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Multi-Octave bandwidth, 100 W GaN power
amplifier using planar transmission line
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In this paper, design, implementation, and experimental results of efficient, high-power, and multi-octave gallium nitride-
high electron mobility transistor power amplifier are presented. To overcome the low optima source/load impedances of a
large transistor, various topologies of a broadside-coupled impedance transformer are simulated, implemented, and mea-
sured. The used transformer has a flat measured insertion loss of 0.5 dB and a return loss higher than 10 dB over a
decade bandwidth (0.4–4 GHz). The transformer is integrated at the drain and gate sides of the transistor using pre-matching
networks to transform the complex optima source/load impedances to the appropriate impedances of the transformer plane.
The measurement results illustrate a saturated output power ranged between 80 and 115 W with an average drain efficiency
of 57% and gain of 10.5 dB across 0.6–2.6 GHz.
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I . I N T R O D U C T I O N

Modern wireless communications systems require an increas-
ing number of frequency bands, output power, efficiency,
linearity, and development of circuits and subsystems to
have broadband capabilities. These demands should be met
within the existing radio base station (RBS) footprint where
the cooling capacity and size are restricted with low network
operating expenses (OPEX). The power amplifier (PA) is the
most critical component in RBS since its performance strongly
influence the overall system features in terms of bandwidth,
output power, efficiency, and operating temperature.
Therefore, various approaches are proposed to design ultra-
wideband and efficient PAs. The common approach is based
on optimizing the fundamental impedance, while resistive ter-
minations are presented for higher order harmonics [1, 2].
Other approaches are based on continuous modes of oper-
ation, such as class-B/J, class-F, and inverse class-F [3–6].
However, most of the previously mentioned approaches
have a low output power of ,20 W. For high output power
and ultra-wideband PAs, traveling wave amplifiers still the
most preferable approach [7], however with poor gain and
efficiency across the desired bandwidth. To overcome these

weaknesses, a harmonically tuned PA approach has demon-
strated promising perspectives for the design of efficient, high-
power, and ultra-wideband PAs [8, 9]. The conventional
matching network (MN) using multi-stage Chebyshev
low-pass filters is limited in bandwidth, due to the non-
constant impedance transformation ratio of the MN over
the desired band and the complexity of design a high-order
filter. Therefore, impedance transformers are a sufficient solu-
tion for designing ultra-wide band MNs. Nevertheless, they
are commonly used at low-frequency bands. Current develop-
ments present topologies implementing impedance transfor-
mers such as micro-coaxial system [10], Marchand baluns
[11], or broadside-coupled PCB (printed circuit boards) [12]
up to K-band frequencies with multi-octave bandwidths.
The main goal of this work is to design and implement a high-
power, multi-octave, and efficient PA. The wideband capabil-
ity is achieved by utilizing broadside-coupled impedance
transformers within the MNs. This paper is an extension
and further work of [13], where multi-octave, high-power
amplifier using a planar transmission line transformer was
introduced for the first time as a main part of the MN. In
this paper, various transformer design approaches are intro-
duced. A broadside-coupled planar taper transformer is
used, due to its sufficient performance in terms of flat inser-
tion loss (IL), return loss (RL), and bandwidth. The planar
structure transformer results in simplifying the integration
as well as the complexity of the MNs, which leads to
improve the insertion loss.

The organization of this paper is as follows. The theoretical
approach of transformer and implementation procedure are
introduced in Section II, while the design approach and
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measurement results of PA using the transformer in input and
output of the transistor are introduced in Section III. Finally,
conclusion of this contribution is summarized in Section IV.

I I . T R A N S F O R M E R D E S I G N
A P R O A C H

The general definition of transformers is to realize an imped-
ance transformation between the input port and one or more
outputs ports. The transformer can be classified into the fol-
lowing categories:

(1) Lumped element transformers,
(2) Coaxial and micro-coaxial transformers [10],
(3) Planar transformers [12].

The first, lumped element transformer is limited in terms of
frequency because of losses and the physical dimensions limit-
ing the cut-off frequency for lumped components. In case of the
coaxial transformer, the manufacturing effort increases with
higher frequencies and mounting becomes more and more
complex. The planar transformer approach based on
Guanella transformer approach [14] is the most promising
solution in terms of complexity, cost, bandwidth, and IL.

A) Theoretical approach of the transformer
The used transformer in this work consists of two transmission
lines with a characteristic impedance ZC connected in parallel
at the transformer input plane and in series at transformer
output plane. Consequently, the impedance seen at the input
plane is the half of the characteristic impedance (ZC/2), and
the impedance seen at the output plane is double of the char-
acteristic impedance (2.ZC), as shown in Fig. 1(a). In this case,
the resulting transformation ratio is 4:1. The two-layer sche-
matic, including coupled microstrip lines (MSL) and via con-
nection, for this design is depicted in Fig. 1(b).

The characteristic impedance ZC needs to be 25 V to realize
a broadband transformation from 12.5 to 50 V. For high
bandwidth, the characteristic impedance ratio of even and
odd mode of the broadside-coupled suspended MSL must
be high to ensure a tight coupling. Thus, the distance
between bottom MSL and ground shield is an important
factor. As larger the distance to the ground shield, as larger
is Zeven and an efficient broadband transformation is possible.
A shielded stripline assumption is intended to illustrate this
concept. Figures 2(a) and 2(b) depict the electrical field lines
for even and odd modes for two broadside-coupled shielded
striplines (11 ¼ 12 ¼ 1) [15]. The following equations (1)

and (2) represent the even- and odd-mode characteristic
impedance of broadside-coupled suspended MSL (11 ¼ 1 ,

12), which are derived from the shielded stripline model [15].

Z0,e =
Za

0,e
����

1r,e
√ , (1)

Z0,o =
Za

0,o
����

1r,o
√ , (2)

where Za
0,e is even mode impedances of the air-filled stripline

model; Za
0,o odd-mode impedances of the air-filled stripline

model; 1r, e the effective relative permittivity for even mode;
1r, o the effective relative permittivity for odd mode.

The most important factor for a broadband transformation
is the coupling (C ) between the two lines, as presented in
equation (3). It can be simplified by the assumption that
bl ¼ p/2. This leads that the coupling only depends on the
impedance ratio c, as shown in equation (4), which should
be close to unity [12]. Therefore, the large even-mode imped-
ance has to be realized using a sufficient large distance for the
ground shield of broadside-coupled suspended MSL.

C = 20 · log
(1 − c2 · cos2bl)1/2

c · sinbl
, (3)

c = Z0,e − Z0,o

Z0,e + Z0,o
. (4)

Figure 2(c) depicts the simulation results for the even- and
odd-mode impedances of two coupled suspended MSL with a
width of 3.1 mm in dependence to the distance of the ground
shield. The figure illustrates that increasing the distance
results in increasing the even characteristic impedance; never-
theless, cavity cannot be infinity. Therefore, 10 mm is a reason-
able distance to be used. The resulting impedances of even- and
odd-mode impedances are 400 and 12.5 V, respectively.

B) Practical approach of the transformer
Two transformer topologies are simulated, implemented, and
measured. The first one (Top I) is based on [12], as shown in
Fig. 3; whereas the second one (Top II) is modified and uses a
tapered ground plane (Fig. 3(d)), for a smooth transition
instead of a MSL as in Top I (Fig. 3(c)), to ensure a high transmis-
sion coefficient, less radiation losses, and lower parasitic impact.
The top metallization is the same for both structures. The figure
also presents the manufactured prototypes of the transformer.

Fig. 1. (a) Design concept of broadside-coupled planar transformer. (b) Schematic of transformer.
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Both topologies were fabricated using Rogers RO4003c substrate
with a total size of 34 × 37.5 mm2 for Top I and 24 × 37.5 mm2

for Top II, and a thickness of 508 mm. The area of Top II is
decreased by almost 30% compared with Top I.

The measurement was done on 50 V SMA (subminiature
A connector) reference plane using a Rohde & Schwarz
ZVC vector network analyzer, which is capable of handling
frequencies up to 4 GHz. The usage of a test fixture can guar-
antee a sufficient large distance to the ground shield. Both
SMA connectors, input, and output, were de-embedded with
a self-developed model in Keysight ADS (Advanced Design
System). The de-embedded measurement results of the two
topologies are presented in Fig. 4.

There is a good agreement between measurement and simu-
lation for both topologies. Top II observes a more flat and better
IL compared with Top I with a value of ,0.5 dB and a RL of
15 dB over a decade bandwidth 0.4–4.0 GHz. Therefore, Top
II is used to as a main part of the MN to design the desired PA.

I I I . D E S I G N M E T H O D O L O G Y O F T H E
U L T R A - W I D E B A N D P A

Designing high-power and efficient PAs for multi-octave
bandwidth is quite challenging. Large periphery devices are
required to obtain high power. Therefore, the bandwidth is

Fig. 2. (a) Electrical field lines even mode, (b) Electrical field lines odd mode for shielded broadside-coupled lines. (c) Even and odd-mode impedances versus
shield distance.

Fig. 3. (a) Three-dimensional view of realized transformer. (b) Top side photograph of transformer. (c) Bottom side photograph of Top I. (d) Bottom side
photograph of Top II.
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restricted because of the high device capacitances (CDS, CGS), and
low optima source/load impedances. In this respect, the high
breakdown voltage and high output power density of gallium
nitride-high electron mobility transistor (GaN-HEMT) devices
have significant advantages in terms of power and bandwidth.

A) Device characterization
A CGH40120F device by Wolfspeed Inc. with a saturated
output power of 120 W is used [16]. This device is based on
a 400 nm gate length GaN technology which can handle a
high breakdown voltage up to 85 V. The optimum operating
point for maximum transconductance is stated at VDD ¼

28 V and IDQ ¼ 1 A. At this operating point the simulated
extrinsic transit frequency is about fT ¼ 8.5 GHz with a
maximum oscillation frequency of fMAX ¼ 18 GHz, which
makes the device suitable for mobile communication
systems. Figure 5(a) illustrates the maximum available gain
(MAG) and MSG (maximum stable gain) of the device
versus frequency at various drain voltages and quiescent cur-
rents. Increasing the drain voltage results in a larger MAG and
output power. However, the usable frequency band decreases
and the dissipated power (Pdiss) of the device increase, as
shown in Fig. 5(b). Therefore, a compromise between these
factors is considered with a drain biasing of VDD ¼ 32 V

and IDQ ¼ 0.5 A, where a high MAG with a low DC-power
consumption is available up to 2.7 GHz.

B) MNs approach
In this context, source/load pull simulations, using the accur-
ate large-signal transistor model from Wolfspeed Inc., have
been performed. The effect of the harmonics in source/load
impedances on output power and efficiency were analyzed
and considered in the design to enhance the efficiency over
the desired band. Based on [9], only up to second harmonic
impedances should be considered during the load pull ana-
lysis, whereas the influence of the all harmonic source impen-
dences and third load harmonic were omitted, due to their
minor effect compared with the complexity introduced to
the design of the MNs. However, the in-band harmonics is
the bottleneck of this work, as shown in Fig. 6. This
problem can be solved using the advantage of the high
MAG of the device at low-frequency range to modify inten-
tionally the optima fundamental load impedances of the low-
frequency band (FL0) and middle-frequency band (FM0) from
their optimum value, but in the same safe optimum range,
ensure a 100 W output power. In other words, a mismatch
is purposely chosen for the fundamental impedance at FL0

and FM0 band. Consequently, lower gain is available and the
impact of higher harmonics (H.F0) is minimized. Figure 7(a)
shows an example of modifying the optimum load impedance
of 0.6 GHz.

The optima source/load impedances of large periphery
devices are low and require broadband impedance transfor-
mations from 50 V to a low complex load. In this respect,
the designed MN topology should consist of two parts
which can be observed independently. The first one trans-
forms the 50 V impedance plane to 12.5 V. This transform-
ation will be achieved using a broadside-coupled 4:1
transformer based on the presented concept in Section II.
Whereas, the second one matches the broadside-coupled
transformer low-impedance plane to the extracted optima
complex impedances of the device Zopt, as shown in
Fig. 7(b). The extracted optima fundamental source/load
impedances for the low frequencies were slightly modified
reducing the influence of the harmonics. Consequently, the
high-gain response at these frequencies, as shown in

Fig. 4. Simulation and measurement results of the manufactured
transformers.

Fig. 5. (a) MAG of CGH40120F at various bias conditions. (b) Pdiss versus various biasing.
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Fig. 5(a), is decreased and results in more flat gain within
bandwidth of operation.

Based on this study, the desired bandwidth of the PA is
defined over 0.6–2.6 GHz. The transformer is used at both
sides of the device. The measured results of transformer is
imported, de-embedded and used as a reference plane for
the pre-MN s. The main aim of the pre-MN is to match the
complex extracted optima source/load impedances of the
transistor to the transformer de-embedded low-impedance
plane across the desired bandwidth. Therefore, lossless two
stage L-type Chebyshev low-pass filter is used considering
the in-band problem. Furthermore, the modified optima
load impedances overcame the pre-MN challenges in term

of bandwidth. The per-MN structure is symmetrically
designed to ensure a homogeneous wave distribution
through the network. Moreover, a stability factor higher
than unity is precisely considered to avoid oscillation of the
PA by choosing an appropriate stability circuit, as shown in
Fig. 8.

The MNs are implemented with a size of 60 × 160 mm2

and a heat sink height of 20 mm (10 mm is the height of
cavity bellow the input/output transformers). The total
circuit without the active device was evaluated using a 50 V

MSL instead of the transistor. The forward transmission
(S21) measurement results show a good agreement with the
simulation (schematic and ADS 2.5D-Momentum) across

Fig. 6. Desired bandwidth frequency ranges fundamental and harmonics.

Fig. 7. (a) Load impedance locus at 0.6 GHz. (b) Optima fundamental impedances ZL, opt of the transistor, pre-MN topology to match ZL, opt to 12.5 V and
broadside-coupled transformer to match it to 50 V.

Fig. 8. Block diagram of the ultra-wideband PA.
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the desired bandwidth with a minimum value of 24.5 dB, as
shown in Fig. 9. These losses are basically related to the RGS

resistor which is used to stabilize the designed PA, and the
mismatch, due to the replacement of the transistor with a
50 V MSL.

C) Experimental results
The whole PA is implemented on Rogers RO4003c substrate
with er of 3.55 and thickness of 0.508 mm. Figure 10 shows
the prototype of the design. The implemented broadband
PA has been characterized by its small- and large-signal mea-
surements to evaluate its performance. Measurements were
performed at a drain bias voltage of 32 V and quiescent
current of 0.5 A. Preliminary experimental results show a
good agreement with the simulated data over the design band.

1) small-signal measurements

Small-signal measurements were done using a Rohde &
Schwarz ZVC vector network analyzer, which is calibrated
using a TOSM calibration kit at the SMA reference plane.
The comparison between simulated and measured small-

signal gain and input reflection of the fabricated PA is pre-
sented in Fig. 11. The measured RL is in agreement with simu-
lated results across the bandwidth, whereas the measured gain
of the designed PA is subsequent to the simulated gain with a
minimum value of 12 dB over the 0.6–2.6 GHz.

2) large-signal measurements

Large-signal measurements were performed using a continu-
ous wave (CW) input signal generated by a microwave
signal generator (Agilent E4438C) boosted by a microwave
driver amplifier from Mini-Circuits Inc. The relevant output
power was measured by a calibrated power meter (Agilent
N1912A). A non-flat pre-amplification is compensated by a
Matlab controlled measurement system. Both input and
output power of the DUT (device under test) were measured
simultaneously. This setup was calibrated to the SMA refer-
ence plane.

Figure 12 reports the comparison between simulated and
measured output power, power gain, and drain efficiency as
functions of the frequency. As can be observed, the measured
results have a good agreement with the simulated ones. A
maximum output power of 49.6 + 1 dBm, minimum drain

Fig. 9. Through and RL comparison of the whole design using 50 V MSL
instead of the active device between simulated schematic (solid line), ADS
2.5D-Momentum (discrete line) and measured (symbols) results.

Fig. 10. Prototype of the fabricated PA.

Fig. 11. Comparison between simulated and measured small-signal gain &
reflection coefficient performance at VDD ¼ 32 V & IDQ ¼ 0.5 A.

Fig. 12. Comparison between simulated (solid lines) and measured (symbols)
maximum output power, power gain, drain efficiency across the bandwidth at
VDD ¼ 32 V, IDQ ¼ 0.5 A.
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efficiency of 50% and large-signal gain of 10 + 1.5 dB across
0.6–2.6 GHz is achieved. Figures 13(a) and 13(b) illustrate
the measured saturated output power and power added effi-
ciency (PAE) with respect to the CW input power at various
frequencies. The measured PAE is between 42 and 60%.

Besides CW measurements, harmonic distortion is an
interesting factor in broadband PA design, especially for
mobile communication. Figure 14 shows the measured
second and third-harmonic distortion power level relative to
the fundamental frequency output power at various output

power levels and different frequencies. The chosen frequencies
are 0.7 GHz, its second and third harmonics are located within
the band of operation, 1.4 GHz, its second harmonic is at the
edge of the band and third harmonic is out of band, and finally
2.0 GHz, where the harmonics are out of band.

This measurement proves, that the harmonics output
power in band has higher harmonics level ranges from 221
to 212 dBc compared with the harmonics output power out
of band, which ranges from 256 to 235 dBc.

I V . C O N C L U S I O N

The design of a high-power, multi-octave, and high-efficiency
PA was presented in this paper. The bandwidth restriction was
solved using an efficient ultra-wideband transmission line
transformer. A ground tapered MSL was used to achieve flat
and low IL and high RL. The transformer was integrated
with the input and output MNs. The measured results show
a good agreement with simulation with a maximum output
power of 50.6 dBm, an average drain efficiency higher than
50% and flat gain of 10 + 1.5 dB. The harmonics distortion
power level relative to the fundamental frequency was evalu-
ated at in-band and out-of-band operation. The in-band har-
monics have a higher harmonics distortion compared with the
out-of-band frequencies. Finally, a performance comparison
of the presented PA with state-of-the-art results for efficient,
high-power wideband PAs is summarized in Table 1. The
comparison shows the excellent performance of the designed
PA and thereby demonstrates the usefulness of the proposed
approach for the design of efficient, high-power, and wide-
band PAs for future wireless systems.

Fig. 13. (a) Output power and (b) power added efficiency for various frequencies versus input power at VDD ¼ 32 V, IDQ ¼ 0.5 A.

Fig. 14. Measured second and third relative harmonics level versus output
power at 0.7, 1.4, and 2.0 GHz fundamental frequencies at VDD ¼ 32 V,
IDQ ¼ 0.5 A.

Table 1. State-of-the-art 100 W wideband GaN-PAs.

Ref. Freq. (GHz) Gain (dB) Pout (W) h (%) Method

[8] 1.55–2.25 10 100 60–72 Single stage
[9] 1.1–2 10 110 50–62 Single stage
[17] 1.1–2 9.5–12 100 50–60 Single stage
[18] 1.1–2 8–10 200 45–55 908 Power combining∗

[19] 2–2.7 24–26 100–160 55–65 Two stage
[20] 0.1–1.8 8–11 94–142 40–74 Coaxial balun†

This work 0.6–2.6 8.5–11.5 80–115 49–65 Single stage

∗Two devices in parallel.
†Four devices push–pull.
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