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We investigate the properties of small-amplitude inertial waves propagating in
a differentially rotating incompressible fluid contained in a spherical shell. For
cylindrical and shellular rotation profiles and in the inviscid limit, inertial waves obey
a second-order partial differential equation of mixed type. Two kinds of inertial modes
therefore exist, depending on whether the hyperbolic domain where characteristics
propagate covers the whole shell or not. The occurrence of these two kinds of inertial
modes is examined, and we show that the range of frequencies at which inertial
waves may propagate is broader than with solid-body rotation. Using high-resolution
calculations based on a spectral method, we show that, as with solid-body rotation,
singular modes with thin shear layers following short-period attractors still exist with
differential rotation. They exist even in the case of a full sphere. In the limit of
vanishing viscosities, the width of the shear layers seems to weakly depend on the
global background shear, showing a scaling in E1/3 with the Ekman number E, as in
the solid-body rotation case. There also exist modes with thin detached layers of width
scaling with E1/2 as Ekman boundary layers. The behaviour of inertial waves with a
corotation resonance within the shell is also considered. For cylindrical rotation, waves
get dramatically absorbed at corotation. In contrast, for shellular rotation, waves may
cross a critical layer without visible absorption, and such modes can be unstable for
small enough Ekman numbers.
Key words: geophysical and geological flows, rotating flows, waves in rotating fluids

1. Introduction
The fluid flows that pervade the interior of stars and planets are most of the

time dominated by a strong background rotation. The Earth’s atmosphere, oceans
or its liquid core are typical examples. Such flows are studied in a rotating frame,
and the dominance of rotation arises through that of the Coriolis acceleration over
all other terms in the momentum equation (the centrifugal acceleration is usually
combined with the pressure gradient through the so-called reduced pressure). The
Coriolis acceleration implies that the response of a rotating fluid to small-amplitude
oscillations may become singular.

† Email address for correspondence: C.Baruteau@damtp.cam.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

60
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:C.Baruteau@damtp.cam.ac.uk
https://doi.org/10.1017/jfm.2012.605


48 C. Baruteau and M. Rieutord

It is known indeed since the work of Cartan (1922) that the pressure perturbations of
an inviscid incompressible fluid obey Poincaré equation, which has the remarkable
property of being spatially hyperbolic. Since boundary conditions have to be
met by solutions, oscillations of bounded rotating fluids are a mathematically ill-
posed problem. It means that, in most general containers, eigenmodes of inviscid
incompressible fluids may simply not exist. Mathematically, the point spectrum of the
operator is said to be empty. However, a few containers such as the full ellipsoid
or the cylindrical layer allow the existence of such eigenmodes, because of the
separation of spatial variables that is possible in these geometries. Solutions were
worked out by Kelvin (1880) for the cylinder, and by Bryan (1889) for the sphere
and the ellipsoid. The singular nature of the solutions to Poincaré equation have been
uncovered almost a century later by the works of Stewartson & Rickard (1969) and
Stewartson (1971, 1972a). Stewartson (1972b) showed that these singularities should
turn into oscillating shear layers through viscosity.

New interest in the singular solutions to the Poincaré equation was put forward
with the work of Maas & Lam (1995) on gravity modes in two-dimensional basins.
The pressure fluctuations of internal gravity modes also satisfy the Poincaré equation,
and Maas & Lam (1995) showed the crucial role of characteristic trajectories and
coined the concept of attractor to describe the convergence of characteristics to
special limit cycles. At the same time, Hollerbach & Kerswell (1995) and Kerswell
(1995) investigated the internal shear layers spawned by the critical latitude singularity
(another singularity different from that of the attractors), in relation with the precession
flows of a spherical shell.

Subsequent work by Rieutord & Valdettaro (1997), Rieutord, Georgeot & Valdettaro
(2001) and Rieutord, Valdettaro & Georgeot (2002) demonstrated how attractors
feature the oscillations of slightly viscous rotating fluids contained in spherical shells.
For very small viscosities, relevant to astrophysical and geophysical applications,
oscillating flows are confined within shear layers that closely follow attractors of
characteristics. In the two-dimensional limit of a spherical shell, Rieutord et al. (2002)
derived analytical solutions for the structure of shear layers. They showed in particular
that the velocity field of eigenmodes obeys the same equation as that governing the
quantum states of a particle trapped in a parabolic well (the Schrödinger equation).

More recently, forced oscillations in rotating fluids have been examined in the
context of tidal interactions between two celestial bodies (Ogilvie & Lin 2004; Wu
2005; Ogilvie & Lin 2007; Goodman & Lackner 2009; Ogilvie 2009; Rieutord
& Valdettaro 2010). Dissipation of tidally forced modes of oscillations in each
companion alters the orbital elements and spin of each body. It plays a prominent role
in the late evolution of close-in extrasolar planets. The efficiency of tidal dissipation
mechanisms is usually parametrized by a single, dimensionless tidal quality factor Q,
which is an inverse measure of the tidal torque acting on a gravitationally perturbed
body. However, tidal dissipation is extremely sensitive to the frequency and amplitude
of the external tidal potential (see, e.g., Ogilvie 2009; Rieutord & Valdettaro 2010).
This dependency is intimately related to the existence of singularities arising from the
hyperbolic nature of the Poincaré equation. As in free modes of oscillations, these
singularities consist of the critical latitude singularity and attractors of characteristics.

Works examining tidal dissipation mechanisms in rotating fluids have used simple
fluid models, where the background flow disturbed by inertial modes is in pure solid-
body rotation. The rotation pattern inside stars and planets is much more intricate,
as may be guessed. Large-scale flows are usually present in stars and planets. Most
frequently, such flows are largely axisymmetric, and include differential rotation as
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Inertial waves in a differentially rotating spherical shell 49

well as a weak meridional circulation. In light of previous works on rigidly rotating
fluids, the present paper is a first study of how departure to solid-body rotation impacts
the oscillation properties of rotating fluids and their associated tidal dissipation. In
this first paper, we focus on free inertial modes of oscillations. Tidally forced
inertial modes will be examined in a future study. As a first simplification, we
discard meridional circulation, which is very weak in general, especially for very
small viscosities. However, the choice for the differential rotation pattern, which we
assume to be axisymmetric, remains open. The blue azimuthal velocity of the (smooth)
differentially rotating background flow can be expanded into spherical harmonics,

uϕ(r, θ)=−
∑
`

w`
m(r)∂θY

m
` , (1.1)

as for any axisymmetric azimuthal component of a vector field (Rieutord 1987). In
this expression, r, θ and ϕ denote the usual spherical coordinates, Ym

` denotes the
spherical harmonics normalized on the sphere of unit radius and w`

m(r) accounts for
the radial variation in the flow. If differential rotation is smooth, we expect the
previous expansion to be dominated by small `. In the present work, we will primarily
focus on a single term, the ` = 1 term, such that the background velocity field takes
the form

uϕ(r, θ)= w(r) sin θ = rΩ(r) sin θ, (1.2)

with differential rotation along the radial direction only (Ω denotes the local angular
frequency of the fluid). The obvious asset of this functional form is that it preserves
the relative simplicity of the coupling of harmonics imposed by the Coriolis term.
This type of flow is known in the astrophysical literature as shellular differential
rotation (Zahn 1992). It originates from a simple description of the baroclinic flow
(the thermal wind in geophysics), which arises in stably stratified radiative zones of
rotating stars (see, e.g., Rieutord 2006). The rotation is assumed to be uniform on
spheres as a consequence of some shear-induced turbulence, which erases latitudinal
gradients of the velocity (Zahn 1992). Low-frequency perturbations of such flows are
driven by the combined effects of the Coriolis acceleration and buoyancy. Assuming
differential rotation along the radial direction therefore comes to neglecting the effects
of buoyancy on the fluid perturbations. Our model approaches this astrophysical
configuration in the limit of weak stratification, when the Brunt–Väisälä is small
compared with the Coriolis frequency. When this is the case, some modes, called
H1 by Dintrans, Rieutord & Valdettaro (1999), are essentially inertial modes slightly
perturbed by buoyancy (i.e. the Coriolis acceleration is the main restoring force).
In addition to giving a first look at the effect of differential rotation on inertial
oscillations, shellular rotation may also provide a (partial) view on the properties of
waves propagating in radiative zones inside rotating stars.

To complement the study of shellular flows, which may mimic stellar baroclinic
flows, we also consider differential rotation associated with a barotropic fluid model.
In this case, differential rotation only depends on the cylindrical radial coordinate
s = r sin θ . Cylindrical differential rotation is expected in the convective zones
of rapidly rotating stars or giant planets. It has been much investigated in the
context of the Taylor–Couette instability, but in cylindrical geometry. However, recent
experimental work by Kelley et al. (2007, 2010) and Rieutord et al. (2012) has
raised the question of how the properties of inertial waves in spherical geometry are
changed by the inclusion of cylindrical rotation. Since spherical geometry combined
with cylindrical rotation results in the variables non-separability, which is a necessary
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condition for the existence of singularities such as attractors, some properties of the
perturbations can be derived by the sole analysis of the dynamics of characteristics.

This paper is organized as follows. Our physical model is described in § 2. The
ideal case of an inviscid differentially rotating fluid is first examined in § 3 through
a linear analysis in the short-wavelength approximation. Cylindrical and shellular
rotation profiles are considered in §§ 3.1 and 3.2, respectively. A detailed study of
the dynamics of characteristics allows us to determine the range of frequencies at
which inertial oscillations may exist in differentially rotating fluids. The presence
of turning surfaces, critical latitudes and corotation resonances within the fluid is
investigated. The full problem of a viscously rotating fluid is then investigated in
§ 4 with (linear) numerical calculations. Again, results with cylindrical and shellular
rotation profiles are presented. Shear layers are shown to closely follow the attractors
of characteristics obtained for an inviscid fluid in the short-wavelength approximation.
Our simulations primarily focus on axisymmetric modes (§ 4.2), but a few examples
of non-axisymmetric modes with a corotation resonance are also examined (§ 4.3).
Concluding remarks and future directions are drawn in § 5.

2. Inertial modes in a differentially rotating shell: physical model
We consider a differentially rotating viscous fluid inside a spherical shell, located

between radii ηR and R (0 < η < 1). The fluid is assumed to be homogeneous,
incompressible and of constant kinematic viscosity ν. We denote by u the fluid’s
velocity. Any quantity x is decomposed as x = x0 + x1, where x0 describes an
unperturbed background quantity and x1 the associated disturbance (|x1| � |x0|). In
an inertial frame, and using the set of spherical coordinates (r, θ, ϕ), the linearized
Navier–Stokes equation reads

∂u1

∂t
+Ω0

∂u1

∂ϕ
+ 2Ω0ez × u1 + A(u1)eϕ =−∇p1 + ν∆u1, (2.1)

with Ω0 = uϕ0/r sin θ the fluid’s angular velocity, uϕ0 = u0 · eϕ , ez = cos θer − sin θeθ is
the unit vector along the rotation axis and p1 denotes the pressure perturbation divided
by the reference density. Since the fluid is incompressible, the linearized continuity
equation reads

∇ ·u1 = 0. (2.2)

In (2.1), A(u1) is proportional to the shear in the background flow:

A(u1)= r sin θu1 ·∇Ω0. (2.3)

In the following we consider one of two profiles.

(i) A cylindrical rotation profile, Ω0 = Ω0(s), with s = r sin θ the radial cylindrical
coordinate. This rotation profile satisfies the Proudman–Taylor theorem for an
incompressible homogeneous fluid in the inviscid limit, and no additional body
force needs to be assumed to ensure an equilibrium state for the differentially
rotating background flow;

(ii) A shellular rotation profile, Ω0 = Ω0(r). In this case, differential rotation is
assumed to be maintained by some appropriate body force f (arising for instance
from Reynolds stresses or from a latitudinal entropy gradient), not included in our
model. This body force should verify ∇ × f = −s∂Ω2

0/∂zeϕ for Taylor–Proudman
theorem to be satisfied in this case.
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Inertial waves in a differentially rotating spherical shell 51

We seek solutions to (2.1) and (2.2) in the form exp(iΩpt + imϕ), where Ωp

denotes the wave angular frequency in the inertial frame. We introduce the Ekman
number E = ν/R2Ωref , where the reference angular frequency, Ωref , refers to Ω0(R) for
shellular rotation or to Ω0(s = 0) for cylindrical rotation. Dropping all subscripts and
taking the curl of (2.1), we are to solve{

∇ × (iΩ̃pu+ 2Ωez × u+ r sin θ(u ·∇Ω)eϕ)= E∇ ×∆u
∇ ·u= 0,

(2.4)

where Ω̃p = Ωp + mΩ is the Doppler-shifted wave frequency (that is, the wave
frequency in the frame rotating with the fluid).

We complete (2.4) with stress-free boundary conditions at both boundaries: u · er = 0
and er × [σ ]er = 0, where [σ ] denotes the viscous stress tensor. As discussed
by Rieutord & Valdettaro (2010), the general properties of oscillation modes are
essentially unchanged by the choice of boundary conditions. We thus opt for stress-
free boundaries, which are numerically less demanding.

3. Inviscid problem: paths of characteristics, existence of turning surfaces and
corotation resonances

Before examining the full solutions to (2.4) by means of numerical simulations, we
first study the inviscid limit and especially the dynamics of characteristics, which is
known to feature the eigenfunctions of the viscous problem. For this purpose, we shall
use cylindrical coordinates (s, ϕ, z) and eliminate the velocity perturbations in favour
of the pressure perturbations (p). The partial differential equation (PDE) satisfied by
p is given in the Appendix by (A 6). Retaining only the second-order terms, (A 6)
becomes

∂2p

∂s2
+ Az

Ω̃2
p

∂2p

∂s∂z
+
(

1− As

Ω̃2
p

)
∂2p

∂z2
= 0, (3.1)

where

As = 2Ω
s

∂

∂s
(s2Ω) and Az = 2Ω

s

∂

∂z
(s2Ω). (3.2)

Equation (3.1) matches equation (A 16) of Ogilvie (2005) for an homogeneous
incompressible fluid. The equation governing the paths of characteristics in a
meridional plane then reads

dz

ds
= 1

2Ω̃2
p

(
Az ± ξ 1/2

)
with ξ(s, z)= A2

z + 4Ω̃2
p (As − Ω̃2

p ). (3.3)

For solid-body rotation, Az = 0, As = 4Ω2 and (3.1) reduces to the well-known
Poincaré equation for inertial waves. In this case, characteristics form straight lines
in a meridional plane, and the fact that ξ is constant makes the entire shell either
hyperbolic or elliptic for inertial waves. With differential rotation, however, the
dependence of As, Az and Ω with s and z implies that characteristics no longer
form straight lines, as will be illustrated in the following. Also, ξ may vanish and
change sign inside the shell. This makes possible the co-existence of hyperbolic and
elliptic domains for pure inertial waves in a differentially rotating spherical shell,
separated by turning surfaces. It is reminiscent of the existence of turning surfaces for
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gravito-inertial waves and magneto-inertial waves in rigidly rotating spherical shells,
for which the perturbed pressure also satisfies a second-order PDE of mixed type in
the inviscid limit (Friedlander 1982, 1987; Friedlander & Siegmann 1982; Dintrans
et al. 1999). Equation (3.3) also shows that, in contrast to solid-body rotation, paths
of characteristics with differential rotation depend on the azimuthal wavenumber m
through Ω̃p. In the rest of this section, we study in more detail the dynamics of
characteristics based on (3.3), considering a particular profile of cylindrical rotation in
§ 3.1, and of shellular rotation in § 3.2.

3.1. Cylindrical rotation
3.1.1. Paths of characteristics

To restrict the differential rotation function space to a one-parameter space, we
consider the following background rotation profile:

Ω(s)/Ωref = 1+ ε (s/R)2, (3.4)

with Ωref =Ω(s = 0) the shell’s angular frequency at the rotation axis, and where |ε|
can be seen as a Rossby number for the fluid. Equation (3.1) then takes the form

∂2p

∂s2
+
(

1− As

Ω̃2
p

)
∂2p

∂z2
= 0, (3.5)

where

Ω̃p(s)=Ωp + mΩ(s) (3.6)

is the Doppler-shifted frequency and

As(s)= 4Ω2(s)×
[

1+ ε (s/R)2

1+ ε (s/R)2
]
. (3.7)

We will take ε > −1/2 so that As > 0 ∀s ∈ [0,R] (Rayleigh’s stability criterion). We
denote the quantity As by κ2

s (it is known as the square of the radial epicyclic
frequency in astrophysical discs). We point out that (3.5) is symmetric by z→−z, so
that only positive values of z will be considered. From (3.3), paths of characteristics
satisfy

dz

ds
=±ξ 1/2, (3.8)

with

ξ(s)= κ2
s (s)

Ω̃2
p (s)
− 1. (3.9)

3.1.2. Existence of turning surfaces: D and DT inertial modes
The relation ξ(s) = 0 defines turning surfaces that separate the hyperbolic and

elliptic domains. They correspond to cylinders in a meridional slice of the shell. Their
location satisfies

Ω̃2
p (s)= κ2

s (s), (3.10)

with waves propagating when κ2
s (s) > Ω̃2

p (s). Here and in the following, we assume
that the hyperbolic domains of the spherical shell, where ξ is positive, host inertial
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FIGURE 1. (Colour online) Illustration of the two kinds of inertial modes propagating in a
differentially rotating fluid, with cylindrical rotation profile Ω(s)/Ωref = 1 + ε (s/R)2 (Ωref
denotes the shell’s angular frequency at the rotation axis). Results are shown for azimuthal
wavenumbers m equal to 0, 1, 2 and 4 (a–d). DT modes, represented by white areas, exhibit
turning surfaces inside the shell. D modes correspond to the blue area and do not feature
turning surfaces inside the shell. No inertial modes may propagate in the red areas. The
solutions to ξ(s = 0) = 0 are shown by vertical dotted lines and the solutions to ξ(s = R) = 0
by solid black curves. Non-axisymmetric modes that feature a critical cylinder inside the shell
(corotation resonance) are located between the two orange solid curves.

modes of oscillations. The dependence of ξ on s leads to two kinds of inertial modes
with cylindrical rotation:

(i) modes that exhibit at least one turning surface within the shell, which we call DT
modes for future reference (D for differential rotation, and T for turning surface);

(ii) generalized inertial modes with no turning surfaces within the shell, which we
name D modes.

The occurrence of axisymmetric (m = 0) and of some non-axisymmetric D and DT
modes is illustrated in figure 1. In all figures, the mode’s eigenfrequency in the inertial
frame (Ωp) is shown on the x-axis, and the differential rotation parameter ε is on the
y-axis. Contours are obtained by numerically calculating the right-hand side of (3.9).
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DT modes, which are represented by white areas, have ξ < 0 at least once within the
shell. D modes satisfy ξ > 0 everywhere in the shell and are shown by the blue area.
No inertial modes can propagate if ξ < 0 in the entire shell, such case being depicted
in red. Note that axisymmetric inertial waves may propagate for eigenfrequencies
Ωp > 2Ωref if ε > 0 (see figure 1a). Note also that the results shown in figure 1 are
independent of the shell’s aspect ratio η, as is actually the dynamics of characteristics
with our cylindrical rotation profile.

The transition curves that separate D and DT modes satisfy ξ(s = 0) = 0 and
ξ(s = R) = 0. The solution to ξ(s) = 0 can be cast as Ωp/Ωref = −m[1 + ε (s/R)2] ±
2
√
[1+ 2ε (s/R)2][1+ ε (s/R)2]. Applied to the following cases:

(i) ξ(s = 0) = 0, that is when the turning surface matches the location of the rotation
axis, we have

Ωp/Ωref =−m± 2, (3.11)

such case being depicted by vertical dotted lines in figure 1;

(ii) ξ(s= R)= 0, when the turning surface passes by the shell’s surface, yields

Ωp/Ωref =−m(1+ ε)± 2
√
(1+ 2ε)(1+ ε), (3.12)

which is overplotted by solid curves in figure 1.

We point out that there may exist two turning surfaces in a meridional plane. This
occurs for instance for the DT modes with m = 4 located in the (small) region of
parameter space below the solid curve near Ωp =−2Ωref and ε =−0.5.

Non-axisymmetric modes may feature a corotation resonance within the shell when
Ω̃p(s)= 0. The location of such critical cylinders is given by

scrit = R

√
ε−1 ×

(
−1− Ωp

mΩref

)
. (3.13)

For m> 0, modes with ε 6 0 have a critical layer if −m 6Ωp/Ωref 6−m(1+ ε), and
those with ε > 0 if −m(1+ ε)6Ωp/Ωref 6−m. Modes that exhibit a critical cylinder
within the shell are located between the two orange solid curves in figure 1.

The minimum and maximum frequencies at which inertial waves may propagate in
a shell with cylindrical rotation is summarized in figure 2 for the four azimuthal
wavenumbers considered in figure 1. These frequencies are obtained by solving
ξ(s) = 0. They correspond to the minimum and maximum frequencies amongst the
four values given by (3.11) and (3.12), except for m = 4 and ε approaching −0.5 (in
which case, as already pointed out before, there are two turning surfaces inside the
shell). Figure 2 highlights that the range of eigenfrequencies at which inertial modes
of oscillations may exist in a spherical shell is broader with cylindrical rotation than
with solid rotation, particularly if the rotation profile is an increasing function of the
cylindrical radial coordinate. This is expected, because of the larger frequencies at
which the fluid may rotate in this case.

3.1.3. Dispersion relation, phase and group velocities
We examine in this paragraph the propagation properties of local waves in a

meridional plane. In the short-wavelength approximation, the general expressions for
the wave dispersion relation, the phase and group velocities are given in the Appendix
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FIGURE 2. (Colour online) Range of eigenfrequencies (Ωp, x-axis) for inertial modes of
oscillations in a rotating shell with cylindrical rotation profile Ω(s)/Ωref = 1 + ε (s/R)2.
Eigenfrequencies are in units of Ωref , the shell’s angular frequency at the rotation axis.
Results are for m = 0, 1, 2 and 4. For a given m, the minimum and maximum frequencies
at which inertial modes exist correspond to the left and right curves, respectively.

by (A 7), (A 9) and (A 10). For our cylindrical rotation profile, (A 7) reduces to

Ω̃2
p (s)= κ2

s (s)
k2

z

‖k‖2 , (3.14)

where ‖k‖ = √k2
s + k2

z . In the frame rotating with the fluid, the phase velocity,
vp = Ω̃pk/ ‖k‖2, satisfies

vp =±κs(s)
kzk

‖k‖3 , (3.15)

while the group velocity, vg = ∂Ω̃p/∂k, is given by

vg =±κs(s)
ks

‖k‖3 (−kzes + ksez). (3.16)

From (3.9) and (3.14), ks = 0 at a turning surface (where ξ vanishes). At this location,
the radial component of the phase velocity therefore vanishes, as well as the two
other components of the group velocity (that is, rays are perpendicular to the turning
surface).

A corotation resonance occurs inside the shell where Ω̃p(s) = 0. This formally
happens if |ks| → ∞, in which case the modulus of the phase velocity and the
group velocity both tend to zero, or if kz → 0, in which case the phase velocity
cancels out while the radial component of the group velocity cancels out. In both
cases, characteristics become more and more parallel to the rotation axis as they
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approach the corotation resonance (their slope |dz/ds| increases), and they do not
cross corotation (as the radial component of the group velocity tends to zero at
this location). The fact that the phase velocity progressively decreases to zero upon
approaching corotation suggests that nonlinear effects should become important near
this location, as pointed out for instance by Barker & Ogilvie (2010) for internal
gravity waves in a background shear flow, which satisfy a dispersion relation similar to
that in (3.14) with the epicyclic frequency squared κ2

s replaced by the Brunt–Väisälä
squared.

3.2. Shellular rotation
We now come to the propagation properties of inertial modes of oscillation in fluids
with shellular rotation (the background rotation profile being a prescribed function of
the spherical radius). As in the case of cylindrical rotation, we show in this section
that two kinds of inertial modes can be distinguished, based on the presence or not
of turning surfaces within the shell. We then discuss the range of eigenfrequencies
at which inertial modes may exist, the existence of critical latitudes and corotation
resonances.

3.2.1. D and DT inertial modes
We adopt the same strategy as in § 3.1 for cylindrical rotation and restrict the

differential rotation function space to a one-parameter space. We take the following
shellular rotation profile:

Ω(r)=Ωref × (r/R)σ , (3.17)

where r = √s2 + z2, Ωref = Ω(r = R) is the angular frequency at the shell’s surface,
and σ > −2 to avoid centrifugal instabilities (Rayleigh’s stability criterion, As > 0, is
satisfied). The quantity |1 − ησ |, which measures the relative difference of angular
frequencies between the inner core and the shell’s surface, can be seen as a Rossby
number for the fluid. Equation (3.1) being symmetric by z→−z for shellular rotation
profile, only positive values of z will be considered (as with cylindrical rotation). From
(3.3), paths of characteristics satisfy

dz

ds
= A(r)

sz

R2
± ξ 1/2, (3.18)

where

ξ(s, z)= A2(r)
s2z2

R2
+ 2A(r)

s2

R2
+ 4Ω2(r)− Ω̃2

p (r)

Ω̃2
p (r)

, (3.19)

A(r)= σ R2

r2

Ω2(r)

Ω̃2
p (r)

, (3.20)

and Ω̃p(r) = Ωp + mΩ(r) is the Doppler-shifted wave frequency. Whenever paths
of characteristics are calculated by solving (3.18) (or (3.8) for cylindrical rotation),
reflections are imposed at the shell’s inner core (r = ηR) and surface (r = R), at the
rotation (s = 0) and equatorial (z = 0) axes, and at the location of turning surfaces
(where ξ = 0).

The possibility that ξ vanishes within the shell leads again to two kinds of inertial
modes with shellular rotation: DT modes, with at least one turning surface inside
the shell, and D modes, with no turning surfaces inside the shell. The occurrence of
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FIGURE 3. (Colour online) Occurrence of D and DT inertial modes with the shellular
rotation profile Ω(r)/Ωref = (r/R)σ (Ωref denotes the angular frequency at the shell’s
surface). Results are obtained for η = 0.35, and m = 0, 1, 2 and 4 (a–d). DT modes (white
areas) have at least one turning surface inside the shell. D modes (blue area) do not have
turning surfaces. No inertial modes exist within the red areas. The dotted, dashed, solid and
dash-dotted curves are solutions to (3.23) to (3.26), respectively. In (d), grey areas depict DT
modes located between two turning surfaces that englobe the shell’s inner core and surface.
For m 6= 0, modes that feature a critical layer inside the shell (where Ω̃p(r) = 0) are located
between the two orange solid curves.

axisymmetric and of some non-axisymmetric D and DT modes is depicted in figure 3.
Contours are obtained upon calculation of (3.19) in a spherical shell with η = 0.35. As
in figure 1, D and DT modes are depicted by blue and white areas, respectively, and
no inertial modes exist in the red areas.

The relation ξ = 0 defines turning surfaces with colatitude θ(r) given by

sin2θ(r)= 1
2

[
1+ 2Ω̃2

p (r)

σΩ2(r)
± µ1/2(r)

]
, (3.21)
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with

µ(r)= 1+ 4(4+ σ)Ω̃2
p (r)

σ 2Ω2(r)
. (3.22)

Another way to find the occurrence of DT modes is to require that, for given values
of m, Ωp and σ , the inequality 0 6 sin2θ(r) 6 1 is satisfied at least once within
the shell. We also point out that the two propositions ∀{s, z}, ξ(s, z) > 0, and ∀r,
|Ω̃p(r)| < 2Ω(r), seem to be equivalent numerically (as we have checked). In other
words, if the whole shell satisfies the condition for hyperbolicity, it also meets the
standard criterion for propagation of inertial waves everywhere locally. Thus, regions
with no mode propagation, and those with D modes, can be distinguished by requiring
that D modes verify |Ω̃p(r)|< 2Ω(r) in the whole shell.

The transition curves that separate D and DT modes then satisfy:

(i) sin2θ(R) = 0, when the turning surface hits the shell’s surface at colatitude θ = 0;
it reads |Ω̃p(R)| = 2Ω(R) or

Ωp/Ωref =−m± 2, (3.23)

an expression that is depicted by vertical dotted lines in figure 3;
(ii) sin2θ(R)= 1, which yields

Ωp/Ωref =−m±
√

2(2+ σ), (3.24)

which is overplotted by a dashed curve;
(iii) sin2θ(ηR)= 0, which can be recast as{

Ωp/Ωref = (2− m)ησ if Ωp/(2− m) > 0
Ωp/Ωref =−(2+ m)ησ if Ωp/(2+ m) < 0,

(3.25)

and are shown by solid lines;
(iv) sin2θ(ηR) = 1, when the turning surface hits the shell’s inner core at colatitude

θ = π/2, that is when

Ωp/Ωref = ησ (−m± 2
√

1+ σ/2), (3.26)

an expression that is shown by dash-dotted curves.

DT modes with |m| 6 2 are located between the turning surface and the shell’s
surface for σ > 0 (since the background velocity increases with radius), and between
the shell’s inner core and the turning surface for σ < 0. A more complex situation
arises when |m|> 2, where the equation |Ω̃p(ηR)| = 2Ω(ηR) may admit two solutions
for a given Ωp, as can be seen from (3.25). In figure 3(d) (m = 4), DT modes
located between the two solid lines propagate between the shell’s inner core and the
turning surface, since as D modes they satisfy |Ω̃p(ηR)|< 2Ω(ηR). In contrast, the DT
modes above the upper solid curve and those below the lower solid curve, propagate
between the turning surface and the shell’s surface. Interestingly, modes with |m| > 2
may exhibit two turning surfaces that are located between the shell’s inner core and
the shell’s surface. This brings the possibility of waves naturally bouncing between
two turning surfaces without interacting with the shell’s boundaries. Such modes
are depicted by grey areas in figure 3(d). Note, however, that this particular set of
non-axisymmetric modes will necessarily feature a critical layer (corotation resonance)
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FIGURE 4. (Colour online) Minimum and maximum eigenfrequencies (x-axis) at which
inertial modes of oscillation may exist with shellular rotation profile Ω(r)/Ωref = (r/R)σ ,
for m = 0, 1, 2 and 4 (η = 0.35). Eigenfrequencies are in units of the angular frequency
at the shell’s surface. The inset plot focuses on previous range of eigenfrequencies for
σ ∈ [−0.4, 0.4].

between both turning surfaces, where Ω̃p vanishes. The location of such critical layers
is given by r = R (−Ωp/mΩref )

1/σ . For m > 0, modes with σ 6 0 have a critical layer
if −mησ 6 Ωp/Ωref 6 −m and those with σ > 0 if −m 6 Ωp/Ωref 6 −mησ . Modes
that exhibit a critical layer within the shell are located between the two orange solid
curves in figure 3. They will be further discussed in §§ 3.2.3 and 4.3.2.

The range of eigenfrequencies Ωp for which inertial modes of oscillation may exist
in a spherical shell with η = 0.35 is displayed in figure 4 for m = 0, 1, 2 and 4.
Compared with solid-body rotation, inertial modes with shellular rotation may exist at
much larger frequencies, especially if the rotation profile is a decreasing function of
radius.

Finally, the location of turning surfaces, given by (3.21), is depicted in a meridional
slice in figure 5 for m= 0 modes with σ ranging from −2 to 2, and increasing by 0.2.
Results are shown for Ωp/Ωref = 1.5, 2 and 2.5 in figure 5(a–c), respectively. For
Ωp = 2Ωref , turning surfaces exist for all values of σ except σ = 0 (corresponding
to solid-body rotation; note however that turning surfaces exist in the limit |σ | → 0).
In all three figures, DT modes with σ < 0 exist between the shell’s inner core and
the turning surface (they may therefore exist without reflexions on the shell’s surface).
Similarly, DT modes with σ > 0 exist between the turning surface and the shell’s
surface, and may therefore exist without reflexions on the shell’s inner core. This
case will be illustrated in § 4.2.2, where we will show that DT modes may feature
shear layers following attractors of characteristics in the absence of an inner core (the
necessary reflexion being provided by the shell’s surface and the turning surface).
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FIGURE 5. (Colour online) Location of turning surfaces for m = 0 modes with varying the
power-law index of the shellular rotation profile, for Ωp = 1.5Ωref (a), Ωp = 2Ωref (b) and
Ωp = 2.5Ωref (c).

3.2.2. Critical latitudes
Rays tangent to the shell’s inner core define a critical latitude θi. They satisfy

dz/ds = −s/z with ηR = √s2 + z2. Combining (3.18)–(3.20), rays intersect the shell’s
inner core at s= sc, with

sc = ηR

(
1− Ω̃2

p (ηR)

4Ω2(ηR)

)1/2

. (3.27)

A critical latitude θi at the shell’s inner core therefore exists for modes with
|Ω̃p(ηR)|6 2Ω(ηR) and verifies

sin θi = Ω̃p(ηR)

2Ω(ηR)
, (3.28)

which is a straightforward generalization of the expression for solid-body rotation. For
fixed values of η, m and Ωp, and for σ > 0, sin θi→ 1 as σ increases. For σ < 0,
sin θi→ 0 as |σ | increases.

Similarly, it is easy to show that a critical latitude θo exists at the shell’s surface for
those modes that satisfy |Ω̃p(R)|6 2Ω(R), with the expression given by

sin θo = Ω̃p(R)

2Ω(R)
, (3.29)

independently of σ . The outer critical latitude has therefore the same value as in the
solid-body rotation case.

Critical latitudes also exist with cylindrical rotation. For our cylindrical rotation
profile, an inner critical latitude exists if ξ(s), given by (3.9), is positive for s ∈ [0, ηR].
Similarly, an outer critical latitude exists if ξ > 0 ∀s ∈ [0,R] (that is, for D modes
only). There is, however, no simple expressions for the inner and outer critical
latitudes with our cylindrical rotation profile.
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3.2.3. Dispersion relation, phase and group velocities
In the short-wavelength approximation, the wave dispersion relation given by (A 7)

becomes

Ω̃2
p (r)= 4Ω2(r)

k2
z

‖k‖2 ×
[

1+ σ
2

s2

r2

(
1− zks

skz

)]
(3.30)

for our shellular rotation profile, with ‖k‖ = √k2
s + k2

z . We see that the bracket
term in the above equation can be negative: inertial waves may become unstable
for shellular rotation. As discussed in the Appendix, this is a form of the
Goldreich–Schubert–Fricke instability in the limit of an inviscid incompressible fluid
(Goldreich & Schubert 1967; Fricke 1968). In that limit, (A 7) indicates that the
instability can in principle occur whenever ∂Ω/∂z 6= 0 (or, equivalently, when Az 6= 0).
Assuming that inertial waves remain stable against our shellular rotation profile, we
introduce

B =
[

1+ σ
2

s2

r2

(
1− zks

skz

)]1/2

, (3.31)

and (3.30) reduces to Ω̃p(r) = ±2BΩ(r)|kz|/‖k‖. Note that B = 1 for solid-body
rotation. In the rotating frame, the phase velocity reads

vp =±2BΩ(r)
kzk

‖k‖3 , (3.32)

and the group velocity is given by

vg =±2Ω(r)
ks

‖k‖3 (−kzes + ksez)×
[
B + σ

4
sz

r2

‖k‖2

kskz
B−1

]
. (3.33)

We now examine the case where a critical layer forms inside the shell, where
Ω̃p(r) = 0. Inspection of (3.30) shows that there are formally three cases where Ω̃p(r)
may vanish:

(i) ks →∞ at finite kz, in which case vp = 0 and vg = 0 at corotation, which is
similar to the behaviour obtained with cylindrical rotation (inertial waves do not
cross corotation in such a case);

(ii) kz→ 0 at finite ks, in which case vp = 0, vg · es = 0 and |vg · ez| →∞; surprisingly,
this case indicates that inertial waves may propagate across a critical layer (with
locally vertical paths of characteristics);

(iii) B→ 0, which implies that vp = 0, |vg · es| →∞ and |vg · ez| →∞; this case also
formally shows that inertial waves may cross a critical layer and the condition
B = 0 can be recast as

dz

ds

∣∣∣∣
crit

≡−ks

kz

∣∣∣∣
Ω̃p(r)=0

=−s

z

(
1+ 2

σ

r2

s2

)
, (3.34)

which shows that, if B = 0 at corotation, then paths of characteristics have a
finite slope upon crossing the critical layer.

The propagation properties of inertial waves in viscous fluids with a critical layer
will be examined in § 4.3.2 with the results of numerical calculations. We stress again
that the fact that the phase speed vanishes at corotation indicates that nonlinear effects
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should occur near this location, which are not captured by the present linear analysis,
nor by the numerical solutions of § 4.3.2.

4. Viscous problem: shear layers, behaviour at corotation resonances,
comparison with inviscid analysis

We have described in § 3 the propagation properties of inertial waves in a spherical
shell with (specific) cylindrical and shellular rotation profiles. We have shown that
in both cases, modes of oscillations satisfy in the inviscid limit a second-order PDE
of mixed type. Two families of eigenmodes can therefore be distinguished: D modes,
which may propagate throughout the entire shell (the hyperbolic domain covers the
whole shell), and DT modes, which feature turning surfaces inside the shell (the
hyperbolic domain covers part of the shell). Compared with solid-body rotation, the
presence of turning surfaces with differential rotation tends to broaden the range of
frequencies at which inertial waves may propagate in a spherical shell.

An interesting result from our analysis in § 3 is that paths of characteristics
depend on the azimuthal wavenumber m (through the space-varying Doppler-shifted
frequency). In contrast to solid-body rotation, the structure of non-axisymmetric modes
cannot be simply inferred from that of axisymmetric modes. However, as far as
their dynamical properties are concerned, m 6= 0 and m = 0 modes only differ by the
possible presence of corotation resonances for m 6= 0. We will therefore examine the
general properties of viscous modes of oscillations for m= 0 modes only. This is done
in § 4.2, where we take the same rotation profiles as in § 3. We show that the structure
of shear layers in the viscous problem closely follows the paths of characteristics
derived in the inviscid problem. We particularly focus on singular modes featuring
a shear layer that converges towards a short-period attractor. Some of these singular
modes form through reflexions at turning surfaces and may therefore exist in the
absence of an inner core. A qualitative analysis of the occurrence of modes with
quasi-periodic orbits of characteristics is also done at § 4.2.3. We finally examine in
§ 4.3 a few m 6= 0 viscous eigenmodes with corotation resonances.

4.1. Numerical method

Our numerical simulations solve the linearized differential system (2.4) and related
stress-free boundary conditions, using a spectral approach. Fields are decomposed into
spherical harmonics (see, e.g. Rieutord 1987), with the perturbed velocity expanded as

u(r, θ, ϕ)=
∞∑
`=0

`∑
m=−`

u`m(r)R
m
` + v`m(r)Sm

` + w`
m(r)T

m
` , (4.1)

with Rm
` = Ym

` (θ, ϕ)er, Sm
` = ∇Ym

` , and Tm
` = ∇ × Rm

` and where Ym
` denote the

usual spherical harmonics normalized on the sphere of unit radius. In the radial
direction, equations are discretized on Gauss–Lobatto collocation nodes associated
with Chebyshev polynomials. Equations are truncated at order L for the spherical
harmonics basis, and at order Nr for the Chebyshev basis. The incomplete
Arnoldi–Chebyshev algorithm is used to compute pairs of complex eigenvalues (Ωp)
and eigenvectors, given an initial guess value for Ωp (for details on this numerical
method, see Valdettaro et al. (2007)). Values of Nr and L are mode dependent, and
will be specified below. Unless otherwise stated, all modes are calculated assuming
symmetry with respect to the equatorial plane.
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4.1.1. Shellular rotation
For the shellular rotation profile that we consider, Ω(r)/Ωref = (r/R)σ ,

projecting (2.4) onto Rm
` and Tm

` gives the following two equations:

E∆`w
`
m +

[
2imΩ(r)
`(`+ 1)

− iΩ̃p(r)

]
w`

m

=−2Ω(r)
[

A(`,m)r`−1 d(r2−`u`−1
m )

dr
+ A(`+ 1,m)r−`−2 d(r`+3u`+1

m )

dr

]
+ r

dΩ
dr
[−(`+ 1)A(`+ 1,m)u`+1

m + `A(`,m)u`−1
m ],

E∆`∆`(ru`m)+
[

2imΩ(r)
`(`+ 1)

− iΩ̃p(r)

]
∆`(ru`m)

= 2Ω(r)
[

B(`,m)r`−1 d(r1−`w`−1
m )

dr
+ B(`+ 1,m)r−`−2 d(r`+2w`+1

m )

dr

]
− imr

d2Ω

dr2
u`m − 2im

dΩ
dr
(u`m + v`m)

+ 2
dΩ
dr

[
B(`,m)w`−1

m + B(`+ 1,m)w`+1
m

]
,



(4.2)

where

A(`,m)= 1
`2

(
`2 − m2

4`2 − 1

)1/2

, B(`,m)= `2(`2 − 1)A(`,m),

∆` = 1
r

d2

dr2
r − `(`+ 1)

r2
.

 (4.3)

In (4.2), since the fluid is incompressible,

v`m =
1

`(`+ 1)r
d(r2u`m)

dr
. (4.4)

For solid-body rotation, Ω(r) = Ωref and (4.2) reduce to equations (2.2) of Rieutord
& Valdettaro (1997) (note that these authors defined the Ekman number as E =
ν/2R2Ωref , while our definition does not include the factor 2). After projection on the
spherical harmonics, stress-free boundary conditions read

u`m =
d2(ru`m)

dr2
= d

dr

(
w`

m

r

)
= 0 (4.5)

for the radial functions taken at r = ηR or r = R. Equation (4.2)–(4.5) can be recast as
an eigenvalue problem featuring a tridiagonal block matrix, like for solid-body rotation.
More details into the numerical scheme can be found in Rieutord & Valdettaro (1997).

4.1.2. Cylindrical rotation
For our cylindrical rotation profile, Ω(s)/Ωref = 1 + ε (s/R)2, projecting (2.4) onto

Rm
` and Tm

` gives, after some tedious algebra, two long differential equations, which we
do not write for the sake of legibility. The second-order differential equation satisfied
by w`

m can be cast as a linear combination of u`±3
m , du`±3

m /dr, u`±1
m , du`±1

m /dr and
w`±2

m (the term in front of w`±2
m vanishes for m = 0). The fourth-order differential

equation for u`m exhibits terms in w`±3
m , dw`±3

m /dr, w`±1
m , dw`±1

m /dr, u`±2
m , du`±2

m /dr and
d2u`±2

m /dr2 (the terms in front of u`±2
m , du`±2

m /dr and d2u`±2
m /dr2 vanish for m = 0).

Along with stress-free boundary conditions, these equations take the form of an
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eigenvalue problem where the matrix to invert has blocks composed of (up to) seven
bands. The coupling between harmonics of ranks `, `± 1, `± 2 and `± 3 arises from
our particular cylindrical profile.

4.2. Axisymmetric eigenmodes: a few illustrative cases
We present in this section the results of simulations for axisymmetric eigenmodes
with moderate viscosity, the default Ekman number being E = 10−8. Unless otherwise
stated, our simulations are carried out with a shell’s aspect ratio η = 0.35. The
propagation properties of shear layers for weakly damped eigenmodes is compared
with the analytic description based on paths of characteristics, detailed in § 3.
Cylindrical and shellular rotation profiles are examined in §§ 4.2.1 and 4.2.2,
respectively. A qualitative analysis of the occurrence of modes with quasi-periodic
orbits of characteristics follows in § 4.2.3.

4.2.1. Cylindrical rotation
We describe in this paragraph three representative m = 0 eigenmodes obtained with

our cylindrical rotation profile: a D mode (the hyperbolic domain covers the whole
shell) and two DT modes (the hyperbolic domain covers a fraction of the shell). All
three calculations have a spectral resolution of Nr = 450× L= 800.

Figure 6 displays the results for a D mode with eigenfrequency Ωp ≈ 0.91Ωref ,
obtained for ε = −0.3 (recall that for cylindrical rotation, Ωref denotes the shell’s
angular frequency at the rotation axis). Figure 6(a) depicts contours of the mode’s
kinetic energy in a meridional quarter-plane. Here, as in all other contour plots, the
simulation parameters are summarized below the x-axis (spectral resolution Nr × L,
azimuthal wavenumber m, Ekman number E, shell’s aspect ratio η, differential rotation
rate ε or σ for cylindrical or shellular rotation profiles, respectively). Similarly, the
complex eigenfrequency is indicated in the bottom-left corner of the shell: the absolute
value of its real part is denoted by |ω| (in units of Ωref ) and its imaginary part
by τ (in units of Ω−1

ref ; negative values of τ correspond to damped modes). Results
are shown only for positive values of z for reasons of symmetry exposed in § 3.1.
The D mode illustrated in figure 6(a) essentially features a shear layer following a
short-period wave attractor, which is overplotted by a thick white curve. The mode’s
kinetic energy is maximum near the rotation axis, as in the case of solid-body rotation
(Rieutord & Valdettaro 1997). Note also the presence of another shear layer tangent to
the shell’s inner core. As already highlighted in § 3.1, rays in a meridional plane are
curved by differential rotation. This is also illustrated in figure 6(b), which displays
the paths of characteristics obtained by solving (3.8), given a particular initial location
(here at s = 0 and z = 0.75R). The patterns of the viscous shear layer (figure 6a) and
of the paths of characteristics under the short-wavelength approximation (figure 6b),
are in excellent agreement. Paths of characteristics focus towards the aforementioned
wave attractor, depicted by a red curve in figure 6(b). Upon varying initial conditions,
we have checked that this is the only attractor in the shell for this particular
eigenfrequency. Figure 6(c,d) shows the good convergence in spectral resolution for
this mode.

We present in figure 7 the results for an m = 0 DT mode with Ωp ≈ 1.33Ωref and
ε = −0.4. Figure 7(a) shows a meridional cut of the kinetic energy for this mode,
which exhibits again a shear layer following an attractor of characteristics. The mode’s
pattern features reflexions on the inner and outer edges of the shell, as well as on a
turning surface located at s∼ 0.75R. The radius at which the shear layer bounces off is
in good agreement with the (numerical) solution to ξ(s) = 0, shown by a dashed line.
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FIGURE 6. (Colour online) (a) Meridional cut of the kinetic energy for a D mode with
eigenfrequency Ωp ≈ 0.91Ωref , obtained with E = 10−8 and cylindrical rotation profile
Ω(s)/Ωref = 1–0.3 (s/R)2. An attractor of characteristics is overplotted by a solid white
curve. (b) A few paths of characteristics are shown to converge towards the aforementioned
attractor, which is displayed here by a red curve. Bottom: spectral content of the radial (u)
and orthoradial (w) components of the velocity field for this mode. Chebyshev and spherical
harmonic coefficients are shown in (c,d), respectively.

A few paths of characteristics, obtained again by solving (3.8), are shown by white
curves in figure 7(b), which rapidly converge toward the above attractor (in red in this
figure). We point out that there exists another attractor for this eigenfrequency and this
differential rotation rate, which is overplotted by a blue curve.

An interesting DT mode is finally illustrated in figure 8 for Ωp ≈ 1.10Ωref and
ε = −0.4, where a shear layer follows an attractor for an arbitrarily small inner core.
In this particular calculation, η = 0.05. This example highlights that, in contrast to
solid-body rotation, attractors may be formed by reflexions on one of the shell’s
edges (the surface in this case) and a turning surface. This property is also shared
by gravito-inertial modes in stably stratified rotating fluids (Friedlander 1982; Dintrans
et al. 1999). The mode shown in figure 8 indicates that, with cylindrical rotation, wave
attractors may exist independently of a putative inner core inside the shell. We show
below that the same is true with shellular rotation.

4.2.2. Shellular rotation
We describe in this paragraph a few axisymmetric (m = 0) eigenmodes obtained

with our shellular rotation profile, Ω(r)/Ωref = (r/R)σ (here, Ωref denotes the angular
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FIGURE 7. (Colour online) (a) Meridional slice of the kinetic energy for a DT mode with
Ωp ≈ 1.33Ωref , E = 10−8 and ε = −0.4. The shear layer follows a wave attractor (solid
curve). The dashed line shows the location of the turning surface inferred from (3.9).
(b) A few paths of characteristics are depicted by white curves, which converge toward
the aforementioned wave attractor (red curve). A second wave attractor is shown in blue.

frequency at the shell’s surface). An overview of the impact of shellular rotation is
illustrated in figure 9 for a singular mode with eigenfrequency Ωp ≈ 1.11Ωref for
solid-body rotation. Contours of the kinetic energy in a meridional quarter-plane are
shown for σ equal to 0 (figure 9a), −0.5 (figure 9b) and −1.3 (figure 9c). Calculations
were carried out as a sequence, the eigenfrequency of the least-damped mode obtained
with differential rotation rate σ being used as the guess frequency for the next run
with differential rotation rate σ − dσ . In this series of runs, dσ = 0.01, E = 10−7, and
the spectral resolution is Nr = 250× L= 600. The contour panels in figure 9 show how
the shape of the shear layer, and thus that of the wave attractor it focuses on (white
curve), is progressively deformed by shellular rotation. Note the presence of a turning
surface for σ = −1.3 (dashed curve). Not surprisingly, the mode’s eigenfrequency
increases with increasing the steepness σ of the rotation profile. We also observe that
the mode’s damping rate decreases in absolute value for steeper rotation profiles. Some
insight into the asymptotic behaviour of this mode at small Ekman numbers is given
by figure 9(d). The damping rate of the mode with σ = −1 is displayed for Ekman
numbers varying from 10−6 down to ∼2× 10−8. Runs were also performed as a series,
the eigenfrequency of the least-damped mode obtained at Ekman number E being used
as the guess frequency for the run with Ekman number E − dE (the spectral resolution
is progressively increased with decreasing E). The dashed line shows that the damping
rate of this particular mode scales proportional to E1/3, a scaling that is reminiscent of
the solid-body rotation case (Rieutord & Valdettaro 1997).

The aforementioned E1/3 scaling of the mode’s damping rate is not the only possible
scaling for shellular rotation in the limit of vanishing viscosities. This is illustrated in
figure 10(a) for a particular DT mode having a turning surface that encompasses the
inner core, and for which the damping rate is found to be roughly independent of E.
This property is reminiscent of quasi-modes associated with critical layers (see, e.g. Le
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FIGURE 8. (Colour online) Meridional slice of the kinetic energy for a DT mode with
Ωp ≈ 1.10Ωref , E = 10−8, η = 0.05 and ε = −0.4. The turning surface is shown by a dashed
line. For an arbitrarily small inner core, the shear layer follows an attractor of characteristics,
shown by the solid curve.

Dizès 2004). However, the physical mechanism leading to such a damping rate must
be different because the DT mode we consider is axisymmetric, so that no corotation
singularity exists. Contours of kinetic energy for this new type of quasi-modes are
shown in figure 10(b), where we see that the mode is dominated by a shear layer
following a wave attractor tangent to the turning surface at the location of the rotation
axis (note that, since the turning surface encompasses the inner core at r = 0.35R,
this mode exists for arbitrarily small inner cores, akin to the mode shown in figure 8
for cylindrical calculation). We have carried out additional calculations with a slightly
different eigenfrequency at given Ekman number, such that the wave attractor no
longer hits the tangent critical point at the rotation axis. We found that the damping
rate is no longer independent of E for the same range of Ekman numbers as in
figure 10(a). It suggests that the tangent critical point plays a prominent role in getting
a damping rate independent of E. Such scaling demands a very thin detached shear
layer, namely O(E1/2) wide. This is indeed confirmed by the velocity profiles depicted
in figure 10(c) at three Ekman numbers (shown by red squares in figure 10a). Of
course, this numerical result does not prove that this vigorously damped mode survives
at vanishingly small viscosities, and that it is thus a new type of quasi-mode. Still, it
calls for a detailed analysis of this new type of detached shear layers, which are as
thin as Ekman boundary layers.

We now present the results of simulations for two D and DT eigenmodes at
smaller Ekman number (E = 10−8) and higher spectral resolution (Nr = 500 or
Nr = 580, L = 1000). Results are shown in figure 11. A D mode with Ωp ≈ 1.11Ωref
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FIGURE 9. (Colour online) Meridional cuts of kinetic energy for a given eigenmode with
E = 10−7 and σ = 0 (a), −0.5 (b) and −1.3 (c). The shear layer for this mode follows an
attractor overplotted by a solid curve in each of these panels. The dashed curve in (c) displays
the location of a turning surface, given by (3.21). (d) Plot showing that the damping rate of
previous mode with σ =−1 scales as E1/3, with E the Ekman number.

and Ω ∝ r−1 is shown in figure 11(a). A shear layer is clearly visible that follows an
attractor of characteristics, calculated through (3.18) and overplotted by a white curve.
We note again the excellent agreement between the overall pattern of the viscous shear
layer and the paths of characteristics. Owing to its finite width, the shear layer also
excites the critical latitude singularity, on both the inner and outer edges of the shell.
The location of the inner and outer critical latitudes, given by (3.28) and (3.29), is
depicted by red ticks, and it is clear that the shear layer is tangent to the inner and
outer edges of the shell at these latitudes. Lastly, figure 11(b) shows a DT mode
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FIGURE 10. (Colour online) (a) Evolution of the damping rate (|τ |) with decreasing Ekman
number for a DT eigenmode with shellular rotation, Ω(r) ∝ r0.5, η = 0.2, which features
a detached shear layer tangent to a turning surface at the location of the rotation axis.
(b) Contours of kinetic energy for the mode depicted by the rightmost open square in (a)
(E ≈ 8.0× 10−7). The thick white curve shows the attractor of characteristics followed by the
shear layer, and the dashed curve the location of a turning surface that encompasses the inner
core. (c) Cut of the perturbed velocity across the shear layer (at the location depicted by a
black line in b) for the three modes displayed with open square symbols in (a).

with Ωp ≈ 1.90Ωref and Ω ∝ r−0.5. In this case again, the mode’s pattern suggests that
part of the shear layer approximately follows a wave attractor, shown by a white curve,
and that part of it is tangent to both the inner and outer edges of the shell at the
critical latitudes.

4.2.3. Quasi-periodic orbits of characteristics
The results presented in the previous paragraphs all feature modes that are

associated with short-period attractors. These modes are all singular at vanishing
viscosity. One may however wonder about the existence of regular modes, which exist
in the inviscid case, or at least modes that display shear layers only at unphysically
small viscosities. Such modes are necessarily associated with weak attractors or
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FIGURE 11. (Colour online) Kinetic energy of two axisymmetric D and DT eigenmodes
with shellular rotation, for E = 10−8. (a) D mode with Ωp ≈ 1.11Ωref and Ω(r) ∝ r−1.
(b) DT mode with Ωp ≈ 1.90Ωref and Ω(r) ∝ r−0.5. Red ticks show the values of the
inner and outer critical latitudes given by (3.28) and (3.29): (a) Nr = 500 L = 1000 M =
0 E = 1.0 × 10−8 η = 0.350 dlog Ω/dlogr = −1.00; (b) Nr = 580 L = 1000 M = 0 E =
1.0× 10−8 η = 0.350 dlog Ω/dlogr=−0.50.

with quasi-periodic orbits of characteristics. To assess the occurrence of such orbits
of characteristics, we have evaluated the Lyapunov exponent of various pairs of
characteristics. The Lyapunov exponent measures the rate of convergence of two
close characteristics after multiple reflections on the inner and outer edges of the
shell, and on turning surfaces when present. For solid-body rotation, the latitudes
of two successive reflections on the inner or outer edges can be related analytically,
and the Lyapunov exponent can therefore be determined semi-analytically (Rieutord
et al. 2001). This is no longer the case with differential rotation: Lyapunov exponents
must be evaluated numerically by integrating paths of characteristics given some initial
conditions.

For the symmetry reasons underlined in § 3, paths of characteristics are calculated
in a meridional quarter-plane with reflections on to the rotation axis (s = 0) and the
equatorial axis (z= 0). Because turning surfaces may prevent reflections on either axis,
we define the two following Lyapunov exponents associated with reflections on the
equatorial axis (denoted by Λs) and on the rotation axis (Λz):

Λs = lim
Ns→∞

1
Ns

Ns∑
k=1

ln

∣∣∣∣dsk+1

dsk

∣∣∣∣ and Λz = lim
Nz→∞

1
Nz

Nz∑
k=1

ln

∣∣∣∣dzk+1

dzk

∣∣∣∣ , (4.6)

where dsk and dzk are the separation between two characteristics after k reflections on
the equatorial and rotation axes, respectively.

A negative Lyapunov exponent means that the two characteristics get progressively
closer to each other, converging towards an attractor. The more negative this value, the
faster the convergence (and the stronger the attractor). In contrast, small-amplitude
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Lyapunov exponents may correspond to quasi-periodic orbits of characteristics.
Because two attractors may co-exist in the shell at a given eigenfrequency, and for
averaging purposes, we have considered five pairs of initial conditions and four regions
of the shell located near the rotation or equatorial axes, and near the shell’s surface
or the inner core (that is, twenty pairs of characteristics). The most negative value
amongst the (averaged) Lyapunov exponents obtained in the above four regions defines
what we now refer to as the Lyapunov exponent, and which we denote by Λ. If
two attractors co-exist in the shell, our method will thus retain that with the shortest
period.

Lyapunov exponents obtained for m = 0 and a few rotation profiles are displayed
in figure 12(a). The range of eigenfrequencies [0.2Ωref , 2Ωref ] is sampled with
1800 values (Ωref is the angular frequency at the shell’s surface). The case with
solid-body rotation and η = 0.35 is depicted by a red curve. It can be compared
with the semi-analytic results of Rieutord et al. (2001), see the left panel of their
figure 6 (where Ωp/2Ωref is displayed on the x-axis). This comparison shows that
our numerical method reproduces qualitatively well the ranges of frequencies at
which strong attractors and quasi-periodic orbits of characteristics exist. Quantitative
differences inevitably exist, however, and are most significant for attractors with
moderate Lyapunov exponents (that is, Λ in the range [−0.5,−0.2]), which our
method tends to underestimate.

Results obtained with shellular rotation and σ = 0.5 are overplotted by a black
curve in figure 12(a). For this rotation profile, inertial modes exist for eigenfrequencies
|Ωp| . 2.2Ωref (see, e.g., figure 3) and the transition from D to DT modes occurs at
|Ωp| ≈ 1.18Ωref (see (3.25)). For Ωp 6 1.18Ωref (D modes only), the shellular case
features the same attractors as in the case with solid-body rotation. However, attractors
are shifted toward lower frequencies with shellular rotation as the shell’s interior
rotates at a slower pace in this case. Lyapunov exponents also take very similar values
since shellular rotation changes the overall shape of these attractors without altering
their period. For Ωp > 1.18Ωref , the shellular case displays many more attractors,
which form through reflections on to turning surfaces that encompass the inner core.
Finally, results obtained with the same shellular profile, but for the full sphere (η = 0)
are also shown by the blue curve. The full sphere only supports DT modes in this case.
For Ωp & 1.4Ωref , results are identical to those obtained with η = 0.35, as in both
cases the turning surface occupies radii r > 0.35R. Differences for Ωp . 1.4Ωref are
essentially through the strong attractor at Ωp ∼ 0.8Ωref , which is related to a turning
surface located at r < 0.35R.

Although the above results have been obtained with a fixed profile of shellular
rotation, the general conclusion that can be drawn is that, just like for solid-
body rotation, a differentially rotating spherical shell may harbour both short-period
attractors and quasi-periodic orbits of characteristics. Their occurrence depends on the
rotation profile and the sphere’s aspect ratio. An example of an m = 0 D mode with a
weak attractor, obtained for E = 10−8, σ = 0.5 and η = 0.35, is shown in figure 12(b),
and it is clear that the kinetic energy for this mode is more homogeneously distributed
than in the modes illustrated in previous figures.

While the calculation of Lyapunov coefficients unambiguously shows the existence
of quasi-periodic orbits of characteristics, it is difficult to use it to prove or
disprove the existence of regular modes for which Λ should strictly vanish
(Dintrans et al. 1999; Rieutord et al. 2001). We have looked for regular
modes with differential rotation, though. It was suggested by Rieutord et al.
(2001) that toroidal modes, with Doppler-shifted eigenfrequencies of the
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FIGURE 12. (Colour online) (a) Lyapunov exponent obtained for η = 0.35 and m = 0.
Results with solid-body rotation (red curve) are compared with shellular rotation with σ = 0.5
(black curve). The vertical dashed line displays the eigenfrequency that separates D and DT
modes for this rotation profile. Results with shellular rotation, σ = 0.5 and for a full sphere
(η = 0) are overplotted in blue. (b) Meridional cut of the kinetic energy for an m= 0 D mode
with σ = 0.5 and Ωp ≈ 0.92Ωref , which features a weak attractor (the Lyapunov coefficient
is a few per cent). (c) Meridional cut of the kinetic energy for an m = 3 D mode with
Ωp ≈ −2.5Ωref and σ = −0.05. This mode has been obtained assuming asymmetry with
respect to the equatorial plane.

form Ω̃p = 2Ω/(m + 1) (m is the azimuthal wavenumber) are the only regular
modes in a rigidly rotating spherical shell. We have followed the toroidal mode
with m = 3 by slowly increasing the differential rotation rate (for shellular rotation).
As shown in figure 12(c), even for values of σ as small as a few per cent,
the mode’s regularity fades away. Although most of the kinetic energy remains
contained in a smooth structure reminiscent to that of the toroidal mode, ray
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FIGURE 13. (Colour online) (a) Meridional cut of the viscous dissipation (left quadrant) and
kinetic energy (right quadrant) for a D mode with m = 2, eigenfrequency Ωp ≈ −2.3Ωref ,
E = 2 × 10−9 and cylindrical rotation profile Ω(s) = 1 + 0.4s2. A corotation resonance
(critical cylinder) is located at s ≈ 0.6. (b,c) Spectral content of the radial (u) and orthoradial
(w) components of the velocity field for this mode. Chebyshev and spherical harmonic
coefficients are shown in (b,c), respectively.

structures develop, in particular from the inner critical latitude. Therefore, inertial
oscillations with differential rotation seem to be all singular in the limit of
vanishing Ekman numbers. A similar result was obtained for gravito-inertial modes
(Friedlander 1982; Dintrans et al. 1999), which also satisfy a PDE of mixed type,
analogous to (3.1).

4.3. Non-axisymmetric eigenmodes: corotation resonances
We briefly examine in this section the behaviour of viscous, non-axisymmetric inertial
waves when their frequency in the rotating frame (Ω̃p) vanishes inside the shell. Such
corotation resonances will be referred to as critical cylinders for cylindrical rotation,
and as critical layers for shellular rotation. We present results of linear numerical
calculations, which we compare with the analysis of § 3. Cylindrical and shellular
rotation profiles are considered in §§ 4.3.1 and 4.3.2, respectively.

4.3.1. Cylindrical rotation
An example of an m = 2 D eigenmode with a critical cylinder is displayed in

figure 13. This mode is obtained for ε = 0.4, E = 2 × 10−9 and the very high spectral
resolution Nr = 880 × L = 2400. Its eigenfrequency Ωp ≈ −2.3Ωref (a negative Ωp is
required for an m > 0 eigenmode to have a corotation resonance within the shell).
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FIGURE 14. (Colour online) (a) Meridional cut of the kinetic energy for a D mode with
m = 2, eigenfrequency Ωp ≈ −2.20Ωref , E = 5 × 10−9 and ε = 0.4. A corotation resonance
is located at s ≈ 0.5. A few paths of characteristics are overplotted by white curves.
(b,c) Spectral content of the radial (u) and orthoradial (w) components of the velocity field for
this mode. Chebyshev and spherical harmonic coefficients are shown in (b,c), respectively.

Figure 13(a) shows a meridional cut of the viscous dissipation (left quadrant) and
of the kinetic energy (right quadrant) for this mode. The mode’s spectral content
is also displayed in figure 13(b,c) to highlight the good convergence in spectral
resolution obtained for this mode. According to (3.13), a critical cylinder is located
at scrit ≈ 0.61R. Near this location, the mode’s kinetic energy and viscous dissipation
are discontinuous. Upon approaching corotation from s > scrit , the mode’s pattern in
a meridional quarter-plane becomes more and more parallel to the rotation axis, and
according to (3.16), the component of the group velocity perpendicular to the critical
cylinder should eventually cancel out at corotation, formally preventing the mode
from crossing the critical cylinder. Our simulation indicates that, in a moderately
viscous fluid, waves get dramatically absorbed upon crossing corotation, but keep on
propagating at s< scrit with a much reduced amplitude.

We point out that the fraction of the mode’s amplitude that is effectively
transmitted across corotation depends on the mode of interest. A similar m = 2 mode
with eigenfrequency and Ekman number slightly increased to Ωp ≈ −2.20Ωref and
E = 5 × 10−9, respectively, shows no significant transmission in figure 14, as if the
incoming wave was fully absorbed at corotation. The contour plot in figure 14(a)
gives an upper limit for the kinetic energy transmission factor ∼10−6. Note that
in the example shown in figure 14, linear inertial waves propagate from the inside
outwards, whereas figure 13 shows an opposite direction of propagation (from the
outside inwards). It is likely due to a mode selection, with different modes existing on
each side of the corotation radius.

4.3.2. Shellular rotation
An example of an m = −6 eigenmode with a critical layer is depicted in

figure 15. For this mode, E = 6 × 10−9, Ω(r) ∝ r−0.2 and the spectral resolution
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FIGURE 15. (Colour online) (a) Meridional cut of the kinetic energy for a growing
eigenmode with E = 6 × 10−9, σ = −0.2, Ωp ≈ 7.11Ωref and m = −6. The location of
the critical layer is depicted by a solid curve, along which a white tick shows the local
slope of characteristics given by (3.34). Red ticks show the inner and outer critical latitudes.
(b,c) Spectral content of the radial (the quantity v = xu is displayed here) and orthoradial
(w) components of the velocity field for this mode. Chebyshev and spherical harmonic
coefficients are in (b,c), respectively.

is Nr = 500 × L = 1401. This mode’s eigenfrequency Ωp ≈ 7.11Ωref (this time, a
positive Ωp is required for an m < 0 eigenmode to have a corotation resonance within
the shell). Contours of the kinetic energy in a meridional quarter-plane are shown
together with the mode’s spectral content. The critical layer is depicted by a white
solid curve in (a), and we see that, in contrast to cylindrical rotation, waves cross
the critical layer without experiencing significant absorption. The local analysis carried
out for the inviscid case in § 3.2.3 shows that (linear) inertial waves may indeed cross
a critical layer with a (formally) divergent group velocity at the critical layer. This
occurs if |kz| → 0 (paths of characteristic then being locally parallel to the rotation
axis), or if B→ 0 (paths of characteristics having a finite slope at the critical layer).
The white tick displayed on top of the critical layer in figure 15(a) shows the local
slope of characteristics if B = 0, which is given by (3.34). The large slope obtained
in this case (due to the small value of |σ |) prevents a clear distinction with the
case |kz| → 0. The local analysis also shows the possibility that the group velocity
formally vanishes at a critical layer (when |ks| → ∞ locally), much like in the case
of cylindrical rotation. However, we have not found such a situation in our numerical
exploration of modes featuring a critical layer.

The most salient feature of the mode shown in figure 15 is that it is found to be
unstable: its growth rate, τ , is positive. We have examined in some more detail this
particular mode by varying the Ekman number, keeping the same spectral resolution.
We have varied E in the range [4 × 10−9–3.2 × 10−8]. Results are shown in figure 16,
where the mode’s growth rate is depicted as a function of the Ekman number. There
is a transition occurring near Ec ≈ 10−8: τ < 0 (the mode is decaying) for E > Ec,
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FIGURE 16. Growth rate for the same eigenmode as in figure 15 (m = −6, σ = −0.2,
Ωp ≈ 7.11Ωref ) with varying the Ekman number E. The mode becomes unstable for
E . 10−8.

whereas τ > 0 (the mode is growing) for E < Ec. The mode’s growth rate is actually
well approximated by a linear function of E near this transition: τ = α(E − Ec), with
α < 0. Although not displayed here, the kinetic energy obtained in the simulations
with E & 10−8 is very similar to that of figure 15(a), except for the thick shear layer
on each side of corotation, which is found to progressively disappear with increasing
E. The very good convergence in spectral resolution obtained in these calculations
(as is highlighted by figure 15b,c), and the fact we have been able to successfully
follow this particular mode with decreasing Ekman number (see figure 16) makes us
confident that the positive growth rate that we obtain at small Ekman numbers is
physical and not a numerical artifact arising from truncature or round-off errors. It
is tempting to interpret this result based on the local dispersion relation obtained at
(3.30). It is possible indeed that the instability we have obtained in our simulations is
related to the Goldreich–Schubert–Fricke instability in the limit of an incompressible
inviscid fluid. The physical mechanism that drives the instability in our model requires
a specific investigation that is postponed for future work.

5. Astrophysical implications and concluding remarks
The late evolution of the orbital elements and spin of short-period extrasolar planets,

or of close binary-star systems, is primarily driven by tidal interactions. The tidal
torque acting on a gravitationally perturbed body encompasses the equilibrium torque,
which arises from the quasi-hydrostatic tidal bulge setting around the body, and the
dynamical torque, due to tidally forced internal waves propagating inside the body.
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Inertial waves may propagate in convective regions of stars and planets, where the
Coriolis force is the main restoring force. Gravito-inertial waves may propagate in
radiative zones, where buoyancy and rotation act as restoring forces. The magnitude of
the dynamical torque is directly related to how much angular momentum is deposited
by internal waves, which has a complex dependency upon the forcing potential
(amplitude and frequency), and the body’s internal properties (see, e.g., Ogilvie & Lin
2004, 2007; Ogilvie 2009; Rieutord & Valdettaro 2010). In many dynamical studies of
short-period exoplanets, the tidal torque of the central star is parametrized by a single,
dimensionless tidal quality factor Q, which should be thought of, and determined as, a
frequency-averaged quantity (Ogilvie 2009).

Prior to an investigation of tidally forced inertial waves in differentially rotating
stars and planets, we have examined the propagation properties of linear inertial waves
in a rotating fluid body contained in a spherical shell, taking into account the effects of
differential rotation. We have used a simple model that consists of an incompressible
homogeneous fluid, with dissipation occurring through viscous forces. This fluid model
is an intentionally simplified model for the convective zones of stars and planets.
We have considered two particular rotation profiles: a cylindrical rotation profile,
and a shellular rotation profile. For the sake of simplicity, we have assumed the
background flow to be in equilibrium with differential rotation. In the case of shellular
rotation, this equilibrium would require additional forces that we have not included. In
this respect, the relaxation of the incompressible assumption, or the generalization to
stratified fluid bodies, will certainly be an improvement on our model.

Upon linearization of the governing fluid equations, we have revisited the
propagation properties of paths of characteristics with differential rotation, in the
inviscid limit. Paths of characteristics are shown to obey a second-order PDE of mixed
type. Two kinds of inertial modes are thus found to exist with differential rotation: D
modes, for which the hyperbolic domain covers the entire shell, and DT modes, for
which the hyperbolic domain covers part of the shell. We have analysed the occurrence
of axisymmetric (m = 0) and non-axisymmetric D and DT eigenmodes for various
differential rotation rates and eigenfrequencies. The presence of turning surfaces for
DT modes extends the range of frequencies at which inertial modes of oscillation
may exist compared with solid-body rotation. We have also discussed the presence of
critical latitudes and corotation resonances with differential rotation.

The analytic results based on the dynamics of characteristics are then compared
with the results of numerical simulations of linear inertial waves propagating in a
viscous fluid contained in a spherical shell. High-resolution calculations, based on a
spectral method, have been performed to properly describe the structure of the thin
shear layers arising in the physically interesting regime of small Ekman numbers
(small viscosities). The Ekman numbers used in our simulations typically range from
a few 10−9 to 10−6, values that are, however, much larger than what may be expected
in stars and planets (Ekman numbers between 10−15 and 10−10). The modes that
we have primarily focused on are singular modes with a shear layer converging
towards a short-period wave attractor. As in the solid-body rotation case, the pattern
of these shear layers is well reproduced by the dynamics of characteristics under the
short-wavelength approximation. As an interesting side result, we have shown that
reflexions on a turning surface, and on the body’s outer radius, may form singular
modes with short-period wave attractors in the whole sphere (that is, in the absence
of an inner core). The damping rate of singular modes with differential rotation is
also assessed in the limit of small Ekman numbers. Our results of calculations indicate
that an E1/3 scaling is to be expected for most D and DT eigenmodes, much similar
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to the case of solid-body rotation. Still, the case of a DT mode with damping rate
approximately independent of the Ekman number is uncovered. In addition, we have
carried out a qualitative analysis of the occurrence of modes with quasi-periodic orbits
of characteristics for shellular rotation.

We have also briefly examined the behaviour of linear inertial waves with a
corotation resonance within the shell (where the wave’s frequency vanishes in
the frame rotating with the fluid). For cylindrical rotation, our simulations show
that inertial waves may cross a corotation resonance, but experience a very large
absorption at this location, much like inertial waves propagating in differentially
rotating astrophysical discs (Latter & Balbus 2009). For shellular rotation, however,
we have found that waves may propagate across a corotation resonance (critical layer)
without visible absorption. Such modes are found to be unstable for small enough
viscosities. Clearly, these findings appeal for a confirmation with an improved fluid
model, where shellular rotation is balanced for by appropriate body forces and where
nonlinear effects are taken into account.

Many simplifying assumptions in the fluid model we have considered deserve
further investigation to make it more applicable to the fluid flows inside stars or
planets. The incompressible and homogeneous assumptions are obvious examples, and
naturally a full model including appropriate modelling for the convective and radiative
zones would be desirable. Since inertial waves propagate in convective regions of stars
and planets, it would be interesting to study the impact of convective turbulence on the
propagation and dissipation properties of inertial waves (the formation of large-scale
attractors for instance). The nature and quality of wave reflections at the shell’s
boundaries should be analysed, as it is still unclear for example how inertial waves
reflect on the upper atmosphere of stars and planets.
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Appendix. Equation for the perturbed pressure and dispersion relation
This appendix derives the PDE satisfied by the perturbed pressure, p, in the inviscid

limit. It also derives the wave dispersion relation, the phase and the group velocities
under the short-wavelength approximation. In cylindrical coordinates (s, ϕ, z), (2.1)
becomes

iΩ̃pu+ 2Ωez × u+ s(u ·∇Ω)eϕ =∇p, (A 1)

with Ω the background angular frequency and Ω̃p the Doppler-shifted frequency. The
cylindrical components of the linearized velocity vector, (us, uϕ, uz), can be expressed
as a function of p and of its partial derivatives:

us(s, z)= 1

iΩ̃p(As − Ω̃2
p )
×
[
Ω̃2

p

∂p

∂s
+ Az

∂p

∂z
+ 2ΩΩ̃p

mp

s

]
, (A 2)
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uϕ(s, z)= 1

2Ω(As − Ω̃2
p )
×
[

As
∂p

∂s
+ Az

∂p

∂z
+ 2ΩΩ̃p

mp

s

]
, (A 3)

uz(s, z)= i

Ω̃p

∂p

∂z
, (A 4)

and where

As = 2Ω
s

∂

∂s

(
s2Ω

)
and Az = 2Ω

s

∂

∂z
(s2Ω). (A 5)

For solid-body rotation or cylindrical rotation, Az = 0 and As = 4Ω2. Note the special
case where Ω̃p = 0 for which a corotation resonance exists in the shell, and that
where As = Ω̃2

p , which is analogous to Lindblad resonances in compressible fluids with
cylindrical rotation such as astrophysical discs.

Taking the divergence of (A 1) and using (A 2)–(A 4), we find, after some algebra,
that p satisfies

−Ω̃2
p

∂2p

∂s2
+ (As − Ω̃2

p )
∂2p

∂z2
− Az

∂2p

∂s∂z

= ∂p

∂s

[
Ω̃2

p

s
+ ∂As

∂s
− mAsΩ̃p

2Ωs
− As

As − Ω̃p

∂

∂s
(As − Ω̃2

p )

]

+ ∂p

∂z

[
Az

s
+ ∂Az

∂s
− mAzΩ̃p

2Ωs

(
1+ 4Ω2

Ω̃2
p

)
− Az

As − Ω̃2
p

∂

∂s
(As − Ω̃2

p )

]

+ mp

s

[
m

s

(
As − Ω̃2

p − 8Ω2
)
+ AsΩ̃p

Ωs

(
1− 4Ω2

As

)
− 2ΩΩ̃p

As − Ω̃2
p

∂

∂s
(As − Ω̃2

p )

]
,

(A 6)

which reduces to (3.1) when only second-order terms are retained (the short-
wavelength approximation).

We now examine the propagation properties of local waves in a meridional plane.
Assuming p ∝ exp(i{kss + kzz}), (A 6) yields the following wave dispersion relation in
the short-wavelength approximation:

Ω̃2
p =

k2
z

‖k‖2

[
As − ks

kz
Az

]
, (A 7)

where ‖k‖ = √k2
s + k2

z . For solid-body rotation, (A 7) reduces to the well-known
dispersion relation Ω̃p = ±2Ωkz/‖k‖ (see, e.g., Greenspan 1969). In the bracket term
of (A 7), while As > 0 is required to satisfy Rayleigh’s criterion, the sign of Azks/kz is
not known a priori. Equation (A 7) therefore indicates that an instability may occur if
As − Azks/kz < 0. It corresponds in fact to the Goldreich–Schubert–Fricke instability for
an incompressible inviscid fluid (Goldreich & Schubert 1967; Fricke 1968), in which
case the inequality As − Azks/kz < 0 is identical to that in equation (33) (misprinted) of
Goldreich & Schubert (1967) (see also Nelson, Gressel & Umurhan 2012). Assuming
the fluid is stable against the Goldreich–Schubert–Fricke instability, we introduce

B̃ =
[

As − ks

kz
Az

]1/2

, (A 8)
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and (A 7) translates into Ω̃p = ±B̃|kz|/‖k‖. In the frame rotating with the fluid, the
phase velocity, vp = Ω̃pk/ ‖k‖2, satisfies

vp = ±B̃kz

‖k‖3 k, (A 9)

while the group velocity, vg = ∂Ω̃p/∂k, is given by

vg =± ks

‖k‖3 (−kzes + ksez)×
[
B̃ + Az

2
‖k‖2

kskz
B̃−1

]
. (A 10)

Note that k · vg = 0: the group velocity is perpendicular to the phase velocity for
differential rotation as for solid-body rotation.
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