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THE EIGHTFOLD WAY
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AND DIMA SINAPOVA

Abstract. Three central combinatorial properties in set theory are the tree property, the approachability
property and stationary reflection. We prove the mutual independence of these properties by showing that
any of their eight Boolean combinations can be forced to hold at κ++, assuming that κ = κ<κ and there is
a weakly compact cardinal above κ.
If in addition κ is supercompact then we can force κ to be ℵ� in the extension. The proofs combine

the techniques of adding and then destroying a nonreflecting stationary set or a κ++-Souslin tree, variants
of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large
cardinal into ℵ� .

§1. Introduction. The combinatorial principle �� was introduced by Jensen
[18] and plays a central role in combinatorial set theory. It exerts influence
over the combinatorics of �+ in several different ways. Notably it implies
that:

• The tree property fails at �+, i.e., there is a �+-Aronszajn tree.
• The approachability property holds at �+, i.e., �+ ∈ I [�+].
• Stationary reflection fails at �+.
The main result of this article is that for many values of � these three conse-
quences of�� are “orthogonal”, in the sense that any of their eight possible Boolean
combinations is consistent.

1.1. Square and weak square. The principle �� states that there is a sequence
〈Cα : α < �+〉 such that Cα is club in α with ot(Cα) ≤ �, and � ∈ lim(Cα) =⇒
C� = Cα ∩ � , for all α and � . Jensen showed that if V = L then �� holds for all
uncountable cardinals �, and this theorem has been extended to many largerL-like
inner models.
The principle �� is very often used in inductive constructions of “noncompact”
or “nonreflecting” objects of size �+. Typically the idea is that we use Cα to guide
the construction at stage α, and the coherence of the clubs gives a club set of stages
below α where we were guided by an initial segment of Cα , guaranteeing success at
stage α.
The following list of results by Jensen illustrates this theme:
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Fact 1.1. Let �� hold. Then:
(1) There is a special �+-Aronszajn tree.
(2) If ♦(�+) holds, then there is a �+-Souslin tree.
(3) Every stationary subset of �+ contains a nonreflecting stationary set.
In this article we will mostly concentrate on the case when the cardinal � is
regular. The principle �� has a different flavour for � singular; in particular it
follows from core model arguments that the failure of �� for � singular has a very
high consistency strength. This contrasts with the case for � regular, where Solovay
showed that if � > � is Mahlo then forcing with the Lévy collapse Coll(�,< �)
produces a model where �� fails.
Jensen also introduced a weaker principle �∗

�. This states that there is a sequence
of nonempty sets 〈Cα : α < �+〉 such that |Cα| ≤ �, and every C ∈ Cα is club in α
with ot(C ) ≤ � and C ∩ � ∈ C� for all � ∈ lim(C ). It is easy to see that if � = �<�
then�∗

� holds, and Jensen showed that�∗
� is equivalent to the existence of a special

Aronszajn tree.

1.2. Stationary reflection and the approachability ideal I [�]. To build models
where a regular cardinal � exhibits some amount of stationary reflection, it is
important to understand the extent to which forcing preserves stationary subsets of
�, often in a context where � is not a cardinal in the forcing extension. It is well-
known that both �-closed and �-cc forcing posets preserve all stationary subsets of
�, and arguments from the theory of proper forcing imply that countably closed
forcing posets preserve all stationary subsets of � ∩ cof(�).
It is natural to ask when �+-closed forcing posets preserve stationary subsets of
� ∩ cof(�), where � is an uncountable regular cardinal with �+ < �. In connection
with this question, Shelah [24], [25] introduced a natural ideal I [�] (the approacha-
bility ideal), defined as follows.Whenever 	x = 〈x
 : 
 < �〉 is a sequence of bounded
subsets of � and α < �, then say that α is approachable with respect to 	x if there is
A ⊆ α unbounded with ot(A) = cf(α), andA∩� ∈ {x
 : 
 < α} for all � < α. Let
S(	x) denote the ordinals approachable relative to 	x. A subset S of � is in I [�] if and
only if there exists 	x such that almost every (i.e., club many) α ∈ S is approachable
with respect to 	x.
The following are standard facts about I [�] (see for example [4] for proofs):
• I [�] is a �-complete normal ideal on �.
• If � = �<� and 	x enumerates [�]<�, then the set of α approachable with respect
to 	x is stationary, and is the largest element (modulo clubs) of I [�]. More
generally if � = �<� for some regular � < � and 	x enumerates [�]<�, then the
set of α ∈ � ∩ cof(�) approachable with respect to 	x is stationary, and is the
largest subset (modulo clubs) of � ∩ cof(�) in I [�].

• If � = �+ and �∗
� holds (in particular if � = �

<�) then �+ ∈ I [�+].
• If � = �+ and � is regular, then �+ ∩ cof(< �) ∈ I [�+].
• If � is regular with �+ < �, then S ∈ I [�] for some stationary S ⊆ � ∩ cof(�).
• If � is regular with � < � and S ∈ I [�] is stationary with S ⊆ � ∩ cof(�), then
the stationarity of S is preserved by �+-closed forcing posets.
The ideal I [�] has proved to be intimately connected with many topics in com-
binatorial set theory, for example PCF theory [27], saturated ideals [10], and the
extent of diamond [22].
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1.3. Forcing facts. We shall need some fairly standard forcing facts.

Fact 1.2 (Easton’s Lemma). Let κ be regular uncountable. Let P be κ-cc. Let Q
be κ-closed. Let G be P-generic over V. Let H be Q-generic over V. Then:

(1) P remains κ-cc in V [H ].
(2) Q is (< κ)-distributive in V [G ].
(3) G ×H is P×Q-generic over V .

Fact 1.3. Let � be a regular uncountable cardinal. Then there exist a forcing poset
PNRSS and a PNRSS-name for a forcing poset Q̇NRSS such that:

• Forcing with PNRSS adds a nonreflecting stationary subset S of �.
• Forcing with QNRSS over the PNRSS-generic extension destroys the stationarity
of S.

• The poset PNRSS ∗ Q̇NRSS has a �-closed dense subset.
Conditions in PNRSS are functions p from a proper initial segment of � to 2, such
that for every α ≤ dom(p) of uncountable cofinality there isC club in α with p � C
identically zero. Conditions in QNRSS are closed bounded subsets of � disjoint from
the stationary set added by PNRSS. The �-closed dense subset consists of pairs (p, ĉ)
where c is a closed bounded subset of �, dom(p) = max(c), and p � c is identically
zero.

Fact 1.4 (Kunen, [19]). Let � be a regular uncountable cardinal. Then there exist
a forcing poset PSouslin and a PSouslin-name for a forcing poset Q̇Souslin such that:

• Forcing with PSouslin adds a �-Souslin tree T .
• PSouslin forces thatQSouslin is �-cc.
• Forcing with QSouslin over the PSouslin-generic extension adds a branch throughT .
• The poset PSouslin ∗ Q̇Souslin has a �-closed dense subset.
Conditions inPSouslin are normal trees of successor height less than �, with a strong
homogeneity property (cf. [19, pp. 69]). QSouslin is just forcing with the generic
Souslin tree added by PSouslin. The homogeneity property ensures that PSouslin ∗
QSouslin has a dense subset which is �-closed.
In the context of Facts 1.3 and 1.4, if � = �<� then we may find a dense subset of

P ∗ Q̇ with cardinality �, and argue that P ∗ Q̇ is equivalent to Add(�, 1). We also
note that:

• The forcing poset QSouslin has �-cc because it is a �-Souslin tree.
• The definitions of the forcing posets PSouslin and PNRSS depend only on the
bounded subsets of �, so these posets will be computed in the same way by a
generic extension which adds no bounded subsets of �.

• If we force with PNRSS × PSouslin, then we may view the result as a two-step
iterated forcing with PNRSS then PSouslin as defined in the extension by PNRSS,
and vice versa. It follows easily that S is a Souslin tree and T a nonreflecting
stationary set in the extension by PNRSS × PSouslin.

• Forcing with PNRSS × PSouslin followed by QNRSS × QSouslin is equivalent to
Add(�, 1).

Fact 1.5 (Baumgartner, [2]). Let � < � with � regular and � weakly compact.
Then after forcing with the Lévy collapseColl(�,< �), we have that � = �+ and every
stationary subset of �+ ∩ cof(< �) reflects at a point of cofinality �.
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The following fact is crucial to our analysis of the tree and approachability
properties.

Fact 1.6 (Branch Lemmas). Suppose that T is a tree of height � where � has
cofinality κ+. Then:

• (Silver, [28]). If the levels of T have size less than 2κ and P is κ+-closed then P adds
no new cofinal branches through T .

• (Unger, [30]). If P is a forcing whose square P2 has the κ+-cc then P adds no new
cofinal branches through T .

Remark 1.7. Using Easton’s Lemma, Fact 1.6 implies that if T is a tree of height
κ+ whose levels have size less than 2κ, P is a poset which is κ+-closed, and Q

is a poset whose square Q2 is κ+-cc, then P × Q adds no new cofinal branches
through T .

§2. The main results. Let � be a successor cardinal. We will consider three
combinatorial assertions about �+:

TP: The cardinal �+ has the tree property.
RP: Every stationary subset of �+ ∩ cof(< �) reflects at a point of cofinality �.
AP: The cardinal �+ has the approachability property, that is �+ ∈ I [�+].
Theorem 2.1. Let κ be a regular cardinal with κ<κ = κ and let � = κ+. Then
(assuming the existence of suitable large cardinals above κ) for each Boolean combi-
nation Φ of TP, AP and RP there exists a generic extension in which cardinals up to
and including � are preserved and Φ holds.

Theorem 2.2. Let κ be a measurable cardinal, � > κ weakly compact and let
� = κ+. Then assuming that κ remains measurable after forcing with Add(κ, �), for
each Boolean combination Φ of TP, AP and RP there exists a generic extension in
which cardinals up to and including � are preserved, κ is singular of cofinality �, and
Φ holds.

Remark 2.3. Theorem 2.2 slightly understates our results. Certain “easy”
Boolean combinations can be achieved starting with an arbitrary singular cardinal
κ. We discuss this further below.

2.1. Easy cases. not-TP + AP ± RP. If 2κ = κ+ then � = �<�, so that�∗
� holds

and we have not-TP and AP. The following two arguments work uniformly for all
κ, without the need to distinguish the cases “κ is regular” and “κ is singular”.

� Construction for not-TP + AP + not-RP: Start by forcing with Add(κ+, 1), so
that in the extension 2κ = κ+. Then force to add a nonreflecting stationary subset
of κ++ ∩ cof(�).
�Construction for not-TP+AP+RP: Startwith � > κ and �weakly compact, and
force with Coll(κ+, < �). In the extension 2κ = κ+, � = κ++ and every stationary
subset of κ++ ∩ cof(≤ κ) reflects to a point of cofinality κ+.
2.2. Harder cases. (TPor not-AP)+RP;not-TP+not-AP+not-RP.To arrange
the tree property or failure of the approachability property we will use variants of
Mitchell forcing [21]. For the moment we suppress most of the details, which we
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defer until Section 3. All of our Mitchell forcing variants will have the following
properties in common:

(1) The conditions are defined from cardinal parameters κ and �, where κ < �
with κ regular and � a large cardinal.

(2) The conditions are (at least morally) bounded subsets of �, and the defini-
tion of the forcing conditions and the ordering will not change in a generic
extension with the same bounded subsets of �.

(3) They preserve cardinals up to and including κ+, and force that 2κ = � = κ++.
See Section 3.4.

(4) Assuming that � is at least weakly compact, they force that every stationary
subset of �∩cof(≤ κ) reflects at some point of cofinality κ+. See Section 3.7.

(5) Assuming that � is at least weakly compact, they preserve the tree property
at �. See Section 3.6.

To prove Theorem 2.1 we will assume that κ<κ = κ, and in this case our Mitchell
forcing variants will be κ-closed. To prove Theorem 2.2 we will assume that κ is
measurable, and in this case our Mitchell forcing variants will singularise κ.
For the purposes of this section we will use forcing posets which we callM0 and

M1,whose exact definitionswill be given later in Section 3.Theywill have in common
theproperties 1–5 listed above, but an important difference (see Section 3.5) is that:

(1) The posetM0 forces that � ∈ I [�].
(2) Assuming that � is at least Mahlo, the posetM1 forces that � /∈ I [�].

� Construction for TP + AP + RP: Start with � weakly compact and force
withM0.

� Construction for TP + not-AP + RP: Start with � weakly compact and force
withM1.

� Construction for not-TP + not-AP + RP: Start with � weakly compact, do an
Easton support iteration adding a Cohen subset to each inaccessible less than �,
and denote the resulting model by V . It is routine to check � is Mahlo in V and
weakly compact in V Add(�,1).
We use the poset PSouslin for adding a �-Souslin tree from Fact 1.4. We will force
with PSouslin×M1, and note that since PSouslin adds no bounded subsets of � we may
view this as an iteration where we force with PSouslin and then withM1 as computed
in V PSouslin .

• Since PSouslin embeds into Add(�, 1), � is still Mahlo after forcing with PSouslin
and hence we have not-AP in the final model.

• Since (M1)2 is �-cc in V PSouslin , it follows from Fact 1.6 that the Souslin tree
added by PSouslin is still an Aronszajn tree after forcing withM1 and hence we
have not-TP in the final model.

• Recall that there isQSouslin ∈ V PSouslin such that PSouslin ∗ Q̇Souslin is equivalent to
forcing with Add(�, 1). Forcing withQSouslin we obtain the modelV Add(�,1)×M1 ,
which we may again view as the extension by an iteration where we force with
Add(�, 1) and then withM1 as computed in V Add(�,1).

• Since � is weakly compact in V Add(�,1), it follows from Clause (2.2) in the
list of properties of our Mitchell variant, that RP holds in the extension by
Add(�, 1) × M1. Now, let S be a stationary subset of � ∩ cof(≤ κ) in the
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extension byPSouslin×M1. Then sinceQSouslin is �-cc, it preserves the stationarity
of S. Since PSouslin ∗ QSouslin is equivalent to Add(�, 1), and since RP holds in
the extension ofV by Add(�, 1)×M1, S has a stationary initial segment in this
extension, and this initial segment is stationary in the intermediate extension
by PSouslin ×M1.

� Construction for not-TP + not-AP + not-RP: We start with �Mahlo and force
with the product PNRSS × PSouslin × M1. Since none of these posets add bounded
subsets of �, this can be construed as an iteration in any order we please, so easily
not-TP and not-RP hold. Also � is still Mahlo in the extension by PNRSS × PSouslin,
so that in the final model we also have not-AP.

2.3. Hardest cases. TP ± AP + not-RP. To construct models of TP + not-RP,
we will force withM0 orM1 as in the previous subsection and then add a nonreflect-
ing stationary set by forcing with PNRSS from Fact 1.3. In order to see that the tree
property holds and that we have the desired control over the approachability prop-
erty, we will use some more facts (see Section 3.5) about the posetsMi , namely that
the models which they produce are “robust under Cohen forcing”. More precisely
if � is at least weakly compact then:

• In the extension byM0 ∗Add(�, 1), we have TP + AP.
• In the extension byM1 ∗Add(�, 1), we have TP + not-AP.
To get TP to hold in the extension byMi ∗ PNRSS, we need another branch lemma
saying that QNRSS does not add branches through a �-Aronszajn tree. The proofs
are slightly different in the cases where κ is regular and κ is singular (note that if we
are proving Theorem 2.2 then κ is singular after forcing withMi), and accordingly
we state and prove two versions of the branch lemma.
Both versions use the following standard fact [20]. If � and � are cardinals with
� < �, U is a �-Aronszajn tree and Q is a forcing poset which adds a branch ḃ
through U , then for every condition q ∈ Q there are a level Lev� (U ) of U and
extensions 〈ri : i < �〉 of q such that
• Each condition ri determines where ḃ meets Lev�(U ), say as a node si .
• For i �= j, si �= sj .
Lemma 2.4. Let κ<κ = κ with 2κ = κ++. Let T be a nonreflecting stationary
subset of κ++, let U be a κ++-tree and let Q be the standard poset to add a club
disjoint from T . Then Q does not add a cofinal branch in U .

Proof. Let ḃ name for a branch through U . Let  be a large enough regular
cardinal and let M ≺ H contain everything relevant with κ+ + 1 ⊆ M , α =
M ∩ κ++ an ordinal of cofinality κ+, and <κM ⊆M .
Since T is nonreflecting we may choose C ⊆ α a club set of order type κ+ with
C disjoint from T . Now we build a tree of conditions 〈qs : s ∈ 2<κ〉 together with
a tree of nodes 〈us : s ∈ 2<κ〉 such that:
(1) qs , us ∈M for all s ∈ 2<κ.
(2) qs forces that us ∈ ḃ.
(3) max(qs) ∈ C .
(4) If t is an end-extension of s then qt ≤ qs and us ≤U ut .
(5) For all s , us�0 and us�1 are incomparable in U .
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The construction is simple: at successor stages we appeal to the “branch splitting”
fact above, and for s of limit length we define qs by forming the union of qt for t a
proper initial segment of s and then adding � = supt max(qt) as the top point: this
gives a condition because � ∈ C and hence � /∈ T , and it gives an element of M
because <κM ⊆M .
When the construction is done we proceed as follows, noting that every node us is
inM so lies below level α of U . For every x ∈ 2κ we choose qx such that qx ≤ qx�j
for every j < κ, and then extend qx to rx which decides where ḃ meets Levα(U ).
By construction the nodes rx are distinct, and since 2κ = κ++ and U is a κ++-tree
this is a contradiction. 
Lemma 2.5. Let κ be singular of cofinality � with 2κ = κ� = κ++. Let T be a
nonreflecting stationary subset of κ++, let U be a κ++-Aronszajn tree and let Q be
the standard poset to add a club disjoint from T . ThenQ does not add a cofinal branch
in U .

Proof. Let ḃ name for a branch through U , and fix 〈κn : n < �〉 a sequence of
regular cardinals which is increasing and cofinal in κ.We chooseM ,α andC exactly
as in the proof of Lemma 2.4, except that we drop the demand that <κM ⊆M . Let
I be the tree of finite sequences s such that s(i) ∈ κi for i < �(s).
We build a tree of conditions 〈qs : s ∈ I 〉 together with a tree of nodes 〈us : s ∈ I 〉
such that:

(1) qs , us ∈M for all s ∈ I .
(2) qs forces that us ∈ ḃ.
(3) max(qs) ∈ C .
(4) If t is an end-extension of s then qt ≤ qs and us ≤U ut .
(5) For all s , the nodes 〈us�i : i < κ�(s)〉 are pairwise incomparable in U .
The construction is basically as before, but we need no closure assumption on M
since there are no limit stages. We finish as before by choosing lower bounds qx for
x ∈ ∏

n κn and producing κ
� many distinct points in Levα(U ). 

� Construction for TP + AP + not-RP: Start with � weakly compact and force
withM0 ∗PNRSS, where in distinction to our previous cases we compute PNRSS in the
extension byM0. Clearly not-RP holds. Since AP holds in the extension byM0 and
is upwards absolute to models with the same cardinals, AP also holds. Finally since
TP holds in the extension byM0∗Add(�, 1), it follows immediately fromLemma 2.4
or Lemma 2.5 that TP holds.

� Construction for TP + not-AP + not-RP: This is similar to the previous case,
but this time we force withM1 ∗ PNRSS. We use that PNRSS preserves stationarity to
preserve not-AP.

§3. Variants of Mitchell forcing. In this section we will construct the posetsM0
andM1 used in proving most of the cases of Theorems 2.1 and 2.2. Before we define
the relevant forcing posets, a few remarks:

• Mitchell [21] started with a large cardinal �, which will be at least a Mahlo
cardinal, and defined a forcing poset M such that in the final model �1 is
preserved and 2� = � = �2. The key property of the posetM is that for many
inaccessible α < �, there is an intermediate model V [GM

α ] of the final generic
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extension V [GM] such that 2� = α = �2 in V [GM
α ], and the “tail forcing”

M/GM
α does not add any fresh subsets of α. Recall that a set d ⊂ α is fresh

if for all 
 < α, d ∩ 
 is in the ground model. The poset M is constructed
using the standard Cohen poset Add(�, �) to blow up the power set of �; it
is straightforward to replace � by a regular cardinal κ such that κ<κ = κ,
and obtain a version of M which preserves cardinals up to κ+ and forces
2κ = � = κ++.
Assuming that � is Mahlo, forcing with M yields a model where I [ℵ2] is a
proper ideal. The key point is that if 〈x
 : 
 < �〉 enumerates [�]ℵ0 in V [GM],
then there is α as above such that 〈x
 : 
 < α〉 enumerates [α]ℵ0 in V [GM

α ].
Then α /∈ S(	x), since otherwise an unbounded subset of α witnessing that
α ∈ S(	x) would be fresh. A very similar argument shows that this version of
Mitchell’s model has no special ℵ2-Aronszajn tree.
To obtain a model with no ℵ2-Aronszajn tree we need to strengthen the
assumptionon �.Assuming that � isweakly compact, suppose for contradiction
that T is an ℵ2-Aronszajn tree in V [GM]. Using the Π11-indescribability of �,
we find α as above such that T � α is an ℵ2-Aronszajn tree in V [GM

α ]. The tail
forcing adds a cofinal branch inT � α, but such a branch is fresh, an immediate
contradiction.

• With a view to producing a model where both ℵ2 and ℵ3 have the tree property,
Abraham [1] introduced several new ideas. In particular he introduced a wider
class of “Mitchell type” forcing posets, and analysed the properties of these
posets by representing them as projections of products of simpler posets. This
gave in particular a new proof that if we build Mitchell’s model with � weakly
compact then we obtain a model of the tree property; a key ingredient here is
that if 2� = �2 then countably closed forcing cannot add a new branch to an
�2-tree. Another of Abraham’s innovations was to define versions of Mitchell
forcing with “lookahead”; the point here is to do constructions in which a
forcing of Mitchell type which enforces the tree property is followed by further
forcing, and the tree property is preserved.

• Cummings and Foreman [5] gave a model in which the tree property holds
at κ++ for κ singular. Initially κ and � are both large cardinals, and
the ground model has been prepared so that forcing with Add(κ, �) pre-
serves the measurability of κ. In this type of forcing the two-step itera-
tion Add(κ, �) ∗ Prikry(U ) (for U some normal measure on κ in the Add
extension) plays the same role that Add(κ, �) did in Mitchell’s original
forcing.

3.1. The forcing. We set up a general framework for defining “Mitchell type”
forcing posets. This class of posets will be flexible enough to prove all the instances
of Theorems 2.1 and 2.2 in which the tree property holds or the approachability
property fails.
Let κ and � be regular cardinals with κ = κ<κ < �. We assume that � is Mahlo
(and sometimes weakly compact).
One parameter in the definition of our “Mitchell type” forcing poset will be a
poset P for blowing up the power set of κ to �. Specifically, we shall use forcing
posets P such that:
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(1) |P| = �.
(2) P adds � subsets of κ.
(3) P preserves κ.
(4) P has the κ+-cc.
(5) P is the union of a ⊆-increasing and continuous sequence 〈Pα : α < �〉, and
there exists a set A ⊆ � such that:
(a) A contains almost every point in � ∩ cof(> κ).
(b) For everyα ∈ A,Pα is a complete subposet ofP (so that ifGP isP-generic
it induces a filter GP

α which is Pα-generic).
(c) For every α ∈ A:
(i) P/GP

α × P/GP
α is κ

+-cc in V [GP
α ].

(ii) P(κ) ∩ V [GP
α ] � P(κ) ∩ V [GP

α∗ ], where α
∗ is the successor of α

in A.

Example 3.1. The two examples of most interest to us are P = Add(κ, �) and
P = Add(κ, �) ∗ Prikry(U̇ ) where U̇ is a name for a normal measure on κ in
V [ĠP]. In the first example, set A = � and Pα = Add(κ, α) for all α. In the second
example, we define A using the fact that for almost every α in � ∩ cof(> κ) we
have �P U̇ ∩ V [ĠP

α ] ∈ V [ĠP
α ], and then set Pα = Add(κ, α) ∗ Prikry(U̇α) where

U̇α = U̇ ∩V [ĠP
α ]. See Unger’s article [30] for a careful discussion, including proofs

for all the needed properties of P.

LetBbe the regular open algebra ofP, and letBα be the regular open algebra ofPα
forα ∈ A. Let �α be the natural projectionmap fromB toBα , and note that if α < �
with α, � ∈ A then �α � B� is the natural projection map from B� to Bα . The point
of forming the Boolean algebras is that in the case when P = Add(κ, �)∗Prikry(U̇ )
we will not be able to form a projection of posets from P to Pα .

Remark 3.2. For use later, we note that if Q is κ+-closed and H is Q-generic
then:

• By Easton’s Lemma, P is κ+-cc in V [H ].
• The antichains of P in V [H ] all lie in V , and so (since elements of B can be
understood as suprema of antichains) B is the Boolean completion of P in
V [H ].

• Let α ∈ A. Since V and V [H ] have the same antichains both for P and Pα , it
is still the case in V [H ] that Pα is a complete subposet of P. Also Bα is still the
Boolean completion of Pα and �α is still the natural projection map.

• By Easton’s Lemma again, if GP
α is Pα-generic over V then G

P
α is Pα-generic

overV [H ], and the quotient B/GP
α is computed in the same way byV [G

P
α ] and

V [H ][GP
α ].

• Since Pα ∗ (P/ĠP
α × P/ĠP

α ) is κ
+-cc, by Easton’s Lemma it is κ+-cc in V [H ],

so that P/GP
α × P/GP

α is κ
+-cc in V [H ][GP

α ].

We use P to define two versions of Mitchell forcing,M0 andM1. They will have
the following features in common:

(1) Mi is a �-cc forcing poset.
(2) Mi projects to P, and if GMi is Mi -generic then P(κ) ∩ V [GMi ] = P(κ) ∩
V [GP] where GP is the projected P-generic filter.
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(3) Mi preserves cardinals up to and including κ+, and forces that 2κ = � = κ++.
(4) If � is weakly compact then Mi preserves the tree property at �, and
forces that every stationary subset of � ∩ cof(≤ κ) reflects at a point of
cofinality κ+.

(5) Conditions inMi have three coordinates: the first coordinate is drawn from
P and is responsible for blowing up the power set of κ, the second coordinate
is responsible for collapsing cardinals between κ+ and �, while the third
coordinate is responsible for ensuring that certain combinatorial facts hold
in the extension byMi ∗Add(�, 1).

The key difference between the posetsMi is in the way the approachability ideal
I [�] looks in the corresponding generic extensions. In the extension byM0, � ∈ I [�],
while in the extension byM1 we will have that A is stationary and A /∈ I [�].
3.2. The forcing poset M0. Formally we will define M0 by giving an inductive
definition ofM0 � � for � ∈ A ∪ {�}, and then settingM0 =M0 � �.
Conditions inM0 � � have the form (b, q, r) where:
(1) b ∈ B� , b �= 0.
(2) dom(q) ⊆ A ∩ � , and | dom(q)| ≤ κ.
(3) q(α) is a Pα-name for a condition in Coll(κ+, α)V

Pα .
(4) dom(r) ⊆ A ∩ � , and dom(r) is an Easton set of regular cardinals.
(5) r(α) is anM0 � α-name for a condition in Add(α, 1)V

M0�α .

Conditions in M0 � � are ordered as follows: (b′, q′, r′) ≤ (b, q, r) if and only
if:

(1) b′ ≤ b in B� .
(2) dom(q) ⊆ dom(q′), and �α(b′) � q′(α) ≤ q(α) for all α ∈ dom(q).
(3) dom(r) ⊆ dom(r′), and (�α(b′), q′ � α, r′ � α) � r′(α) ≤ r(α) for every
α ∈ dom(r).

3.3. The forcing posetM1. Let A∗ be the set of successor points in A. We define
M1 exactly the same asM0 except that in (2), A is replaced by A∗. More precisely:
Conditions inM1 � � have the form (b, q, r) where:
(1) b ∈ B� , b �= 0.
(2) dom(q) ⊆ A∗ ∩ � , and | dom(q)| ≤ κ.
(3) q(α) is a Pα-name for a condition in Coll(κ+, α)V

Pα .
(4) dom(r) ⊆ A ∩ � , and dom(r) is an Easton set of regular cardinals.
(5) r(α) is anM1 � α-name for a condition in Add(α, 1)V

M1�α .

The ordering is exactly as forM0.
Let α ∈ A be regular and let α∗ be the successor of α in A. It is instructive to
compareMi � α andMi � α∗ for i = 0 and i = 1. In the case i = 0, the extension
byM0 � α∗ is obtained from the extension byM0 � α as follows: we are essentially
forcing with the product of Pα∗/GP

α , Coll(κ
+, α)V [G

P

α ] and Add(α, 1)V [G
M0
α ]. In the

case i = 1 the “collapse” factor is missing. The point of adding a Cohen generic
subset of α at stage α, which we do both for i = 0 and i = 1, is to ensure stationary
reflection and the tree property in the extension byMi ∗ Add (�, 1).
For the nonapproachability argument for M1 it will be helpful to make two
further assumptions about the set A (easily obtained by thinning): We require that
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successor points of A are inaccessible (recall that we are assuming that � is at
least Mahlo and therefore a limit of inaccessibles) and also that for any α in A,
P(κ) ∩ V [GP

� ] � P(κ) ∩ V [GP
α ] for any ordinal � < α. This will ensure that the

forcings Mi � α∗ preserve the regularity of α∗ and force 2κ = α∗ for successor
elements α∗ of A.

3.4. Common properties ofM0 andM1. The forcing posetsM0 andM1 are very
similar to forcing posets defined by Abraham [1] and Cummings and Foreman [5].
Accordingly we omit some proofs and refer the reader to those articles
The following lemma is straightforward:

Lemma 3.3. |Mi | = �, andMi has the �-Knaster property. 
We will use various projection maps in our arguments. Many of the facts about
projections that we will need hinge on an easy general fact about two-step iterated
forcing.

Lemma 3.4 (Laver). Let A ∗ Ḃ be a two-step iteration. If (a1, ḃ1) ≤ (a0, ḃ0) then
there is an A-name ḃ∗1 such that �A ḃ

∗
1 ≤ ḃ0 and a1 � ḃ1 = ḃ∗1 (so that the conditions

(a1, ḃ1) and (a1, ḃ∗1 ) are equivalent in A ∗ Ḃ).
Proof. By the Maximum Principle we find a name ḃ∗1 for the condition in B

which is the interpretation of ḃ1 by GA when a1 ∈ GA, and is the interpretation of
ḃ0 if a1 /∈ GA and a0 ∈ GA. Otherwise, let ḃ∗1 name the empty condition. 
Laver defined a “term forcing” A(A, Ḃ), where the conditions are A-names for
elements of B ordered by ḃ1 ≤ ḃ0 ⇐⇒ �A ḃ1 ≤ ḃ0. It follows from Lemma 3.4
that the identity map is a projection from A×A(A, Ḃ) to A ∗ Ḃ. Foreman [9] gave
a detailed discussion of the properties of term forcing.
Following Abraham [1] we analyse the posets Mi using various term forcings
and projections. For i ∈ {0, 1} and a ⊆ {0, 1, 2} let Mai be the set of conditions
in Mi which are trivial at coordinates outside a, where the trivial value is 1B on
coordinate zero and the empty function 0 on coordinates 1 and 2. We order Mai
with the ordering inherited fromMi . In an abuse of notation we omit parentheses
and commas in the superscripts, so thatM120 is shorthand forM

{1,2}
0 .

For example M2i can be viewed as an Easton support product of increasingly
closed term forcings, whileM1i is essentially a κ-support product of κ

+-closed term
forcings. In particularM2i is min(A)-closed andM

1
i is κ

+-closed. Note thatM0i � P.
We summarise the various projection facts that we will need in a lemma.

Lemma 3.5. LetMi andMai be as defined above. Then:

(1) The map ((b, q, 0), (1, 0, r)) �→ (b, q, r) is a projection fromM01i ×M2i toMi .
(2) The map ((b, 0, 0), (1, q, 0)) �→ (b, q, 0) is a projection fromM0i ×M1i toM

01
i .

(3) Themap ((b, 0, 0), (1, q, 0), (1, 0, r)) �→ (b, q, r) is a projection fromM0i ×M1i ×
M2i toMi .

(4) The map (b, q, r) �→ (b, q, 0) is a projection fromMi toM01i .
(5) The map (b, q, r) �→ (b, 0, 0) is a projection fromMi toM0i .
(6) The map (b, q, r) �→ (�α(b), q � α, r � α) is a projection fromMi toMi � α.
(7) The map (b, q, r) �→ ((�α(b), q � α, r � α), r(α)) is a projection from Mi to

Mi � α ∗ ˙Add(α, 1).
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(8) For i = 0, the map (b, q, r) �→ ((�α(b), q(α)) is a projection from Mi to
Pα ∗Coll(κ+, α)V Pα for all α ∈ A, while for i = 1 the same map is a projection
for all α ∈ A∗.

Proof. We give a proof only for the first projection fact, the second is similar
and the remainder are completely straightforward. The given map is clearly order-
preserving, andmaps the weakest condition to the weakest condition. To verify that
it is a projection, let (b′, q′, r′) ≤ (b, q, r) inMi . Appealing to Lemma 3.4, define r∗
such that (1, 0, r∗) ∈ M2i as follows: dom(r

∗) = dom(r′), r∗(α) is a term such that
� r∗(α) ≤ r(α) for all α ∈ dom(r) and (�α(b′), q′ � α, r′ � α) � r∗(α) = r′(α) for
all α ∈ dom(r′). Now (b′, q′, 0) ≤ (b, q, 0) in M01i , (1, 0, r∗) ≤ (1, 0, r) in M2i , and
(b′, q′, r∗) ≤ (b′q′, r′) inMi . 
Using the various projection facts and Easton’s Lemma we get an important
conclusion:

Lemma 3.6. All κ-sequences of ordinals from V [GMi ] lie in V [GP].
In particular, (by the κ+-cc of P) every set of ordinals of size κ in V [GMi ] is covered
by a set of size κ in V . 
As a consequence Mi preserves κ and κ+. Since there is a projection from Mi

to Pα ∗ Coll(κ+, α)V Pα for all α ∈ A∗, Mi collapses all cardinals between κ+ and
�, while � is preserved by the �-cc. The upshot is that 2κ = κ++ = � after forcing
withMi .
Suppose that α ∈ A is an inaccessible limit point ofA. ThenMi � α preserves the
regularity of α, as by the above, the forcingMi � α is the projection of the product
of M2i � α, an Easton product which preserves cofinalities and the inaccessibility
of α, and M01i � α, which is α-cc forcing after forcing with M2i � α. We also have
2κ = α in the extension by Mi � α. If α∗ is the least element of A greater than
α, then M0 � α∗ forces 2κ = α∗ = κ++ as it collapses α, but M1 � α∗ forces that
2κ = α∗ is a regular cardinal greater than κ++ = α, as it does not collapse α.
Let GMi beMi -generic and let GMi

α be the induced generic object forMi � α. We
wish to argue thatMi /GMi

α is equivalent to a forcing poset with a similar definition
toMi , computed inV [GMi

α ]. The argument is very similar to the standard argument
that a final segment of an iterated forcing poset can itself be viewed as an iterated
forcing poset [3], so we have omitted some details about translation of names.
Working in V [GMi

α ], we define a poset Ni,α as follows: conditions are triples
(b, q, r) where

(1) b ∈ B/GP
α , b �= 0.

(2) dom(q) ⊆ A\α (if i = 0) or dom(q) ⊆ A∗ \α (if i = 1), and | dom(q)| ≤ κ.
(3) q(
) is a P
/GP

α -name for a condition in Coll(κ
+, 
)V

P
 .
(4) dom(r) ⊆ A \ α, and dom(r) is an Easton set of regular cardinals.
(5) r(
) is aMi � 
/GMi

α -name for a condition in Add(
, 1)
VMi�
 .

There is a natural order-preserving map from Mi to Mi � α ∗ Ṅi,α ; a condition
(b, q, r) is mapped to the pair with first entry (�α(b), q � α, r � α) and second entry
(ḃα, q′ � [α, �), r′ � [α, �)), where ḃα names the image of b in the canonical map
from B to B/GP

α and q
′(
), r′(
) are appropriately translated version of the names

q(
), r(
).
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The key point is that this order-preserving map has a dense image. The only
potential issue is that in aMi � α-name for a condition in Ni,α , the supports of the
q-part and the r-part may not lie in V . However:

(1) Since every set of size κ in V [GMi
α ] is covered by a set of size κ in V , we may

assume that the support of the q-part does lie in V .
(2) Since Mi � α has size less than the least inaccessible limit point of A \ α,
every Easton subset of A \ α in V [GMi

α ] is covered by an Easton set in V , so
we may also assume that the support of the r-part lies in V .

The rest of the argument is routine.
The poset Ni,α is susceptible to the same kind of product analysis as Mi . In
particular, using the fact that N2i,α is α-closed and α = κ

++, we get that every
κ+-sequence of ordinals in V [GMi ] is in the generic extension of V [GMi

α ] by N
01
i,α .

We record some technical facts for use later:

Lemma 3.7. P/GP
α×P/GP

α is κ
+-cc inV [GMi

α ], and also in the extension ofV [G
Mi
α ]

by N1i,α × N2i,α .

Proof. By the projection analysis, we can embed V [GMi
α ] in the extension

of V [GP
α ] by the poset M

1
i,α × M2i,α , which is κ

+-closed in V . By Remark 3.2,
P/GP

α × P/GP
α is κ

+-cc in this extension, hence it is κ+-cc in V [GMi
α ]. By Easton’s

Lemma it is still κ+-cc in the extension of V [GMi
α ] by the κ

+-closed forcing poset
N1i,α × N2i,α . 
We now analyse the status of AP, TP and RP in the extensions by Mi and

Mi ∗ ˙Add(�, 1). In the case of TP and RP, the main point is to show that (assum-
ing that � is weakly compact) TP and RP hold in the extension Mi ∗ ˙Add(�, 1).
Easy arguments will then show that these properties also hold in the extension
byMi .

3.5. Approachability. We are finally ready to analyse the approachability ideal
I [�] in V [GMi ]. By a result of Shelah [26] κ++ ∩ cof(≤ κ) ∈ I [κ++], so the only
relevant question is about �∩ cof(κ+). We note that since 2κ = � there is a maximal
stationary subset S of �∩cof(κ+) that lies in I [�], which can be obtained as follows:
enumerate [�]≤κ as 	a = 〈a� : � < �〉, and define S = S(	a) to be the stationary set
of points α ∈ � ∩ cof(κ+) such that there is E ⊆ α a cofinal set of order type κ+
with E ∩ 
 ∈ {a� : � < α} for all 
 < α. The set S is well-defined modulo the club
filter, and every subset of � ∩ cof(κ+) in I [�] is contained in S modulo clubs.
It will be convenient to organise the definition of S differently. By Lemma 3.6,
all elements of [�]≤κ lie in V [GP], so we assume that the enumeration 〈a� : � < �〉
lies in V [GP]. By the κ+-cc of P, for almost all α ∈ A of cofinality κ+, {a� : � <
α} = [�]≤κ ∩V [GP

α ], and hence we may as well redefine S as a subset of A, namely
S is the set of α ∈ A such that there is E ⊆ α a cofinal set of order type κ+ with
E ∩ 
 ∈ V [GP

α ] for all 
 < α. This definition is equivalent modulo clubs to the
previous one.
We recall that in the generic extension V [GM0 ], for every α ∈ A the forcing adds
a Coll(κ+, α)V [G

P

α ]-generic object. This gives a cofinal map from κ+ to α with every
initial segment in V [GP

α ], whose range will serve as a witness that α ∈ S. So S = A
and it follows easily that � ∈ I [�].
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We now consider the situation in V [GM1 ], where we will argue (assuming that �
is Mahlo) that there is a stationary subset of A which is disjoint from S, and hence
� /∈ I [�].
Let B be the set of inaccessibles in A which are limit points of A.
Recalling our background assumption that � is Mahlo, we see thatB is stationary
in the ground model V , and since M1 is �-cc we also have that B is stationary in
V [GM1 ]. Recall that for α in B, 2κ = κ++ = α in the extension byMi � α but if α∗
is the A-successor of α, then 2κ = α∗ is a regular cardinal greater than α = κ++ in
the extension byM1 � α∗.
Lemma 3.8. The stationary set B is disjoint from S.

Proof. If α ∈ B ∩ S then by definition there is E ⊆ α a cofinal set of order type
κ+ with E ∩ 
 ∈ V [GP

α ] for all 
 < α. Let g enumerate E in increasing order, so
that g is a cofinal map from κ+ to α such that each of its proper initial segments is
in V [GP

α ].
Note that α is regular in the model V [GM1 � α∗], where α∗ is the A-successor to
α, and therefore the function g is not a member of V [GM1 � α∗].
Moreover, in this model 2κ = α∗ is a regular cardinal greater than α.
The function g is added over V [GM1 � α∗] by the forcing poset N1,α∗ , which by
the projection analysis from Section 3.4 is the projection of the product of a forcing
whose square is κ+-cc with a forcing which is κ+-closed. But then by Remark 1.7,
this product could not add g, else it would add a new branch to the tree <κ

+
α as

computed in V [GM1 � α]. 
As we mentioned above, for technical reasons we also need to understand the
status of AP in the extension byMi ∗ ˙Add(�, 1). This is straightforward, because the
enumeration of the bounded subsets of � (which we used to compute the maximum
element of I [�]) is still an enumeration of all bounded subsets after forcing with
Add(�, 1), and Add(�, 1) is �-closed so that it preserves stationary subsets of �.
It follows readily that AP holds in the extension by M0 ∗ ˙Add(�, 1) and fails in
the extension byM1 ∗ ˙Add(�, 1).

3.6. The tree property. Let � be weakly compact. Towards a contradiction, sup-
pose that � fails to have the tree property in VMi∗Add(�,1) and let Ṫ be a name for a
�-Aronszajn tree in this extension. Since Mi is �-cc forcing of size �, we may view
Mi ∗Add(�, 1) and Ṫ as subsets ofV�. Now, since � is Π11-indescribable, there exists
an inaccessible α ∈ A such that Ṫ ∩ Vα is a (Mi � α) ∗ Add(α, 1)-name for an
α-Aronszajn tree. By the definition ofMi , at stage α the third coordinate generates
gα which is Add(α, 1)-generic over V [GMi

α ]. Consider the realisation T
∗ of Ṫ ∩ Vα

via GMi
α ∗ gα , and observe that it is an α-Aronszajn tree in V [GMi

α ∗ gα].
Let Ni,α be the quotient forcing from Section 3.4, so that we may view V [GMi ]
as an Ni,α-generic extension of V [GMi

α ]. Note that Add(α, 1) appears as part of
the first stage of Ni,α , so we may view V [GMi ] as an Ni,α/gα-generic extension of
V [GMi

α ∗ gα].
By the projection argument from Section 3.4,Ni,α can be viewed as the projection
of a product N0i,α × N1i,α × N2i,α . Now N2i,α is a product whose first component is
Add(α, 1), so easily Ni,α/g � α can be viewed as the projection of N0i,α × N1i,α ×
N2i,α/gα .
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We work in V [GMi
α ∗ gα]. Note that N1i,α is κ+-closed and N2i,α/gα is α∗-closed

where α∗ is the successor of α in A. What is more N0i,α � P/GP
α and the square of

this poset is κ+-cc in the extension by N1i,α ×N2i,α . Thus it follows from Fact 1.6 that
N0i,α × N1i,α × N2i,α/gα cannot add a branch through T

∗, so that T ∗ has no cofinal
branch in V [GMi ].
We may view gα as a condition in Add(�, 1), and force below it to get g which is
Add(�, 1)-generic and has gα as an initial segment. By the reflection properties of
α, if T is the realisation of Ṫ byGMi ∗g then T ∗ = T � α. But Add(�, 1) is �-closed
and so T ∗ has no cofinal branch in V [GMi ∗ g], an immediate contradiction since
T has points on level α.
Since Add(�, 1) is �-closed, it follows from Fact 1.6 that TP also holds inV [GMi ].

3.7. Reflection. The arguments for RP are quite similar to those for TP. Let � be
weakly compact and let Ṡ name a nonreflecting stationary subset of � ∩ cof(≤ κ).
Since � is Π11-indescribable there is an inaccessible cardinal α ∈ A such that Ṡ ∩Vα
is a (Mi � α) ∗ Add(α, 1)-name for a stationary subset of α ∩ cof(≤ κ). Let S∗ be
the realisation of Ṡ ∩Vα in V [GMi

α ∗ gα].
Arguing as in the last subsection, it will suffice to show thatS∗ remains stationary
in the extension by N0i,α × N1i,α × N2i,α/gα . We start by noting that since α = κ

++,
S∗ ∈ I [α] and so its stationarity is preserved by κ+-closed forcing. In particular
S∗ is still stationary after forcing with the κ+-closed forcing poset N1i,α × N2i,α/gα .
After this forcing cf(α) = κ+, so that there is a stationary subset S∗0 ⊆ κ+ which is
the “collapsed” version of S∗.
By Easton’s Lemma N0i,α is still κ

+-cc in the extension by N1i,α × N2i,α/gα , so that
S∗0 (and hence S

∗) is stationary in V [GMi ∗ g]. As in the last subsection we force
to get g which is Add(�, 1)-generic and has gα as an initial segment, and realise Ṡ
in V [GMi ∗ g] as a stationary set S with S ∩ α = S∗. Since Add(�, 1) is �-closed
we see that S∗ is a stationary initial segment of S in V [GMi ∗ g], contradicting the
choice of Ṡ as a name for a nonreflecting stationary set.
To see that RP also holds in V [GMi ], let S ⊆ � be stationary in this model. Then
S is still stationary in V [GMi ∗ g], it reflects there and hence easily it reflects in
V [GMi ].

§4. Down to the first singular cardinal. In this section we prove that Theorem 2.2
can be obtained forκ = ℵ�. For the not-TP cases the argument is the same as before.
For the rest we will use the variants of Mitchell forcing from the last section with
P = Add(κ, �). Then we will force with a Prikry poset with interleaved collapses
with guiding generics to singularise κ and make it become ℵ�.
In V , suppose that κ is indestructibly supercompact and � > κ is a weakly
compact cardinal. Let Mi for i ∈ {0, 1} be the Mitchell type posets defined in
the previous section with respect to P = Add(κ, �), i.e., the forcing used for the
proof of Theorem 2.1. Now let G be Mi -generic. Then in V [G ], � = κ++ = 2κ

and κ is supercompact. In V [G ], let U ∗ be a normal measure on Pκ(κ+). Using
arguments as in [16], we can arrange that if j∗ = jU∗ , then for every α < j∗(κ),
there is a function f : κ → κ, such that j∗(f)(κ) = α. The key to the proof is that
|j∗(κ)| = 2κ. For a detailed presentation of the preparation, which is analogous to
the case here, see [29, Section 2].
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Now let U be the normal measure on κ obtained from U ∗ and set j = jU .
Note that Ult(V [G ], U ∗), andUlt(V [G ], U ) compute cardinals correctly up to and
including �. Denote C = [α �→ Coll(α++, < κ)]U . For x ∈ Pκ(κ+), we use κx to
denote κ ∩ x.
Lemma 4.1. There is a generic filter for C over Ult(V [G ], U ) in V [G ].

Proof. Define k : Ult(V [G ], U ) → Ult(V [G ], U ∗) by stipulating k([f]) =
j∗(f)(κ), so that j∗ = k ◦ j. Since we arranged that every α < j∗(κ) can be
represented by a function from κ to κ, we have that the range of k contains j∗(κ),
and so the critical point of k is above j∗(κ).
Denote C∗ = [x �→ Coll(κ+2x ,< κ)]U∗ . Note that k(C) = C∗. By standard
arguments, in V [G ] there is a generic filter K∗ for C∗ over Ult(V [G ], U ∗). Here
we use the fact that there are κ++-many antichains to meet, and the poset is κ++-
closed. Clearly, K = k−1“K∗ is a filter for C. Also, since C has the j(κ)-cc and the
critical point of k is high enough, we have that for every maximal antichainA ⊆ C,
k(A) = k”A. It follows thatK is C-generic over Ult(V [G ], U ). 
Let K in V [G ] be a generic filter for C over Ult(V [G ], U ). Let X = {α < κ :
α is inaccessible}, and note that X ∈ U . Then define a Prikry-type forcing poset R
to have conditions 〈d, α0, c0, . . . , αn−1, cn−1, A,C 〉, where
• 〈αi | i < n〉 is a finite increasing sequence of inaccessibles;
• if n > 0, then d ∈ Coll(�,α0), otherwise d ∈ Coll(�, κ);
• for i < n − 1, ci ∈ Coll(α++i , < αi+1) and cn−1 ∈ Coll(α++n−1, < κ);
• A ∈ U , A ⊆ X ; and
• dom(C ) = A, for each α ∈ A, C (α) ∈ Coll(α++, < κ), and [C ]U ∈ K .
The ordering is as follows:
〈d ′, α0, c′0, . . . , αm−1, c′m−1, A′, C ′〉 ≤ 〈d, α0, c0, . . . , αn−1, cn−1, A,C 〉 iff:
• m ≥ n, d ′ ≤ d , for all i < n, c′i ≤ ci ;
• for all n ≤ i < m, αi ∈ A and c′i ≤ C (α′i );
• A′ ⊆ A and for all α ∈ A′, C ′(α) ≤ C (α).
For a condition p, we denote the stem of p by s(p) = 〈d, α0, c0, . . . , αn−1, cn−1〉
and the length of p by �(p) = n. We also denote the length of a stem s = s(p), by
�(s) = n.
We refer the reader to Gitik’s survey [14] for a detailed account on this type of
forcing and its properties. We will use the following facts about R:

• It has the κ+-cc.
• It has the Prikry property, that is to say for every sentence in the forcing
language φ and condition p there is p′ ≤ p with the same length deciding φ.
As a consequence, the only collapsing of cardinals occurs below κ and is done
by the Lévy collapses.

• By similar arguments to those for the Prikry property, for every dense open set
D and every condition p there exist an extension q of p with �(q) = �(p) and
an integer n such that every n-step extension of q lies inD. That is, every r ≤ q
with �(r) = �(q) + n lies in D.

• The generic object is a sequence
g, α0, g0, α1, g1, . . . ,
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where the αn form an increasing sequence of inaccessible cardinals, g is
Coll(�,α0)-generic and gi is Coll(α++i , < αi+1)-generic. Genericity has a sim-
ple and absolute characterisation in terms of U and K ; for every C such that
[C ]U ∈ K , αi ∈ dom(C ) and C (αi) ∈ gi for all large i .
Let R be R-generic over V [G ]. Using the properties we just listed, in V [G ][R]
we have that κ = ℵ� and � = ℵ�+2.
Fix i ∈ {0, 1}. Let Q be the term forcingM12i . Then Q is κ+-directed closed and

P×Q projects toMi . Note that by the κ+-directed closure ofQ, in V P×Q, U is still
a normal measure andK is a still a guiding generic over the ultrapower of V P×Q by
U . So in that extension R has the same definition and retains the same properties.
Our next task is analysing TP, RP and AP in VMi∗R.

4.1. The tree property. In this subsection, we show a branch lemma to ensure that
forcing with R preserves the tree property. We will follow the argument in Section 4
of a recent by Sinapova and Unger [29]. In V let Ṫ be anMi ∗R name for a �-tree.
Using the weak compactness of � inV , fix an embedding k with critical point � on a
transitivemodel of size � containing Ṫ . SinceMi ∗Ṙ has the �-cc, we can lift k to this
extension by forcing with k(Mi ∗R)/G ∗R. Since the lifted embedding determines
a branch through the tree, it is enough to show that forcing with k(Mi ∗ R)/G ∗ R
does not add new branches through T .
Note that U ⊆ k(U ), K ⊆ k(K), and R ⊆ k(R). Of course, there are more
subsets in k(U ), but by the characterization of genericity for Prikry posets, k(R)
induces a generic for R. Let us give some definitions. If r, r′ are Prikry conditions
we say that r′ is a direct extension of r if r′ ≤ r and they have the same length,
and we write r′ ≤∗ r. For r in R or in k(R), we let s(r) denote its stem. Note that
the stem is always in V [G ]. For stems s, s ′, we say that s ′ extends s , if there are
Prikry conditions r′ ≤ r with stems s ′ and s , respectively. If �(s ′) ≥ �(s) and r is a
condition with stem s , we say that “points in s ′ above s are compatible with r” if
there is r′ ≤ r with stem extending s ′. Also, for a stem s , we write “s �∗ φ” if there
is r ∈ R with stem s , such that r � φ.
The next lemma comes from the work of Cummings and Foreman [5], adapted
to our case.

Lemma 4.2. Work in V [G ]. Let r̄ ∈ R, m ∈ k(Mi) and ṙ be a k(Mi)-name for
an element of k(R), such that m decides the value of the stem of ṙ. Then r̄ forces
(m, ṙ) /∈ k(Mi ∗ R)/(G ∗ Ṙ) if and only if one of the following holds:
(1) m /∈ k(Mi)/G .
(2) s(r̄) and s(ṙ) have no common extension.
(3) �(ṙ) ≥ �(r̄) and points in s(ṙ) above s(r̄) are not compatible with r̄.
(4) �(r̄) ≥ �(ṙ) and m forces that points in s(r̄) above s(ṙ) are not compatible
with ṙ.

Remark 4.3. A key point in the proof of Lemma 4.2 is that due to the guiding
generics, conditions in R with the same stem are compatible.

Lemma 4.4. Working in V [G ], let r̄ ∈ R, m ∈ k(Mi)/G and let ṙ be a k(Mi)/G-
name for a condition in k(R) such that

(1) m decides the value of s(ṙ),
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(2) s(r̄) extends s(ṙ), and
(3) m forces that points in s(r̄) above s(ṙ) are compatible with ṙ,

then there is a direct extension of r̄ which forces that (m, ṙ) ∈ k(Mi ∗ R)/(G ∗ Ṙ).
Proof. Let r̄0 be a direct extension of r̄ which decides the statement (m, ṙ) ∈
k(Mi ∗R)/(G ∗R). It is straightforward to check that we are not in any of the cases
of Lemma 4.2, so it is not the case that r̄0 � (m, ṙ) /∈ k(Mi ∗R)/(G ∗ Ṙ). It follows
that r0 forces (m, ṙ) into the quotient. 
Let N = k(Mi ∗ R)/G ∗ R. We will write conditions in N as triples (p,f, ṙ),
where p ∈ k(P), f ∈ k(Q) and ṙ is a k(Mi)-name for a condition in k(R). Here
we identify k(Q) with its nontrivial coordinates. We will also refer to ≤k(Q) as the
“term ordering”.
Let � : �→ κ+ be a branch in the extension by N. Suppose for contradiction that
� is a new branch. Note that for all α < �, � � α ∈ V [G ][R].
Lemma 4.5. In V [G ][R], there is a condition (p,f, ṙ) ∈ N, such that for each x,
α < � and (p′, f′, ṙ′) ≤N (p,f, ṙ), if f′ ≤k(Q) f and (p′, f′, ṙ′) � �̇ � α = x, then
(p,f′, ṙ) � �̇ � α = x.
Proof. The proof is essentially the same as in [29], but we will go over the main
steps for completeness. Suppose otherwise. Then in V [G ], let r̄ ∈ R force the
negation of the conclusion. Then whenever r̄ � (p,f, ṙ) ∈ Ṅ, the following set D
is dense below r̄ in R, where D consists of conditions r̄′ ∈ R, such that there
are p0, p1 ∈ k(P), f∗ ≤k(Q) f, k(Mi )/G-names ṙ0, ṙ1 for elements in k(R), α <
�, and R-names x0, x1 such that

• for i ∈ {0, 1}, r̄′ � (pi , f∗, ṙi ) ≤N (p,f, ṙ);
• for i ∈ {0, 1}, r̄′ � “(pi , f∗, ṙi ) �N �̇ � α = xi”;
• x0, x1 are forced to be distinct.
Now, by recursion over α < κ+, construct piα, x

i
α, xα, fα, ṙ

i
α , r̄α and �α for i ∈ 2,

such that 〈�α : α < κ+〉 is increasing, 〈fα : α < κ+〉 is ≤k(Q)-decreasing, and for
each α, i , r̄α ∈ R forces that:

• (piα, fα, ṙiα) ∈ N;
• (piα, fα, ṙiα) � �̇ � sup�<α �� = xα ;
• x0α �= x1α ;
• (piα, fα, ṙiα) � �̇ � �α = xiα ; and
• (piα, fα) decides s(ṙiα) and s(r̄α) extends it.
Using that there are only κ many possible stems and that P × P has the κ+-cc,
we find � < � ′ < κ+, such that s(r̄� ) = s(r̄�′), and for i ∈ 2, s(ṙi� ) = s(ṙi�′), and
pi� is compatible with p

i
�′ . Then for i ∈ 2, let pi be the weakest lower bound for pi�

and pi�′ and let ṙ
i be a name for a common extension of ṙi� and ṙ

i
�′ in k(R) with the

same stem.
By Lemma 4.4, there is a direct extension r of r̄� and r̄�′ which forces that each
(pi , f�′ , ṙi ) is in N. We choose a generic R′ containing r. Then in V [G ][R′], we
have that (pi , fα′ , ṙi ) is in N, and so for i ∈ 2, xα′ � �α = xiα . This implies that
x0α = x

1
α , a contradiction. 

https://doi.org/10.1017/jsl.2017.69 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.69


THE EIGHTFOLDWAY 367

Work inV [G ]. Let r∗ ∈ R force that (p,f, ṙ) is as in the conclusion of Lemma 4.5.
We construct sequences

〈fs : s ∈ 2<κ〉, 〈αhs , xhs , �hs�i : s ∈ 2<κ, i ∈ 2, h is a stem extending s(r∗)〉,
such that:

(1) if s ′ ⊇ s , then fs′ ≤k(Q) fs ;
(2) for all s, h, i , h �∗ (p,fs�i , ṙ) � “�̇(αhs ) = �hs�i , �̇ � αhs = xhs ”; and
(3) for all s, h, �hs�0 �= �hs�1.
Let α∗ = suph,s α

h
s < �. For every g ∈ 2κ, let fg ≤k(Q) fg�
 for all 
 < κ and let

rg ∈ R be such that rg ≤ r∗ and for some �g < κ+,
rg �R (p,fg, ṙ) � �̇(α∗) = �g .

Take g1 �= g2 to be such that for some h, �, h = s(rg1 ) = s(rg2 ), � = �g1 = �g2 .
Let r̄ be a common extension of rg1 and rg2 with stem h. Let 
 < κ be such that
g1 � 
 = g2 � 
 = s and g1(
) �= g2(
). Finally, let q ≤ r̄ witness item (2) above for
s�0, s�1 and h.
We choose a generic R′ containing q. Then in V [G ][R′], we have that both
(pi , fg1 , ṙ) and (pi , fg2 , ṙ) force that �̇(α

∗) = �, but they force different values for
�̇(αhs ). This is a contradiction.
We have proven the following lemma, which takes care of preserving the tree
property for the cases TP + RP.

Lemma 4.6. V [G ][R] satisfies the tree property at � = ℵ�+2. 
Next we look at the cases TP + not-RP. Namely, we want to modify the above
argument to show that after forcing with R over VMi∗PNRSS , the tree property is
preserved.
Note that there is a projection from Mi ∗ Add(�, 1) ∗ R to Mi ∗ (PNRSS × R).
Let G be a generic for Mi and S × R be generic for PNRSS × R over V [G ]. As
before, we lift an embedding k witnessing the weak compactness of � by forcing
with k(Mi ∗(ṖNRSS×Ṙ))/(G∗(R×S)), andwe get a branch in that extension. By the
distributivity of k(PNRSS), it is enough to show thatN′ = k(Mi ∗ Ṙ)/(G ∗ (R×S))
does not add a new branch.
In V [G ∗ R] define N = Add(�, 1) ∗ Ṅ′. We write conditions in N of the form
(a, p,f, ṙ) where a = (a0, a1) ∈ Add(�, 1), a0 ∈ PNRSS, p ∈ k(P), f ∈ k(Q), and ṙ
is a name for an element in k(R). We will show that N does not add a branch.
Let � : � → κ+ be a branch in the extension by N. Suppose for contradiction
that � is a new branch. Note that as before, for all α < �, � � α ∈ V [G ][R], so that
Lemma 4.5 applies. In particular we can decide different values for initial segments
of �̇ only by extending the f and the a-parts.
Work inV [G ] and as before applyLemma4.5 to construct sequences 〈a
0 : 
 < κ〉,

〈as1 , fs : s ∈ 2<κ〉, 〈αhs , xhs , �hs�i : s ∈ 2<κ, i ∈ 2, h is a stem〉, such that:
(1) if s ′ ⊇ s , then fs′ ≤k(Q) fs , (a|s

′|−1
0 , as

′
1 ) ≤ (a|s|−10 , as1 );

(2) for all s, h, i , h �∗ (a|s|0 , a
s�i
1 , p, fs�i , ṙ) � �̇(αhs ) = �hs�i , �̇ � αhs = shs ; and

(3) for all s, h, �hs�0 �= �hs�1.
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Let α∗ = suph,s α
h
s < �. For every g ∈ 2κ, let fg ≤k(Q) fg�
 for all 
 < κ, and let

(ag0 , a
g
1 ) ≤ (a
0 , ag�
1 ) for all 
 < κ. Then let rg ∈ R be such that

rg �R (a
g
0 , a

g
1 , p, fg, ṙ) � �̇(α∗) = �g .

Take g1 �= g2 to be such that for some h, �, h = s(rg1 ) = s(rg2 ), � = �g1 = �g2 .
Let r̄ be a common extension of rg1 and rg2 with stem h. Let 
 < κ be such that
g1 � 
 = g2 � 
 = s and g1(
) �= g2(
). Finally, let q ≤ r̄ witness item (2) above for
s�0, s�1. Then force below q to get a contradiction.
Then we have proven the following lemma:

Lemma 4.7. Let G ∗ S beMi ∗ PNRSS-generic andR be R-generic over V [G ∗ S].
Then in V [G ][S][R] we have the tree property at � = ℵ�+2. 
As explained before, we use the preceding lemma in the cases TP + not-RP.

4.2. Reflection. First, let us point out that R preserves failure of reflection at �,
simply becauseR preserves stationary sets of �. This takes care of preserving not-RP
for the cases of TP ± AP + not-RP.
Next, we show that R also preserves reflection at �.

Lemma 4.8. Suppose thatW is a model where κ is regular, � = κ++, RP holds at
�. Then inW R, RP holds at �.

Proof. Given Ṡ that is forced to be a stationary subset of � = κ++, suppose for
contradiction that it is forced to be nonreflecting at points of cofinality κ+ by some
p in R. Since there are only κ-many stems, there is a stem h, extending the stem of
p, such that T = {� < � : h �∗ � ∈ Ṡ} is stationary. By strengthening if necessary,
we may assume p has a stem h. For each � ∈ T , let r� be with stem h, such that
r� � � ∈ Ṡ. By RP inW , there is �̄ with cf(�̄) = κ+, such that T ∩ �̄ is stationary.
LetD := {q : (∃C )(C ⊆ �̄ is club and q � C ∩ Ṡ = ∅)}. By our assumption and
since P has the κ+-cc, D is open and dense below p, so there exist p′ ≤∗ p and n
such that every n-step extension of p′ is in D. Write p′ = 〈h,A′, C ′〉. Also, for each
� ∈ T , denote r� = 〈h,A� ,C�〉. By strengthening if necessary, we assume that for
each � , r� ≤ p′.
For simplicity, suppose that n = 1 (the argument for the general case in similar).
Define φ : T ∩ �̄→ κ by stipulating φ(�) = min(A�). This function is constant on
a stationary set, so let α < κ be such that Tα = φ−1{α} is stationary in �̄. Now let

q = 〈h�〈α,C ′(α)〉, A′ \ α + 1, C ′ � (A′ \ α + 1)〉.
By our choice of p′, we have that for some club C ⊆ �̄, q � C ∩ Ṡ = ∅. But
now let � ∈ Tα ∩ C and let r = 〈h�〈α,C� (α)〉, A′

� , C
′
�〉, where A′

� = A� \ α + 1
and C ′

� = C� � A′
� . Then r ≤ r� , and so r � � ∈ Ṡ, but also r ≤ q. This is a

contradiction. 
4.3. Approachability. At this stage, we are left with showing that forcing with R
preserves the properties of the approachability ideal at � as arranged by the choice
of M0 or M1. As we have verified that AP holds at � after forcing with M0 and
approachability is persistent for models with the same cardinals, we have:

Lemma 4.9. Suppose that G is M0 orM0 ∗ PNRSS-generic. Then in V [G ][R], AP
at � holds. 
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For not-AP we use a theorem of Gitik and Krueger from [15], who showed that
for � = κ++, after forcing with a κ-centered poset the approachability ideal of � in
the generic extension is generated by the ground model ideal I [�], yielding:

Lemma 4.10. Suppose that G isM1 orM1 ∗ PNRSS-generic. Then in V [G ][R], AP
at � fails. 
Thus, we have established the third theorem of this article (overstating the large
cardinal assumption).

Theorem 4.11. Let κ be an indestructible supercompact cardinal and let � = κ+.
Then, assuming the existence of a weakly compact cardinal above κ, for each Boolean
combination Φ of TP, AP and RP there exists a generic extension in which κ = ℵ� ,
� = ℵ�+1, � = ℵ�+2, and Φ holds. 
Remark 4.12. It is also possible to prove Theorem 4.11 using an approach
analogous to that used in the proof of Theorems 2.1 and 2.2, writing the relevant
quotients as the projection of a product of a κ+-closed forcing with a forcing whose
square is κ+-cc. This is the method used in [12].

§5. Open questions.
(1) In several of our cases we have assumed the existence of a weakly compact
cardinal � above κ to get a Boolean combination of AP, TP and RP to hold
at κ++. For the TP cases this is necessary, as the tree property demands a
weakly compact. However for some of the not-TP cases we can use less:
Our argument for not-TP + AP + not-RP used no large cardinal, and as
Harrington and Shelah [17] obtained the RP from just a Mahlo cardinal,
the case not-TP + AP + RP can be handled with just a Mahlo cardinal,
and in fact, nonTP is moreover witnessed by a Souslin tree (cf. [23]). Also,
our argument for the case not-TP + not-AP + not-RP only used a Mahlo
cardinal and it can be shown that these uses are necessary. This leaves one
open case: not-TP + not-AP + RP; can this also be done assuming just a
Mahlo cardinal?

(2) In the cases of κ singular we used a measurable cardinal κ that remains
measurable after forcing with Add(κ, �), where � > κ is weakly compact.
This has the consistency strength of a weakly compact hypermeasurable
cardinal. But it is conceivable that much less strength is needed. For example,
although the TP at κ++ with κ measurable is equiconsistent with a weakly
compact hypermeasurable cardinal (see [6]) and this was used in [11] to get
the TP at ℵ�+2, Gitik [13] showed that indeed much less strength is needed
for the latter result. Does Gitik’s result extend to the entire eightfold way?

(3) This article looks at the eightfold way just for a single cardinal �. Can it be
carried out formany cardinals, such as all of theℵn’s (n > 1), simultaneously?

(4) What is the status of the eightfold way at successors of singular cardinals?
Note that the situation here is known to be more complicated. For instance,
Fontanella and Magidor [8] constructed a model in which ℵ�2+1 is a strong
limit, every stationary subset of ℵ�2+1 reflects, but the approachability prop-
erty fails at ℵ�2+1, whereas the same combination at the level of ℵ�+1 is
inconsistent (see Corollary 3.41 of Eisworth’s survey [7]).
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