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Research Methods in Healthcare Epidemiology and Antimicrobial
Stewardship—Mathematical Modeling
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Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when
more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of
mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages—such as shorter
developmental timelines and opportunities for extensive experimentation—over observational and experimental approaches. We summarize
these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a
guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship.
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Mathematical models are abstract representations of real-
world systems and can serve as tools to inform clinical
decision-making. They can support a variety of efforts in
healthcare epidemiology and antibiotic stewardship (HE&AS),
including guiding data collection and empirical analysis, test-
ing explanatory hypotheses about mechanisms driving
observed real-world patterns, and informing policy as well as
intervention design and evaluation. Mathematical models are
classified on the basis of several criteria, including whether
they are used to model system behavior that is static or
dynamic, stochastic or deterministic, and discrete or con-
tinuous. In this review, we provide an overview of 2 of the
more common types of mathematical models used to under-
stand and describe infectious diseases: compartmental models
and agent-based (AB) simulation models. More detailed
information about mathematical modeling (as applied to
HE&AS) is available in several key references.1–10

advantages and disadvantages

Mathematical modeling provides several advantages over
observational and experimental approaches (Table 1).11–13 For
instance, models can be used to gain insight when experi-
menting with the real system is too difficult, time consuming,
expensive, or unethical. In addition, mathematical models can
help to evaluate the external validity of traditional studies and
explore scenarios beyond observed settings. By contrast,

translating insight generated from modeling analyses into
practice is difficult because practitioners often rely on more
traditional experimental methods (eg, randomized controlled
trials) to inform decision-making. Modeling teams also
require a distinct and typically multidisciplinary set of indivi-
duals to be productive; in addition to clinicians, mathemati-
cians, and programmers, modeling groups often include
statisticians, epidemiologists, and data analysts, among others,
which can raise the barrier to entry for research in this domain.

Compartmental Models

Compartmental modeling is a widely used methodology for
simulating the behavior of complex systems, typically char-
acterized by dynamic, tightly coupled, and nonlinear behavior
that is difficult to characterize using other methods.14 The
most common form of a compartmental model leverages a
system of coupled ordinary differential equations to model the
dynamics of one or more quantities of interest over time. As
applied to healthcare epidemiology, compartmental models
are most often used to model how proportions of susceptible,
infected, and recovered individuals evolve over time in a
healthcare or community setting (Figure 1).
Compartmental models are often specified via a set of

analytical equations that are computationally inexpensive to
simulate and therefore are easily scaled to different-sized
systems. These equations can be used to explicitly derive
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table 1. Advantages, Disadvantages, and Potential Pitfalls of Using Mathematical Modeling in Healthcare Epidemiology and Antimicrobial Stewardship Research

Model type Advantages Notes

Any Virtual environment that facilitates extensive experimentation and sensitivity analysis, including
under various current conditions and future states

Useful when experiments in practice are not possible, too costly, or
time consuming

Relatively short developmental timeline and rapid experimentation
Leverage advancing computational power

Compartmental Computationally inexpensive
Easily replicable
Easily scalable
Facilitates analytical results and insights eg, Basic reproduction number, R0, as a relative measure of epidemic

growth rate over time
AB Detailed modeling of individual characteristics and behavior (heterogeneity) Increases flexibility for individual-level dynamics

Intuitive conceptual models
Detailed modeling of interventions at the individual and population levels

Model type Disadvantages Notes
Any Obtaining buy-in from practitioners

Translating insight into practice
Compartmental Simplifies model dynamics for analytic tractability Often assume mass action principle

Limited ability to capture heterogeneity Individuals typically treated as identical
Limited accuracy for smaller systems Particularly for deterministic models

AB Computationally expensive Parallelization helps to mitigate computational costs
Difficult to scale
Difficult to replicate
Implementation, calibration, validation, and experimentation driven by complexity
Lack of data at the individual level
Limited curriculum for potential modelers User-friendly platforms are emerging11–13

Model type Potential pitfalls Tips and solutions
Any Inappropriate model complexity Work with clinical practitioners to gauge complexity and define

outcomes
Lack of proper validation and calibration Compare output with data from observational, experimental studies

Use multilevel statistical validation
Lack of generalizability due to model parameters informed by single sites Use parameters informed by multiple sites when data is available
Sensitivity analysis extends beyond scope of reality Focus sensitivity analysis on realistic range of parameter values,

ideally informed by data and literature
Compartmental Oversimplification of model dynamics Limit scope to larger systems for which aggregated dynamics are

more appropriate
AB Overly detailed and complex models Reference problem statement to limit “scope creep”

NOTE. AB, agent-based.
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important relationships between model parameters. The
most notable result from this type of analysis is the basic
reproduction number (R0), which represents the expected
number of secondary cases per primary case in an entirely
susceptible population. These types of results can provide
significant insight into system dynamics because the results are
generalizable across all parameter values and do not have to be
explicitly observed or simulated.

By contrast, these models often oversimplify transmission
dynamics in favor of analytic tractability (ie, the ability to solve
and simulate the system of equations) and are somewhat
limited in their ability to capture heterogeneity (ie, individual
characteristics and behavior). For example, compartmental
models often assume the principle of mass action—through
which all individuals in the population are equally likely to
interact with each other.15 Also, most experimentation with
compartmental models is conducted in the form of sensitivity
analysis, through which model parameters are varied and the
effects on primary outcomes are observed. Although useful,
this approach can sometimes have limited impact if the
experimentation does not reflect realistic scenarios.

AB Models

AB modeling provides a more explicit representation for
studying complex, dynamic systems16–19 and serves as a virtual

laboratory for exploring new approaches to infection control.
AB models consist of a set of “agents” that encapsulate the
behaviors of various entities that constitute the system of
interest. Agents can interact with each other and/or the
environment on the basis of a set of simple rules that lead to a
series of population-level patterns or outcomes (Figure 1),
many of which may be unexpected (a concept known as
emergence). In doing so, these models can be used to estimate
the risks of disease and the effects of interventions at the
individual level.
AB models offer significant flexibility for modeling

dynamics at the individual level that will generate behaviors at
the population level. In the context of infectious disease
modeling, these dynamics include the definition of contact
networks, mobility patterns, and characteristics relevant to
disease progression and treatment outcomes at the individual
level that govern disease transmission at the population level.
Moreover, the multilevel nature of such models enables
explicit definition of various interventions at the patient,
facility, and community levels (eg, contesting TB contact-
tracing with an active-case finding campaign20) and provides a
powerful experimental platform to study the system’s behavior
and predict future trends. Unlike many (deterministic) com-
partmental models, AB models explicitly capture system
uncertainty via the direct application of random variables, thus
providing a more realistic framework for representing
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figure 1. Key feature summary of compartmental and agent-based transmission models. Compartmental modeling is a top-down
approach that models the evolution of stocks of susceptible, infected, and recovered individuals over time and flows of individuals between
the compartments. Note that β is the transmission rate and γ is the recovery rate. Agent-based modeling is a bottom-up approach that
explicitly simulates interactions between potentially heterogeneous agents (eg, patients, healthcare workers) in a defined environment, which
serves as the mechanism for transmission. Individual agent states are aggregated to monitor stocks of susceptible, infected, and recovered
individuals over time. Both modeling approaches can generate the dynamics shown in the figure to the right; however, stochastic variations
are not shown, which are present in some systems dynamics models and most agent-based models.
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stochastic (ie, random) behaviors and estimating risks asso-
ciated with potential interventions.

The realism generated by these models, however, is offset by
the additional complexity in development and analysis, as well
as computational demands for experimentation (particularly
for large-scale models). Traditional programming languages
used to develop AB models demand considerable computer
programming expertise and can be time consuming. A stan-
dard curriculum for teaching AB simulation rarely exists.21

Furthermore, the complex structure and parameter-rich
nature of AB models pose several challenges for calibration,
validation, and sensitivity analysis.22

pitfalls and tips

Some pitfalls in mathematical modeling can be limited through
use of best practices (Tables 1 and 2). First, model detail should
match the complexity of the problem being studied. Compart-
mental models often oversimplify model dynamics, which can
lead to models that do not capture the behavior of the system
sufficiently well. By contrast, AB models are often overly com-
plex relative to the problem being modeled. Excessively detailed
models can lead to unreasonable data and computational
demands that may limit the scope of analysis and, in turn, serve
as a barrier to translating findings into practice. The best practice
of modeling is seeking the simplest approach that enables
answering the question of interest, or in other words, “make
things as simple as possible but no simpler” (attributed to Albert
Einstein). Along these lines, modelers and practitioners must
work closely together to ensure that model complexity is
appropriate given the problem under study.

Another key pitfall of mathematical modeling involves
validation and calibration of the model, because these

processes improve the model’s ability to produce results
similar to the actual system. Many modeling studies are limited
in this regard, performing only cursory (and often subjective)
checks that 1 or 2 model outputs are similar to observed
measures of the same. Calibration is especially challenging for
large-scale AB models that employ many parameters, and
these models often require a multilevel statistical validation
focused on both individual- and population-level outcomes.
Modeling human behavior and the interactions between
agents is a difficult challenge; thus, efforts to validate modeled
behavior with social theories are often neglected. Finally, many
models are often calibrated to reproduce the behavior of a
single site, rather than to approximate more representative
behavior across multiple sites. We recommend that future
modeling studies dedicate more robust efforts to this process
and execute proper hypothesis testing to demonstrate that
model outputs are representative of observed performance
measures.

mathematical modeling in healthcare
epidemiology and antibiotic
stewardship—review of specific
examples

Many applications of mathematical modeling in HE&AS
research consist of 2 primary objectives:

1. To simulate the dynamics of patient-to-patient trans-
mission of resistant or susceptible organisms in a
healthcare or community setting

2. To evaluate the effect of model-based parameters or
interventions on transmission of, and infection with,
clinically relevant organisms

table 2. Checklist of Key Considerations When Developing a Mathematical Model for Healthcare Epidemiology and Antimicrobial
Stewardship Research

1. What steps should be taken in order to get started with a mathematical modeling study? Establish a joint collaboration between modelers and
practitioners to define the problem statement and develop the conceptual model.

2. How does one define an appropriate scope? Model complexity and structure should be relevant to the problem under study.
3. What software should be used to develop a mathematical model? Selected model implementation software should be commensurate with

skill, experience, model complexity, and requirements for analysis and documentation. There are a substantial number of programming
languages, open-source modeling tools, and commercial off-the-shelf software packages that can be used to develop mathematical models,
for both compartmental59,60 and AB models.61–63

4. How does one determine what values to assign to model parameters? Model parameters should be informed by observational data (ideally
from multiple sites) and/or published literature when available.

5. What steps should be taken to ensure that the model outputs are accurate? Model teams should perform extensive verification to ensure the
model is implemented correctly and model parameters should be calibrated and (empirically) validated to match primary outputs (eg,
acquisition rates).

6. What type of analysis should be performed on the output from mathematical models? Analyze results in a manner appropriate for the model
and approachable to the intended audience, and perform appropriate sensitivity analysis of results to modeling assumptions and
parameters.

7. How should the results of the study be reported? Documentation of model design, analysis, and implications should be commensurate with
target publication outlet. In addition, model files (and associated parameter values) should be made available for public evaluation when
possible.

NOTE. AB, agent-based.
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Deterministic compartmental models—for which model
dynamics are entirely predictable for a given set of model
equations and initial conditions—have been adapted to many
applications in HE&AS research since their inception.23–28

D’Agata and colleagues26 improved on earlier transmission
models of the type using proportions of susceptible, infected,
and recovered individuals by including additional compart-
ments for patients on the basis of whether they were receiving
antibiotics, which can affect the likelihood of acquisition or
transmission. However, the inclusion of these additional
compartments—although more realistic—also led to complex
model equations with many unknown parameters.

A major limitation of many of the aforementioned studies is
that they do not account for the variability often observed in
the prevalence of colonized and/or infected patients and
healthcare workers over time. More recent compartmental
models have incorporated stochastic dynamics, which better
account for this behavior, particularly in smaller systems
such as intensive care units.29–35 For example, Bootsma and
colleagues35 developed such a model across 3 hospitals to
evaluate several infection control interventions with many
parameters informed by a large, tertiary care medical center in
the Netherlands. This was one of the first such compartmental
models to attempt to capture the effect of superspreaders and
patients with high risk of acquisition, 2 characteristics more
naturally suited to AB modeling.

AB models have been applied to the study of disease spread
in a variety of settings, ranging from specific care units18,36 to
emergency departments,37 hospitals,38–40 nursing homes,41,42

and communities.43 AB models enable better incorporation of
population heterogeneity with regard to population demo-
graphic characteristics, contact networks, and mobility
patterns.6 For example, Macal et al43 modeled community-
based MRSA transmission in a synthetic population based on
Chicago, Illinois, which included distinct representations of
individual demographic characteristics (eg, age, gender, race)
and activity patterns informed by national survey data. This
model produced an accurate estimate of community-
associated MRSA incident rates from 2000 through 2010, but
also required a broad set of assumptions, extensive data from
disjoint sources, and extensive development and calibration.

Some studies actually employ both methods and compare
them directly.15,27 For example, Rahmandad and Sterman15

construct susceptible-exposed-infected-recovered models
using compartmental and AB approaches over a variety of
contact network structures. They highlight many of the
aforementioned advantages and disadvantages of each
approach but also stress the importance of finding a balance
between the 2 paradigms, stating that results can be indis-
tinguishable for larger and more homogenous populations.
Sensitivity analysis is also critical, but extensive analysis in this
dimension is difficult for computationally intense AB models.

Many compartmental and AB transmission models are
accompanied by systematic analysis of one or more model-
based parameters or potential infection control interventions.

Hand hygiene compliance is by far the most studied
intervention18,25,26,28–30,32,33,38,44–46; however, many studies
have also used mathematical models to investigate the
potential benefits of cohorting,24,29,32,33,38,45 active surveillance
and diagnostic testing (ie, to identify colonized but asympto-
matic patients),26,29,30,34,35,38,47 contact precautions and
isolation,26,31,35,38 decolonization,38,48,49 and environmental
cleaning.39,44 In addition, authors have used these models to
investigate the impact of several key model-based parameters,
such as admission prevalence, unit/ward size, pathogen
transmissibility, contact rates, and length of stay.27,30,33,44

On the larger scale, few studies have analyzed interfacility or
regional effects of transmission.42,48,50–55 As a representative
example, Lee et al55 developed an AB model of MRSA trans-
mission across 20 acute care hospitals in Orange County,
California. When discharged patients returned to the
community, they could be readmitted to any hospital in the
region, thus providing a pathway for MRSA to spread from
one hospital to another. This example illustrates the ability of
AB models to capture transmission dynamics at individual,
facility, and regional levels. These types of studies demonstrate
the value of mathematical modeling as a tool for informing
national or international efforts to control the spread of
infectious pathogens. In addition, many of these studies
leverage hybrid modeling approaches that combine compart-
mental and AB approaches in such a way as to exploit the
advantages of each technique.56–58

major take-home points

Most studies using mathematical modeling in HE&AS consist
of the application of either compartmental or AB modeling to
simulate transmission and evaluate potential interventions.
Successful modeling efforts often leverage close collaboration
between modeling and practitioner expertise and include
thorough validation and calibration prior to experimentation
and analysis. In addition, striking the balance between model
simplicity and complexity is an important consideration.
Regardless of the specific modeling methodology, mathe-
matical models should focus on providing actionable decision
support to healthcare epidemiologists and antibiotic stewards.
To achieve this objective, and in light of the limitations and
pitfalls summarized above, we propose a set of best practices
for developing mathematical models (Table 2).

conclusions

Mathematical modeling is a valuable methodology for
providing insight into relevant problems in HE&AS. It is a
complementary approach, one that provides a unique perspec-
tive relative to more traditional methods, such as randomized
controlled trials. In many cases, mathematical models can be
used to validate or mediate results found by observational or
experimental methods; in other cases, mathematical models
may provide insight that cannot be obtained via these more
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traditional approaches. In that sense, models are not intended to
replace evidence produced by real-world clinical studies; instead,
they can be used to explore a range of scenarios and interven-
tions and to generate subsequent hypotheses that can provide
clues to researchers and decision-makers faced with seemingly
unlimited HE&AS intervention strategies but limited resources
to implement and test them. With improved rigor and efforts to
better leverage improvements in computational resources,
mathematical modeling should play a significant role in future
studies in this field.
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