
in Appendix 2.1.9

Given the results in Theorem 1(b) and the additional conditions in Appendix 1.1, Theorem 2
demonstrates the asymptotic normality of β̂0 and β̂(z).

Theorem 2. Under assumptions A1, A2, B1–B3, as T → ∞ and b→ 0,
(a) For finite constants �β0 > 0 and �β0 > 0 defined in B2(5),

√
T
(
β̂0 − β0

) d→N
(
0,�−2

β0
�β0

)
.

(b) For finite constant B(z)= 1
2β

(2)(z)
∫
k(v)v2dv with β(2)(z)≡ ∂2β(zt)/∂z2t |zt = z,

√
Tb
(
β̂(z)− β(z)− b2B(z)(1+ op(1)

) d→N (
0,�β

)
,

where �β = σ 2
ε̄ (z)

∫
k2(v)dv/E(x2t |z)fz(z)> 0 is a finite constant with σ 2

ε̄ (z)≡ E(ε̄2t |zt) and fz(z) is
the marginal density of z.

Remark 5. Given a finite sample, a well-known trade-off in nonparametric estimation literature is
that a larger (smaller) bandwidth b reduces (increases) variance but increases (reduces) bias of the
function estimator β̂(z). Thus, a proper selection of b is crucial for the performance of β̂(z) in appli-
cation studies. Our assumption B3(1) regulates the rate at which b→ 0, allowing us to implement
a data-driven cross-validation (CV) bandwidth bcv optimal for minimization of finite sample mean
squared error (MSE), i.e.,

bcv = argmin
b>0

1
T

T∑
t=1

[
Ȳt(θ̂)− β̂0 − xtβ̂−t(zt)

]2
, (12)

where β̂−t(zt)= [1, 0]�B̂−t(zt) is the leave-one-out estimator in (9), with B̂−t(zt)≡ B̂t the mini-
mizer (with respect to Bt) of

∑T
τ �=t=1

[Ȳτ (θ0)− β0 −Xτ (zt)�Bt
]2 k ( zτ −zt

b
)
using all sample points

except at t.Notably, the local linear estimator nests the linear (OLS) estimator as a special case, since
if β(zt) is truly linear, β̂(z) fits a global linear line by treating the whole sample as neighbor points of
z. In this case, bcv in (12) is sufficiently large (Li and Racine (2007)). If one is further interested in the
derivative of β(z) (i.e., β(1)(z)), the optimal bandwidth for derivative estimation should be upward
adjusted by minimizing the MSE of β̂(1)(z) based on lower and higher order of local polynomial
estimators (Henderson et al., 2015). See the appealing finite sample performance of β̂0 and β̂(z) in
Appendix 2.

4. Empirical application: nonlinear spillover effect of US financial uncertainty
Credit conditions have been documented to vary with financial uncertainty (Caldara et al. (2016);
Caggiano et al. (2021)). The intuition is that following a surge of domestic financial uncertainty,
domestic credit conditions tighten due to investors’ risk aversion (Bloom (2014); Gilchrist et al.
(2014)) or banks’ monitoring costs (Christiano et al. (2014); Lhuissier and Tripier (2021)). As a
result, financial uncertainty in the US can extend beyond its borders, causing credit conditions
to become more stringent both within the country and abroad. Cesa-Bianchi and Sokol (2022)
find that tightening US credit conditions can be rapidly transmitted internationally, leading to
tightening credit conditions and slowed economic activity in foreign economies. This indicates
the existence of an “international credit channel.”

Because financial investment decisions are usually made in a forward-looking manner,
investors’ requested compensation and banks’ requested premium for heightened uncertainty
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10 Y.-F. Huang et al.

may depend on associated economic expectations. For example, facing heightened financial
uncertainty, pessimistic investors tend to seek safe assets and avoid risky investment projects more
than optimistic investors, asking for higher compensation, which can lead to an additional domes-
tic tightening of credit conditions and then worldwide through international credit channels. In
other words, the degree to which domestic and international credit conditions tightenmay depend
on how financial uncertainty is perceived, from pessimistic or optimistic perspectives.

In this study, we investigate the nonlinear effects of US financial uncertainty on the distribu-
tion of global output growth, focusing not only on changes in the mean but also in dispersion
and skewness. Additionally, we explore whether these effects are altered by different perspectives
among investors regarding US financial uncertainty.

4.1. Measuring US financial uncertainty
Weproxy US financial uncertainty using US stock volatility based onmonthly S&P 500 Index. The
conventional monthly return on stock price (pt) is usually defined as the log difference between
the closing prices in two consecutive months, i.e.,

rmkt
t = ln pt − ln pt−1, (13)

where t = 1, . . . , 12 is a monthly index. In addition, we follow Huang and Luo (2020b) and look
at two alternative measures of returns:

rmax
t = ln

(
max

n=1,...,Nt
{pn,t}

)
− ln pt−1, (14)

rmin
t = ln

(
min

n=1,...,Nt
{pn,t}

)
− ln pt−1, (15)

where pn,t is the stock price in nth of the total Nt trading days in month t, and pt−1 is the closing
price from the previous month. Huang and Luo (2020b) interpret the maximal (minimum) return
as the return that the luckiest (unluckiest) investor earns in this month among those who hold a
market portfolio at the end of last month. Due to the forward-looking nature of the stock market,
investors’ assessments should reflect their outlooks of the economy, so the maximum (minimum)
price within themonthmay represent themarket’s most optimistic (pessimistic) assessment of the
stock values within this month. As a result, different perspectives on future economic conditions
may be extracted from these two returns.

We model the three return series in equations (13)–(15) with a simple time-varying parameter
model that deviates from the symmetric distributional assumption, i.e.,

rj,t = μ
j
t + σ

j
tηj,t , ηj,t ∼ SN

(
0, 1, αj) , (16)

where j ∈ {mkt,max,min}. It can be seen that rj,t in (16) follows an SN distribution with a location
parameter μ

j
t , a scale parameter σ

j
t , and a shape parameter αj. We do not adopt the conventional

normality assumption because maximum- and minimum-return series are not symmetrically
distributed: the sample skewness of the maximum (minimum) return is 1.48 (−2.78), and the
null hypothesis of skewness being zero is strongly rejected. It should be noted that a SN dis-
tribution exhibits thin tails (Azzalini and Capitanio (2003)), which may seem counter-intuitive
because financial return series rjt are typically characterized by heavy tails. However, model (16) is
a stochastic volatility model, specifying a conditional scale function σ

j
t varying over time. A con-

ditional scale function, as shown in Bai et al. (2003) and Carnero et al. (2004), would effectively
capture a large unconditional kurtosis of the overall distribution.10
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Macroeconomic Dynamics 11

Figure 1. The estimates of stock volatility from 1995Q1 to 2019Q4.
Note: This figure displays time series plots for three measures of stock return volatility σmktt (solid line), σmaxt (line with o),
and σmint (line with+) during 1995Q1 and 2019Q4.

We assume that the mean return, μj
t , and the log-volatility, ln (σ j

t )2, follow driftless random
walk processes. Estimation is conducted using the BayesianMCMC approach proposed by Huang
and Luo (2020b) with minor adjustments.11

Figure 1 shows the market volatility (Market Vol., solid line), good volatility (Good Vol., line
with o), and bad volatility (Bad Vol., line with +) from 1995Q1 to 2019Q4. Huang and Luo
(2020b) find that σmax

t (σmin
t ) signals acceleration (deceleration) in economic activity, motivat-

ing the moniker “good (bad) volatility.” Although the three measures substantially comove, there
exist apparent unsynchronized movements across the three measures. σmin

t rises sharply in almost
every recession, but this is not the case for σmax

t . It is also notable that themarked elevation in σmax
t

in the mid-1990s coincides with the late-1990s expansion, arguably driven by technical progress
in the information technology sector.

We use σmkt
t as a measure of US stock volatility and an empirical proxy for US financial uncer-

tainty, i.e., xt ≡ σmkt
t . As noted previously, if αmkt = 0, σmkt

t is exactly the standard deviation
(volatility) of the market return from a model with symmetric normal error. In an asymmetric
case where αmkt �= 0, σmkt

t is proportional to the volatility of the market return, which depends on
skewness αmkt .

4.2. Effect modifier of US financial uncertainty
Based on the estimated good volatility σ̂max

t and bad volatility σ̂min
t , we define the effect modifier

of US financial uncertainty as

zt = σ̂max
t

σ̂max
t + σ̂min

t
. (17)

To empirically test the linkage between zt and investor’s economic expectations, we consider the
following regression

f (h)t = a+ zt−1b1 + Ft−1b2 + et , (18)
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12 Y.-F. Huang et al.

Table 1. Survey forecasts and good/Bad volatility

SPF data MSC data

�RGDP(2)t �RGDP(4)t �CRPOF(2)t �CRPOF(4)t BUSS(h)t CBUSS(h)t

zt−1 4.93 3.11 26.22 29.33 65.74 36.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1.81) (1.45) (15.22) (8.80) (13.09) (7.26)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NAIt−1 1.32 0.10 3.55 −2.35 8.52 0.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.23) (0.24) (1.46) (0.90) (1.26) (0.70)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NFCIt−1 −0.71 −0.18 −4.02 −0.67 −13.17 −2.09
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.23) (0.26) (1.29) (1.54) (1.22) (0.68)

Note: Results are obtained from the model f (h)t = a+ b1zt−1 + b2Ft−1 + et , where f
(h)
t is the survey data of interest with h≥ 1

the number of quarters ahead. For SPF data, RGDP is the growth of the real gross domestic product, and CRPOF is the growth
of nominal corporate profits after tax. For MFC data, BUSS(h) is an index from business conditions expected during the next h
quarters; CBUSS(h) is an index from expected change in business conditions in the next h quarters. Standards errors are in the
parentheses and Newey-West adjusted. The sample period of SPF data is 1971Q1 to 2019Q1. The sample period of MSC data is
1978m1 to 2019m4.

where f (h)t is the survey expectation made at time t about the future value of a variable at time
t + h, for h≥ 1. Ft includes information on the fundamentals of the economy upon which indi-
viduals’ expectations are based.We use the Chicago Fed’s National Activity Index and theNational
Financial Conditions Index to represent economic fundamentals.12 We use two different surveys
that ask about expectations for future economic conditions: the Survey of Professional Forecasters
(SPF) and the University of Michigan Survey of Consumers (MSC).13

Table 1 reports the ordinary least squares (OLS) estimation results, indicating that z is clearly
associated with nonfundamental optimism/pessimism conditioning on economic fundamentals.
Using SPF data, the z has a significant and positive relationship with professional forecasters’
predictions of real GDP and corporate profit in two and four quarters. Notably, in the four-quarter
forecast horizon, the economic fundamentals do not seem to be a significant factor in professional
forecasters’ predictions, but z still has a significant coefficient. A similar pattern is revealed using
the MSC data. Regardless of the fundamentals, consumers expect better business conditions with
a higher z.

4.3. Empirical evidence for nonlinear spillover effects of US financial uncertainty
4.3.1. Data
We collect quarterly panel data consisting of 30 countries from 1995Q1 to 2019Q4. Our depen-
dent variable is denoted as yi,t+1, which is the annualized average growth rate of the real GDP of
country i between quarters t and t + 1. Our country-specific regressors ωi,t include the growth
rate of real GDP, consumer price indexes (CPI), and credit-to-GDP ratio. Quarterly data for real
GDP growth and CPI to measure inflation (quarter-to-quarter percent change) are available from
OECD Statistics. Nonfinancial credit-to-GDP ratios are from the BIS, where nonfinancial credit
is the sum of household and business credit.

4.3.2. Model specification tests
The flexibility of ourmodel in (1) leads to hypothesis testing for two components. The first compo-
nent involves examining the potentially nonlinear relationship between US financial uncertainty
and the SN error distribution. The degree of nonlinearity is determined by the order Kj of polyno-
mial functions in (3). When Kj is larger, the scale and shape functions exhibit greater nonlinearity.
However, this increased flexibility comes at the cost of over-parametrization, which can result in
imprecise estimates. This trade-off is important because estimating higher moments, particularly
skewness, is notoriously challenging. The second component pertains to assessing the extent to
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Table 2. The first step pseudo-maximum likelihood estimates

(1) (2) (3) (4)

ĉσ 0.66 0.91 0.66 0.85
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.08) (0.05) (0.08) (0.07)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂σ ,0 0.68 0.45 0.50 0.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.10) (0.06) (0.06) (0.02)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂σ ,1 −2.71 −1.96 −1.92 -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.48) (0.31) (0.31)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂σ ,2 3.39 2.57 2.54 -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.56) (0.37) (0.37)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ĉλ −0.22 −1.17 −0.18 −0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.27) (0.09) (0.26) (0.25)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂λ,0 −1.76 - −0.25 −0.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.90) (0.06) (0.06)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂λ,1 6.52 - - -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.84)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̂λ,2 −6.86 - - -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4.11)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log-likelihood value −7490.94 −7501.17 −7492.78 −7532.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Likelihood ratio (LR) N.A. 20.46 3.68 79.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: Each column shows the MLE estimates of model (1) with different number of Kj in σ (xt , zt ; γ0σ )= exp (c0σ + xtγσ (zt )),
λ(xt , zt ; γ0λ)= c0λ + xtγλ(zt ), where γj(zt )=∑Kj

k=0 z
kγ0j,k for j ∈ {σ , λ} Standard errors are in parentheses. The last row

reports the likelihood ratio statistic compared with the full model (1).

which the nonparametric coefficient function β(·) in (1) deviates from a simple linear function.
If the deviation is insignificant, employing a parsimonious parametric form, such as β(zt)= ztβ1,
can improve estimation efficiency.

Regarding the first component, we rely on the likelihood ratio (LR) test to determine the appro-
priate degree of polynomial in (3). Table 2 reports the first-step estimates with different degrees
of polynomial, from which we set Kσ =Kλ = 2. The first column shows the estimates of a model
with γj(zt) as a quadratic function for j ∈ {σ , λ}. The parameter estimates in the shape function
λ(·) are insignificant at the 5% level, indicating that the full model may be over-parameterized.
In the second column, we estimate a restricted model in which x appears only in scale function
σ (·). However, the LR test suggests that excluding x entirely from λ(·) is also not supported by
the data. Note that the estimates reported in column (1) indicate that γλ,0 is significant at the 5%
level, suggesting that xmight enters λ(·) linearly. Column (3) presents the estimates of the model
with zt being excluded in λ(·). Comparing columns (1) and (3) suggests that the null hypoth-
esis H0 : γλ,1 = γλ,2 = 0 cannot be rejected. Column (4) reports the estimates of the model in
which x enters the scale and shape functions linearly. Comparing columns (3) and (4) suggests
that H0:γσ ,1 = γσ ,2 = 0 can be rejected at the 1% level. In summary, our LR tests indicate that
the error distribution does change with x, and zt is an important effect modifier in σ (·) rather
than λ(·). Thus, we use the model specified in column (3) (i.e., Kσ = 2 and Kλ = 0) in subsequent
analysis.

Regarding the second component, we follow Li et al. (2002) to base a null hypothesis on a
correct parametric coefficient function, i.e.,H0 : Pr (β(z)= zβ1)= 1 for some β1 against the alter-
native H1 : Pr (β(z)= zβ1)< 1 for any β1. We test the null through a nonparametric test statistic
T = ∫

[β̂(z)− zβ̂1]2dz, where β̂1 is the OLS estimate underH0 (β̂(·). Following our LR test results
above, we set (Kσ ,Kλ)= (2, 0) to specify moment functions in (2). Using a bootstrapped version
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Figure 2. Percentiles of the conditional distribution of future output growth.
Note: This figure plots the estimated 5th (line with o), 50th (line), and 95th (line with +) percentile of the conditional
distribution of one-quarter-ahead real GDP growth.

of T with 399 repetitions, we reject the null based on an empirical p-value of 0.0000. Thus, the
parametric structure β(z)= zβ1 is insufficient to capture the underlying channels through which
x and z impact the location of future output growth distribution. In the following, we focus on the
estimation results in (1) with nonparametric coefficient function β(z).

4.3.3. Conditional distribution of future output growth
Taking into account all estimates of parameters, model (1) can be used to characterize the con-
ditional distribution of future production for each country. We are particularly interested in the
comovements of output growth in these countries; thus, we deliberately exclude the constant and
country-specific factors to highlight the role of US financial uncertainty. To be exact, we examine
the conditional distribution of ỹi,t+1 = yi,t+1 − β0 − α0i − ω�

i,tδ0, denoted as f (ỹi,t+1|xt , zt), which
follows the following SN distribution

ỹi,t+1 ∼ SN(xtβ(zt), σ (xt , zt ; γ0σ ), λ(xt , zt ; γ0λ)). (19)

We focus on the lower 5th percentile, middle 50th percentile, and upper 90th percentile to effec-
tively depict the conditional distribution. Since these percentiles do not have an analytical form,
we approximate them numerically.

Figure 2 indicates that all three representative percentiles vary substantially with US financial
uncertainty, and the upper percentile is less volatile than the lower one.14 Themost notable change
in the conditional distribution occurred during the global financial crisis, revealing that both the
upper and lower percentiles shift to the left in 2008Q4, making double-digit output loss very pos-
sible. The upper percentile turned negative, suggesting that a deteriorating economic outcome is
very likely approaching.

To better understand how US financial uncertainty affects f (ỹi,t+1|xt , zt), we illustrate the rela-
tionship between US financial uncertainty and three estimated conditional moment functions
from (19) in Figure 3. As shown in the upper panel, we observe that the estimated location
function xtβ̂(zt) plays a dominant role in the conditional distribution of future output growth.
Furthermore, the US financial uncertainty has significantly effects on higher moments of the
distribution: an increase in the uncertainty is associated with a rise in estimated scale function
σ (xt , zt ; γ̂σ ) (middle panel) but with a decline in the estimated shape function λ(xt , zt ; γ̂λ) (lower
panel). The comovement of the estimated scale and shape functions implies that, following a rise
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Figure 3. The evolution of estimated location, scale, and shape function during 1995Q1 to 2019Q4.
Note: This figure plots quarterly time index against the estimated conditional mean (location) function xtβ̂(zt) in the top
panel; conditional scale function σ (xt , zt ; γ̂σ ) in the middle panel; and conditional shape function λ(xt , zt ; γ̂λ) in the bottom
panel. Each estimated function is displayed along with its corresponding 95% confidence interval (dash line).

in US financial uncertainty, the left tail of the error distribution will shift more to the left, while
the right tail could either widen or narrow, leading to greater volatility in the left tail compared to
the right.

However, an intriguing aspect of Figure 2 is that the increasing financial uncertainty in the
US does not always lead to worse economic outcomes. In the late 1990s, the US stock market
experienced an episode of prolonged turbulence as market volatility gradually rose from 2.8 in
1996Q2 to 5.8 in 1998Q4. Similarly, before the global financial crisis, the US financial uncertainty
increased from 4.8 in 2008Q1 to 7.6 in 2008Q4. In both episodes, US financial uncertainty rise by
about three units; however, in the late 1990s, the conditional distribution of future output growth
does not shift as it does in 2008 when the US economy was severely impaired, as witnessed in the
global financial crisis. This finding implies that the association between US financial uncertainty
and the conditional distribution of future output growth varies over time.

4.3.4. Nonlinear spillover effect
Figure 4 plots the estimated marginal effect of US financial uncertainty on location function β̂(zt),
scale function γ̂σ (zt)= γ̂σ ,0 + ztγ̂σ ,1 + z2t γ̂σ ,2, and shape function γ̂λ(zt)= γ̂λ,0 against zt . When
zt is below approximately 0.31 so that the bad volatility is much greater than the good volatility,
an increase in US financial uncertainty lowers the location function (i.e., β̂(zt)< 0), rises the scale
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Figure 4. The estimated marginal effect of US financial uncertainty on the location, scale, and shape function.
Note: This figure plots estimated marginal effect (i.e., coefficient functions) of US financial uncertainty on conditional mean
function β̂(zt) in the left panel; conditional scale function γ̂σ (zt)= γ̂σ ,0 + zt γ̂σ ,1 + z2t γ̂σ ,2 in the middle panel; and condi-
tional shape function γ̂λ(zt)= γ̂λ,0 in the right panel. Each estimated function is displayed along with its corresponding 95%
confidence interval (dash line).

function (i.e., γ̂σ (zt)> 0), and decreases the shape function (i.e., γ̂λ(zt)< 0). Therefore, the con-
ditional distribution of future output growth would shift and skew to the left, accompanied by
greater dispersion. In contrast, when zt is high so that the bad volatility is smaller than the good
volatility, the location of the distribution moves rightward with increased US financial uncer-
tainty, the scale function inflates more than when zt is low, and the shape function continues to
decline.

We proceed by investigating the marginal effects of US financial uncertainty on the conditional
distribution of future output growth, which takes a complicated structure, viz.,

∂Qj(μt , σt , λt)
∂xt

= ∂Qj

∂μt

∂μt
∂xt

+ ∂Qj

∂σt

∂σt
∂xt

+ ∂Qj

∂λt

∂λt
∂xt

, (20)

where Qj is the jth percentile of f (ỹi,t+1|xt , zt) in (19) with short-hand notations μt ≡ xtβ(zt),
σt ≡ σ (xt , zt ; γ0σ ), and λt ≡ λ(xt , zt ; γ0λ). Since xt enters all moment functions with its coefficient
changing with zt , its marginal impact on Qj is nonlinear. We can easily derive

∂μt
∂xt

= β(zt),
∂σt
∂xt

= exp [cσ + xtγσ (zt)]γσ (zt),
∂λt
∂xt

= γλ. (21)

However, partial effects of each moment function on Qj (e.g., ∂Qj/∂μt) cannot be computed ana-
lytically. We overcome this problem by numerically approximating these partial derivatives, and
using estimates for (21) to compute the marginal effects of xt according to (20).

Figure 5 presents the estimated ∂Qj/∂xt on three representative percentiles for j= 5, 50, and 95
given different levels of zt .15 When zt is equal to its mean level (about 0.47), a rise in US financial
uncertainty only stretches the tails slightly and does not affect significantly the median of the
conditional distribution. Therefore, the influence of US financial uncertainty is minor, as small
changes in the unlikely outcomes are negligible.

However, US financial uncertainty has significant and strikingly different effects when zt
approaches its extremes. When zt reaches its minimum (i.e., when bad volatility is at its highest), a
unit increase in US financial uncertainty pulls all percentiles downward and significantly reduces
the 5th, 50th, and 95th percentiles of the distribution by 2.03%, 1.34%, and 0.97%, respectively.
Consequently, bad economic outcomes are more likely to occur. When zt reaches its maximum
(i.e., with the greatest good volatility), one unit increase in US financial uncertainty significantly
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Figure 5. Themarginal effect of US financial uncertainty on the percentiles of the conditional distribution.
Note: This figure plots the estimated nonlinear marginal effect of US financial uncertainty on the 5th (black solid line), 50th

(dark gray line), and 95th (light gray line) percentile of the conditional distribution of one-quarter-ahead annual real GDP
growth. Each estimatedmarginal effect is plotted against the effectmodifier z alongwith a (shaded) 95%confidence interval.
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Figure 6. Historical conditional distribution of the future output growth.
Note: This figure plots the distribution of estimated one-quarter-ahead real GDP growth (Y) in 1996Q2 and 1998Q1 (left
panel), and 2008Q1 and 2008Q4 (right panel).

reduces the 5th percentile by 3.20% but increases the 95th percentile by 1.47%, implying a signifi-
cant rise in the dispersion of the conditional distribution. The median decreases only by 0.5%. In
this circumstance, future economic outcomes are even more uncertain and unpredictable.

Finally, we compare the two periods of increasedUS financial uncertainty in our sample period,
which includes the late 1990s (left panel) and the 2008–2009 global financial crisis (right panel).
In both episodes, US financial uncertainty rises by about three units, but good and bad volatility
respond very differently. In the late 1990s, both good and bad volatility are alike (i.e., zt ≈ 0.5). In
contrast, the great financial crisis features the highest bad volatility and zt reaches its lowest value
of 0.26. Figure 6 shows that as US financial uncertainty rises in the late 1990s, the dispersion of
f (ỹi,t+1|xt , zt) increases without a noticeable change in mode. However, at the height of the global
financial crisis, the conditional distribution shifts to the left and becomes more dispersed, leading
to only a minimal chance of positive growth.16
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5. Conclusion
In this paper, we propose a semiparametric dynamic skewed panel model to examine the effects
of commonmacroeconomic regressors on the conditional distribution of an interested dependent
variable. The model allows the conditional mean, variance, and skewness of the distribution to be
functions of the common regressors. Within each conditional moment function, there are poten-
tial effect modifiers that alter the effect of common regressors in a nonlinear and time-varying
manner. We model the time-varying effect through either nonparametric or flexible parametric
coefficient functions, effectively alleviating the risk of model misspecification. Additionally, our
model incorporates a dynamic structure and unobserved individual fixed effects. We propose a
consistent two-step estimator, characterize its asymptotic properties, and demonstrate its finite
sample performance through simulation studies.

Employing a panel dataset of 30 countries over nearly three decades, we examine whether US
financial uncertainty affects the distribution of future global output growth. Our findings indi-
cate that the effect is significant, time-varying, and dependent on an effect modifier reflecting
market participants’ expectations. During periods of pessimism, heightened financial uncertainty
originating from the United States causes a leftward shift and skew in the distribution, increases
dispersion, and likely leads to a contraction in global output. In contrast, during times of opti-
mism, it stretches the distribution, resulting in greater uncertainty about future global output
growth.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S1365100524000762.
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Notes
1 Huang and Luo (2020b) find that good (bad) volatility is associated with better (worse) expectations about future economic
situations, such as output and profit growth, and business conditions. However, they do not control economic fundamentals.
2 The proposed model can be readily extended to a general case in which both xt and zt are multivariate. In this study, we
present a focusedmodel with univariate xt and zt to align with our empirical investigation and avoid overly complex notation.
3 See Appendix 1 for further details on this.
4 Although β0 is eliminated through the within transformation, simply including all (n) dummy variables is still infeasi-
ble because the transformed matrix containing n dummies is of low column rank. Therefore, we continue to apply our
normalization condition on αi.
5 The density function of a SN random variable ei,t with location μ, variance σ , and skewness λ is defined as

f (ei,t ;μ, σ , λ)= 2φ(e∗i,t)�(− λe∗i,t), (6)
where e∗i,t = (ei,t − μ)/σ , and φ(·) and �(·) are the PDF and CDF of the standard normal distribution, respectively. For a
thorough discussion on the SN distribution, see Azzalini (1985). For its recent extension under production model, see Wang
and Ho (2010) and Badunenko and Henderson (2024).
6 We are indebted to a referee for this point.
7 Notice that n−1∑n

i=1 α̂i = 0 is satisfied due to our construction of di,−1 for identification.
8 The relatively slow convergence rate of αi is expected because only T observations are available for estimating α0i in contrast
to nT observations for θ0. However, the estimation error in α̂i does not carry over to our second step estimator because α̂i is
averaged out through across-country averaging in (4).
9 In cases where ρ �= 0, bias corrections need to be employed in a similar way as in regression models with symmetric error
(Hahn and Newey, 2004; Hahn and Moon, 2006; Arellano et al., 2007).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100524000762
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 07:21:49, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S1365100524000762
https://doi.org/10.1017/S1365100524000762
https://doi.org/10.1017/S1365100524000762
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100524000762
https://www.cambridge.org/core


Macroeconomic Dynamics 19

10 We have also estimated the return series using a skew t distribution (featuring fat tails), and found that the results closely
resemble our current estimates under the SN distribution. The results are available upon request.
11 See Appendix 3 for details.
12 We also use an alternative data set consisting of the three most basic variables in New Keynesian models: output growth
(Y), inflation (π), and interest rate (R). The results of the second data set are very similar and available upon request.
13 The SPF covers professional forecasters in a variety of institutions, and we focus on median forecasts of the growth of real
GDP and after-tax corporate profits over 6 and 12 months. The MSC covers households and is designed to be representative
of the US population, and we choose several interesting responses from consumers concerning future business conditions:
“Business Conditions Expected During the Next Year” and “Expected Change in Business Conditions in a Year.”
14 The standard deviation of the 5th, 50th, and 95th percentiles are 2.26, 1.64, and 1.78, respectively.
15 All partial derivatives are evaluated at the sample mean of xt (US financial uncertainty).
16 We also investigate the robustness of our main findings by replacing the skew normal distribution with a skew t
distribution in either model (1) or (16). The results are quite similar and available upon request.
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