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In the present article,we develop some efficient bounds for the distribution function
of a two-dimensional scan statistic defined on a~double! sequence of independent
and identically distributed~i+i+d+! binary trials+ The methodology employed here
takes advantage of the connection between the scan statistic problem and an equiv-
alent reliability structure and exploits appropriate techniques of reliability theory to
establish tractable bounds for the distribution of the statistic of interest+An asymp-
totic result is established and a numerical study is carried out to investigate the
efficiency of the suggested bounds+

1. INTRODUCTION

Assume that a two-dimensional rectangular regionR5 @0, L1# 3 @0, L2# is observed
and our interest is focused on the patterns in which a certain eventE occurs inR+ Let
n1 and n2 be two positive integers and definehi 5 Li 0ni , i 5 1,2+ Furthermore,
assume thatn1 andn2 are large enough so that in each of then1 3 n2 rectangular
subregions

Rij 5 @~i 2 1!h1, ih1# 3 @~ j 2 1!h2, ih2# , i 5 1,2, + + + , n1, j 5 1,2, + + + , n2, (1)

the eventE may occur only once or does not occur at all+ A question that comes up
naturally within this setup is whether reasonable criteria providing evidence of clus-
tering of the occurrences ofE overR could be established+
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In order to establish a probabilistic model, let us introduce the Bernoulli random
variables~r+v+’s! Xij , i 51,2, + + + , n1, j 51,2, + + + , n2 indicating the occurrence~Xij 51!
or nonoccurrence~Xij 5 0! of the eventE in subregionRij + We assume thatXij are
independent and identically distributed~i+i+d+! r+v+’s with success probabilities

q 5 P~Xij 5 1! 5 1 2 P~Xij 5 0! 5 1 2 p+ (2)

For 1# a # n1 2 k1 1 1 and 1# b # n2 2 k2 1 1, we define

S~a,b! 5 (
i5a

a1k1 2 1

(
j5b

b1k2 2 1

Xij (3)

to be the number of events in a rectangular region comprised ofk1 3 k2 adjacent
subregionsRij , a# i # a1k121, b# j # b1k221 ~k1 andk2 are positive integers!+
If S~a,b! exceeds a preassigned valuer, we will say that~at least! r events have
been clustered within the inspected region+ The two-dimensional~binary! discrete
scan statistic is then defined as the largest number of events in any of the~n1 2
k1 1 1!~n2 2 k2 1 1! observed regions; that is,

S5 Sk1, k2, n1, n2

5 max$S~a,b! : a 5 1,2, + + + , n1 2 k1 1 1, b 5 1,2, + + + , n2 2 k2 1 1%+ (4)

It is clear that such a statistic can be exploited for testing the null hypothesis of
uniformity against an alternative hypothesis of two-dimensional clustering that re-
sults in an increased occurrence of events in square subgrids of the rectangular
arrangement of the observations+

Astronomy is probably one of the earliest sciences in which the scan statistic
was fruitfully used+ The search of the heavens for clustered galaxies, particles, sig-
nals, or radiation sources attracted the interest of astronomers from the very begin-
ning+Orford@10# reviewed approaches for analyzing cosmic ray data in one and two
dimensions, with an extensive discussion of the scan statistic+ Two-dimensional
scans play a critical role in several other scientific areas as well, for example, ecol-
ogy, computer science,mechanical engineering, biosciences, image analysis,mine-
field detection, and pattern recognition; for a detailed review, see Glaz, Naus, and
Wallenstein@8# and the references therein+

In addition to such diverse and fascinating applications, the study of scan sta-
tistics involves many sophisticated and intricate theoretical methods~e+g+, Poisson
and compound Poisson approximations, large deviation theory, Bonferroni-type in-
equalities, order statistics and spacings, Monte Carlo simulation, etc+!+

The distribution of the scan statisticS can alternatively be expressed as the
reliability of a two-dimensionalr-within-consecutive-k1 3 k2-out-of-n1 3 n2 sys-
tem+ This system consists ofn1n2 independent components arranged in a square
grid of sizen13n2 and fails if and only if there exists at least one square block of size
k1 3 k2 ~1 , k1 # n1, 1 , k2 # n2! which contains at leastr $ 2 failed components+
A typical application of this system in electrical engineering comes from the TFT
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liquid crystal display technology where an increased number of nonfunctional pixels
in fixed-size rectangular subgrids of the screen is considered as a criterion for re-
jecting the produced item+

If R 5 Rr, k1, k2, n1, n2
denotes the reliability of a two-dimensionalr-within-

consecutive-k1 3 k2-out-of-n1 3 n2 system with component failure probabilitiesqij ,
i 5 1,2, + + + , n1, j 5 1,2, + + + , n2, it is clear thatP~Sk1, k2, n1, n2

# r 2 1! 5 Rr, k1, k2, n1, n2
+

Hence, the determination of the distribution ofS is equivalent to the assessment of
the reliability of a two-dimensionalr-within-consecutive-k1 3 k2-out-of-n1 3 n2

system+Unfortunately, the exact reliability evaluation of this system is a formidable
~or nonfeasible! task even for moderate values ofk1 andk2 ~cf+Akiba and Yamamoto
@1# !+Therefore, it seems reasonable to resort to approximations or bounds+Chen and
Glaz @5# and Makri and Psillakis@9# used Bonferroni inequalities to establish reli-
ability bounds for this system; Chen and Glaz@5# investigated also several product-
type approximations for the distribution of the two-dimensional scan statisticS+
Recently, Boutsikas and Koutras@4# employed a finite Markov chain imbedding
method to derive accurate approximations forRr, k1, k2, n1, n2

+ For a detailed review of
these approaches, the interested reader may consult Glaz et al+ @8# +

The purpose of this article is to develop improved~upper and lower! bounds for
the distribution of the discrete scan statisticS in the case of independent and iden-
tical Xij ’s+ These bounds are extremely useful, especially for the cases where the
lower and upper bounds are close to each other, therefore giving rise to narrow
interval estimates for the unknown exact distribution+ The consideration here of the
special case of i+i+d+ Bernoulli trials was for typographical convenience only+ It is
straightforward to verify that many of the results developed in this article could be
easily adjusted to the case where the trials are independent but not necessarily iden-
tical+ This task is left to the interested reader as an exercise+

The derivation of the new bounds is chiefly couched in the general results pro-
vided in a recent publication of the authors of the present article+More specifically,
Boutsikas and Koutras@3# introduced several generalizations of well-known relia-
bility bounds based on arbitrary partitions of the family of minimal path or cut sets
of a coherent structure+ After the introduction of the necessary definitions and no-
tations~Section 2!,we proceed to the establishment of product-type upper and lower
bounds for the cumulative distribution function of the scan statistic~Section 3!+ In
Section 4, we provide some additional bounds of a different nature~nonproduct-
type!, and in Section 5, a detailed numerical experimentation is carried out, which
elucidates the quality of the suggested bounds+ Finally, in Section 6 the asymptotic
behavior ofS is investigated by the aid of the results developed in the previous
sections+

2. DEFINITIONS AND NOTATIONS

As already mentioned, the development of bounds for the distribution function of
the scan statisticS5 Sk1, k2, n1, n2

will be carried out by considering the equivalent
two-dimensionalr-within-consecutive-k1 3 k2-out-of-n1 3 n2 system, bounding its
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reliability R5 Rr, k1, k2, n1, n2
from above and below and subsequently using the tran-

sition formulaP~S, r ! 5 R+We will introduce now the necessary notations for the
presentation that will follow+ Let I 5 $~i, j ! : i 5 1,2, + + + , n1, j 5 1,2, + + + , n2% be the
collection of the system’s components~equipped with the lexicographic order! and
denote byXij

' 5 1 2 Xij the indicator r+v+’s describing the components’ state@i+e+,
Xij
' 51 if component~i, j ! is functioning andXij

' 5 0 if component~i, j ! has failed# +
Then, the failure probabilitiesq of system’s components can be expressed as

q 5 P~Xij
' 5 0! 5 P~Xij 5 1!+ (5)

In order to describe the minimal cut sets of the system, we setN1 5 n1 2 k1 1 1,
N2 5 n2 2 k2 1 1 and introduce the sets

Aij 5 $~a,b!, a 5 i, i 1 1, + + + , i 1 k1 2 1, b 5 j, j 1 1, + + + , j 1 k2 2 1%, i, j $ 1+

(6)

By the definition of the system, its minimal cut setsC are all the subsets of
Aij , i 51,2, + + + ,N1, j 51,2, + + + ,N2 with cardinality6C65 r+ Therefore, the familyC
of all minimal cut sets can be expressed as

C 5 ø
i51

N1

ø
j51

N2

A ij , (7)

where

A ij 5 $C:C # Aij and6C6 5 r%+

A more convenient description ofC is achieved by considering the disjoint families
of cut sets

C ij 5 A ij \~A i11, j ø A i, j11!, i , N1 andj , N2,

C i, N2
5 A i, N2\A i11, N2

, i , N1,

CN1, j 5 AN1, j\AN1, j11, j , N2,

CN1, N2
5 AN1, N2

(8)

and observing that the next equality is true as well:

C 5 ø
i51

N1

ø
j51

N2

C ij + (9)

If A is a collection of subsets ofI, the symbolR~A! will denote the reliability of a
system which has as cut sets all the elements ofA ; that is,

R~A! 5 ES)
A[A

S1 2 )
~ i, j ![A

~1 2 Xij
'!DD+ (10)
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Finally, we use the notation

Fi,m
c 5 (

x5max$ i,0%

m Sm

xDqxpm2x (11)

for the tail probabilities of the binomial distribution+

3. PRODUCT-TYPE BOUNDS

One of the earliest approaches to the problem of developing product-type reliability
bounds may be attributed to Esary and Proschan@6#,who suggested the simple lower
bound

LEP 5 )
C[C

S1 2 )
a[C

qaD (12)

~see also Barlow and Proschan@2#!+A direct application of this result in the special
case of a two-dimensional-r-within-consecutive-k13k2-out-of-n13n2 system yields
Proposition 1+

Proposition 1: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded below by

LEP 5 ~12 qr ! 6C6, (13)

where

6C6 5 ~n1 2 k1!~n2 2 k2!

3 SSk1k2

r D2S~k1 2 1!k2

r D2Sk1~k2 2 1!

r D1S~k1 2 1!~k2 2 1!

r DD
1 ~n1 2 k1!SSk1k2

r D2S~k1 2 1!k2

r DD
1 ~n2 2 k2!SSk1k2

r D2Sk1~k2 2 1!

r DD 1 Sk1k2

r D+ (14)

Proof: Observe first that for each cut setC [ Aij , we have

)
~i, j ![C

qij 5 )
~i, j ![C

q 5 q6C6 5 qr (15)

and, therefore,

LEP 5 )
C[C

~12 qr ! 5 ~12 qr ! 6C6+ (16)
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The cardinality ofC can be easily evaluated if we note that, in view of ~9!,

6C6 5 (
i51

N1

(
j51

N2

6Cij 6 (17)

and then proceed to a careful enumeration of the elements of each familyCij + n

The lower bound of Proposition 1 is pleasing in its simplicity; however, it suc-
ceeds in approximating satisfactorily the exact cumulative probability only for low
values ofq+ A better approximation may be established by using Proposition 2+

Proposition 2: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded below by

LEP
~G! 5 ~12 Q1!~n12k1!~n22k2! ~12 Q2!n12k1~12 Q3!n22k2~12 Q4!, (18)

where

Q1 5 Fr, k1k2

c 2 pk2Fr, ~k121!k2

c 2 pk1Fr, k1~k221!
c 1 pk11k221Fr, ~k121!~k221!

c , (19)

Q2 5 Fr, k1k2

c 2 pk2Fr, ~k121!k2

c , Q3 5 Fr, k1k2

c 2 pk1Fr, k1~k221!
c , Q4 5 Fr, k1k2

c + (20)

Proof: SinceCij , i 5 1,2, + + + ,N1, j 5 1,2, + + + ,N2, are disjoint and satisfy~9!, they
form a partition of the familyC of system’s minimal cut sets+ As Boutsikas and
Koutras@3# have proven~cf+ their Theorem 2!, the quantity

LEP
~G! 5 )

i51

N1

)
j51

N2

R~Cij ! (21)

will consist a lower bound of system’s reliability+We observe next that eachR~Cij !
can be expressed in terms of the tail probabilities of appropriate binomial distribu-
tions+ More specifically, on introducing the events

Wij 5 F (
a5i

i1k121

(
b5j

j1k221

Xab $ rG,
Hij 5 F (

b5j

j1k221

Xib 5 0G, Vij 5 F (
a5i

i1k121

Xaj 5 0G (22)

and the index sets

T1 5 $~i, j !, i 5 1,2, + + + ,N1 2 1, j 5 1,2, + + + ,N2 2 1%,

T2 5 $~i,N2!, i 5 1,2, + + + ,N1 2 1%,

T3 5 $~N1, j !, j 5 1,2, + + + ,N2 2 1%,

T4 5 $~N1,N2!%,

(23)
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we can write

12 R~Cij ! 5 P~Wij Hij
cVij

c! 5 P~Wij ! 2 P~Wij Hij !

2 P~Wij Vij ! 1 P~Wij Hij Vij ! 5 Q1, ~i, j ! [ T1,

12 R~Cij ! 5 P~Wij Hij
c! 5 P~Wij ! 2 P~Wij Hij ! 5 Q2, ~i, j ! [ T2,

12 R~Cij ! 5 P~Wij Vij
c! 5 P~Wij ! 2 P~Wij Vij ! 5 Q3, ~i, j ! [ T3,

12 R~Cij ! 5 P~Wij ! 5 Q4, ~i, j ! [ T4+

(24)

The desired result can now be easily verified by substituting allR~Cij ! in ~21!+ n

So far, the cumulative probabilities of the scan statisticSwere lower bounded
by computationally tractable bounds+ A natural question at this point is whether
upper bounds could also be established by exploiting the connection between
the scan statistic distribution and the reliability of a two-dimensionalr-within-
consecutive-k1 3 k2-out-of-n1 3 n2 system+ Unfortunately, should we wish to cal-
culate the Esary and Proschan@6# upper reliability bounds,we need to establish first
all of the minimal path sets of the system+ The computational complexity of the last
task is huge and, therefore, such an approach seems quite intricate+ Fu and Koutras
@7# developed a set of upper reliability bounds that are based on the minimal cut
sets of a coherent structure and offer a satisfactory counterpart for the Esary and
Proschan lower bounds+ In order to apply these, one has to consider a certain order-
ing ~arrangement! of the system’s minimal cut sets and introduce appropriate index
sets+ If LC denotes the index set associated with the minimal cut setC [ C ~ for the
details on the construction of it, see Fu and Koutras@7# !, the upper bounds take on
the form

LFK 5 )
C[CS12 S )

a[LC

paDS)
b[C

qbDD+ (25)

In the case of a two-dimensionalr-within-consecutive-k1 3 k2-out-of-n1 3 n2

system, a simple arrangement~linearization! of the familyC of minimal cut sets is
established as follows: First place~in any order! the6C116 cut sets of the familyC11;
next, place~in any order! the6C126 cut sets of the familyC12; and so on~use lexico-
graphic ordering for the indices~i, j ! in Cij ! + + + ; place at the end~in any order! the
6CN1N2

6 cut sets of the familyCN1N2
+ It can be easily ascertained that the family of

index sets

LCi
5 ~$~u, v! : u 5 max$a 2 k1 1 1,1%, + + + ,a 1 k1 2 2,

v 5 max$b 2 k2 1 1,1%, + + + ,min$b 1 2k2 2 2, n2%%

ø $~a 1 k1 2 1, v! : v 5 max$b 2 k2 1 1,1%, + + + ,b 1 k2 2 1%!\Ci

~a,b :Ci [ Cab!, (26)
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i 5 2,3, + + + ,6C6, LC1
5 B, satisfies the conditions required in the Fu and Koutras@7#

approach+ Thus, in the i+i+d+ case, we get the upper bound

UFK 5 )
j51

6C6

~12 p6LCj
6qr !, (27)

and taking into account that

6LCj
6 # ~2k1 2 2!~3k2 2 2! 1 2k2 2 1 2 r, (28)

we easily arrive at the following result+

Proposition 3: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded above by

UFK 5 ~12 p~2k122!~3k222!12k2212rqr ! 6C6+ (29)

A substantially better upper bound is provided by the next proposition, which
makes use of the generalized Fu and Koutras upper bound given in Boutsikas and
Koutras@3# +

Proposition 4: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded above by

UFK
~G! 5 )

i51

N121

)
j51

N221

~12 Pij Q1! )
i51

N121

~12 Pi,N2
Q2! )

j51

N221

~12 PN1, j Q3!~12 PN1,N2
Q4!,

(30)

where Qi , i 5 1,2,3,4 are given as in Proposition 2, and

Pij 5 R~C ij
**! 5 ES )

C[Cij
**
S12 )

~a,b![C

XabDD+ (31)

The quantitiesC ij
** are defined as

C ij
** 5 minimal$C\ Aij :C ù Aij Þ B, C [ ø~a,b!,~i, j ! Cab%, (32)

where Aij are defined in (6) andminimal~A! denotes the set of all minimal sets ofA
with respect to the partial ordering induced by the inclusion operator,.

Proof: Recalling once more the partition described in the proof of Proposition 2
and applying Corollary 1 of Boutsikas and Koutras@3# ~the optimum choice of the
required binary functionsas should be invoked!, we readily obtain the upper bound

UFK
~G! 5 )

i51

N1

)
j51

N2

~12 R~C ij
**!~12 R~Cij !!!+ (33)

The evaluation of the quantitiesR~Cij ! has already been discussed in Propo-
sition 2+ n
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Because the evaluation ofPij is, in general, tedious, a convenient lower bound
for these quantities would be quite helpful+ Such a bound can be easily constructed
if we observe that, on introducing the index sets

Kij 5 $~u, v! : u 5 max$i 2 k1 1 1,1%, + + + , i 2 1,

v5 max$ j 2 k2 1 1,1%, + + + ,min$ j 1 2k2 2 2, n2%%

ø $~u, v! : u 5 i, + + + , i 1 k1 2 1, v5 max$ j 2 k2 1 1,1%, + + + , j 2 1%

ø $~u, v! : u 5 i, + + + , i 1 k1 2 2, v5 j 1 k2, + + + ,min$ j 1 2k2 2 2, n2%%, (34)

we can write the inequality

)
C[Cij

**
S12 )

~u, v![C

~12 Xuv
' !D $ )

~u, v![Kij

Xuv
' , (35)

which guarantees the validity of the inequality

Pij $ )
~u, v![Kij

p 5 p6Kij 6+ (36)

Therefore, it can be easily verified thatPij $ p~k121!~3k222!1k1~k221!1~k121!~k221! and a
more detailed investigation reveals Proposition 5+

Proposition 5: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded above by

UFK
~G!

# ~12 Q1!~12 p~k121!~3k222!1~2k121!~k221!Q1!~n12k121!~n22k221!

3 ~12 pk1~k221!Q1!n22k221~12 p~k121!~2k221!1~k121!~k221!Q1!n12k121

3 ~12 p~k121!~2k221!1k1~k221!Q2!n12k1

3 ~12 p~k121!~3k222!1k1~k221!1~k121!~k221!Q3!n22k2

3 ~12 p~k121!~2k221!1k1~k221!Q4!, (37)

whereQi , i 5 1,2,3,4 are given in Proposition 2+
For smallr’s, the right-hand side and the left-hand side of formula~36! are close

together, whereas for larger’s the actual value ofPij exhibits strong deviations from
the right-hand-side term+ Consequently, the upper bound in~37! is sharp only when
r is relatively small+ A better bound could be established though by conducting a
careful inspection of the setC ij

** for specific values ofk1, k2, andr+ For example, for
r 5 2, we may derive the following slightly better bound:

UFK
~G!

# ~12 Q1!~12 p~k121!~3k222!1k1~k221!Q1!~n12k121!~n22k221!

3 ~12 pk1~k221!Q1!n22k221~12 p~k121!~2k221!Q1!n12k121

3 ~12 p~k121!~2k221!1k1~k221!Q2!n12k1~12 p~k121!~3k222!1k1~k221!Q3!n22k2

3 ~12 p~k121!~2k221!1k1~k221!Q4!+ (38)
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4. COVARIANCE BOUNDS

In this section, we develop an upper bound different in nature than the bounds de-
veloped so far+ The key tool for the construction of this bound is a general result
given by Boutsikas and Koutras@3#; since the latter involves covariances of appro-
priate discrete random variables, the resulting upper bound will be referred to as the
covariance bound+ To start with, let us denote byBab the set of all components~i, j !
such that~i, j ! , ~a,b! ~use lexicographic ordering! andAij ù Aab Þ B ~so that
R~Cij ø Cab!5R~Cij !R~Cab! for ~i, j ! , ~a,b!, ~i, j ! Ó Bab!+ It can be easily verified
thatBab can be decomposed asBab 5 øi51

4 Bab
i , where

Bab
1 5 $~i, j ! : i 5 max$1,a 2 k1 1 1%, + + + ,a 2 1, j 5 max$1,b 2 k2 1 1%, + + + ,b 2 1%,

Bab
2 5 $~a, j ! : j 5 max$1,b 2 k2 1 1%, + + + ,b 2 1%,

Bab
3 5 $~i,b! : i 5 max$1,a 2 k1 1 1%, + + + ,a 2 1%,

Bab
4 5 $~i, j ! : i 5 max$1,a 2 k1 1 1%, + + + ,a 2 1, j 5 b 1 1, + + + ,min$N1,b 1 k2 2 1%%,

(39)

a 5 1,2, + + + ,N1 andb 5 1,2, + + + ,N2 ~note thatBab
i may occasionally be empty!+ Fi-

nally, let us denote byF~x, y, z! the sum

F~x, y, z! 5 (
w50

z

Fr2w, x2z
c Fr2w, y2z

c S z

wDqwpz2w, (40)

and byi the quadruple~i1, i2, i3, i4!+

Proposition 6: The cumulative probability P~S# r 21! 5 Rr, k1, k2, n1, n2
of the scan

statistic S is bounded above by

UCB
'~G! 5 ~12 Q1!N1N2 1 (

m51

4

Sm, (41)

where Q1 is given as in Proposition 2,

Sj 5 (
a5a0

k221

(
b5b0

k121

~N1 2 k1 1 b!~N2 2 k2 1 a!S (
i[$0,1%4

~21!Sk51
4 ikFi

~ j !~a,b! 2 Q1
2D,

j 5 1,4, (42)

S2 5 (
a5a0

k221

N1~N2 2 k2 1 a!S (
i[$0,1%4

~21!Sk51
4 ikFi

~2!~a! 2 Q1
2D, (43)

S3 5 (
b5b0

k121

N2~N1 2 k1 1 b!S (
i[$0,1%4

~21!Sk51
4 ikFi

~3!~b! 2 Q1
2D, (44)
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with

a0 5 max$2k2 2 n2,1%, b0 5 max$2k1 2 n1,1%, (45)

and

Fi
~1!~a,b! 5 F~~k1 2 i2!~k2 2 i1! 2 i3b 2 i4a

1 i3 i4, ~k1 2 i4!~k2 2 i3!, ~a 2 i3!~b 2 i4!!

3 pi1k11i2k22i1 i21i3k11i4k22i3 i4, (46)

Fi
~2!~a! 5 F~~k1 2 i2!~k2 2 i1 2 i3! 2 i4~12 i2!~a 2 i3!, ~k1 2 i4!~k2 2 i3!

2 i2~12 i4!~a 2 i3!, ~k1 2 i2!~a 2 i3! 2 i4~12 i2!~a 2 i3!!

3 pi1k11i2k22i1 i21i3k11i4k22i3 i42i2 i32i2 i4a1i2 i3 i4, (47)

Fi
~3!~b! 5 F~~k2 2 i2!~k1 2 i1 2 i3! 2 i4~12 i2!~b 2 i3!, ~k2 2 i4!~k1 2 i3!

2 i2~12 i4!~b 2 i3!, ~k2 2 i2!~b 2 i3! 2 i4~12 i2!~b 2 i3!!

3 pi1k21i2k12i1 i21i3k21i4k12i3 i42i2 i32i2 i4b1i2 i3 i4, (48)

Fi
~4!~a,b! 5 F~~k1 2 i2!~k2 2 i1! 2 i3~b 2 i2!, ~k1 2 i4!~k2 2 i3!

2 i2~a 2 i3!, ~a 2 i3!~b 2 i2!!

3 pi1k11i2k22i1 i21i3k11i4k22i3 i42i2 i3+ (49)

n

Proof: Applying Theorem 3 of Boutsikas and Koutras@3# for the partitionC1 5
$Cij , i 5 1,2, + + + ,N1, j 5 1,2, + + + ,N2% of C, we deduce an upper bound of the form

UCB
~G! 5 LEP

~G! 1 (
a51

N1

(
b51

N2

(
~i, j ![Bab

~R~Cij ø Cab! 2 R~Cij !R~Cab!!+ (50)

BecauseC1 consists of four different types of sets with similar structure~cf+ ~8!!, the
final form of the bound~50! will be rather cumbersome+ In order to gain a simpler
~and slightly worse of course! upper bound,we consider the system whose family of

minimal cut sets is given byC'5 øi51
N1 øj51

N2 C ij
' , where

C ij
' 5 Aij \~Ai11, j ø Ai, j11!, i 5 1,2, + + + ,N1 andj 5 1,2, + + + ,N2+ (51)

Let us also denote byRr, k1, k2, n1, n2

' the reliability of this last system+SinceC ij
' 5Cij for

i , N1, j , N2 andC ij
' # Cij for i 5 N1 or j 5 N2, it is obvious thatRr, k1, k2, n1, n2

#
Rr, k1, k2, n1, n2

' + Applying once more Theorem 3 of Boutsikas and Koutras@3# for the
partition C2 5 $C ij

' , i 5 1,2, + + + ,N1, j 5 1,2, + + + ,N2% , we easily arrive at the upper
bound forRr, k1, k2, n1, n2

' ~which is also an upper bound forRr, k1, k2, n1, n2
!:

UCB
'~G! 5 )

a51

N1

)
b51

N2

R~Cab
' ! 1 (

a51

N1

(
b51

N2

(
~i, j ![Bab

~R~C ij
' ø Cab

' ! 2 R~C ij
' !R~Cab

' !!, (52)
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where, in this case, R~Cab
' ! 51 2 Q1+ On settingd~A! 5 )A[A~1 2 )i[A~1 2 Xi

'!!,
the triple sum appearing inUCB

'~G! takes on the form

(
a51

N1

(
b51

N2

(
~i, j ![Bab

Cov~d~C ij
' !,d~Cab

' !!

5 (
a51

N1

(
b51

N2

(
~i, j ![Bab

Cov~12 d~C ij
' !,12 d~Cab

' !!

5 (
a51

N1

(
b51

N2

(
~i, j ![Bab

~P~d~C ij
' ! 5 0, d~Cab

' ! 5 0! 2 Q1
2!

5 (
m51

4

Sm, (53)

where

Sm 5 (
a51

N1

(
b51

N2

(
~i, j ![Bab

m

~P~d~Cab
' ! 5 0, d~C ij

' ! 5 0! 2 Q1
2!+ (54)

For the evaluation ofS1, we observe that

S1 5 (
a5a0

k221

(
b5b0

k121

~N1 2 k1 1 b!~N2 2 k2 1 a!

3 ~P~d~C11
' ! 5 0, d~Ck12b11, k22a11

' ! 5 0! 2 Q1
2!; (55)

the computation ofP~d~C11
' ! 5 0, d~Ck12b11, k22a11

' ! 5 0! can be carried out by
expressing the event of interest as an intersection of eventsAB1

cB2
cB3

cB4
c, where

~cf+ ~22!!

A 5 W11Wk12b11, k22a11, B1 5 V11, B2 5 H11,

B3 5 Vk12b11, k22a11, B4 5 Hk12b11, k22a11+ (56)

More specifically, by virtue of the inclusion–exclusion theorem, we can write

PSA ù Sù
i51

4

Bi
cDD 5 P~A! 2 PSø

i51

4

ABiD
5 P~A! 2 (

s51

4

(
D#$1,2,3,4%:6D 65s

~21!s21PSù
i[D

ABiD, (57)

and the evaluation of the probabilitiesP~ùi[D ABi ! can be accomplished if we rec-
ognize that the events of interest can be expressed via i+i+d+ binary r+v+’s Zi such that
P~Zi 5 1! 5 q+ In particular, it is not difficult to check that, on setting
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F~x, y, z! 5 PS(
i51

x

Zi $ r, (
i5x2z11

x2z1y

Zi $ rD
5 (

w50

z

PS(
i51

x2z

Zi $ r 2 w, (
i5x11

x2z1y

Zi $ r 2 wDPS (
i5x2z11

x

Zi 5 wD (58)

~a convenient expression for that is given in~40!!, we can writeP~ùi[D ABi ! 5
Fi

~1!~a,b!, i 5 ~i1, i2, i3, i4! with the indicesi j , j 51,2,3,4 being 1 or 0 according to
whetherj [ D or j Ó D, respectively, and

Fi
~1!~a,b! 5 Fi

~1!~a,b;k1, k2! 5 pi1k11i2k22i1 i21i3k11i4k22i3 i4

3 F~~k1 2 i2!~k2 2 i1! 2 i3b 2 i4a 1 i3 i4,

~k1 2 i4!~k2 2 i3!, ~a 2 i3!~b 2 i4!!+ (59)

Combining all the above, we deduce

S1 5 (
a5a0

k221

(
b5b0

k121

~N1 2 k1 1 b!~N2 2 k2 1 a!S (
i[$0,1%4

~21!Sk51
4 ikFi

~1!~a,b! 2 Q1
2D+

(60)

Arguing in exactly the same way, we may also computeS2, S3, andS4 ~the technical
details are lengthy but straightforward!+ n

5. NUMERICAL COMPARISONS

In Table 1 we provide, for selected values ofr, k1, k2, n1,and p, the values of
the bounds described in formulas~13!, ~18!, ~29!, ~37! ~or ~38! for r 5 2!, and~41!
~they have been labeledLEP, LEP

G , UFK, UFK
G , andUCB

G , respectively! along with the
Bonferroni-type bounds developed by Makri and Psillakis@9# ~for the casen1 5 n2

andk1 5 k2!+ These bounds have been labeled asLBonf andUBonf+We also provide a
simulated value~Rsimul! and an approximate value~Rapprox! based on the results of
Boutsikas and Koutras@4# +

It is worth stressing that for large systems~e+g+, n1, n2 . 30!, the computer times
for assessing the simulated values ofRare extremely large, especially when a large
number of iterations are performed+ This is why, in most cases, we were forced to
reduce the number of iterations to 104 or 105 ~only in Table 1 do we employ 106

iterations!+ This fact may have resulted in quite crude approximations of the exact
reliability+ However, the bounds are easily evaluated no matter how large the values
of n andk are+

A careful inspection of Table 1 reveals thatLEP
G is the best lower bound of the

three for each of the cases we consider, whereas, for very high component survival
probabilities, UCB

G is the best of the four upper bounds+ For lower-component sur-
vival probabilities, the leading bounds areUFK

G ~for smallr ! or UBonf+
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Table 1. Values of Bounds for Selected Values
of r, k1, k2, n1, n2, andp

p LEP LEP
G LBonf Rapprox Rsimul UBonf UFK UFK

G UCB
G

r52, k153, k253, n1530, n2530
+982 0+0402 0.0476 27+2781 0+0777 0.0838 0+3536 0+1604 0.1154 0+7995
+986 0+1431 0.1551 24+1247 0+1980 0.2071 0+4603 0+2849 0.2400 0+5339
+99 0+3709 0.3821 21+6731 0+4199 0.4284 0+6127 0+4837 0.4514 0+5387
+994 0+6997 0.7043 0+0171 0+7197 0.7237 0+8044 0+7436 0.7314 0+7478
+998 0+9611 0.9613 0+8886 0+9622 0.9624 0+9717 0+9634 0.9628 0+9645
+999 0+9901 0.9902 0+9720 0+9903 0.9902 0+9926 0+9904 0.9903 0+9908

r 5 3, k1 5 4, k2 5 4, n1 5 100, n2 5 100
+99 0+1429 0.1669 23+7749 0+2080 0.2207 0+5003 0+3596 0.3383 0+5403
+992 0+3692 0.3937 21+4936 0+4321 0.4464 0+6486 0+5511 0.5359 0+5497
+994 0+6568 0.6704 20+0729 0+6910 0.6959 0+8033 0+7513 0+7439 0.7217
+996 0+8829 0.8865 0+6758 0+8920 0.8916 0+9281 0+9081 0+9061 0.8973
+998 0+9846 0.9848 0+9587 0+9852 0.9850 0+9899 0+9864 0+9862 0.9856

r 5 6, k1 5 3, k2 5 3, n1 5 1000, n2 5 1000
+93 0+0001 0.0003 27+1775 0+0008 0.0009 0.1346 0+2581 0+2451 1+0089
+94 0+0221 0.0386 22+3322 0+0522 0.0518 0.2645 0+4883 0+4772 0+3769
+95 0+2791 0.3264 20+1464 0+3554 0.3614 0+4953 0+7265 0+7205 0.4196
+96 0+7157 0.7397 0+6913 0+7532 0.7545 0+7658 0+8948 0+8928 0.7591
+97 0+9422 0.9464 0+9436 0+9487 0.9470 0+9491 0+9742 0+9738 0.9490
+98 0+9948 0.9950 0+9949 0+9952 0.9951 0+9952 0+9970 0+9969 0.9952

r 5 12, k1 5 4, k2 5 4, n1 5 100, n2 5 100
+7 0+0001 0.0822 21+5003 0+1777 0.1862 0.4462 1+ 0+9994 1+4161
+72 0+0188 0.2992 20+2075 0+4164 0.4265 0.6067 1+ 0+9996 0+8312
+74 0+1955 0.5789 0+4529 0+6603 0.6615 0.7515 1+ 0+9998 0+7769
+76 0+5354 0.7944 0+7697 0+8336 0.8352 0+8647 1+ 0+9999 0.8625
+78 0+8026 0.9149 0+911 0+9297 0.9292 0+9364 1+ 0+9999 0.9363
+8 0+9323 0.9694 0+9689 0+9740 0.9737 0+9755 1+ 1+ 0.9754
+82 0+9804 0.9905 0+9904 0+9917 0.9916 0+9919 1+ 1+ 0.9919

r 5 5, k1 5 5, k2 5 5, n1 5 100, n2 5 100
+97 0+0025 0.0246 26+1884 0+0755 0.0967 0.4292 0+8001 0+7533 2+4923
+975 0+0903 0.1993 22+1440 0+3018 0.3331 0.6088 0+8554 0+8288 1+0415
+98 0+4547 0.5641 20+1208 0+6361 0.6543 0+7956 0+9149 0+9030 0.7895
+985 0+8294 0.8631 0+7107 0+8838 0.8888 0+9313 0+9641 0+9605 0.9042
+99 0+9757 0.9792 0+9586 0+9815 0.9821 0+9882 0+9917 0+9912 0.9829
+995 0+9992 0.9993 0+9986 0+9993 0.9993 0+9996 0+9996 0+9995 0.9994

r 5 20, k1 5 5, k2 5 5, n1 5 1000, n2 5 1000
+64 0+0000 0.0002 27+6897 0+0014 0.0013 0.1673 1+ 1+ 3+3426
+66 0+0000 0.0411 22+1925 0+0809 0.0793 0.3328 1+ 1+ 1+0427
+68 0+0013 0.3362 20+0902 0+4106 0.4066 0.5641 1+ 1+ 0+6145
+7 0+1592 0.7097 0+6570 0+7489 0.7481 0+7869 1+ 1+ 0.7807
+72 0+6298 0.9063 0+9016 0+9182 0.9120 0+9229 1+ 1+ 0.9227
+74 0+9003 0.9749 0+9746 0+9777 0.9780 0+9783 1+ 1+ 0.9783
+76 0+9790 0.9942 0+9942 0+9947 0.9945 0+9948 1+ 1+ 0.9948

(continued)
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6. ASYMPTOTIC RESULTS

Many real-life applications call for the study of the two-dimensional scan statisticS
in a large square grid of sizen13 n2 ~i+e+, for largen1 andn2! or, equivalently, for the
study of huge two-dimensionalr-within-consecutive-k1 3 k2-out-of-n1 3 n2 relia-
bility structures with high-quality components+ In these cases, the evaluation of
lower and upper bounds, although feasible, quickly become tedious+An asymptotic
estimate of the tail probability or system’s reliability, can, therefore, be useful+ In
this section, we aim at an asymptotic result concerning the case whenn1 andn2

converge to infinity and, at the same time, q r 0 so thatn1n2qr converges to a
positive number+ To achieve this, we may use either the bounds developed in the
previous sections~e+g+, LEP andUFK! or the general results for coherent structures
presented by Fu and Koutras@7# +

Table 1. continued

p LEP LEP
G LBonf Rapprox Rsimul UBonf UFK UFK

G UCB
G

r 5 2, k1 5 4, k2 5 4, n1 5 500, n2 5 500
+9992 0+0221 0.0225 217+827 0+0239 0.0250 0+2750 0+0268 0.0254 0+1312
+9993 0+0540 0.0546 213+428 0+0570 0.0588 0+3301 0+0614 0.0594 0+1281
+9994 0+1171 0.1179 29+6105 0+1211 0.1223 0+4005 0+1271 0.1243 0+1650
+9995 0+2255 0.2264 26+3754 0+2300 0.2334 0+4892 0+2365 0.2335 0+2547
+9996 0+3855 0.3863 23+7247 0+3894 0.3900 0+5985 0+3950 0.3924 0+4018
+9997 0+5850 0.5855 21+6601 0+5875 0.5893 0+7251 0+5910 0.5894 0+5928
+9998 0+7879 0.7882 20+1834 0+7890 0.7883 0+8554 0+7904 0.7897 0+7908
+9999 0+9422 0.9422 0+7039 0+9423 0.9424 0+9592 0+9425 0.9424 0+9427
+99995 0+9852 0.9852 0+9259 0+9852 0.9852 0+9895 0+9853 0.9852 0+9853

r 5 3, k1 5 2, k2 5 5, n1 5 100, n2 5 20
+965 0+0155 0.0292 0+0608 0.0678 0+2640 0.2106 1+1422
+97 0+0726 0.1026 0+1549 0.1635 0+3718 0.3232 0+7218
+975 0+2193 0.2595 0+3192 0.3282 0+5092 0.4712 0+5743
+98 0+4598 0.4931 0+5386 0.5476 0+6656 0+6418 0.6340
+985 0+7205 0.7368 0+7585 0.7640 0+8170 0+8063 0.7877
+99 0+9074 0.9115 0+9170 0.9175 0+9300 0+9292 0.9237
+995 0+9879 0.9882 0+9886 0.9888 0+9897 0+9895 0.9893

r 5 15, k1 5 6, k2 5 3, n1 5 1000, n2 5 100
+7 0+3197 0.6543 0+7071 0.7090 1+ 1+ 0.7581
+72 0+6669 0.8498 0+8723 0.8718 1+ 1+ 0.8832
+74 0+8752 0.9439 0+9515 0.9513 1+ 1+ 0.9538
+76 0+9607 0.9815 0+9837 0.9830 1+ 1+ 0.9842
+78 0+9892 0.9946 0+9951 0.9949 1+ 1+ 0.9952
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Proposition 7: If r , k1, and k2 are fixed and n1, n2 r ` and qr 0 such that

n1n2SSk1k2

r D2S~k1 2 1!k2

r D2Sk1~k2 2 1!

r D
1S~k1 2 1!~k2 2 1!

r DDqr r l [ ~0,`!, (61)

then

Rr, k1, k2, n1, n2
r e2l+ (62)

Proof: It suffices to observe that max6LCj
6 remains bounded asn1, n2 r ` ~cf+

~28!! and then apply Corollary 4+2+ of Fu and Koutras@7# +The desired result follows
immediately, using expression~14! for 6C6+ An alternative proof of the same result
can also be established by using the simpler boundsLEP andUFK developed in the
previous sections+ n

We now present an interesting consequence of Proposition 7 relating to the
asymptotic distribution of the time to failureT of a two-dimensionalr-within-
consecutive-k1 3 k2-out-of-n1 3 n2 reliability system+ More specifically, suppose
that this system starts functioning at time 0 equipped withn1n2 new~unused! com-
ponents and denote byT the time until the system’s failure and byTij the lifetime of
the~i, j ! component+ Then we have the next result+

Corollary 1: Let the common lifetime distributions of the components be of the
form

P~Tij # t ! 5 q~t ! 5 uat a 1 o~t a!, t $ 0, (63)

where a andu are positive constants. Then, the asymptotic lifetime T of the system
(properly normalized) follows a Weibull distribution with parameter

u ' 5 uSSk1k2

r D2S~k1 2 1!k2

r D2Sk1~k2 2 1!

r D1S~k1 2 1!~k2 2 1!

r DD10ar

;

(64)

more specifically,

P~~n1n2!10raT . t ! 5 R~~n1n2!210rat ! r e2~u 't !ar
(65)

as n1, n2 r `.
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Proof: It is an immediate consequence of Proposition 7 becauseq 5
q~~n1n2!210rat ! r 0 and

n1n2qr 5 n1n2q~~n1n2!210rat !r

5 n1n2~ua~n1n2!210r t a 1 o~~n1n2!210r !!r

5 Suat a 1
o~~n1n2!210r !

~n1n2!210r Dr

r ~ut !ar (66)

asn1, n2 r `+ n

Note that the assumption made above that the components’ failure distribution
satisfiesq~t ! 5 uat a 1 o~t a!, t $ 0, is a rather mild one~it is equivalent to
lim tr01 t2aq~t ! [ ~0,`! for somea . 0!+ There are quite a few lifetime distribu-
tions which satisfy this condition, including exponential,Weibull, gamma, uniform,
and so forth+
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