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We develop a new approach to numerical modelling of water-wave evolution based
on the Zakharov integrodifferential equation and outline its areas of application.

The Zakharov equation is known to follow from the exact equations of potential
water waves by the symmetry-preserving truncation at a certain order in wave
steepness. This equation, being formulated in terms of nonlinear normal variables, has
long been recognized as an indispensable tool for theoretical analysis of surface wave
dynamics. However, its potential as the basis for the numerical modelling of wave
evolution has not been adequately explored. We partly fill this gap by presenting
a new algorithm for the numerical simulation of the evolution of surface waves,
based on the Hamiltonian form of the Zakharov equation taking account of quintet
interactions. Time integration is performed either by a symplectic scheme, devised as
a canonical transformation of a given order on a timestep, or by the conventional
Runge–Kutta algorithm. In the latter case, non-conservative effects, small enough to
preserve the Hamiltonian structure of the equation to the required order, can be
taken into account. The bulky coefficients of the equation are computed only once,
by a preprocessing routine, and stored in a convenient way in order to make the
subsequent operations vectorized.

The advantages of the present method over conventional numerical models are
most apparent when the triplet interactions are not important. Then, due to the
removal of non-resonant interactions by means of a canonical transformation, there
are incomparably fewer interactions to consider and the integration can be carried out
on the slow time scale (O(ε2), where ε is a small parameter characterizing wave slope),
leading to a substantial gain in computational efficiency. For instance, a simulation of
the long-term evolution of 103 normal modes requires only moderate computational
resources; a corresponding simulation in physical space would involve millions of
degrees of freedom and much smaller integration timestep.

A number of examples aimed at problems of independent physical interest, where
the use of other existing methods would have been difficult or impossible, illustrates
various aspects of the implementation of the approach. The specific problems include
establishing the range of validity of the deterministic description of water wave
evolution, the emergence of sporadic horseshoe patterns on the water surface, and the
study of the coupled evolution of a steep wave and low-intensity broad-band noise.
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1. Introduction

Numerical simulations are increasingly used for the study of nonlinear free-surface
motions. The great variety of problems and assumptions relevant to the physical
properties involved require various numerical methods with corresponding underlying
approximations.

Early efforts in this direction were centred around attempts at the direct integration
of the primitive equations of motion, with the use of boundary-discretization or
volume-discretization methods (see e.g. the recent review by Tsai & Yue 1996). In the
context of potential flow, considerable success has been achieved by employing the
mixed Eulerian–Lagrangian (MEL) formulation of the boundary integral equation
approach (e.g. Longuet-Higgins & Cokelet 1976), the Cauchy-type integral algorithm
(Dold & Peregrine 1986; Dold 1992), or conformal mapping techniques (e.g. Chalikov
& Sheinin 1996, 1998). This line proved to be extremely fruitful in studying the
evolution of steep waves up to overturning. However, in general these methods
are applicable to two-dimensional waves only, which is very restrictive. While the
MEL approach can be extended to three dimensions, the overwhelming demand of
computational resources all but prohibited, up to the very recent time, its application
to problems dealing with three-dimensional aspects of water wave evolution (Tsai &
Yue 1996).

Meanwhile, many problems of the evolution of surface waves allow one to assume
the relative smallness of wave steepness, so that its explicit utilization as a small
parameter appears to be appropriate. This gave rise to a number of numerical
methods based on the perturbation expansion. Development of high-order spectral
methods (Dommermuth & Yue 1987; West et al. 1987) was particularly fruitful and
has led to numerous applications.

These numerical studies brought substantial progress in the understanding of the
evolution of waves of small and moderate steepness. At the same time, these methods
contain a number of limitations significantly restricting the range of their application.

All the existing methods for the three-dimensional simulation of water-wave evol-
ution are based on the representation of physical variables (say, the surface elevation
and potential on the surface) as Fourier series in horizontal directions and the
subsequent use of fast Fourier transforms (FFT) to quickly project between the
wavenumber and physical space at each step of the algorithm. In two horizontal
dimensions, this technique gives satisfactory efficiency for a moderate number of
degrees of freedom. However, the numerical implementation of FFT prescribes the
use of rectangular grids in the initial discretization. In order to get the sufficiently high
resolution necessary to capture the narrow resonance zones in most physical problems,
a large and refined rectangular grid is often needed, leading to excessive requirements
for computational resources. In particular, a study of statistical properties of wave
turbulence through its direct simulation is so far impossible. More importantly, a
rectangular (and, more generally, any integer) grid leads to undesirable artefacts,
which can significantly influence the nonlinear evolution (Kartashova 1992), limiting
the applicability of the results.

On the other hand, the computations, performed both in physical and Fourier
space, crucially depend on the assumption that the water surface is single-valued.
Provided that the initial steepness exceeds a certain (rather low) threshold, evolution
in a generic case leads to local steepening and eventual overturning of waves, which
means the failure of the numerical simulation at a certain time. It is important to note
that for many applications, these local breaking effects play a relatively minor physical
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Numerical modelling of water-wave evolution 343

role and can be ignored; however, the formal breakdown of the algorithm in this
case necessitates a certain ad hoc smoothing technique that destroys the mathematical
consistency of the algorithm and constitutes a separate computational problem.
Note also that at present the existing algorithms for water-wave simulation employ
conventional methods of integration in time, ignoring the Hamiltonian nature of the
underlying theory (although the necessity of more appropriate symplectic methods of
integration for water-wave problems has long been recognized (West 1992)).

Finally, the existing weakly nonlinear numerical methods, even if they are capable of
reproducing specific physical phenomena, often do not reveal the physical mechanisms
responsible for their emergence. In other words, the procedure of a numerical solution
remains to a large extent a ‘black box’ from the physical viewpoint.

Meanwhile, there exists a different approach to the formulation of weakly nonlinear
surface wave dynamics. In 1968, V. E. Zakharov (see Zakharov 1968), considering
resonant interactions within a continuous spectrum of gravity waves, derived, as an
intermediate step, the reduced integrodifferential equation for the slow evolution of a
weakly nonlinear wave field. This equation, subsequently derived in more systematic
manner and extended to the next order by Krasitskii (1994), governs the evolution of
the complex function b(k, t), k being a wavevector and t time, obtained from physical
variables by means of a canonical transformation that eliminates the non-resonant
interaction terms. As is well-known, for gravity waves on the surface of deep water
only quartet and higher-order resonant interactions are permitted. The Hamiltonian,
being a functional of b(k, t), is diagonalized by this canonical transformation to the
first nonlinear order in wave steepness, so that the function b(k, t) serves as a nonlinear
normal variable for the Hamiltonian. From another viewpoint, this transformation can
be interpreted as the elimination of all slave modes of the system, reformulating the
problem in terms of master modes only. In this way, the equation obtained represents
a substantial simplification with respect to the original hydrodynamic equations,
since with the elimination of non-resonant interactions much of the complexity is
transferred into constant coefficients (that have very cumbersome algebraic form).

Although the idea of a numerical scheme based on the Zakharov equation seems
natural (Craik 1985), attempts at its implementation were rare, in contrast to the
increasing popularity of spectral methods. In fact, it is fair to say that the Zakharov
equation, nonetheless commonly considered as an important theoretical model of
water-wave evolution, has been overlooked as a basis for the numerical investigation,
being often regarded as not suitable for this purpose.

Nevertheless, the Zakharov equation has important advantages from the point of
view of numerics. First, due to the fact that there are incomparably fewer interactions
to consider, an algorithm based on the reduced equation will be, in theory, superior in
its efficiency to any other (non-reduced) model. We note that this enormous advantage
of the Zakharov approach has never been explicitly utilized, to our knowledge, for
numerical simulation of water-wave problems.

Second, the Zakharov equation has the Hamiltonian form and from the symmetries
perspective is equivalent to the exact equations of potential motions of the free
surface (provided that the necessary number of terms is taken into account), so that
the construction of a symplectic algorithm is, in principle, straightforward.

Third, since all the computations are to be carried out in the Fourier-transformed
space, there is no need to perform the fast Fourier transform at each timestep, as
one has to do with spectral methods. This allows us to avoid the restriction to
whole-number grids.

Fourth, in contrast to all conventional methods, the Zakharov equation operates in
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terms of nonlinear normal variables on the slow time scale (O(ε2), where ε is a small
parameter characterizing wave slopes), widely separating the time scales and leading
to substantial gain in computational efficiency.

Finally, the algorithm based on the Zakharov equation is physically the most
transparent: one can easily identify the resonantly interacting modes, which are the
true normal modes of the nonlinear problem to O(ε2). It enables one to separate
the role of various physical factors (for instance, it is possible to consider separately
the four-wave and five-wave interactions).

As much of the complexity of the original hydrodynamic equations is absorbed
into cumbersome constant coefficients of the Zakharov equation, the calculation of
these coefficients becomes the most time-consuming part of the computation. Thus, it
is reasonable to construct an algorithm where these coefficients would be computed
only once, before the application of the numerical time integration scheme, and stored
in a convenient way in order to make the subsequent operations vectorized.

However, an implementation of the algorithm based on the reduced equation meets
a number of substantial difficulties. In the past few decades, there have been only a
few attempts to use it for numerical analysis of gravity wave evolution.

The first attempt at the numerical solution of the Zakharov equation was carried
out in Caponi, Saffman & Yuen (1982) (see also Yuen & Lake 1982). Seven two-
dimensional modes were taken, in the form of a carrier k = (k0, 0) and three pairs
of initially small sidebands km = (k0 ± m∆k, 0), m = 1, 2, 3, and the evolution in time
was obtained for a number of values of initial carrier steepness. These authors
noted that the Zakharov equation, as it was proposed in Zakharov (1968), was non-
Hamiltonian, despite the Hamiltonian nature of the underlying hydrodynamic theory,
so that the conservation of energy and other integrals in the computations was not
ensured. The Hamiltonian version of the equation was proposed by Zakharov in
his comments to the Russian edition of Yuen & Lake (1982). Later, the numerical
solution to the analogous problem was given in Krasitskii & Kalmykov (1993), where
the first comparison of Hamiltonian and non-Hamiltonian versions of the equation
was provided.

In the original form of Zakharov (1968), the equation included only terms of
O(ε3), while the higher-order processes were omitted. However, it is well-known that
taking account of five-wave interactions, of O(ε4), can be essential for certain water-
wave problems. The extension of the non-Hamiltonian form of the equation to the
next order was carried out by Stiassnie & Shemer (1984). These authors (Shemer &
Stiassnie 1985; Stiassnie & Shemer 1987) also considered numerically several examples
of the evolution for the carrier, one pair of two-dimensional sidebands k1,2 = (k0±p, 0)
and a pair of three-dimensional ones k3,4 = ( 3

2
k0,±q), where the values of p and q

were taken to ensure the maximal initial growth of the satellites. Recently, Shemer et
al. (2001) performed a number of computations of the spatial version of the Zakharov
equation, comparing results with the experiments on wave evolution along a tank.

Krasitskii (1994) rederived the Zakharov equation in a systematic way up to O(ε4)
within the framework of Hamiltonian theory, using the canonical transformation
technique. This particular form of the equation is used in the present paper as the
basis for the numerical algorithm of water-wave evolution.

For the purpose of computations, the Zakharov equation must be properly dis-
cretized. In particular, initial conditions for physical-space variables must be con-
verted, by means of the canonical transformation and discretization in k-space, to
a finite set of complex amplitudes b(kj), j = 0, . . . , N that represent the initial con-
ditions for the subsequent integration in time. It is important to note that the set
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of N wavevectors under consideration must constitute an isolated system of four-
and five-wave resonances (Shrira, Badulin & Kharif 1996), in the sense that there
are no harmonics that are in four- or five-wave resonance with N given ones. Since
any initial set of, say, M vectors can be complemented up to an isolated set of N
modes by adding N −M extra modes with zero initial amplitudes, there is no loss
of generality. A wave field with a single non-zero amplitude b(k0) corresponds to a
Stokes wave, rather than a single Fourier harmonic in physical space; two non-zero
amplitudes describe a short-crested wave, i.e. two oblique waves and a number of
combination harmonics, etc. In this way, a modest number of kj in the transformed
space corresponds to a large number of physical-space harmonics. Say, for O(ε3)
of the canonical transformation, N = O(102) is approximately equivalent to O(106)
harmonics. In other words, numerical simulation within the framework of the Zak-
harov equation gives an enormous advantage from the viewpoint of computational
resources required.

On the other hand, it is important to note that the procedure of discretization in
the transformed space is not unique. In fact, the absence of limitations on the position
of points kj leads to the problem of finding objective methods of discretization. Any
solution of the Zakharov equation corresponds, to within the accuracy of the given
order of the canonical transformation, to a certain evolution of the wave field in
terms of physical variables. It is essential that, at least in the conservative case, any
exact solution of the discretized Zakharov equation coincides with the exact solution
of the continuous equation with the same discrete initial conditions. However, the
effect of discretization on the evolution of a given continuous amplitude spectrum is
much more complicated than in the case of conventional physical-space models. The
problem of the proper discretization of the Zakharov equation was recognized as an
important challenge only very recently (Rasmussen & Stiassnie 1999), and so far little
progress has been achieved. This problem remains a subject for further investigation.
Fortunately, there are important physical situations where the choice of discretization
is either evident for physical reasons (e.g. the case of a few well-pronounced interacting
waves) or does not matter (e.g. the case of large wave ensembles where only statistical
properties are important).

The present paper concentrates on the numerical study of the Zakharov equation
itself, for problems where the initial conditions are formulated in terms of the
complex amplitudes b(kj). The paper is organized as follows. In the introductory § 2,
the Hamiltonian formulation of surface wave dynamics is presented, and several most
widely used computational techniques are briefly reviewed. Then, the derivation of
the Zakharov equation is outlined, following the line of Krasitskii (1994), separately
for capillary–gravity waves (taking account of three-wave processes), and for purely
gravity waves (with four- and five-wave interactions included).

In § 3, the computational strategy for the Zakharov equation is discussed. First,
an efficient Runge–Kutta-type algorithm is presented, for the general case of arbi-
trary kj , with the value of the timestep chosen to ensure the conservation of the
known integrals with high accuracy (throughout the paper, the minimal accuracy
of eight significant digits in the Hamiltonian is assumed). On the other hand, non-
conservative effects, sufficiently small to preserve the Hamiltonian structure to the
desired order, can also be included into the scheme. Then, a symplectic procedure for
the integration of the purely conservative version of the equation is presented and
discussed.

The rest of the paper provides examples of the application of the present method to
three different problems. Each of these examples represents a problem of independent
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scientific interest, and more complete results on some of them are published elsewhere.
In the present article we provide a brief summary of the results in order to demon-
strate the advantages of the proposed algorithm and, in particular, its application
to problems where the use of other existing methods would have been difficult or
impossible.

In § 4.1, in order to outline the inherent limitations of any numerical modelling of
water waves and to address the problem of the predictability of the evolution of gravity
and gravity–capillary waves, we consider the long-term evolution of wave systems with
different (from relatively small to moderately large) numbers of interacting modes.
The present method, being a very economical tool for the numerical simulations
of such systems with the necessary control of accuracy, is also very convenient
for studying the relative role of different types of interactions, due to its physical
transparency.

In § 4.2, a simple model of three-dimensional sporadic crescent-shaped patterns on
water surface is discussed, on the basis of the study of the evolution of a steep gravity
wave embedded into wide-spectrum primordial noise and subjected to small non-
conservative effects. In this example, the use of a conventional numerical technique
would meet substantial difficulties in resolving the very narrow resonance zones and
carrying out simulations for a large number of modes over O(103) wave periods. By
employing the proposed algorithm, the primary mechanism of the emergence of these
patterns is revealed at little numerical cost.

In § 4.3, in order to demonstrate the performance of the present method for
systems with a very large number of degrees of freedom, we consider the evol-
ution of a single gravity wave with a large number of random satellites, thus
modelling the evolution of a relatively steep wave immersed in a small-amplitude
broad-band noise field. The simulation of the long-term evolution with the num-
ber of satellites taken (up to 103) requires only moderate computational resources;
at the same time, this corresponds to millions of degrees of freedom in physical
space.

2. Basic equations and the numerical model
2.1. The Hamiltonian formulation

We consider potential gravity waves on the free surface of a homogeneous, incom-
pressible and inviscid fluid of infinite depth. The fluid is considered to be laterally
unbounded, and the effects of atmospheric pressure are neglected. In terms of the
coordinate system with origin located at the undisturbed water surface, with the
vertical axis z oriented upward and the horizontal axes x, y, the governing equations
have the form

∇2ϕ = 0,

ϕt + gz + 1
2
(∇ϕ)2 +

p

ρ
= 0,

 −∞ < z 6 ζ(x, t),

lim
z→−∞ϕz = 0,

ζt + ∇xϕ · ∇xζ − ϕz = 0,

p = −γρ∇x[∇xζ(1 + (∇xζ)2)−1/2],

}
z = ζ(x, t),


(2.1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z), ∇x = (∂/∂x, ∂/∂y), ϕ(x, z, t) is the velocity potential, γ
is the coefficient of surface tension, p denotes pressure, ρ is the constant density of
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the fluid, z = ζ(x, t) specifies the free surface, x = (x, y) is a horizontal vector, t is
time. It is convenient to define the surface potential

ψ(x, t) = ϕ(x, ζ(x, t), t),

then, as shown by Zakharov (1968), system (2.1) can be reformulated in terms of
Hamilton equations in canonically conjugated variables ζ and ψ:

∂ζ(x, t)

∂t
=

δH

δψ(x, t)
,

∂ψ(x, t)

∂t
= − δH

δζ(x, t)
, (2.2)

where δ denotes the operator of functional differentiation, and the Hamiltonian H is
the total energy of the system, namely

H =
1

2

∫ ζ

−∞

[
(∇ϕ)2 +

(
∂ϕ

∂z

)2
]

dz dx+
1

2
g

∫
ζ2 dx+γ

∫
[
√

1 + (∇xζ)2−1] dx, (2.3)

where integration with respect to x over the entire horizontal plane is implied. In the
domain −∞ < z < ζ(x, t) for all x, the Laplace equation

∇2ϕ = 0 (2.4)

must be satisfied; at the same time, the kinematic and dynamic boundary conditions
are included in (2.2), (2.3). In order to get a closed system in ψ, ζ, one has to calculate
H in terms of these variables, that is, to solve the boundary value problem

∇2ϕ = 0,

ϕ(x, ζ) = ψ,

ϕz(x, z)→ 0 as z → −∞.
An approximate solution can be obtained by performing the expansion in the par-
ameter kζ in the Hamiltonian, assuming that kζ = O(ε) � 1. Making the Fourier
transformation

ζ(x) =
1

2π

∫
ζ(k) eikx dk, ψ(x) =

1

2π

∫
ψ(k) eikx dk, (2.5)

where integration is performed over the entire k-plane, k = (kx, ky), and introducing
complex variables a(k),

ζ(k) = M(k)[a(k) + a∗(−k)], ψ(k) = −iN(k)[a(k)− a∗(−k)], (2.6)

M(k) =

[
q(k)

2ω(k)

]1/2

, N(k) =

[
ω(k)

2q(k)

]1/2

,

equations (2.2) take the form

i
∂a(k)

∂t
=

δH

δa∗(k)
, (2.7)

where an asterisk means the complex conjugate, ω(k) = [τ(k)q(k)]1/2 is the linear
dispersion relation, τ(k) = g + γ|k|2; for the case of infinite depth considered here,
q(k) = |k| = k. Without the loss of generality, it is convenient to set the gravitational
acceleration to unity, with the corresponding change of length scale. In (2.7), the
Hamiltonian H is a functional of a(k), a∗(k), and, in the form of a series in powers
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of these variables, in the generic case can be written as

H =

∫
ω0a

∗
0a0 dk0

+

∫
U

(1)
012(a

∗
0a1a2 + a0a

∗
1a
∗
2)δ0−1−2 dk012

+
1

3

∫
U

(3)
012(a

∗
0a
∗
1a
∗
2 + a0a1a2)δ0+1+2 dk012

+

∫
V

(1)
0123(a

∗
0a1a2a3 + a0a

∗
1a
∗
2a
∗
3)δ0−1−2−3 dk0123

+
1

2

∫
V

(2)
0123a

∗
0a
∗
1a2a3δ0+1−2−3 dk0123

+
1

4

∫
V

(4)
0123(a

∗
0a
∗
1a
∗
2a
∗
3 + a0a1a2a3)δ0+1+2+3 dk0123

+

∫
W

(1)
01234(a

∗
0a1a2a3a4 + a0a

∗
1a
∗
2a
∗
3a
∗
4)δ0−1−2−3−4 dk01234

+
1

2

∫
W

(2)
01234(a

∗
0a
∗
1a2a3a4 + a0a1a

∗
2a
∗
3a
∗
4)δ0+1−2−3−4 dk01234

+
1

5

∫
W

(5)
01234(a

∗
0a
∗
1a
∗
2a
∗
3a
∗
4 + a0a1a2a3a4)δ0+1+2+3+4 dk01234

+ · · · . (2.8)

The real interaction coefficients U(n), V (n), W (n) are known functions of the wave-
numbers kj and frequencies ωj , given in Krasitskii (1994). Following that article, we
use here the compact notation, replacing the arguments kj of all the corresponding
functions by the subscripts j, assigning the subscript zero to k. Thus, aj = a(kj , t),

ωj = ω(kj), U
(n)
012 = U(n)(k0, k1, k2), δ0−1−2 = δ(k0 − k1 − k2), etc. In the same way,

dk0 = dk, dk012 = dk0 dk1 dk2, etc., and the integration is again performed over the
entire k-plane.

The Hamiltonian (2.8), by virtue of (2.7), gives the evolution equation, up to the
fifth order in ε, in the form

i
∂a0

∂t
=
δH

δa∗0
= ω0a0 +

∫
U

(1)
012a1a2δ0−1−2 dk12

+2

∫
U

(1)
210a

∗
1a2δ0+1−2 dk12 +

∫
U

(3)
012a

∗
1a
∗
2δ0+1+2 dk12

+

∫
V

(1)
0123a1a2a3δ0−1−2−3 dk123 +

∫
V

(2)
0123a

∗
1a2a3δ0+1−2−3 dk123

+3

∫
V

(1)
3210a

∗
1a
∗
2a3δ0+1+2−3 dk123 +

∫
V

(4)
0123a

∗
1a
∗
2a
∗
3δ0+1+2+3 dk123

+

∫
W

(1)
01234a1a2a3a4δ0−1−2−3−4 dk1234 +

∫
W

(2)
01234a

∗
1a2a3a4δ0+1−2−3−4 dk1234

+
3

2

∫
W

(2)
43210a

∗
1a
∗
2a3a4δ0+1+2−3−4 dk1234

+4

∫
W

(1)
43210a

∗
1a
∗
2a
∗
3a4δ0+1+2+3−4 dk1234

+

∫
W

(5)
01234a

∗
1a
∗
2a
∗
3a
∗
4δ0+1+2+3+4 dk1234. (2.9)
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2.2. Numerical applications

The above mathematical formulation obtained by the expansion in powers of ε gives
a number of possibilities for constructing an algorithm for the numerical simulations
of a wave field.

The most straightforward and powerful approach would be the direct integration
of the primitive equations, in the form (2.1) or similar, for example using the mixed
Eulerian–Lagrangian scheme of Longuet-Higgins & Cokelet (1976). This fully non-
linear approach allows the study of waves of any steepness up to overturning.
However, if only small and moderate steepnesses are to be considered, in many cases
the approach turns out to be too expensive in computational resources, since in this
case the explicit use of the steepness as a small parameter generally reduces the
computational costs by about 1–2 orders of magnitude.

One of the most popular methods for the simulation of the evolution of three-
dimensional wave fields is built on the basis of the boundary conditions on the free
surface, obtained from (2.1) with the surface tension effects omitted and expressed in
terms of ψ, ζ:

ζt + ∇xψ · ∇xζ − (1 + ∇xζ · ∇xζ)ϕz(x, ζ, t) = 0,
ψt + ζ + 1

2
∇xψ · ∇xψ − 1

2
(1 + ∇xζ · ∇xζ)ϕ2

z(x, ζ, t) = 0.

}
(2.10)

Equations (2.10) must be complemented by Laplace’s equation (2.4). The velocity
potential ϕ(x, z, t) is expanded in powers of ε as

ϕ(x, z, t) =

M∑
m=1

ϕm(x, z, t),

where ϕm is of the order of εm, up to a certain number M that is the specified
order of approximation in nonlinearity (usually, M = O(10)). Then, each ϕm is
further expanded in a Taylor series about z = 0, obtaining by substitution into (2.10)
a sequence of Dirichlet problems for ϕm(x, z) with simple boundary geometry. For
numerical purposes, ϕm is expressed by a double discrete Fourier transform, obtaining
a large number of free Fourier modes, N = O(103), in each horizontal dimension. The
resulting equations are solved using a pseudospectral method, using a fast Fourier
transform to efficiently project between the wavenumber and physical spaces. This
high-order spectral method is known in two variants (Dommermuth & Yue 1987; West
et al. 1987), differing in the method of calculating the vertical velocity and in the
way of removing the aliasing error. The former scheme appears to be more popular;
however, as noted by Tanaka (2001), the latter is preferable since it fully retains the
Hamiltonian structure of the original system.

Another numerical method is based on the evolution equation written in terms of
the functions ζ(k) and ψ(k), again up to O(ε5), as

∂ζ0

∂t
− q0ψ0 = 2

∫
E

(3)
−0,1,2ψ1ζ2δ0−1−2 dk12 + 2

∫
E

(4)
−0,1,2,3ψ1ζ2ζ3δ0−1−2−3 dk123

+2

∫
E

(5)
−0,1,2,3,4ψ1ζ2ζ3ζ4δ0−1−2−3−4 dk1234, (2.11a)

∂ψ0

∂t
+ τ0ζ0 = −

∫
E

(3)
1,2,−0ψ1ψ2δ0−1−2 dk12 − 2

∫
E

(4)
1,2,3,−0ψ1ψ2ζ3δ0−1−2−3 dk123

−4

∫
Π

(4)
1,2,3,−0ζ1ζ2ζ3δ0−1−2−3 dk123

−3

∫
E

(5)
1,2,3,4,−0ψ1ψ2ζ3ζ4δ0−1−2−3−4 dk1234, (2.11b)
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where the coefficients E(j), Π (4) are given in Krasitskii (1994). The specific form of the
coefficients E(j) allows the very efficient integration of system (2.11) rewritten in an
operator form, using highly vectorized FFT routines (Pushkarev & Zakharov 1997).
This may be termed the convolution method, since its high efficiency is based on the
economical use of FFT for pseudo-spectral calculation of integrals of convolution
type.

The main difficulty of both approaches is the nonlinear numerical instability,
manifested in the growth of short-wave perturbations and usually attributed to small-
scale breaking, observed in direct simulation (e.g. Longuet-Higgins & Cokelet 1976;
Dold 1992). To suppress this instability, the use of non-physical damping terms is
often required (Pushkarev & Zakharov 1997; Dold 1992).

An attempt to build a numerical scheme on the basis of the non-reduced Zakharov
equation (2.9) was made by Tanaka (2001), who, however, noted the inefficiency of
this algorithm due to the complexity of (2.9) and difficulties with its vectorization.

2.3. The Zakharov equation

Instead of direct application of the power of a vector computer to the Hamiltonian
equations governing the physical-space variables, we will adopt a different strategy
based on the specific properties of gravity and gravity–capillary surface waves. It
is well-known (Zakharov 1968; Krasitskii 1994) that the numerous terms in the
expansion (2.8) do not have equal significance; in each order m, only the processes
satisfying the resonant conditions

m∑
j=1

sjkj = 0,

m∑
j=1

sjωj = 0, (2.12)

where sj = ±1, are essential for the dynamics. If some combinations of signs sj are
prohibited by the dispersion relation, the corresponding terms can be removed from
the expansion (2.8) by a special canonical transformation, allowing one to obtain
the so-called ‘effective Hamiltonian’ (Zakharov 1968). For instance, for the capillary–
gravity waves, in the leading order m = 3 the signs sj cannot all be equal. For the
case of gravity waves, considering the expansion up to ε5, only two resonant processes
are permitted:

k1 + k2 − k3 − k4 = 0, ω1 + ω2 − ω3 − ω4 = 0, (2.13)

and

k1 + k2 − k3 − k4 − k5 = 0, ω1 + ω2 − ω3 − ω4 − ω5 = 0. (2.14)

Consider a canonical transformation from a(k) to a new variable b(k), postulating it
in the form of integral-power series (Zakharov 1968; Krasitskii 1994)

a0 = b0 +

∫
A

(1)
012b1b2δ0−1−2 dk12

+

∫
A

(2)
012b

∗
1b2δ0+1−2 dk12 +

∫
A

(3)
012b

∗
1b
∗
2δ0+1+2 dk12

+

∫
B

(1)
0123b1b2b3δ0−1−2−3 dk123 +

∫
B

(2)
0123b

∗
1b2b3δ0+1−2−3 dk123

+

∫
B

(3)
0123b

∗
1b
∗
2b3δ0+1+2−3 dk123 +

∫
B

(4)
0123b

∗
1b
∗
2b
∗
3δ0+1+2+3 dk123
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+

∫
C

(1)
01234b1b2b3b4δ0−1−2−3−4 dk1234 +

∫
C

(2)
01234b

∗
1b2b3b4δ0+1−2−3−4 dk1234

+

∫
C

(3)
01234b

∗
1b
∗
2b3b4δ0+1+2−3−4 dk1234 +

∫
C

(4)
01234b

∗
1b
∗
2b
∗
3b4δ0+1+2+3−4 dk1234

+

∫
C

(5)
01234b

∗
1b
∗
2b
∗
3b
∗
4δ0+1+2+3+4 dk1234 + · · · . (2.15)

The Hamiltonian system (2.7) under the transformation (2.15) has the form

i
∂b(k)

∂t
=

δH̃

δb∗(k)
, (2.16)

where H̃ = H̃(b, b∗). The specific choice of the coefficients A(n), B(n), C (n) enables
reduction of the Hamiltonian, in other words, the essential simplification of H̃ , which
now contains resonant terms only. For the case of capillary–gravity waves, this
reduction leads to the Hamiltonian of the form, to the leading order

H̃ =

∫
ω0b0b

∗
0 dk0 +

∫
U

(1)
012(b

∗
0b1b2 + b0b

∗
1b
∗
2)δ0−1−2 dk12 (2.17)

and the corresponding three-wave reduced equation is

i
∂b0

∂t
= ω0b0 +

∫
U

(1)
012b1b2δ0−1−2 dk12 + 2

∫
U

(1)
210b

∗
1b2δ0+1−2 dk12. (2.18)

Comparing (2.18) to the leading order of (2.9), one can see a certain simplification for
capillary–gravity waves. Meanwhile, for purely gravity waves, the gain is much more
dramatic. The reduced Hamiltonian has the form

H̃ =

∫
ω0b0b

∗
0 dk0 +

1

2

∫
Ṽ

(2)
0123b

∗
0b
∗
1b2b3δ0+1−2−3 dk123

+
1

2

∫
W̃

(2)
01234(b

∗
0b
∗
1b2b3b4 + b0b1b

∗
2b
∗
3b
∗
4)δ0+1−2−3−4 dk1234 + . . . , (2.19)

so that the corresponding reduced equation, to the fifth order in ε, is

i
∂b0

∂t
= ω0b0 +

∫
Ṽ

(2)
0123b

∗
1b2b3δ0+1−2−3 dk123

+

∫
W̃

(2)
01234b

∗
1b2b3b4δ0+1−2−3−4 dk1234

+
3

2

∫
W̃

(2)
43210b

∗
1b
∗
2b3b4δ0+1+2−3−4 dk1234 (2.20)

Equation (2.20), being a generalization of the original result of Zakharov (1968) to
the next order in ε, is known as the five-wave Zakharov equation for gravity waves.
The interaction coefficients of the reduced equation Ṽ (2) and W̃ (2) are known in terms
of U(n), V (2) and U(n), V (n), W (2) respectively. The corresponding expressions can be
found in Krasitskii (1994); earlier publications (e.g. Crawford, Saffman & Yuen 1980;
Caponi et al. 1982; Yuen & Lake 1982) contain various misprints, due to the length
of the formulas. It should also be noted that the original Zakharov derivation, as well
as a number of subsequent reformulations, dealt with the non-Hamiltonian version
of the equation. The Hamiltonian version was first suggested by Zakharov in his
comments to the Russian edition of Yuen & Lake (1982) and later systematically
rederived by Krasitskii (1994).
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Formulas (2.18), (2.20) represent the two forms of the Zakharov integrodifferential
equation. It is convenient to eliminate the rapid change of phase by change of variable:

b(k, t) = B(k, t) exp[−iω(k)t],

obtaining respectively

i
∂B0

∂t
=

∫
U

(1)
012B1B2 ei(ω0−ω1−ω2)t δ0−1−2 dk12

+2

∫
U

(1)
210B

∗
1B2 ei(ω0+ω1−ω2)t δ0+1−2 dk12. (2.21)

and

i
∂B0

∂t
=

∫
Ṽ

(2)
0123B

∗
1B2B3 ei(ω0+ω1−ω2−ω3)t δ0+1−2−3 dk123

+

∫
W̃

(2)
01234B

∗
1B2B3B4 ei(ω0+ω1−ω2−ω3−ω4)t δ0+1−2−3−4 dk1234

+
3

2

∫
W̃

(2)
43210B

∗
1B
∗
2B3B4 ei(ω0+ω1+ω2−ω3−ω4)t δ0+1+2−3−4 dk1234. (2.22)

The Zakharov equation in the form (2.21), (2.22) provides the basis for our subsequent
numerical simulations. The specific ways performing wave modelling within the
framework of this approach are discussed in the next section.

3. Numerical integration of the Zakharov equation
3.1. Explicit Runge–Kutta algorithm

In this section, we will discuss the procedure for the numerical integration of (2.22);
(2.21) is treated analogously.

Suppose first, for simplicity, that an initial state of the fluid is given via a set of
discrete complex amplitudes in the transformed space, i.e. bm ≡ b(km), m = 1, 2, . . . , N.
The set of N modes is assumed to be isolated with respect to four- and five-wave
resonances, in the sense that there are no harmonics that are in four- or five-wave
resonance with N given ones. In order to clarify this point, consider three given
harmonics with wavevectors k1, k2, k3 and frequencies ω1, ω2, ω3. If the set of
equations

K =

3∑
1

sjkj , ω(K) =

3∑
1

sjωj + O(ε2), (3.1)

where sj = ±1, is satisfied for a certain K , then the mode with wavevector K and
zero initial amplitude will grow, provided that all three harmonics kj , j = 1, 2, 3 have
non-zero amplitudes. Consequently, the set of initial conditions must be extended to
include the mode K . Our initial set then comprises the three non-zero-amplitude modes
k1, k2, k3 and a number m of zero-amplitude modes K (i), where i = 1, ..., m, and m
being the number of different solutions to (3.1). Similarly the procedure can be carried
out for any given number of initially non-zero modes both for quartet and quintet
interactions. The advantage of dealing with isolated systems is twofold. First, they
represent exact solutions to the continuous Zakharov equation with discrete initial
conditions; second, the fact that we know a priori the interacting modes for all times
enables us to optimize significantly the numerical procedure that is discussed below.

As the first step, all the coefficients Ṽ and W̃ are calculated by a preprocessing
routine. The coefficients are sparse matrices, with a number of symmetry properties
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(Krasitskii 1994). For efficiency they are stored in the form of long arrays, together
with the indices of the corresponding amplitudes. Note that for N harmonics in the
transformed space, the number of four-wave coefficients CV is specified by the number
of quadrangles built on N given oriented edges, satisfying the inequality

CV > N(N + 1)/2; (3.2)

this is due to the fact that the system always possesses trivial resonances of the
form Ṽmnmn, 1 6 m, n 6 N, representing nonlinear frequency shifts (Annenkov &
Shrira 1999). In a generic case of a non-regular grid in the transformed space, the
total number of four-wave coefficients remains O(N2). The number of five-wave
coefficients is not limited from below and for most cases is far less than the number
of four-wave ones (although this is again not true for regular grids).

For the subsequent integration in time, the discretized version of (2.22) is used,

i
∂Bm

∂t
= iΓmBm +

N∑
n=1

N∑
p=1

N∑
q=1

ṼmnpqB
∗
nBpBq ei(ωm+ωn−ωp−ωq)t ∆m+n−p−q

+

N∑
n=1

N∑
p=1

N∑
q=1

N∑
r=1

W̃mnpqrB
∗
nBpBqBr ei(ωm+ωn−ωp−ωq−ωr)t ∆m+n−p−q−r

+
3

2

N∑
n=1

N∑
p=1

N∑
q=1

N∑
r=1

W̃rqpnmB
∗
nB
∗
pBqBr ei(ωm+ωn+ωp−ωq−ωr)t ∆m+n+p−q−r, (3.3)

where m = 1, 2, . . . , N, ∆ is the Kronecker symbol (∆m equals unity when m = 0 and
zero otherwise). In a standard way to take into account weak non-conservative effects,
terms of the form ΓmBm are added to the right-hand side of the equation, with Γm
sufficiently small to keep the Hamiltonian structure intact to a desired order. Say, the
values of Γm for all m are allowed to be O(ε4) when quintet interactions are considered
and O(ε3) or O(ε2) for the situations where the study is focused on quartet or triplet
interactions, respectively.

Provided that all Γm = 0, equation (3.3) has the Hamiltonian of the form

H =
1

2

N∑
m=1

N∑
n=1

N∑
p=1

N∑
q=1

Ṽ (2)
mnpqB

∗
mB
∗
nBpBq ei(ωm+ωn−ωp−ωq)t ∆m+n−p−q

+
1

2

N∑
m=1

N∑
n=1

N∑
p=1

N∑
q=1

N∑
r=1

W̃ (2)
mnpqr(B

∗
mB
∗
nBpBqBr + BmBnB

∗
pB
∗
qB
∗
r )

×ei(ωm+ωn−ωp−ωq−ωr)t ∆m+n−p−q−r; (3.4)

other motion integrals are the two components of momentum

I =

N∑
m=1

kmBmB
∗
m.

If the five-wave processes are absent (i.e. all W̃ (2) ≡ 0), then the action

A =

N∑
m=1

BmB
∗
m

is also conserved.
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The standard fourth-order constant-step explicit Runge-Kutta algorithm is sufficient
for most applications. Evidently, the computational cost for a direct calculation of
sums on the right-hand side of (3.3) would be very large (proportional to N4).
In the proposed algorithm, this calculation is performed using the results of the
preprocessing, by the componentwise multiplication of real arrays containing the
values of coefficients and complex arrays containing the amplitudes Bm. Note that
from the viewpoint of linear algebra, this operation is in fact the multiplication of
a diagonal matrix and a vector and is easily vectorized. The number of operations
required for the computation of four- and five-wave parts of (3.3) is of the order
of the number of four- and five-wave coefficients respectively. This means that,
according to (3.2), the operation count per timestep for a generic case is O(N2).
However, it is important to bear in mind that N stands for the number of harmonics
in the transformed space, corresponding to a much larger number of physical-space
harmonics NP . In the generic case, for the third-order canonical transformation,
NP = O(N3) (see examples below).

3.2. Symplectic procedure

The Zakharov equation (2.22), as well as its discretized counterpart (3.3) in the
conservative case (i.e. Γm ≡ 0 for all m), is Hamiltonian, and now it is understood
well that the explicit Runge–Kutta method described in the previous paragraph gives
an approximation to the solution of the discretized equations that does not retain
the fundamental symmetry properties of the exact solution and hence, in a sense, is
valid for a relatively short time only (West 1992). The reason for this is the neglect
of important special features of the dynamics of Hamiltonian systems, in particular
the symplecticness of the solution operator (Sanz-Serna & Calvo 1994). As a result,
standard integration techniques can only be applied for a limited time. Certainly, the
question of whether this time is too short for phenomena studied depends on the
problem; nevertheless, even while integrating for a relatively short time, it is often
desirable to retain as much structure as possible (Cane, Marsden & Ortiz 1999).

The problem of building a symplectic algorithm for the Zakharov equation that
would be theoretically optimal as well as numerically competitive goes beyond the
scope of the present study. Instead, here we will use a general algorithm, derived from
a generating function, for comparison with the conventional technique.

Following Channel & Scovel (1990), it is convenient to use a generating function
of the third kind, K(B∗0 , B),

B0 = − ∂K
∂B∗0

, B∗ = −∂K
∂B

, (3.5)

expanding it in timestep δ as

K =

∞∑
m=0

δm

m!
Km(B∗0 , B),

so that

B = B0 +

∞∑
m=1

δm

m!
Bm,

where

Bm = −
(
∂Km

∂B

)∗
.
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Then, using the equations of motion for B in the form (3.3), one can obtain, up to
the fourth order (see Channel & Scovel 1990 for details),

K1 = −iH, (3.6a)

K2 = −i
∂H

∂t
+ i

∂K1

∂B

∂H

∂B∗
, (3.6b)

K3 = −i
∂2H

∂t2
+ 2i

∂K1

∂B

∂2H

∂B∗∂t
+ i

∂K2

∂B

∂H

∂B∗
− i
∑
p

∑
q

∂K1

∂Bp

∂K1

∂Bq

∂2H

∂B∗p∂B∗q
, (3.6c)

K4 = −i
∂3H

∂t3
+ 3i

∂K1

∂B

∂3H

∂B∗∂t2
− 3i

∑
p

∑
q

∂K1

∂Bp

∂K1

∂Bq

∂3H

∂B∗p∂B∗q∂t

+i
∂K3

∂B

∂H

∂B∗
− 3i

∑
p

∑
q

∂K1

∂Bp

∂K2

∂Bq

∂2H

∂B∗p∂B∗q

+i
∑
n

∑
p

∑
q

∂K1

∂Bn

∂K1

∂Bp

∂K1

∂Bq

∂3H

∂B∗n∂B∗p∂B∗q
. (3.6d)

Here, H is the Hamiltonian of the form (3.4), with its explicit dependence on time
taken into account.

These expressions are used to evaluate K to a desired order. Then the algorithm is
formed on the basis of the pair of equations (3.5), rewritten as

B = B0 +

∞∑
m=0

δm

m!

∂Km

∂B∗0
, B∗ = B∗0 −

∞∑
m=0

δm

m!

∂Km

∂B
. (3.7)

Formulae ∂Km(B∗0 , B)/∂B and ∂Km(B∗0 , B)/∂B∗0 for the Hamiltonian (3.4) and m =
1, 2, 3 are given in the Appendix. System (3.7), complemented by the condition of
conjugacy of B and B∗, is overdetermined. Solution is obtained by iterations; it is
useful to take the Runge–Kutta solution as the first guess.

3.3. Error analysis

Early attempts at the numerical analysis of the Zakharov equation used a model
problem of Benjamin–Feir instability, consisting of a carrier and several pairs of
initially small one-dimensional equally spaced satellites (Caponi et al. 1982; Yuen
& Lake 1982; Krasitskii & Kalmykov 1993). In order to test the properties of the
proposed algorithm, we choose a model example that is close in spirit. Consider the
set of wavevectors consisting of a carrier k0 = (1, 0) and 7 pairs of satellites, each
pair satisfying the condition

2k0 = kj + kj+1, j = 1, 2, . . . , 7, (3.8)

with irregular spacing (table 1), so that all the quartet interactions among the satellites
have the form (3.8).

The initial amplitude of the carrier B0 was taken to be unity (corresponding to
steepness ε ' 0.225), the satellites had initial amplitudes equal to 0.014 and phases
at −π/4. Integration was performed up to ω0T = 105, where ω0 = ω(k0), by the
Runge–Kutta algorithm and symplectic algorithms of various orders, with several
values of timestep δ in the range 1/64 6 δ 6 1. Figure 1, where the dependence of
amplitudes Bm on time up to ω0t = 5×103 is plotted, gives an idea of the initial stage
of the evolution.

First, we numerically tested the order of the symplectic integration, with the results
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j kj kj+1

1 (0.9014, 0) (1.0986, 0)
2 (0.8075, 0) (1.1925, 0)
3 (0.7021, 0) (1.2979, 0)
4 (0.6011, 0) (1.3989, 0)
5 (0.5085, 0) (1.4915, 0)
6 (0.4012, 0) (1.5988, 0)
7 (0.3020, 0) (1.6980, 0)

Table 1. Position of satellites in the model of Benjamin–Feir instability.

1.0

0.8

0.6

0.4

0.2

0 1000 2000 3000 4000 5000

B(t)

x0t

Figure 1. Evolution of the system comprising a carrier and 7 pairs of satellites (table 1).
Dependence of mode amplitudes on time is shown.

shown in table 2. For the estimate of the error, we used the root-mean-square average
of the deviation of energy from its starting value for all timesteps up to the fixed time
ω0t = 103. The respective orders of the algorithms are seen to be confirmed.

For a further check, we compared the dependence of energy conservation on time
using the Runge–Kutta algorithm (RK) and symplectic integration of order 3 (SI3) for
timesteps δ = 1/2 and 1/4. The results are shown in figure 2. While the energy error of
RK increases monotonically with time, the error of SI3 oscillates about a certain value
of energy, but does not show a secular growth in time. If the computation is continued
for longer times, the growth of the RK error continues until the computation becomes
meaningless, while the central value and amplitude of the energy oscillation for SI3
remain the same. Smaller timesteps considerably delay the time at which the RK
error exceeds that of SI3, though the qualitative behaviour is similar. It appears that
if a computation of the evolution is performed for a limited time, the RK algorithm
with a smaller timestep can give better results, taking into account the efficiency of
the explicit scheme. So far we have not come across a situation where the advantages
of employing the symplectic algorithm outweigh the simplicity and efficiency of the
RK algorithm, although we expect that such situations might occur.

We will demonstrate below that despite the superior energy conservation properties
of the symplectic algorithm, the eventual chaotization of the system leads anyway to
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RK SI2 SI3 SI4

δn εn
εn−1

εn
εn

εn−1

εn
εn

εn−1

εn
εn

εn−1

εn

0.5 2.4× 10−9 — 4.6× 10−6 — 6.3× 10−9 — — —
0.25 1.7× 10−10 14.4 1.1× 10−6 4.0 7.2× 10−10 8.7 4.6× 10−10 —
0.125 1.1× 10−11 15.2 2.8× 10−7 4.0 8.9× 10−11 8.2 2.9× 10−11 16.0
0.0625 6.9× 10−13 15.6 8.0× 10−8 4.0 1.1× 10−11 8.0 1.8× 10−12 16.0

Table 2. Error scaling for the value of the Hamiltonian as timestep δ is successively halved for
the model of one-dimensional Benjamin–Feir instability using the explicit Runge–Kutta algorithm
(RK) and symplectic integration of orders 2, 3 and 4 (SI2, SI3 and SI4 respectively). Error ε is
calculated as the r.m.s. deviation of the Hamiltonian from its starting value to ω0t = 103. The ratio
of successive errors, close to the corresponding constant, confirms the order of the algorithms.
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0 2 4 6 8 10
x0t

(×10
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(b)

Figure 2. Comparison of energy error ε of a third-order symplectic algorithm (dotted curve) and
a fourth-order Runge–Kutta algorithm (solid curve). The timestep is (a) 0.5 and (b) 0.25, equal for
both methods.

the rapid loss of accuracy for the positions of individual trajectories and this loss does
not depend on the integrator.

4. Examples
In order to illustrate the properties of the present method, we consider here three

different examples of numerical applications. In these examples, we concentrate mainly
on the numerical side of the corresponding problems, with only brief remarks on the
physical aspects of the phenomena (which are discussed in more detail elsewhere).

First, we use the method for the study of the long-term evolution of the several low-
dimensional consevative systems of gravity and gravity–capillary waves, with various
numbers of interacting modes and different structures of interactions between them.
For the case of gravity waves, a universal scenario of stochastization is demonstrated,
and its quantitative characteristics are obtained. Second, the method is applied to
the study of the formation of three-dimensional ‘horseshoe’ patterns on the water
surface, often observed in laboratory experiments and in natural basins. A qualitative
model of these patterns, explaining their sporadic nature, physical mechanisms of
their selection and their specific asymmetric form, is suggested. The model is based
on the simulation of a steep gravity wave embedded into wide-spectrum primordial
noise and subjected to small non-conservative effects. Finally, to demonstrate the
effectiveness of the method for multi-dimensional problems, we consider the long-
time evolution of a Stokes wave immersed in noise field consisting of a very large
number of degrees of freedom.
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All examples are for infinitely deep water and in two horizontal dimensions. Note
that in most cases, the long-term computations presented here cannot be performed
with any other known method, since these methods would fail at some moment of
time due to local steepening (and eventual overturning) of the water surface. In all
computations, the standard fourth-order Runge–Kutta scheme was used, with timestep
sufficiently small to ensure, in the conservative case, conservation of the integrals with
high accuracy (at least 8 significant digits). Computations were performed on various
computers, including AMD K6, AMD K7, Intel Pentium 2 processors and Silicon
Graphics workstations, with typical times ranging from several minutes to several
hours.

4.1. Chaotization of gravity and gravity–capillary waves

In our first set of numerical examples, we consider a number of nonlinear gravity
and capillary wave systems from the viewpoint of their eventual chaotization. Al-
though it is well-known that the phenomenon of chaotization is a general feature
of non-integrable nonlinear systems, the quantitative characteristics of this process
are unknown in many physical problems, in particular for surface waves. It is often
assumed that the stochastization time scale significantly exceeds the characteristic
times of the processes of interest. For instance, the evolution of water waves on
time scales of the order of 102–103 characteristic wave periods is usually assumed
to remain deterministic, and the field behaviour is considered as crucially depending
on its initial configuration, i.e. the set of wavevectors and initial mode amplitudes
(Yuen & Lake 1982). Hence, the unpredictability of evolution is often thought to be
linked either to irreversible processes, or to numerical errors. In some recent numeri-
cal and experimental studies of gravity wave dynamics, difficulties in predictability of
evolution were attributed to the existence of homoclinic structures in the exact equa-
tions (Ablowitz & Herbst 1990). However, this ‘homoclinic chaos’ disappears when
discretization is sufficiently refined, or if an integrable difference scheme is employed.

Early computations (e.g. Caponi et al. 1982) showed that the solution for the initial
configuration corresponding to a modulated periodic wavetrain manifests different
regimes of evolution, including periodic and completely chaotic ones, depending on
the degree of nonlinearity. However, only a limited and very specific choice of initial
conditions was considered, without any attempt to find quantitative characteristics of
chaotic behaviour.

In this section, we address the question of the limits of the deterministic approach
in the water wave context by the numerical simulation of the evolution of a number
of gravity- and capillary-gravity-wave systems, ranging from relatively simple (yet
non-integrable) ones to complex wave ensembles with a large number of harmonics.
The universality and physical transparency of the algorithm allows the quantitative
characteristics of the stochastization process to be obtained and their dependence
on various parameters studied, such as characteristic wave steepness, number of
harmonics and structure of interactions. Only a few examples are presented; complete
results are published in a separate article (Annenkov & Shrira 2001).

As the first non-trivial example, consider the simple non-integrable wave system
comprising six harmonics lying on the same resonance curve, so that they form three
resonant quartets

k1 + k2 = k3 + k4 = k5 + k6,
ω1 + ω2 = ω3 + ω4 = ω5 + ω6.

}
(4.1)

Harmonics k1−4 are fixed; in this example, they are chosen as k1 = (1.0, 0.2), k2 =
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(1.2,−0.2), k3 = (0.8, 0.27), k4 = (1.4,−0.27). The remaining pair k5 = (κ1, κ2), k6 =
(2.2 − κ1,−κ2) is moved along the resonance curve, where κ1, the free parameter,
satisfies the inequality −0.29 < κ1 < 1.05 (figure 3a). Certainly, this gravity-wave
infinite-depth model is invariant with respect to change of length scale, so that the
choice k = O(1) is a matter of convenience. Initial amplitudes |Bm(0)| are calculated
from the initial steepness ε of the interacting waves and randomly chosen initial
phases θm,

Bm(0) = π

(
2ω

km

)1/2
ε

km
exp(iθm), (4.2)

where ε = 0.045, 0.07 and 0.09 in separate runs. Then, this set of initial conditions
is slightly perturbed to obtain the close set B̂m(0), retaining the same values of the
known integrals. The evolution of Bm(t) and B̂m(t), corresponding to two initially close
trajectories of the same system, is traced up to ωt = 5× 105.

In order to measure the divergence of phase trajectories of the system, the function

D(t) =

∑
m

|Bm(t)− B̂m(t)|2∑
m

|Bm(t)|2 (4.3)

is introduced, where the value of D(0), obtained from Bm(0) and the perturbed initial
conditions B̂m(0), is just above the roundoff error.

The evolution of D in the model (4.1) is shown in figure 3(b), for ε = 0.07 and
different values of κ1. If κ1 6 −0.15, the evolution is deterministic, with D growing
only linearly with time. However, if κ1 > −0.15, the initially close points diverge
exponentially: D(t) is approximately proportional to exp(λt), where the value of λ
can be estimated numerically. It is important to note that this divergence cannot
be considered as a result of a phase shift between two simulations. The exponential
growth of D continues until the distance between the trajectories becomes comparable
to the size of the entire manifold. Since the value of D in (4.3) is normalized by wave
action, it is limited by an O(1) constant.

The normalized rate of divergence µ, where λ = µε2ω, is shown in figure 3(c) as
a function of κ1, for three values of ε. The characteristic frequency ω is taken to be
unity. In the outer part of the resonance curve (negative κ1) the interaction is weak,
and divergence is slow; however, above a certain critical value of κ1 where the time
dependence of D becomes clearly exponential, µ quickly reaches O(1) and then varies
rather slowly.

For a given value of κ1, the value of λ must depend quadratically on wave steepness.
This dependence was also verified numerically (Annenkov & Shrira 2001).

The system (4.1) comprises in fact three resonant quartet interactions. However,
further experiments (Annenkov & Shrira 2001) show that for a given characteristic
wave steepness (say, the largest steepness of interacting harmonics at the initial
moment) the rate of divergence does not depend significantly on the number nor
on the complexity of quartet interactions provided that non-integrability is ensured.
Meanwhile, conditions of resonance in a nonlinear system need not be satisfied
exactly. The increase of ε widens and shifts the resonance zones, effectively changing
the number of active interactions in the system, so that the dependence of λ on ε2 may
deviate from direct proportionality. For instance, in Caponi et al. (1982) both increase
and decrease of steepness made all satellites except for one pair leave the instability
domain for the carrier, so that the evolution approached that of an integrable system.
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Figure 3. Divergence of phase trajectories in the system (4.1) of six waves forming three resonant
quartets. (a) Position of wavevectors on the resonance curve. Vectors k1−4 are fixed; vectors
k5 = (κ1, κ2) and k6 are moved along the curve. (b) Divergence of phase trajectories for ε = 0.07
and different values of κ1. (c) Normalized rate of divergence as function of κ1, for three values of ε.

Another way to enrich the system (4.1) is to add pairs of five-wave satellites to each
harmonic. However, numerical experiments (Annenkov & Shrira 2001) show that this
also does not lead to considerable changes of µ.

In another example, consider the wave system in the form usual for studies of
modulational instability, with the central harmonic k0 = (1, 0) and N pairs k(1)

j , k(2)
j ,

so that

2k0 = k(1)
j + k(2)

j , j = 1, 2, . . . , N. (4.4)

The pairs are chosen randomly in the domain 0 < kjx < 2, −0.4 < kjy < 0.4. Initial
amplitudes are all equal, again corresponding to three values of steepness ε = 0.045,
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Figure 4. Dependence of the normalized divergence rate µ on the number of pairs of satellites in
the model (4.4).

0.07 and 0.09; initial phases are random. The number N varies from 2 to 85. Note that
in terms of physical variables ϕ(k), η(k) the case N = 2 corresponds to 43 Fourier
harmonics in the physical space, while for N = 85 the number of harmonics exceeds
105.

The dependence of the value of µ onN is shown in figure 4. Since all the wavevectors
kj are chosen randomly, the increase in their number simply allows the harmonics
to be placed at the points where they enter into more energetic interactions with
the basic wave k0. Meanwhile, the same value of µ can be obtained for N = 2 (the
simplest non-trivial case) by a special choice of harmonics.

Since the resonant interactions for capillary waves occur at the lowest order and
therefore the characteristic interaction time is faster by a factor of O(ε−1) than for
gravity waves, it would be natural to expect the stochastization of capillary waves to
occur faster by a factor of the same order.

However, numerical simulations (Annenkov & Shrira 2001) show that this is not the
case: stochastization is much slower, in terms of characteristic time scale. Moreover,
in contrast to gravity waves, the phenomenon of stochastization does not have a
universal character: there is no characteristic value of the normalized exponent µ
common for all systems sufficiently far from integrability. For a wave steepness of
O(10−1), the characteristic time scale of stochastization of a capillary-wave system has
O(103) wave periods, greatly exceeding the time scale of viscous dissipation. Besides
that, the value of µ is sensitive to the number of linked triad interactions in the
system, decreasing with the increase in the number of interactions.

The examples presented demonstrate that the stochastization of the gravity wave
field, characterized by the exponential divergence of trajectories with the exponent
remaining, in various models, close to O(ε2), is a generic phenomenon. The stochas-
tization scenario is universal: the exponent does not show significant dependence on
the number of modes nor on the number of interactions among them (provided that
the model does not fall close to integrability). We stress that taking into account
five-wave interactions does not alter the situation significantly and thus suggests the
irrelevance of all the truncated higher-order terms in the Hamiltonian in the present
context.

The characteristic time scale of the divergence is O(ε−2). For the wave steepness of
0.1, typical of oceans and other natural basins, this means that the system tends to lose
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all the information on the initial conditions over the time τ∗ ' O(103) characteristic
wave periods. In this sense, a deterministic way of describing water waves is essentially
limited by this time scale, and the field evolution at time scales exceeding τ∗ can be
adequately described only within the framework of statistical models. This also implies
that there is a ‘grey area’ where the statistical models resulting in the kinetic equation
are not applicable yet, whereas a deterministic description is already invalid. The
universality of the trajectories’ instability and the exponents found enable one to
estimate straightforwardly such statistical characteristics of the field as decorrelation
time and the Sinai entropy.

A study of the long-term evolution of strictly conservative capillary–gravity waves
is, of course, of mainly academic interest. However, the results of our simulations that
contradict an intuitive expectation of faster stochastization of capillary waves, suggest
the existence of an underlying peculiar mathematical structure. This phenomenon,
as well as the reasons for fast and nearly universal stochastization of gravity waves,
remain as challenging questions yet to be investigated.

4.2. Formation of three-dimensional wave patterns

The water surface in natural basins often manifests three-dimensional patterns of
spectacular ‘horseshoe’ or ‘crescent-shaped’ form. These patterns, easily observed at
early stages of wave development in the presence of a fresh wind, are characterized
by the specific front–back asymmetry: front slopes are steeper than rear ones, and
the convex sides of sharpened crests are always oriented downwind. Similar patterns
were also observed in wave-tank experiments (e.g. Su et al. 1982; see Shrira, Badulin
& Kharif 1996 for a list of references).

It has been established (first suggested by Su et al. 1982) that the inception
mechanism of the horseshoes is due to McLean’s class II instability (five-wave decay)
of a plane basic wave. However, specific mechanisms of their formation were not
identified.

In Shrira et al. (1996), a possible scenario of the emergence of the patterns was
suggested, based on the assumption that the five-wave instability of a carrier may
be considered as its interaction with the single symmetric pair with the largest linear
growth rate. This (rather crude) assumption allowed the authors to consider the
problem analytically, demonstrating the emergence of patterns with specific geometry
closely resembling the observed horseshoes. The resemblance was due to a special
relation between the phases of the interacting waves: the ‘effective phase’ θ = 3α−2β,
where α and β are the phases of the complex amplitude of the envelope of the basic
wave and symmetric satellites respectively, must be negative, the best agreement with
observations corresponding to the case θ = −π/2. It was shown that non-conservative
effects, inserted into the system but small enough to preserve the Hamiltonian structure
to the required order, allow the system to evolve to a steady state with the geometric
form of the free surface with the required characteristics.

However, although the domain of the five-wave instability is narrow, O(ε3) wide
in the transverse direction, it is still a continuous finite size domain and there is
no a priori reason to confine the consideration of this instability to a single pair of
satellite harmonics. On the other hand, from the experimental viewpoint, the most
often observed crescent-shaped patterns are sporadic. All this prompted us to look
for a new robust mechanism able to create the essentially non-stationary, relatively
short-lived patterns of the same geometry.

The first question to be addressed is the mechanism of the mode selection. Since
in reality, a fundamental wave of a finite amplitude possesses finite size domains
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of instability with respect to four- and five-wave processes in the wavevector space
(see McLean 1982; Craik 1985, figure 6.6), simultaneous growth of a continuum of
satellites should occur, which seems to be contrary to the observations. Although
finite-size instability domains are common in many branches of applied mathematics,
there is no way to approach such a problem analytically (Newell, Passot & Lega 1993).
For a numerical simulation to succeed it has to overcome a number of obstacles.
First, since the class II instability domains are narrow, O(ε3) wide, special care should
be taken to ensure that the instability domain is well resolved, i.e. a large number
of modes falls into the instability domain. Second, because the primary concern is
the quintet interactions which occur on the background of much faster and stronger
quartet interactions, the simulations should be carried out with very high accuracy
over time spans of O(ε−3). Given the sensitivity of the sporadic patterns at certain
stages of their evolution to perturbations the task would be very challenging, unless
the approach based on the Zakharov equation is employed.

We simulate the nonlinear dynamics of a continuum of linearly growing satellites
by a sufficiently large number of unstable satellites. The ‘sufficiency’ is understood in
the sense that adding more harmonics to the system does not alter the results and is
checked a posteriori.

Thus, in our numerical study, we consider a system comprising a basic wave and a
number of oblique (both symmetric, with respect to the kx-axis, and non-symmetric)
satellites, within and in the neighbourhood of the instability domain. The algorithm
discussed in the present paper represents a perfect tool for such a simulation, since it
gives the possibility of using an arbitrary number of satellites in arbitrary positions
in Fourier space. Note that due to the fact that the five-wave resonance domains
are narrow, the use of a conventional algorithm, with its restriction to regular grids,
would necessitate extensive computational resources or would lead to unpredictable
artefacts. Moreover, a moderate number of normal modes N found to be sufficient
for simulations (N = O(102)) corresponds to N4 modes in physical space, i.e. to
NP = O(108), since in this case the fourth-order canonical transformation must be
carried out. Furthermore, to study the three-dimensional processes per se, we have
the flexibility to filter out the primarily two-dimensional modulational instability,
choosing the initial satellites to be in the five-wave (class II) instability domain
and stable part of the k-plane only, if we wish. This flexibility enables us, first, to
develop an understanding of the main mechanisms of wave evolution due to quintet
interactions only, and then to extend it to the general situation where more energetic
quartet interactions coexist with the weaker but more important quintet interactions.

The problem of the formation of sporadic three-dimensional patterns was con-
sidered in detail in Annenkov & Shrira (1999); here, we will only outline the basic
features of the evolution of a wave system comprising a carrier with wavevector
k0 = (1, 0) and N pairs of oblique satellites with wavevectors kj,j+1 = ( 3

2
± pj,±qj),

j = 1, 2, . . . , N. For the satellites, conditions

pj = 0, 1 6 j 6 1
2
N,

1 < pj < 2, pj 6= 0, 1
2
N < j 6 N,

1.48 6 qj 6 1.68 1 6 j 6 N,

 (4.5)

were imposed; in the experiments discussed here, N = 42, and the initial steepness
of the fundamental is equal to 0.17. The satellites were set initially small, with the
amplitudes of O(10−2) relative to the amplitude of the fundamental; no significant
dependence on the exact value of the satellites initial amplitude was revealed. For
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Figure 5. Evolution of the system of 85 waves obtained by numerical integration of the conservative
Zakharov equation. The system consists of the basic wave, with initial amplitude A(0) = 0.755
(corresponding to steepness 0.17), and 42 pairs of initially small (Bj(0) = 0.014, j = 1, 2, . . . , 84)
satellites, chosen randomly in the k-plane according to condition (4.5). For three most unstable
pairs (numbered 1, 2, 3 in the amplitude plot), evolution of the ‘effective phase’ Φ, defined by (4.6),
is shown.

each pair of satellites, the variable Φ (the phase of the pair of satellites relative to the
fundamental, below referred to as ‘the phase’ for brevity) is defined as

Φ = 3α− β1 − β2, (4.6)

where α, β1, β2 are the phases of the fundamental and two satellites respectively;
initial values of Φ were prescribed at the value most favourable for growth (−π/2).
Evolution in time was traced for about 103 periods of the basic wave. We emphasize
that in these examples the Benjamin–Feir instability was excluded.

An example of the conservative evolution of the system is presented in figure 5.
The plot demonstrates two distinct features of the class II instability with respect to
multiple satellites. First, most of the modes located in the linear instability domain
do not attain considerable amplitudes; instead, their growth is quickly arrested,
resulting in stagnation at a quite low level. Only a few modes at each moment
can grow unattenuated, though this behaviour is displayed by different modes at
different moments. Second, the evolution of the phases of these growing modes differs
noticeably from that of the isolated three-wave system. In particular, it becomes
essentially asymmetric. While a mode is growing, its phase remains close to −π/2, as
in the three-mode case; the maximum of the satellite amplitude again corresponds
to zero phase, but soon after reaching the maximum of the amplitude, the phase
typically starts to change much more rapidly, while the amplitude quickly decreases
and tends to stagnate at a low level. It can be noticed, however, that the behaviour
described is not always well pronounced for all growing pairs during the course of
the conservative evolution, thus allowing one to consider it only as a tendency.

Meanwhile, in the more realistic weakly non-conservative case (figure 6), these
features are much more pronounced. The phases of a few growing satellites are
close to −π/2 during their growth and near the maximum, while during the decay
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Figure 6. Evolution of the system of 85 harmonics obtained by integration of the Zakharov equation
perturbed by small non-conservative effects. The system is the same as in figure 5, with weak forcing
for the basic wave, Γ0 = 5 × 10−5ω0, and weak dissipation for the satellites, Γj = 5 × 10−4ωj ,
j = 1, 2, . . . , N, where Γ is the linear forcing/damping rate for each mode, introduced in (3.3).

the phases rapidly change. Taking into account Benjamin–Feir processes does not
result in any qualitative changes of the evolution, although the time scale of the
pattern formation increases (figure 7). Overall, the evolution of the satellites can be
summarized as follows:

(i) at each particular moment a maximum of one pair is large, though at different
moments different modes may prevail;

(ii) when a satellite pair starts to grow, its phase is set close to −π/2 and remains
in this vicinity almost until the maximum of the satellite amplitude is reached; at the
maximum of the amplitude the phase is still negative;

(iii) after the mode passes its point of maximum amplitude, the phase begins to
change (rotate) rapidly;

(iv) if a satellite decays or does not grow, its phase rotates, passing quickly through
all possible values.
These features of the behaviour were established in a large number of runs of the
numerical model which required quite modest computational resources. On the basis
of the simulations we briefly formulate the principal conclusions we arrived at in
Annenkov & Shrira (1999). First, we found that the mode selection mechanism is due
to the frequency detuning of the growing satellites caused by the quartet interactions:
typically the mode with the largest amplitude ‘pushes out’ all other satellites from
the resonance zone, thus stopping their growth at a quite low level (their amplitudes
remain O(ε1/2)). Second, we revealed the sensitivity of the system at the stage of
selection: a small perturbation can result in another pair of satellites dominating over
a given cycle. Finally, we showed that the particular values of the phase between
the central wave and the most developed satellites tend to prevail most of the time
regardless of the initial conditions. Thus we were able to explain the basic features of
the sporadic pattern phenomenology.

However, in a more general context, other aspects of the simulations are worth
noting. It is commonly believed that in the process of water-wave nonlinear evolution
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Figure 7. Evolution of the system of 87 harmonics obtained by integration of the Zakharov
equation perturbed by small non-conservative effects. The system consists of the basic wave,
with initial amplitude A(0) = 0.755 (corresponding to steepness 0.17), 42 pairs of initially small
(Bj(0) = 0.014, j = 1, 2, . . . , 84) five-wave satellites (the same set was used in figure 5), and one
pair of four-wave (Benjamin–Feir) satellites (kj = (1 ± 0.27, 0)), with the same initial amplitude.
Weak forcing for the basic wave and weak dissipation for five-wave satellites (Γ0 = 5 × 10−5ω0,
Γj = 5 × 10−4ωj , j = 1, 2, . . . , N) are included. For two most unstable five-wave pairs (numbered
1, 2 in the amplitude plot), evolution of phase is shown.

harmonics tend to multiply ad infinitum since the dissipation is very small. The plots
in figures 6 and 7 show the opposite scenario of evolution: despite a large number
of initial unstable modes, the dynamics of the wave field becomes effectively low-
dimensional. Although the phenomenon is confined to a specific class of situations, we
emphasize that it occurs primarily due to the effective nonlinear selection mechanism
which is conservative in its nature. The presence of very small (O(10−5)) dissipation
is also important but plays a secondary role.

4.3. Evolution of a wave immersed in a noise field

The primary aim of this example is to demonstrate the performance of the present
method for problems with quite a large number of degrees of freedom. We consider a
carrier with wavevector k0 = (1, 0), relatively steep initially (ε = 0.225) and immersed
in a field of noise, represented by N pairs of initially small satellites k(1)

j , k(2)
j , satisfying

the condition

2k0 = k(1)
j + k(2)

j , j = 1, 2, . . . , N, (4.7)

where the pairs are chosen randomly in the domain 0.2 < kjx < 1.8, −0.4 < kjy < 0.4.
In this example, N = 500, so that the system consists of 1001 harmonics overall.

Figure 8 shows the evolution of the system up to ω0t = 104, where ω0 is the carrier
frequency (ω0 = 1). As the energy goes to satellites, the amplitude of the carrier (that
initially accounts for more then 90% of the total energy of the ensemble) quickly
decreases. At a certain value of time (600–800 periods of the carrier), the amplitudes of
the central harmonic and of most unstable satellites attain values close to each other.
Later, the carrier slightly oscillates, not exceeding 1–2% of the total energy. Note
that, while this computation does not require much computational power (about

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

61
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006139


Numerical modelling of water-wave evolution 367

1.0

0.8

0.6

0.4

0.2

0 2000 4000 6000 8000 10000

B(t)

x0t

Figure 8. Evolution of a system consisting of a carrier, with the initial steepness 0.225, and 500
pairs of randomly chosen initially small oblique satellites, satisfying the condition (4.7). Evolution
is shown up to ω0t = 104, ω0 being the frequency of the fundamental.

15 hours on a 800 MHz AMD K7 processor), in physical space the wave system
under consideration corresponds to approximately 108 degrees of freedom, so that
the computation of its long-term evolution with conventional numerical methods is
impossible.

The distribution of energy in the k-plane at ω0t = 5 × 103 is shown in figure 9.
The unstable region is known to have the form of a pair of ‘horseshoes’ situated
symmetrically with respect to the ky-axis on both sides of the carrier (e.g. Crawford
et al. 1981; Craik 1985). As might have been expected, we find that after the initial
stage of the evolution where the dominant wave still far exceeds the noise, the energy
is redistributed in this region, with small oscillations within it.

5. Discussion
In this paper we have considered an efficient and convenient method for the numeri-

cal study of water wave evolution, based on the reduced integrodifferential Zakharov
equation. Owing to the enormous reduction in the number of interacting waves and
wide separation of time scales, the algorithm allows numerical simulations for various
physical problems to be performed, where the use of conventional algorithms would
be difficult or impossible. It is important to note that a complete development of the
method requires resolving the problem of discretization of the Zakharov equation. At
present, this problem is unsolved, and its overcoming remains the key challenge for
further progress.
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Figure 9. Distribution of wave amplitudes in Fourier space for the system shown in figure 8 at
ω0t = 5× 103. Points show positions of modes.

However, one can indicate a number of physical situations where the method can
be effectively used in its present state. First, this refers to the case when a wave
ensemle consists of a limited number of pronounced interacting modes. Investigation
of various physical mechanisms responsible for the phenomena observed on a water
surface often requires the numerical simulation of simple (although non-integrable)
model problems. In this way, the present method, with its physical transparency,
ability to manually prescribe different types of interactions, to switch on/off the
higher-order processes and to use uneven grids for the better resolution of narrow
resonance domains, is invaluable. In particular, the simulation of a number of models
with a small and moderate number of interacting harmonics enabled us to find the
important physical conclusion of unexpectedly fast stochastization of gravity waves
and to make quantitative estimates of the stochastization time scale. On the other
hand, the study of the instability of a carrier with respect to a number of oblique
satellites allowed us to propose the physical mechanism for the emergence of sporadic
horseshoe patterns on the surface, essential for the problems of remote sensing (Shrira,
Badulin & Voronovich 2001).

Second, there are important physical situations where the problem of discretization
is of a secondary importance, since the statistical properties of a wave ensemble are
much more important than the choice of individual harmonics. There exists a well-
established general formalism for treating the complex motion of a weakly nonlinear
wave field (wave turbulence). The statistical description is provided by the kinetic
equation for the second statistical moments of the field. The approach is based on the
key hypothesis of quasi-Gaussianity of the statistically homogeneous wave field: the
closure is made by assuming all odd statistical moments to be zero and expressing all
higher-order even moments in terms of the second-order ones. Although the approach
proved to be quite successful in addressing many experimental situations, the gap in
its foundations due to the assumed quasi-Gaussianity of the field remains open. The
range of validity of the kinetic equations remains yet to be specified. Moreover,
recently the phenomenon of coherent patterns in wide-band random wave fields,
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unexplainable within the classical kinetic framework, has been observed in many
physical situations.

To our knowledge there have been no attempts to check the key quasi-Gaussianity
hypothesis by direct numerical simulations. The difficulty lies in the fact that the
primitive equations should be integrated for a very large number of modes over
time intervals much larger than those required in simulations of strong turbulence.
From this viewpoint, the present method provides a number of advantages, with the
elimination of non-resonant modes and much faster integration of the equations. On
the other hand, since the contributions of different terms to the Hamiltonian are
much easier to trace, the method allows identification of the specific mechanisms
leading to the departure of the field from quasi-Gaussianity and quantification of
their contributions. This possibility to check the foundations of the existing statistical
theory of water waves appears to be the most important direction for the future
application of the method.

We are grateful to Dr M. Tanaka for valuable comments on the first draft of
the manuscript. The work was supported by ONR under grant N00014-94-1-0532,
by INTAS (grant 97-575), and by Russian Foundation for Basic Research (grant
01-05-64603).

Appendix. Formulae for symplectic integration
Expressions for the partial derivatives of the generating function ∂Kj(B

∗
0 , B)/∂B

and ∂Kj(B
∗
0 , B)/∂B∗0 , j = 1, 2, 3, have the form

∂K1(B
∗
0 , B)

∂B∗0m
= −i

∂H

∂B∗0m
,

∂K1(B
∗
0 , B)

∂Bm
= −i

∂H

∂Bm
, (A 1a, b)

∂K2(B
∗
0 , B)

∂B∗0m
= −i

∂2H

∂B∗0m∂t
+
∑
j

(
∂2H

∂B∗0m∂B∗0j

∂H

∂Bj
+

∂2H

∂B∗0m∂Bj
∂H

∂B∗0j

)
, (A 2a)

∂K2(B
∗
0 , B)

∂Bm
= −i

∂2H

∂Bm∂t
+
∑
j

(
∂2H

∂Bm∂Bj

∂H

∂B∗0j
+

∂2H

∂Bm∂B
∗
0j

∂H

∂Bj

)
, (A 2b)

∂K3(B
∗
0 , B)

∂B∗0m
= −i

∂3H

∂B∗0m∂t2
+
∑
j

(
∂2H

∂B∗0m∂B∗0j

∂2H

∂Bj∂t
+ 2

∂2H

∂B∗0m∂Bj
∂2H

∂B∗0j∂t

+
∂3H

∂B∗0m∂Bj∂t
∂H

∂B∗0j
+ 2

∂3H

∂B∗0m∂B∗0j∂t
∂H

∂Bj

)

−i
∑
j

∑
k

[
∂3H

∂B∗0m∂Bj∂B∗0k

∂H

∂B∗0j

∂H

∂Bk
+

∂3H

∂B∗0m∂Bj∂Bk
∂H

∂B∗0j

∂H

∂B∗0k

+
∂2H

∂B∗0m∂Bj

(
∂2H

∂B∗0j∂Bk
∂H

∂B∗0k
+ 2

∂2H

∂B∗0j∂B∗0k

∂H

∂Bk

)

+
∂2H

∂B∗0m∂B∗0j

(
∂2H

∂Bj∂B
∗
0k

∂H

∂Bk
+ 2

∂2H

∂Bj∂Bk

∂H

∂B∗0k

)]
, (A 3a)
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∂K3(B
∗
0 , B)

∂Bm
= −i

∂3H

∂Bm∂t2
+
∑
j

(
∂2H

∂Bm∂B
∗
0j

∂2H

∂Bj∂t
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∂2H
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∂B∗0j∂t

+
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∂Bm∂Bj∂t
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∂3H

∂Bm∂B
∗
0j∂t

∂H

∂Bj

)

−i
∑
j

∑
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[
∂3H

∂Bm∂B
∗
0j∂B

∗
0k
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+
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(
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∂H

∂B∗0k
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∂2H
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∂Bk

)

+
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0j

(
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∗
0k

∂H

∂Bk
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)]
. (A 3b)

These expressions are used for the numerical solution of (3.7) by iterations.
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