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POPULATION VIEWPOINT ON HAWKES PROCESSES
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Abstract

In this paper we focus on a class of linear Hawkes processes with general immigrants.
These are counting processes with shot-noise intensity, including self-excited and
externally excited patterns. For such processes, we introduce the concept of the age
pyramid which evolves according to immigration and births. The virtue of this approach
that combines an intensity process definition and a branching representation is that the
population age pyramid keeps track of all past events. This is used to compute new
distribution properties for a class of Hawkes processes with general immigrants which
generalize the popular exponential fertility function. The pathwise construction of the
Hawkes process and its underlying population is also given.
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1. Introduction

In this paper we investigate the link between some population dynamics models and a class
of Hawkes processes. We are interested in processes whose behavior is modified by past events,
which are self-excited and externally excited. The introduction of a self-excited process with
shot-noise intensity is due to Hawkes (1971) and the famous Hawkes process has since been
used in a variety of applications, including seismology, neuroscience, epidemiology, insurance
and finance, to name but a few. The shot-noise intensity of the Hawkes process (Nt ) is expressed
as λt = μ+∑

Tn<t
φ(t − Tn),where the Tn are the jump times of the Hawkes processN itself,

μ > 0, and φ is a nonnegative function. In the Hawkes model, when an event occurs at time
Tn, the intensity grows by an amount φ(t − Tn): this models the self-exciting property. Also,
for many modeling purposes, φ returns to 0 as t increases, so that the self-excitation vanishes
after a long time. On the whole, each event excites the system as it increases its intensity, but
this increase vanishes with time as it is natural to the model the fact that very old events have a
negligible impact on the current behavior of the process. In the literature, several contributions
focused on processes with self-exciting behavior and also some externally exciting component.
To the best of our knowledge, the Hawkes process with general immigrants was introduced
in Brémaud and Massoulié (2002), and specific forms can also be found in recent studies
motivated by financial applications, such as Dassios and Zhao (2011), Wheatley et al. (2014),
and Rambaldi et al. (2014), where external shocks, new arrivals, and contagion are crucial to
model. In this paper we are interested in a class of Hawkes processes with general immigrants
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464 A. BOUMEZOUED

(see Brémaud and Massoulié (2002)), whose intensity is of the form

λt = μ(t)+
∑
Tn<t

�t (t − Tn,Xn)+
∑
Sk<t

�t (t − Sk, Yk).

In this model, the Tn are the jump times of N : if an event occurs for the system at time Tn, the
intensity grows by an amount �t(t − Tn,Xn), where Xn is some mark. This part models the
self-exciting property. In parallel, external events occur at times Sk and excite the system of
interest with some amount �t(t − Sk, Yk): this is the externally excited component.

Among the appealing properties of such models, one of them comes from the shot-noise
form of the intensity. This is called the cluster (or branching) representation of the Hawkes
process, and it is based on the following remark: if an event occurred at time Tn then t − Tn
is nothing but the ‘age’ of this event at time t . Following the seminal work of Hawkes (1971),
Hawkes and Oakes (1974) proposed the cluster representation of the self-exciting process.
They interpreted it as an immigration–birth process with age: they proved that under some
stationarity conditions, it can be described as a branching Poisson process (also called a Poisson
cluster). Also, in Dassios and Zhao (2011), a definition of a dynamic contagion process is given
through its cluster representation. Until now, most studies on the Hawkes process recalled the
immigration–birth representation as follows: immigrants arrive at times given by a Poisson
process with intensity μ. Then each immigrant starts a new generation: it gives birth to new
individuals with fertility functionφ, each one giving birth with the same fertility functionφ. This
is often used as a definition for the Hawkes process, providing a good intuition on its behavior.
The cluster representation of Hawkes and Oakes (1974) requires that the mean number of
children per individual which is nothing but ‖φ‖ = ∫∞

0 φ(a) da satisfies ‖φ‖ < 1. In this
paper we exhibit the immigration–birth dynamics underlying Hawkes processes with general
immigrants which do not require the stationary assumption. The virtue of this approach that
combines an intensity process definition and a branching representation is that the population
age pyramid keeps track of all past events. This is used to compute new distribution properties
for a class of linear Hawkes processes with general immigrants.

In the literature, the distribution properties of the Hawkes process have first been studied
under stationary conditions. Hawkes (1971) addressed second-order stationary properties,
whereas Adamopoulos (1975) derived the probability generating functional under stationarity
by using the cluster representation of Hawkes and Oakes (1974). In this work, Adamopoulos
(1975) expressed the probability generating function as a solution to some functional equation.
Furthermore, Brémaud and Massoulié (2002) introduced the framework for studying moments
of the stationary Hawkes process by means of the Bartlett spectrum. Let us also mention two
recent studies of the distribution properties under stationarity. The moment generating function
has been expressed in Saichev and Sornette (2011) as a solution to some transcendental equation.
In addition, Jovanović et al. (2014) proposed a graphical way to derive closed-form solutions for
cumulant densities, leading to the moments of the stationary Hawkes process. It is interesting
to note that such recent contributions rely on the stationary branching representation of Hawkes
and Oakes (1974). Recently, the computation of statistical properties has gained attention under
nonstationarity, both for mathematical analysis and statistical estimation techniques. However,
the recent studies in this framework only focus on exponential fertility rates φ(t) = αeβt . The
tool they rely on is the infinitesimal generator of the intensity process (λt ) which is Markovian
for such exponential fertility rates; see Oakes (1975). This includes the work of Errais et
al. (2010), Aït-Sahalia et al. (2010), Dassios and Zhao (2011), and Da Fonseca and Zaatour
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(2014). In this paper we generalize these studies in a natural direction for a wider class of
Hawkes processes.

Scope of this paper. The aim of this paper is threefold. First, to introduce the concept of
age pyramid for Hawkes processes with general immigrants. Second, to use this concept to
compute new distribution properties for a class of fertility functions which generalize the popular
exponential case. Finally, to give a pathwise representation of the general Hawkes processes
and its underlying immigration–birth dynamics. We represent the population as a multi-type
dynamics with ages, including immigration and births with mutations. Our population point
of view is inspired by Bensusan et al. (2015) (see also Tran (2008)) and seems to reconcile the
two definitions of Hawkes processes, through an intensity process or a branching dynamics.

The paper is organized as follows. In Section 2 we introduce the population point of view
for Hawkes processes with general immigrants and study the dynamics of the age pyramid
over time. In Section 3 we use this concept to compute the dynamics and Laplace transform
of a class of Hawkes processes with general immigrants whose fertility functions generalize
the popular exponential case. In Section 4 we present the pathwise construction of Hawkes
processes with general immigrants and its underlying population. Finally, Section 5 details
some results on the special case of standard Hawkes processes, including its Laplace transform
and two first-order moments.

2. Population point of view

In this paper we focus on a class of counting processes named as Hawkes processes with
general immigrants (see Brémaud and Massoulié (2002)), which is defined below through its
intensity process. Existence and uniqueness issues will be discussed in Section 4. Let (�,A,P)
be a probability space satisfying the usual conditions. Recall that the intensity process (λt ) of
a counting process (Nt ) is the (F N

t )-predictable process such that Nt −
∫ t

0 λs ds is an (F N
t )-

local martingale, where (F N
t ) denotes the canonical filtration of (Nt ).

Definition 1. A Hawkes process with general immigrants is a counting process (Nt ) whose
intensity is given by

λt = μ(t)+
∑
Tn<t

�t (t − Tn,Xn)+
∑
Sk<t

�t (t − Sk, Yk), (1)

where the Tn are the jump times ofN , the Sk are those of a counting process with deterministic
intensity ρ(t), and the Xn (respectively Yk) are real positive independent and identically
distributed with distribution G (respectively H ). The (Sk), (Yk), and (Xn) are assumed to
be independent of each other.

In this model, the Tn are the jump times ofN : if an event occurs for the system at time Tn, the
intensity grows by an amount�t(t−Tn,Xn), whereXn is some mark. This part models the self-
exciting property. In parallel, external events occur at times Sk and excite the system of interest
with some amount�t(t−Sk, Yk): this is the externally excited component. The Hawkes process
with general immigrants was introduced and studied under stationary conditions by Brémaud
and Massoulié (2002). Due to their flexibility and natural interpretation, such models have
gained recent attention for financial applications; see, e.g. Dassios and Zhao (2011), Wheatley
et al. (2014), and Rambaldi et al. (2014). In particular, distribution properties of such processes
have been investigated by Dassios and Zhao (2011) in the case �t(a, x) = �t(a, x) = xe−δa ,
in which framework the intensity process is Markovian. Our aim is to study the dynamics and
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466 A. BOUMEZOUED

Figure 1: Population dynamics of the Hawkes process with general immigrants.

characterize the distribution of the nonstationary Hawkes process with general immigrants for a
larger class of fertility functions, possibly time-dependent, which extends the previous work of
Dassios and Zhao (2011) in this direction. To do this, we first represent it as a two-population
immigration–birth dynamics with ages and characteristics.

Thanks to Definition 1, we obtain a representation of the intensity process. But in fact,
the whole information on the dynamics is lost. Indeed, it is interesting to go back to the
branching representation of Hawkes and Oakes (1974) to have in mind the underlying population
dynamics. For the standard Hawkes process with intensity λt = μ +∑

Tn<t
φ(t − Tn), we

have the following interpretation. First, immigrants arrive according to a Poisson process with
parameter μ, then each immigrant generates a cluster of descendants with the following rule:
if an individual arrived or was born at some time Tn, it gives birth to new individuals with rate
φ(t − Tn) at time t , where in fact t − Tn is nothing but the age at time t of the individual. In
the case of the Hawkes process with general immigrants (see Definition 1), the description of
the dynamics is very similar, except that we have two populations: population (1) represents
external shocks that occurred at times Sk , whereas population (2) represents internal shocks
that occurred at times Tn. If an individual is born at time Sk (respectively Tn), we call the mark
Yk (respectivelyXn) its characteristic. Then the immigration–birth dynamics can be described
as follows.

(i) Let us first describe the population (1) of external shocks. It is made with immigrants that
arrive in population (1)with rate ρ(t); at arrival, they have age 0 and some characteristic x
drawn with distributionH . Any individual, denoted (a, x), with age a and characteristic
x at time t that belongs to population (1) gives birth with rate �t(a, x). The newborn
belongs to population (2); it has age 0 and some characteristic drawn with distributionG.

(ii) Let us now complete the description of population (2). In addition to births from
population (1), the population (2) evolves according to two other kinds of events:
immigration and internal birth. Immigrants arrive in population (2) with rate μ(t) with
age 0 and a characteristic drawn with distribution G. Any individual (a, x) at time t
that belongs to population (2) gives birth with rate �t(a, x). The newborn also belongs
to population (2); it has age 0 and some characteristic drawn with distribution G. In
the end, the Hawkes process with general immigrants can be recovered as the size of
population (2), therefore this construction can be seen as another definition of such a
process. The dynamics are illustrated in Figure 1.
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Since the immigration–birth mechanism is crucial to understand the behavior of the Hawkes
dynamics, our aim now is to keep track of all ages and characteristics in each population (i),
i =1 or 2. One way to address this issue is to count the number of individuals with age below
ā > 0 and a characteristic in some set [0, x̄] ⊂ X at time t , denoted Z(i)t ([0, ā], [0, x̄]). This
can be computed for example for population (2) in the following way:

Z
(2)
t ([0, ā], [0, x̄]) =

∑
Tn≤t

1[0,ā](t − Tn)1[0,x̄](Xn).

This way, each population (i), i = 1 or 2, is represented at time t as a measure which puts
a weight on the age and characteristic of each individual, denoted Z(i)t (da, dx). The two
measures which we call the age pyramid are introduced in the following definition.

Definition 2. We denote age pyramids at time t by the following two measures:

Z
(1)
t (da, dx) =

∑
Sk≤t

δ(t−Sk,Yk)(da, dx), Z
(2)
t (da, dx) =

∑
Tn≤t

δ(t−Tn,Xn)(da, dx). (2)

The virtue of the measure representation is that one can compute time-dependent functions
of the population age pyramid. Consider a function ft (a, x) depending on time, and also on
ages and characteristics of individuals. This can be computed on the overall population with
the following notation:

〈Z(i)t , ft 〉 =
∫

R+×R+
ft (a, x)Z

(i)
t (da, dx) for i = 1 or 2. (3)

For example, the Hawkes process isN(2)
t = 〈Z(2)t , 1〉, whereas the number of external shocks is

N
(1)
t = 〈Z(1)t , 1〉. Also, the intensity λt of the Hawkes process N(2)

t given in (1) can be written
as

λt = μ(t)+ 〈Z(2)t− ,�t 〉 + 〈Z(1)t− , �t 〉. (4)

Viewed as a stochastic process, (Z(1)t (da, dx), Z(2)t (da, dx))t≥0 is a (two-dimensional) meas-
ure-valued process. In fact, this age pyramid process is a Markov process; see Tran (2006).
Note, however, that its differentiation in time is not straightforward; see Bensusan et al. (2015)
and Lemma 1 below. The Markov property of the age pyramid process shows that all the
information needed is contained in the population age structure. Let us mention the seminal
point of view of Harris (1963), for whom

it does seem intuitively plausible that we obtain a Markov process, in an extended sense, if
we describe the state of the population at time t not simply by the number of objects present
but by a list of the ages of all objects.

However, in practice this information is ‘too large’ to perform tractable computations. In the
next section we illustrate how to identify some minimal components to add to the Hawkes
process in order to make the dynamics Markovian. To do this, we first need to address the
dynamics of the age pyramid. This is stated in the following lemma.

Lemma 1. For each function f : (t, x, a) 
→ ft (a, x) differentiable in t and a, the dynamics
of the process 〈Z(i)t , ft 〉 for i = 1 or 2 is given by

d〈Z(i)t , ft 〉 =
∫

R+
ft (0, x)N

(i)(dt, dx)+ 〈Z(i)t , (∂a + ∂t )ft 〉 dt, (5)
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468 A. BOUMEZOUED

where the point measures N(1) and N(2) are given by

N(1)(dt, dx) =
∑
k≥1

δ(Sk,Yk)(dt, dx), N(2)(dt, dx) =
∑
n≥1

δ(Tn,Xn)(dt, dx).

Proof. Let us first remark that, by (3),

〈Z(i)t , ft 〉 =
∫
(0,t]×R+

ft (t − s, x)N(i)(ds, dx). (6)

Then write between s and t , ft (t − s, x) = fs(0, x) +
∫ t
s
(∂a + ∂u)fu(u − s, x) du and use it

in (6) to obtain

〈Z(i)t , ft 〉 =
∫
(0,t]×R+

fs(0, x)N
(i)(ds, dx)

+
∫
(0,t]×R+

(∫ t

s

(∂a + ∂u)fu(u− s, x) du

)
N(i)(ds, dx).

By Fubini’s theorem, the last term of the sum can be expressed as

∫ t

0

(∫
(0,u]×R+

(∂a + ∂u)fu(u− s, x)N(i)(ds, dx)

)
du,

and, by (6), this is equal to
∫ t

0 〈Zu, (∂a + ∂u)fu〉 du. This concludes the proof. �

The decomposition (5) is classical in the field of measure-valued population dynamics; see
Tran (2008) and Bensusan et al. (2015). The first term refers to the pure jump part of arrivals
of individuals with age 0, whereas the second term of transport-type illustrates the ageing
phenomenon (all ages are translated along the time axis), as well as the time component. The fact
that the drift part depends on both 〈Z(i)t , ∂aft 〉 and 〈Z(i)t , ∂tft 〉 is the starting point of our results
derived in the next section. Let us remark that as a particular case, taking �t(a, x) = φ(a)

and�t(a, x) = 0, this shows why the intensity process λt = μ+ 〈Z(2)t− , φ〉 is Markovian in the
case where the fertility function is exponential (see Oakes (1975)); that is, φ(a) = αeβa . In
this case, φ′ = βφ, and (5) leads to the differential form d〈Z(2)t , φ〉 = α dN(2)

t + β〈Z(2)t , φ〉 dt ,
where we recall thatN(2)

t = 〈Z(2)t , 1〉 is nothing but the Hawkes process itself. Note that dN(2)
t

only depends on the past of (λt ) by means of the current value λt , which proves the Markov
property.

3. The exponential case generalized

3.1. Assumptions on the fertility rates

In the following, we introduce the assumptions allowing us to recover a finite-dimensional
Markovian dynamics.

Assumption 1. (i) The birth rates� and� are nonnegative and satisfy�t(a, x) = v(t)φ(a, x)
and �t(a, x) = w(t)ψ(a, x), where

φ(n)(a, x) = c−1 +
n−1∑
k=0

ckφ
(k)(a, x), v(p)(t) = d−1(t)+

p−1∑
l=0

dl(t)v
(l)(t)
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with n, p ≥ 1 and initial conditions φ(k)(0, x) = φ(k)0 (x), and

ψ(m)(a, x) = r−1 +
m−1∑
k=0

rkψ
(k)(a, x), w(q)(t) = k−1(t)+

q−1∑
l=0

kl(t)w
(l)(t)

with m, q ≥ 1 and initial conditions ψ(k)(0, x) = ψ(k)0 (x). Note that we use the notation
f (k)(a, x) = ∂kaf (a, x).
(ii) The maps (dl)−1≤l≤p−1 and (kl)−1≤l≤q−1 are continuous.

Assumption 1 defines a wide class of self and externally exciting fertility functions of the
form �t(a, x) = v(t)φ(a, x). Let us first focus on the time-independent part and introduce
F(a, x) such that F = (1, φ, . . . , φ(n−1))T . Then F ′ = C(c)F , where the functionC(·)which
transforms a vector c into a matrix C(c) is defined as

C(c) =

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 1

. . .
. . .

0 1
c−1 c0 . . . cn−2 cn−1

⎞
⎟⎟⎟⎟⎟⎠
. (7)

In particular, if the polynomial P(y) = yn −∑n−1
k=0 cky

k is split with distinct roots y1, . . . , yp
and corresponding multiplicities n1, . . . , np, then φ can be written up to some constant as∑p
i=1 Pi(x, a)e

yia , where Pi is a polynomial in a with degree at most ni−1 whose coefficients
may depend on x. This includes, for example, the framework of Dassios and Zhao (2011), where
�t(a, x) = �t(a, x) = xe−δa . This is also a sufficiently large set of functions to approximate
any fertility function outside of the range ofAssumption 1. As an example, the power-law kernel
is of importance for many applications. In the context of earthquakes, the Omori law describes
the epidemic-type aftershock model: it corresponds to a specific form φ(a) ∼ K/a1+ε . Also
in the field of financial microstructure, recent studies (see, e.g. Hardiman et al. (2013)) found
that high-frequency financial activity is better described by a Hawkes process with power-law
kernel rather than exponential. The power-law kernel with cut-off can be approximated as in
Hardiman et al. (2013) up to a constant by the smooth function

φ(a) =
M−1∑
i=0

e−a/(τ0m
i)

(τ0mi)1+ε
− Se−a/(τ0m

−1),

where S is such that φ(0) = 0. In general, one can use approximation theory to construct
a sequence of fertility functions which tends to the original one. As a result, this constructs
a sequence of Hawkes processes that approximate the original Hawkes process. As we also
allow for time-dependency, such birth rates� and� that satisfy Assumption 1 are also useful to
define nonstationary Hawkes processes, and in particular to include seasonality. As an example,
one can simply think of a kernel of the form cos2(αt)φ(a, x), where v(t) = cos2(αt) satisfies
v′′ = 4α2(1−v). Note that inAssumption 1, coefficients in the equation for the time-dependent
part are allowed to vary with time, therefore a wide variety of time dependence structures can
be included in the model.
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3.2. Age pyramid dynamics

Let us go back to the dynamics of the age pyramid over time. The key property that will
allow us to compute distribution properties is that the population enables us to identify the
components to add to the Hawkes process and its intensity to make the dynamics Markovian.
This is stated in the following proposition.

Proposition 1. Let us define for−1 ≤ k ≤ n−1 and−1 ≤ l ≤ p−1,Xk,lt := 〈Z(2)t , ∂ka ∂
l
t �t 〉

and for −1 ≤ k ≤ m− 1 and −1 ≤ l ≤ q − 1, Y k,lt := 〈Z(1)t , ∂ka ∂
l
t �t 〉. Let us also define the

two matrices

M
(2)
t = (Xk,lt )−1≤k≤n−1,−1≤l≤p−1, M

(1)
t = (Y k,lt )−1≤k≤m−1,−1≤l≤q−1.

(i) Let us denote by D� the transpose of a given matrix D. The processes M(1) and M(2)

follow the dynamics

dM(i)
t =

∫
R+
W(i)(t, x)N(i)(dt, dx)+ (C(i)M(i)

t +M(i)
t D

(i)�
t ), (8)

where

W
(1)
k,l (t, x) = w(l)(t)ψ(k)0 (x) for − 1 ≤ k ≤ m− 1, −1 ≤ l ≤ q − 1,

W
(2)
k,l (t, x) = v(l)(t)φ(k)0 (x) for − 1 ≤ k ≤ n− 1, −1 ≤ l ≤ p − 1,

C(1) = C(r), C(2) = C(c), D
(1)
t = C(k(t)), D

(2)
t = C(d(t)),

where C(·) is defined by (7).

(ii) As a consequence of (8), (M(1)
t ,M

(2)
t )t≥0 is a Markov process.

Proof. We focus on the dynamics of theXk,l , the problem being the same for the Y k,l . From
Lemma 1, for 0 ≤ k ≤ n− 2 and 0 ≤ l ≤ p − 2,

dXk,lt = v(l)(t)
∫

R+
φ
(k)
0 (x)N(2)(dt, dx)+ (Xk+1,l

t +Xk,l+1
t ) dt. (9)

From Assumption 1, Xn,lt =
∑n−1
k=−1 ckX

k,l
t and Xk,nt =

∑p−1
l=−1 dl(t)X

k,l
t . This shows that for

0 ≤ l ≤ p − 2 and 0 ≤ k ≤ n− 2,

dXn−1,l
t = v(l)(t)

∫
R+
φ
(n−1)
0 (x)N(2)(dt, dx)+

( n−1∑
k=−1

ckX
k,l
t +Xn−1,l+1

t

)
dt, (10)

dXk,p−1
t = v(p−1)(t)

∫
R+
φ
(k)
0 (x)N(2)(dt, dx)+

(
X
k+1,p−1
t +

p−1∑
l=−1

dl(t)X
k,l
t

)
dt, (11)

dXn−1,p−1
t = v(p−1)(t)

∫
R+
φ
(n−1)
0 (x)N(2)(dt, dx)

+
( n−1∑
k=−1

ckX
k,p−1
t +

p−1∑
l=−1

dl(t)X
n−1,l
t

)
dt. (12)
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In addition, from Lemma 1 for 0 ≤ l ≤ p − 2 and 0 ≤ k ≤ n− 2, we have

dX−1,l
t = v(l)(t) dN(2)

t +X−1,l+1
t dt, (13)

dXk,−1
t =

∫
R+
φ
(k)
0 (x)N(2)(dt, dx)+Xk+1,−1

t dt. (14)

Finally, by Assumption 1 again, we obtain the following two equations:

dX−1,p−1
t = v(p−1)(t) dN(2)

t +
( p−1∑
l=−1

dl(t)X
−1,l
t

)
dt, (15)

dXn−1,−1
t =

∫
R+
φ
(n−1)
0 (x)N(2)(dt, dx)+

( n−1∑
k=−1

ckX
k,−1
t

)
dt. (16)

From (9)–(16), we then deduce (8). The proof of Proposition 1(ii) follows immediately. �
3.3. Laplace transform

Here we highlight an exponential martingale which allows us to compute the Laplace
transform of the whole dynamics. This is the main result of our paper. To ensure tractability
of the Laplace transform, we also state the following assumption.

Assumption 2. For each λ > 0,
∫

R+ exp(λmax0≤k≤n−1 φ
(k)
0 (x))G(x) dx < +∞.

Our main result is stated below. Note that the trace of the matrix u�M given by tr(u�M) =∑
k,l uk,lMk,l computes a linear combination of the components of a given matrixM , and recall

that u� denotes the transposition of the matrix u.

Theorem 1. Denote by F M the filtration of (M(1),M(2)). Under Assumption 1, we have the
following.

(i) For any deterministic and differentiable matrix-valued (A(1)t ) and (A(2)t )with derivatives
(Å

(1)
t ) and (Å(2)t ), the following process is an F M -martingale:

exp

{ 2∑
i=1

tr(A(i)t M
(i)
t )−

∫ t

0
tr(A(i)s C

(i)M(i)
s + A(i)s M(i)

s D
(i)�
s + Å(i)s M(i)

s ) ds

−
∫ t

0

∫
R+
(etr(A(1)s W(1)(s,x)) − 1)ρ(s)H(x) dx ds

−
∫ t

0

∫
R+
(etr(A(2)s W(2)(s,x)) − 1)(μ(s)+M(1)

s [0, 0] +M(2)
s [0, 0])G(x) dx ds

}
.

(17)

(ii) For each of the matrices u and v with dimensions (n + 1)(p + 1) and (m + 1)(q + 1),
respectively, the joint Laplace transform can be expressed as

E[exp(tr(u�M(1)
t + v�M(2)

t ))]
= exp

{∫ t

0

∫
R+
(etr(A(1)s W(1)(s,x)) − 1)ρ(s)H(x) dx ds

+
∫ t

0

∫
R+
(etr(A(2)s W(2)(s,x)) − 1)μ(s)G(x) dx ds

}
,
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where, for i ∈ {1, 2},

Å
(i)
t + A(i)t C(i) +D(i)�t A

(i)
t =

{∫
R+
(1− etr(A(2)t W(2)(t,x)))G(x) dx

}
K, (18)

with terminal conditions
A
(1)
T = u�, A

(2)
T = v�, (19)

where the matrices K and J are given by

K = J�J and J = (0, 1, 0, . . . , 0), (20)

respectively. Moreover a solution to (18) and (19) of class C1 exists and is unique
provided that Assumption 2 is satisfied.

Proof. We begin by highlighting the exponential martingale (17). Let us denote

〈N(i), H 〉t =
∫ t

0

∫
R+
H(s, x)N(i)(ds, dx).

For deterministic α(t, x) and β(t, x), then by the classical exponential formula the following
process is a martingale:

exp

{
〈N(1), α〉t + 〈N(2), β〉t −

∫ t

0

∫
R+
(eα(s,x) − 1)ρ(s)H(x) dx ds

−
∫ t

0

∫
R+
(eβ(s,x) − 1)(μ(s)+ 〈Z(1)s− , �s〉 + 〈Z(2)s− ,�s〉)G(x) dx ds

}
. (21)

The aim now is to compute the joint Laplace transform of the processes M(1)
t and M(2)

t . This

amounts to computing E[etr(u�·M(1)
t +v�·M(2)

t )], since tr(u�M) =∑
k,l uk,lMk,l . Let us consider

the two (deterministic) processes A(1)t and A(2)t with sizes (m+ 1)(q + 1) and (n+ 1)(p+ 1),
respectively. By integration by parts, d(A(i)t M

(i)
t ) = A(i)t dM(i)

t + Å(i)t M(i)
t dt . From (8), we

obtain the dynamics

d tr(A(i)t M
(i)
t ) =

∫
R+

tr(A(i)t W
(i)(t, x))N(i)(dt, dx)

+ tr(C(i)M(i)
t +M(i)

t D
(i)�
t + Å(i)t M(i)

t ) dt.

Let us now use (21) with α(t, x) = tr(A(1)t W
(1)(t, x)) and β(t, x) = tr(A(2)t W

(2)(t, x)) to
obtain (17). To obtain the Laplace transform, it remains to make the random part of the
integrand in (17) vanish. To do this, let us first identify the term in M(1) to find the linear
equation (18) for i = 1. In addition, the term inM(2) leads to (18) for i = 2. If we set terminal
conditions (19), we obtain the Laplace transform in Theorem 1(ii) by the martingale property of
(17). To conclude on the existence and uniqueness, we use the Cauchy–Lipschitz theorem. To
show that a solution of class C1 to (18) exists and is unique, it is sufficient to prove that the map
(Y, t) 
→ ∫

R+ etr(YW(2)(t,x))G(x) dx is of class C1. Since the integrand is C1 by Assumptions
1(i) and 1(ii), it is sufficient to prove that its gradient, given by

(etr(YW(2)(t,x))W(2)(t, x)T , tr(Y ∂tW
(2)(t, x))etr(YW(2)(t,x))), (22)
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is locally bounded by some quantity that is independent of Y and t , and is integrable with
respect to G. Let us use some localization argument, and define the set

B(0, r) = {ARe(n+ 1)× (p + 1) matrix such that‖A‖∞ ≤ r},
where r > 0 and ‖A‖∞ = max−1≤i≤n−1

∑p−1
j=−1 |Ai,j |. Now, for (Y, t) ∈ B(0, r) × [0, T ],

we obtain

exp(tr(YW(2)(t, x))) ≤ exp

( n−1∑
i=−1

p−1∑
k=−1

|Yi,k||W(2)
k,i (t, x)|

)

≤ exp

(
(n+ 1) max−1≤i≤n−1

p−1∑
k=−1

|Yi,k||W(2)
k,i (t, x)|

)

≤ exp
(
r(n+ 1) max−1≤l≤p−1

sup
t∈[0,T ]

|v(l)(t)| max−1≤k≤n−1
|φ(k)0 (x)|

)
,

where the last inequality uses the fact that Y ∈ B(0, r). As for the first component of (22),

|W(2)
k,l (t, x)| ≤ |φ(k)0 (x)| sup

t∈[0,T ]
|v(l)(t)|,

and for the second component, we have (since Y ∈ B(0, r))

| tr(Y ∂tW(2)(t, x))| ≤ r(n+ 1) max
0≤l≤p sup

t∈[0,T ]
|v(l)(t)| max−1≤k≤n−1

|φ(k)0 (x)|.

This concludes the proof by the use of Assumptions 1 and 2. �

4. Pathwise representation of the Hawkes population

Definition 1 uses a classical formulation to define a counting process with its own intensity.
However, it does not keep track of the branching population and also does not give a concrete
pathwise representation. Also, the definition in terms of an immigration–birth process (see
Section 2) is intuitive and gives more information through the age pyramid. The aim of this
section is to discuss the pathwise representation of the age pyramid process with its own
intensity by means of Poisson point measures. This approach allows us both to keep track of
the age pyramid (branching population) and to represent it as a process with its own intensity
in a pathwise way. In this way, we are able to reconcile the two standard definitions of
the Hawkes process, through a counting process or a branching dynamics. Let us describe
the thinning construction of a general random point measure on R+ × E, say �(ds, dy) =∑
n≥1 δ(Tn,Yn)(ds, dy), where (E, E) is some measurable space. Assume that its intensity

measure γ (ds, dy) admits a density: γ (ds, dy) = γ (s, y) dsμ(dy). In this model, events
occur with intensity s 
→ ∫

x∈E γ (s, x)μ(dx), and if a birth occurs at time Tn, then the character-
istics Yn of the newborn are drawn with distribution γ (Tn, y)μ(dy)/

∫
x∈E γ (Tn, x)μ(dx). Let

Q(ds, dy, dθ) be a Poisson point measure on R+×E×R+with intensity measure dsμ(dy) dθ ;
see, e.g. Çınlar (2011) for a definition. Denote by (F Q

t ) the canonical filtration generated
by Q, and introduce P(F Q

t ) the predictable σ -field associated with F Q
t . We further assume

that γ (t, y) is P(F Q
t )× E -measurable and also that

∫ t
0

∫
E
γ (s, y) dsμ(dy) < +∞ almost

surely. Now, define �(ds, dy) = ∫
R+ 1[0,γ (s,y)](θ)Q(ds, dy, dθ). This clearly defines a point

https://doi.org/10.1017/apr.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.10


474 A. BOUMEZOUED

measure and the martingale property of Q ensures that the random point measure �(ds, dy)
has intensity measure γ (s, y) dsμ(dy). Such a construction can be found in Massoulié (1998);
we refer the reader to this paper for more details.

We are now ready to construct the age pyramid processes of Definition 2. Let us introduce two
independent Poisson point measuresQ(1)(dt, dx, dθ) andQ(2)(dt, dx, dθ) on the probability
space (�,F ,P) (enlarged if necessary) with same intensity measure ds dx dθ on R+×R+×R+.
The construction of the first population is immediate since its intensity does not depend on it.
Let us define

Z
(1)
t (da, dx) =

∫
(0,t]

∫
R+×R+

1[0,ρ(s)H(x)](θ)δ(t−s,x)(da, dx)Q(1)(ds, dx, dθ).

As for the second population (whose size is the Hawkes process), the intensity is given as a
particular form of the process itself; see (4). Therefore, the idea is to define the population
underlying the Hawkes process as the solution to the following stochastic equation, often called
a thinning problem:

Z
(2)
t (da, dx) =

∫
(0,t]

∫
R+×R+

1[0,(μ(s)+〈Z(2)s− ,�s 〉+〈Z(1)s− ,�s 〉)G(x)]

× (θ)δ(t−s,x)(da, dx)Q(2)(ds, dx, dθ).

Such representations are used in the field of stochastic population dynamics for populations
with ages and/or characteristics; see, in particular, Fournier and Méléard (2004), Tran (2008),
and Bensusan et al. (2015). This formulation establishes the link between the Hawkes process
and the field of stochastic population dynamics. To further investigate this link seems to be a
promising direction for future research.

Remark 1. General results about existence and uniqueness for the Hawkes process (even
nonlinear) as the solution of a thinning problem can be found in Brémaud and Massoulié
(1996) and Massoulié (1998) (see also Delattre et al. (2014), and the books of Daley and Vere-
Jones (2008) and Çınlar (2011)). The thinning method to represent a counting process as the
solution of a stochastic equation is in fact classical. This general mathematical representation
goes back to Kerstan (1964) and Grigelionis (1971). One often refers to the thinning algorithms
that have been proposed by Lewis and Shedler (1979) and Ogata (1981), which are very useful
in order to perform numerical simulations for quite complex intensity processes.

5. The special case of standard Hawkes process

5.1. Assumption and dynamics

This section focuses on the special case of the standard Hawkes process (Nt ) with intensity
process λt = μ + ∫

(0,t) φ(t − s) dNs . Let us denote by Zt(da) = ∑
Tn<t

δt−Tn(da) the
associated age pyramid (see Definition 2). Below we express Assumption 1 in this context, as
well as the associated dynamics (see Proposition 1).

Assumption 3. The map a ∈ R+ 
→ φ(a) is nonnegative, of class Cn(R+), and there exists
c = (c−1, . . . , cn−1) ∈ R

n+1 such that φ satisfies φ(n) = c−1 +∑n−1
k=0 ckφ

(k) with initial
conditions φ(k)(0) = mk for 0 ≤ k ≤ n− 1.
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Proposition 2. Under Assumption 3, the process Xt = (〈Zt , 1〉, 〈Zt , φ〉, . . . , 〈Zt , φ(n−1)〉)T
satisfies the dynamics

Xt = Ntm+
∫ t

0
CXs ds, (23)

where
m = (1,m0, . . . , mn−1)

T , (24)

and the matrix C = C(c) is given in (7). In particular, X is a Markov process.

5.2. Laplace transform

We express below the Laplace transform of the standard Hawkes process, both in the direct
form of Theorem 1 and also in terms of a single function.

Proposition 3. Let us work under Assumption 3.

(i) For any (n+ 1) real vector v,

E[exp(v ·XT )] = exp

(
−μ

∫ T

0
(1− eAs ·m) ds

)
, (25)

where the vector map A satisfies the following nonlinear differential equation:

C�At + A′t + (eAt ·m − 1)J = 0 (26)

with terminal condition AT = v. Here, v ·XT denotes the scalar product between v and
XT , C� is the transpose of the matrix C, and J is defined in (20).

(ii) The Laplace transform of the Hawkes process is given for each real θ by

E[exp(θNT )] = exp

{
−μ

(
(−1)nG(n)(0)+

n−1∑
k=0

(−1)k+1ckG
(k)(0)

)}
,

where G satisfies the nonlinear differential equation: for each 0 ≤ t ≤ T ,

(−1)n−1G(n+1)(t)+
n−1∑
k=0

(−1)kckG
(k+1)(t)

+ exp

(
θ − c−1G(t)+

n−1∑
k=0

bkG
(k+1)(t)

)
− 1 = 0

with terminal conditions G(k)(T ) = 0 for 0 ≤ k ≤ n, and for 0 ≤ k ≤ n − 1,
bk = (−1)k(mn−1−k −∑n−1

l=k+1mn−1−lcn−l+k).

Numerical example. Before giving the proof of Proposition 3, we illustrate it numerically
for the computation of the generating functional E[uNT ] (the survival probability at time T of a
system which survives with probability u at each shock) as well as quantities as P(NT = k) =
(1/k!)∂kuE[uNT ]|u=0 (the probability to obtain exactly k shocks until timeT ). Settingu = eθ , an
explicit discretization scheme has been used to solve the nonlinear differential equation satisfied
byG, and the differentiation step for the derivatives of the generating functional has been chosen
carefully. The results for the two critical cases φ(a) = e−a (case 1) and φ(a) = ae−a (case 2)
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are described in Tables 1 and 2 to three significative figures. Note that even if the mean number
of children per individual is 1 in each case, the results are different due to the shape of each
birth rate φ. This promotes the use of many kernels, beyond the exponential case. To conclude
this numerical experiment, we emphasize that the computation of P(Nt = k) for higher values
of k will require more stable numerical differentiation methods, and are therefore beyond the
scope of this paper.

Proof of Proposition 3. We prove only (ii), the proof of (i) being a direct adaptation of that
of Theorem 1. Let us denote At = (A−1(t), . . . , An−1(t)) and identify the terms in (26),
leading to

c−1An−1(t)+ A′−1(t) = 0, (27)

A
′
0(t)+ c0An−1(t)+ eAt ·m − 1 = 0. (28)

As for 1 ≤ k ≤ n−1, we haveAk−1(t)+ckAn−1(t)+A′k(t) = 0, whose recursive computation
provides, for 0 ≤ k ≤ n− 1,

Ak(t) = (−1)n−1−kA(n−1−k)
n−1 (t)+

n−1−k∑
l=1

(−1)lck+lA(l−1)
n−1 (t). (29)

We deduce that

A′0(t) = (−1)n−1A
(n)
n−1(t)+

n−1∑
k=1

(−1)kckA
(k)
n−1(t). (30)

Let us introduce the function G(t) = ∫ t
T
An−1(s) ds and choose A−1(t) = θ − c−1G(t) that

satisfies (27). Now, substitute (29) and (30) into (28) to obtain the following nonlinear ordinary
differential equation for G:

(−1)n−1G(n+1)(t)+
n−1∑
k=0

(−1)kckG
(k+1)(t)

+ exp

(
θ − c−1G(t)+mn−1G

′(t)

+
n−2∑
k=0

mk

[
(−1)n−1−kG(n−k)(t)+

n−1−k∑
l=1

(−1)lck+lG(l)(t)
])
− 1

= 0. (31)

Let us simplify the sum in the exponential. By changing variable k into n− 1− k, it can be
expressed as

n−1∑
k=1

mn−1−k(−1)kG(k+1)(t)+
n−1∑
k=1

k∑
l=1

(−1)lmn−1−kcn−1−k+lG(l)(t).

Then exchanging the sums leads to

n−1∑
k=1

mn−1−k(−1)kG(k+1)(t)+
n−1∑
l=1

(−1)l
(n−1∑
k=l

mn−1−kcn−1−k+l
)
G(l)(t).
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Table 1: Computed values of E[uNT ] with μ = 0.15 and T = 5.

u 0.1 0.3 0.5 0.7 0.9

Case 1: φ(a) = e−a 0.490 0.532 0.588 0.672 0.828
Case 2: φ(a) = ae−a 0.494 0.546 0.615 0.714 0.874

Table 2: Computed values of P(NT = k) with μ = 0.15 and T = 5.

k 0 1 2 3 4

Case 1: φ(a) = e−a 0.472 0.165 0.0894 0.0577 0.0407
Case 2: φ(a) = ae−a 0.472 0.203 0.1130 0.0700 0.0451

Finally, by setting l← l + 1 and exchanging notations k and l, (31) can be written as

(−1)n−1G(n+1)(t)+
n−1∑
k=0

(−1)kckG
(k+1)(t)+ exp

(
θ − c−1G(t)+

n−1∑
k=0

bkG
(k+1)(t)

)
− 1

= 0,

where, for 0 ≤ k ≤ n− 1, bk = (−1)k(mn−1−k −∑n−1
l=k+1mn−1−lcn−l+k).

Now, let us use (25) with (28) to obtain

E[exp(v ·XT )]

= exp

(
−μ

∫ T

0
(A
′
0(t)+ c0An−1(t)

)
dt),

= exp

(
−μ

(
(−1)n−1(G(n)(T )−G(n)(0))+

n−1∑
k=0

(−1)kck(G
(k)(T )−G(k)(0))

))
,

where the last equality comes from (30). Let us set, for 0 ≤ k ≤ n− 1, Ak(T ) = 0. One can
show by (29) that the previous conditions are equivalent to the terminal valuesG(k)(T ) = 0 for
1 ≤ k ≤ n− 1. Note that by definition of G, we also have G(T ) = 0. �
5.3. Moments

On the particular case of the standard Hawkes process, we illustrate how to compute first-
and second-order moments explicitly.

First-order moments. The differential system of (23) is linear and allows us to propose
a straightforward differential equation for the first-order moments. We also perform explicit
computations for small dimensions n = 1 and n = 2.

Proposition 4. Under Assumption 3, the vector map u(t) := E[Xt ] is a solution to

u′(t) = μm+ Au(t), (32)

where the (n+ 1)× (n+ 1) matrix A is given by

A = C +mJ, (33)

where C, m, and J are given in (7), (24), and (20), respectively.
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Proof. Let us use the martingale property of the compensated counting process to obtain
E[Nt ] =

∫ t
0 (μ+ E[〈Zs, φ〉]) ds. Now, let us take expectation in (23) and use the previous

equation to obtain (32). This concludes the proof. �
Equation (32) allows us to obtain explicit equations for the expected number of events. We

derive such results for the popular exponential case φ(a) = e−ca (see also Dassios and Zhao
(2011)) and also for the birth rate φ(a) = α2ae−βa . This case can be useful for a variety
of applications to model a smooth delay at excitation. We remark on the different behavior
of the first moment, in particular in the critical case. For the two examples given below, the
computations are left to the reader.

Corollary 1. For the Hawkes process with φ(a) = e−ca ,

E[Nt ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ

(
t + t

2

2

)
if c = 1,

μ

1− c
(

e(1−c)t − 1

1− c − ct
)

if c �= 1.

Corollary 2. For the Hawkes process with φ(a) = α2ae−βa ,

E[Nt ] =

⎧⎪⎪⎨
⎪⎪⎩

μ

8β
(1− e−2βt )+ 3μ

4
t + βμ

4
t2 if α = β,

μβ2

β2 − α2 t +
αμ

2

(
e(α−β)t − 1

(α − β)2 −
e−(α+β)t − 1

(α + β)2
)

if α �= β.

Second-order moments. We now derive the dynamics of the matrix Vt := XtX
�
t with

Xt = (Nt , 〈Zt , φ〉, . . . , 〈Zt , φ(n−1)〉)T . As a consequence, we represent the variance-covari-
ance matrix of the process (Xt ) as the solution to a linear ordinary differential equation. Our
method is based on differential calculus with the finite variation process (Xt ) with dynamics
(23) and could be extended to higher moments.

Proposition 5. Let us introduce the matrix Vt := XtX
�
t , where X�t denotes the transpose

of Xt . Then the matrix Vt satisfies the dynamics

dVt = dNt(Xt−m�+mX�t−+mm�)+ dt (VtC
�+ CVt).

In particular, the variance-covariance matrix v(t) := E[Vt ] satisfies

v′(t) = v(t)A�+ Av(t)+ μ(mm�+ u(t)m�+mu�(t))+ Ju(t)mm�, (34)

where u(t) is a solution to (32) and the matrix A is defined in (33).

Proof. Denote Xt = (X
[−1]
t , X

[0]
t , . . . , X

[n−1]
t ). Integration by parts leads to, for −1 ≤

l, k ≤ n − 1, d(X[k]t X
[l]
t ) = X

[k]
t−dX[l]t +X[l]t−dX[k]t + mkmldNt . The previous equation

shows that dVt = Xt−dX�t + (dXt)X�t−+ dNt · mm�. By Proposition 2, we obtain dVt =
dNt(Xt−m�+mX�t−+mm�)+ dt (VtC�+CVt).Now, take expectation in the previous equa-
tion to obtain

v′(t) = E[(μ+X[0]t )Xt ]m�+mE[(μ+X[0]t )X�t ] + (μ+ E[X[0]t ])mm�+ v(t)C�+ Cv(t).
Finally since X[0]t Xt = VtJ�, see (20), the previous equation reduces to (34). �
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We give explicit equations for φ(a) = e−ca and at a higher order for the critical case
φ(a) = β2ae−βa . Computations are based on (34) and are left to the reader.

Corollary 3. For the Hawkes process with φ(a) = e−ca ,

var(Nt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μt

(
1+ 3

2
t + 2

3
t2 + 1

12
t3

)
if c = 1,

μ

(1− c)3
[

1− c/2
1− c e2(1−c)t +

(
3c2 − 1

1− c − 2ct

)
e(1−c)t − c3t

+ c(1/2− 3c)

1− c
]

if c �= 1.

Corollary 4. For the Hawkes process with φ(a) = β2ae−βa ,

var(λt ) = βμ
(
− 7

128
+ 3β

32
t + β

2

16
t2 + 1− βt

8
e−2βt − 9

128
e−4βt

)
.

6. Conclusion

We introduced the concept of age pyramid for Hawkes processes with general immigrants.
The virtue of this approach is to keep track of all past events. This allows tractable computations
for the Hawkes process with general immigrants whose fertility functions are time dependent
generalizations of the popular exponential case, providing natural extensions of the existing
results in this direction. In addition, we illustrated the pathwise construction of the Hawkes
dynamics and its underlying population process. On the whole, our approach seems to reconcile
two definitions of Hawkes processes, through an intensity process or a branching dynamics.
This framework appears to be a promising direction for further research. As an example, the
large population asymptotics in the field of measure-valued population dynamics could give
further insights on the macroscopic behavior of Hawkes processes.
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