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Inthe present articlave develop some efficient bounds for the distribution function

of a two-dimensional scan statistic defined ofdauble sequence of independent

and identically distributedi.i.d.) binary trials The methodology employed here
takes advantage of the connection between the scan statistic problem and an equiv-
alent reliability structure and exploits appropriate techniques of reliability theory to
establish tractable bounds for the distribution of the statistic of intekasisymp-

totic result is established and a numerical study is carried out to investigate the
efficiency of the suggested bounds

1. INTRODUCTION

Assume that a two-dimensional rectangular reggen[0, L] X [0, L,] is observed
and our interest is focused on the patterns in which a certain éweaurs inR. Let

n, andn, be two positive integers and defite = L;/n;, i = 1,2. Furthermore
assume thamh, andn, are large enough so that in each of thex n, rectangular
subregions

Rij :[(I_1)h17|h1]><[(J_l)hZ’IhZ:l, i:1’2,""n17j:1’27-"9n2’ (l)

the event may occur only once or does not occur at Aljuestion that comes up
naturally within this setup is whether reasonable criteria providing evidence of clus-
tering of the occurrences éfoverR could be established
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In order to establish a probabilistic modielt us introduce the Bernoullirandom
variablegr.v.'s) Xj,i=12,...,n,j=1,2,..., nyindicating the occurrendeX;; = 1)
or nonoccurrenceX; = 0) of the event in subregiorR;. We assume thaX;; are
independent and identically distributéd.d.) r.v.'s with success probabilities

q=P(X;=1)=1-P(X;=0=1—p (2)

Forl=a=n,—k;+1land 1=b=n,—k, + 1, we define

atk, —1b+k,—1

S(a,b)= 2 2‘1) Xij (3)
i=a j=

to be the number of events in a rectangular region compriséd &fk, adjacent
subregion®;,a=i=a+k; —1,b=j=b+k,—1(k, andk; are positive integejs
If S(a,b) exceeds a preassigned valyave will say that(at least r events have
been clustered within the inspected regidhe two-dimensionalbinary) discrete
scan statistic is then defined as the largest number of events in any @f;the
ki +1)(n, — k, + 1) observed regionghat is

S: S<1’ Ko, Ny, Ny
=max{S(a,b):a=1,2,....,n;—k;+1L,b=12,...,n, — k, + 1}. (4)

It is clear that such a statistic can be exploited for testing the null hypothesis of
uniformity against an alternative hypothesis of two-dimensional clustering that re-
sults in an increased occurrence of events in square subgrids of the rectangular
arrangement of the observations

Astronomy is probably one of the earliest sciences in which the scan statistic
was fruitfully used The search of the heavens for clustered galaxagticles sig-
nals or radiation sources attracted the interest of astronomers from the very begin-
ning. Orford[10] reviewed approaches for analyzing cosmic ray data in one and two
dimensionswith an extensive discussion of the scan statisfigo-dimensional
scans play a critical role in several other scientific areas as feekxampleg ecol-
ogy, computer sciencenechanical engineeringiosciencesmage analysignine-
field detection and pattern recognitigrior a detailed reviewsee GlazNaus and
Wallenstein 8] and the references therein

In addition to such diverse and fascinating applicatjahs study of scan sta-
tistics involves many sophisticated and intricate theoretical metteogls Poisson
and compound Poisson approximatigiasge deviation theonBonferroni-type in-
equalities order statistics and spacinddonte Carlo simulatiopetc).

The distribution of the scan statisti&can alternatively be expressed as the
reliability of a two-dimensionaft-within-consecutivek; X k,-out-ofn; X n, sys-
tem This system consists af, n, independent components arranged in a square
grid of sizen; X n, and fails if and only if there exists at least one square block of size
ki X ko (1 < k; = ny, 1 < ky = n,) which contains at least= 2 failed components
A typical application of this system in electrical engineering comes from the TFT
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liquid crystal display technology where anincreased number of nonfunctional pixels
in fixed-size rectangular subgrids of the screen is considered as a criterion for re-
jecting the produced item

If R = R i k,n,n, denotes the reliability of a two-dimensionedwithin-
consecutivek; X kp-out-of-n, X n, system with component failure probabilitigs,
i=12,...,n,) =12,...,ny, itis clear thatP(S i, n.n, =T — 1) = R« k,.n,, 0,
Hence the determination of the distribution &fis equivalent to the assessment of
the reliability of a two-dimensional-within-consecutivek; X ky-out-ofn; X n,
systemUnfortunatelythe exact reliability evaluation of this system is a formidable
(or nonfeasiblgtask even for moderate valuesigfandk, (cf. Akiba and Yamamoto
[1]). Thereforeit seems reasonable to resort to approximations or bo@ies=n and
Glaz[5] and Makri and Psillaki$9] used Bonferroni inequalities to establish reli-
ability bounds for this systenChen and Glags] investigated also several product-
type approximations for the distribution of the two-dimensional scan stafstic
Recently Boutsikas and Koutragt] employed a finite Markov chain imbedding
method to derive accurate approximationsRox i, », n,- FOr a detailed review of
these approachgthe interested reader may consult Glaz ef&.

The purpose of this article is to develop improvaegper and lowerbounds for
the distribution of the discrete scan statistit) the case of independent and iden-
tical X;;'s. These bounds are extremely usekspecially for the cases where the
lower and upper bounds are close to each ottherefore giving rise to narrow
interval estimates for the unknown exact distributibhe consideration here of the
special case ofii.d. Bernoulli trials was for typographical convenience ontyis
straightforward to verify that many of the results developed in this article could be
easily adjusted to the case where the trials are independent but not necessarily iden-
tical. This task is left to the interested reader as an exercise

The derivation of the new bounds is chiefly couched in the general results pro-
vided in a recent publication of the authors of the present arfibbee specifically
Boutsikas and Koutrg] introduced several generalizations of well-known relia-
bility bounds based on arbitrary partitions of the family of minimal path or cut sets
of a coherent structuréfter the introduction of the necessary definitions and no-
tations(Section 2, we proceed to the establishment of product-type upper and lower
bounds for the cumulative distribution function of the scan stat{§ection 3. In
Section 4 we provide some additional bounds of a different natumenproduct-
type), and in Section 5a detailed numerical experimentation is carried atich
elucidates the quality of the suggested boufisally, in Section 6 the asymptotic
behavior ofSis investigated by the aid of the results developed in the previous
sections

2. DEFINITIONS AND NOTATIONS

As already mentionedhe development of bounds for the distribution function of
the scan statisti& = S, n,,n, Will be carried out by considering the equivalent
two-dimensionar-within-consecutivek; X k,-out-of-n, X n, systembounding its
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reliability R= R i, «,.n,,n, from above and below and subsequently using the tran-
sition formulaP(S < r) = R. We will introduce now the necessary notations for the
presentation that will followLet | = {(i,j):i =1,2,...,n,j = 12,...,n,} be the
collection of the system’s componerieguipped with the lexicographic ordemnd
denote byXj = 1 — X; the indicator wv.’s describing the components’ stdiee.,

X = 1if componen(i, j) is functioning andX; = 0 if component(i, j ) has failed.
Then the failure probabilitieg) of system’s components can be expressed as

q=P(Xj=0)=P(X; =1). %)

In order to describe the minimal cut sets of the system setN; = n; — k; + 1,
N, = n, — k, + 1 and introduce the sets

Aj={@b,a=ii+1.. itk -Lb=jj+L..j+k—1, i,j=1
(6)

By the definition of the systepmits minimal cut setsC are all the subsets of
Aj,i=12,...,Ny, j=1,2,...,N, with cardinality| C| = r. Thereforethe familyC
of all minimal cut sets can be expressed as

N; N,
c=UUAay, )
i=1j=1
where
Aj ={C:C C Aj and|C| =r}.

A more convenient description &f is achieved by considering the disjoint families

of cut sets
Ci =ANA 1 UA; ), i <Npandj <N,
Cing = A n\A 1y i <Ny, ®
(CNlaj = AvaJ'\ANl,jJrl’ J < NZ’
(CNl, N, = ANl, N,
and observing that the next equality is true as well
N; Ny
c=yuyc;. 9)
i=1j=1

If A is a collection of subsets of the symboIR(A ) will denote the reliability of a
system which has as cut sets all the elements;dhat is

R(A) = E( 11 <1 - I a- x@)). (10)

AEA (,1)EA
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Finally, we use the notation

m m
Fén= X ()qxp”” (11)

x=max{i,0} X

for the tail probabilities of the binomial distribution

3. PRODUCT-TYPE BOUNDS

One of the earliest approaches to the problem of developing product-type reliability

bounds may be attributed to Esary and Pros¢B6invho suggested the simple lower
bound

Lee= 11 (1— an> (12)

ceC aceC

(see also Barlow and Proschidh]). A direct application of this result in the special
case of a two-dimensionalwithin-consecutivek, X k,-out-of-n; X n, system yields
Proposition 1

ProposiTION 1: The cumulative probability 88=r —1) = R, \ «, n,.n, Of the scan
statistic S is bounded below by

Lep= (1—g")/“, (13)
where

IC| = (n; — ky) (N, — Ky)

<<k1k2> <(k1—1)k2) <k1(k2—1)) <(k1—1)(k2—1)>)
X - - +
r r r r
kiky (ky =Dk,
veaf(5)- ()
kl k2 kl( kz - 1) kl k2
sew(5)-(57)) ()

Proor: Observe first that for each cut Set€ A;;, we have

[l = II a=d°=q (15)
(i.j)ec (i.j)ec
and therefore
Lep= H (1_qr):(1_qr)\c\. (16)
cecC
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The cardinality ofC can be easily evaluated if we note thatview of (9),
N; Ny
Cl =X X ICy (17)
i=1j=1
and then proceed to a careful enumeration of the elements of each family B

The lower bound of Proposition 1 is pleasing in its simplichpwever it suc-
ceeds in approximating satisfactorily the exact cumulative probability only for low
values ofq. A better approximation may be established by using Proposition 2

ProposiTION 2: The cumulative probability 88=r —1) = R, \ «, n,n, Of the scan
statistic S is bounded below by

(EGP) = (1 Q )(nl k1) (ny— kz)(l Q )nl kl(l Q3)n2 kz(l Q4) (18)
where
Ql = Fr‘,:klkz - kaFr(,:(k1_l)k2 - pler(,:kl(kz_l) + pk1+k27lFr(’:(k1_1)(k2_l)’ (19)

_ k _ k _
Qz = Fik, = PR -1k Qa = Flkk, = PR k-1, Qa = Fk ks (20)

Proor: SinceCjj,i =1,2,...,Ny, j =1,2,...,N,, are disjoint and satisf{9), they
form a partition of the familyC of system’s minimal cut seté\s Boutsikas and
Koutras[ 3] have provericf. their Theorem 2 the quantity

@=ﬁﬁmm> (21)

i=1j=

will consist a lower bound of system’s reliability/e observe next that ea@iC;j )
can be expressed in terms of the tail probabilities of appropriate binomial distribu-
tions More specifically on introducing the events

w3 e

(22)
itke—1 i+kyg—1
:l > Xib2017 > Xaj=01
b=j a=i
and the index sets

Tl:{(i’j)’ i:1’2""’N1_1’j:1’2,--~’N2_1}’

T={Gi,Ny), i=212,...,N,—1},
(23)

TBZ{(N19j)9 j:l’z"-"NZ_l}’
Ts = {(Ng, No)},
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we can write
1-R(Cy) = P(Wj HfVi®) = P(W;) — P(W; Hy)

— P(W; V) + P(Wj H; Vi) = Q, (i,j) €Ty,
1-R(Cy) = P(WjHf) =P(W;) —P(WjHj) =Q,,  (Lj)) ET,,  (24)
1-R(Cyj) = P(WV©) = P(Wj) — P(W; V) = Qs, (i,j) € Ta,
1-R(Cy) = P(Wj) = Q,, (i,]) € Ts.

The desired result can now be easily verified by substitutingél; ) in (21). ®

So far the cumulative probabilities of the scan statiSiwere lower bounded
by computationally tractable bound& natural question at this point is whether
upper bounds could also be established by exploiting the connection between
the scan statistic distribution and the reliability of a two-dimensianaithin-
consecutivek; X ky-out-of-n; X n, system Unfortunately should we wish to cal-
culate the Esary and ProscH#&hupper reliability boundsve need to establish first
all of the minimal path sets of the systefthe computational complexity of the last
task is huge andherefore such an approach seems quite intric&ie and Koutras
[7] developed a set of upper reliability bounds that are based on the minimal cut
sets of a coherent structure and offer a satisfactory counterpart for the Esary and
Proschan lower boundsn order to apply thes®ne has to consider a certain order-
ing (arrangementof the system’s minimal cut sets and introduce appropriate index
sets If L denotes the index set associated with the minimal cuEsetC (for the
details on the construction of see Fu and Koutrd¥']), the upper bounds take on
the form

Lec = I1 (1—(H pa)<n q)) (25)

cec aclc beC

In the case of a two-dimensionalwithin-consecutivek; X k,-out-of-n; X n,
systema simple arrangemeftinearization of the family C of minimal cut sets is
established as follow§irst place(in any ordey the|C44| cut sets of the family;4;
next place(in any ordej the|C,| cut sets of the familyC,,; and so or{use lexico-
graphic ordering for the indice$, j) in Cy) ...; place at the end@in any ordey the
|Cn,n,| cut sets of the familyCy, y,. It can be easily ascertained that the family of
index sets

Le, = ((uv):u=max{a—k, + L1},...,a+ k, — 2,
v=maxb—k,+11},...,min{b+ 2k, — 2,n,}}
U{(a+k,—Lv):v=maxb—k,+11},....b+k,— I)\C

(a,b:C € Cy), (26)
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i =2,3,...,|C|,Lc, = I, satisfies the conditions required in the Fu and Kouft7ds
approachThus in the ii.d. casewe get the upper bound

IC|
=[[@-p'telgn), (27)
j=1
and taking into account that
ILgl = (2ki —2) Bk, —2) + 2k, =1, (28)

we easily arrive at the following result

ProposiTION 3: The cumulative probability S=r —1) =R, i, n, n, Of the scan
statistic S is bounded above by

— (1 _ p(zkl—z)(3k2—2)+2k2—1—rqr)|C|_ (29)
A substantially better upper bound is provided by the next propositbich

makes use of the generalized Fu and Koutras upper bound given in Boutsikas and
Koutras[3].

ProrosiTION 4: The cumulative probability S=r —1) =R i, n, n, Of the scan
statistic S is bounded above by

—1N,—1 N;—1 N,—1
Ul = H H 1-P;Q) [T =P, Q) [T (- Py, Qs) (1~ Py, 1, Q).
i=1 i=1

(30)

where Q,i = 1,2,3,4 are given as in Proposition 2, and
= R(Cj*) = E( 11 <1 - 11 Xab>). (31)

Cec;* (a,beC
The quantitie<C;™ are defined as

C:;* = m|n|ma|{C\A|] :CN Aij * @, Ce U(a,b)<(i,j) (Cab}, (32)

where A are defined in (6) andhinimal(A) denotes the set of all minimal setstof
with respect to the partial ordering induced by the inclusion operator

Proor: Recalling once more the partition described in the proof of Proposition 2
and applying Corollary 1 of Boutsikas and Kout{&$ (the optimum choice of the
required binary functionas should be invoked we readily obtain the upper bound

N; Ny

U’ =TT TT (L~ RCi)H (L = RCy)). (33)

i=1j=1
The evaluation of the quantitieR(C;;) has already been discussed in Propo-
sition 2 [ ]
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Because the evaluation Bj is, in general tedious a convenient lower bound
for these quantities would be quite helpf8luch a bound can be easily constructed
if we observe thaton introducing the index sets

Kij = {(uv):u=max{i —k, +1,1},...,i — 1,

v=max{j—k,+11},...,min{j + 2k, — 2,n,}}
U{(uv):u=i,...,i+ki—Lov=max{j—k,+11},...,j — 1}
U{uv):u=i,...,i +ki—2,v=j+ky,...,min{j + 2k, — 2,n,}}, (34)

we can write the inequality

1T (1— II (1—xau>)z T X, (35)

CeC;* (u,v)EC (U,v)EK;j

which guarantees the validity of the inequality

P,= ] p=pil (36)

(u,u)EKij

Thereforeit can be easily verified thd; = pk~ ke 2 Halkem D ke~ (ka1 gnd g
more detailed investigation reveals Proposition 5

ProrosiTION 5: The cumulative probability 8=r — 1) =R,y «, n,,n, Of the scan
statistic S is bounded above by

UF(I(<3) = (1-Q,)(1— pla DBl 2+2k-Dike-1Q, ) (Mm—ku- DN —ko—1)
X (1 — platke=DQ, )Nk~ 1(1 — pla~ Do D+ k-Dike-DQ ym—ki—1
X (1 — pla-D@e-Drkle-1Q,)m—k
X (1 — pla~DGk-2+kle-D+la-Dike-1 Q) Yro—ko
X (1— plab@le-Drkle-10),) (37)

whereQ;,i = 1,2,3,4 are given in Proposition.2

For smallr’s, the right-hand side and the left-hand side of forn{38) are close
togetheywhereas for large's the actual value d?; exhibits strong deviations from
the right-hand-side tern€onsequentlthe upper bound if37) is sharp only when
r is relatively small A better bound could be established though by conducting a
careful inspection of the sé&t;” for specific values oky, k;, andr. For examplefor
r = 2, we may derive the following slightly better bound

UF(I?) = (1- Q,)(1— pri— DB+l ) (m—ki=D(n—k~1)
X (1— plalebQ)nke=1(1 — plai-D@e-DQ ym—k—1
X (1 — plarb@ke-Drkile-Q, )m—ki (1 — pli-DBk-2+kike-DQ )nke

X (1— pla-D@k-Dkle-DQ,). (38)
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4. COVARIANCE BOUNDS

In this sectionwe develop an upper bound different in nature than the bounds de-
veloped so farThe key tool for the construction of this bound is a general result
given by Boutsikas and Koutr8]; since the latter involves covariances of appro-
priate discrete random variablele resulting upper bound will be referred to as the
covariance boundo start with let us denote b, the set of all components, j )

such thati,j) < (a,b) (use lexicographic orderingand A; N Ay, # & (so that
R(Cj; U Cap) = R(Cjj )R(Cyp) for (i, j ) < (a, b), (i, ) & By,y). It can be easily verified
thatB,, can be decomposed Bg, = Ui, Bl,, where

Bl ={(Gi,j):i=maxla—k,+1},...,.a—1 j=max{lLb—k,+1},...,b—1},

B ={(aj):ji=max{lb—k,+1}....b—1},

3, =1{(i,b):i=max{l,a—k, +1},...,a—1},

Ba, ={(i,j):i=max{la—k,+1},...,.a—1 j=b+1,...,min{N;, b+ k, — 1}},
(39)

a=12,...,N;andb =1,2,...,N, (note thatB},, may occasionally be emptyFi-
nally, let us denote by (X, y, z) the sum

z zZ
F(x,y,2) = >, Ffw,szfW,yz(W) qvp= ™, (40)
w=0

and byi the quadrupléi, iy, is,is).

ProrosiTION 6: The cumulative probability S=r —1) =R i, n, n, Of the scan
statistic S is bounded above by

UL = (1— QMM + 2 Sy (41)

where Q is given as in Proposition 2,

kp—1 ky—1

S=2 3 (Ni—k +b)(N, - ( S (—1)saiE D (a,b) — Qf),

a=ag b=by ie{o,1}4
j =14, (42)

ko—1

S=> N1<N2—k2+a>< > (—1>E‘k‘1‘kFi<2><a>—Qf>, (43)
a=ag ie{o,1}*
k—1

S=3 N2<N1—k1+b>( s <—1>E‘k‘ﬂkFi<3><b)—Qf), (44)
b=bg ie{o,1}*4
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with
ao = max{2k, — n,,1}, by = max{2k, — n,1}, (45)
and
FP(a,b) = F((ky —ip)(k, — i1) —isb—isa
+igig, (ky — |4)(k2 —ig),(@a—i3z)(b—1iy4))
X plikatizke=iziztigkitiakeo=isly (46)

F?(a) = F((ky — i) (K, — iy — iz) —is(L—iz)(@a—is),(Ky —ig)(ky —i3)
— (1 —iy)(a—ig),(ky —izx)(@a—i3) —i4(1—iz)(a—i3))
X pirkatizke—iaiztiokiHaky—iia—izia—ilsatiziais (47)
F(0) = Fl(ke = i2) (kg =iz = i3) = ia(1—iz) (b —i3), (ko — ig) (ky — i)
—i2(1—ig)(b—i3),(ky —iz) (b —i3) —i,(1—i2)(b—i3))
X pirketizkiminiztiskatiak—isiaiaisiaiab tizisia (48)
F(a,b) = F((ky — i2) (ko = i) = ia(b = i5), (ks = ia) (k> — i)
—ix(a—iz),(@a—iz)(b—iy))
X pizkatizke—iaiztioksHaky—igiaizis (49)
|

Proor: Applying Theorem 3 of Boutsikas and Koutrg®| for the partitionC; =
{Cyj,i=12,...,N;,j =12,...,Ny} of C, we deduce an upper bound of the form

Np Ny

UE =LZ+> > > (RCjUCa) — R(CyR(Cap)). (50)

a=1b=1(i,j)EB,,
Becausé&; consists of four different types of sets with similar structiafe(8)), the
final form of the bound50) will be rather cumbersomén order to gain a simpler
(and slightly worse of cours@ipper boungwe consider the system whose family of
minimal cut sets is given bg’ = UM U 1Cj;, where

(CI/J = A&ij\(‘&i+l,j ) Ai,j+l)’ I = ’ ""7Nl andj = 1’2’-“5 NZ' (51)

Letus also denote by, i, «,.n,,n, the reliability of this last systen®inceCj; = C;; for

i <N, j <N,andCj C Cj fori =Ny orj = N,, it is obvious thaiR, . «, n.n, =
R k., k,, ny.n,» APPlying once more Theorem 3 of Boutsikas and Koufi@sfor the
partitionC, = {Cjj,i = 1,2,...,N;,j = 1,2,...,N,}, we easily arrive at the upper
bound forR;{ y, «, n, n, (Which is also an upper bound f& \ i, n, n,):

Ny N Ny Ny
U =TI TIRCw + > > X (R(Cj U Ch) — R(CHR(Chp)), (52)
a=1b=1 a=1b=1(i,j)EB,,
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whereg in this caseR(Cl,) =1 — Q. On settingd (A) = [Taca (1 — [Tica(1 — X/)),
the triple sum appearing id4$’ takes on the form

2 Y 2 Cov(s(C§),8(Chy))

a=1b=1(i,j)EBy,

N; N

_ S Cov(l— 8(Ch),1- 8(Chy)

a=1b=1(i,j)EByy

= > (P(8(Cj) =0,5(Ch,) =0 — Q)

= glsm, (53)
where
Sn=> > 2 (P(8(Ch) =0,8(Cj) =0)— Q3. (54)

a=1b=1 i j)eBg

For the evaluation 0§;, we observe that

ko—1 ky—1
S = _2 b_Eb (N; — ki +b)(N,—k, + @)
X (P(8(Ch1) = 0, 8(Ci—ps+1k,-a+1) = 0) — QF); (55)

the computation oP(8(C’;) = 0, §(Ci _p+1,k,-ar1) = 0) can be carried out by
expressing the event of interest as an intersection of evaBI8SBSBS, where
(cf. (22)

A= Wllwkl—b+L ko—a+1s B, = Vi, B, = Hyy,
Bs; = Vkl—b+1, Kky,—a+1s B,= Hkl—b+1, Ky—a+1- (56)

More specifically by virtue of the inclusion—exclusion theoreme can write

P(An <é3>> = P(A)—P(QAB,)

4

-3 S cuee(Nas) 67

s=1DC{1,2,3,4}:|D|=s ieD

and the evaluation of the probabiliti®$N;<p AB;) can be accomplished if we rec-
ognize that the events of interest can be expressed waiinary rv.’s Z; such that
P(Z; =1) = q. In particular it is not difficult to check thaton setting
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i=x—z+1

X X—z+y
F(x,y,z)=P<ZZi2r, > Zi2r>
i=1

=éP(iZZizr—w,x§yZi2f—W)P< é Zi:W> (58)

i=x+1 i=x—z+1

(a convenient expression for that is given(#0)), we can writeP(N;cp AB) =
F(a,b), i = (iy,i,,is,i4) with the indices;, j = 1,2,3,4 being 1 or 0 according to
whetherj € D orj & D, respectivelyand

Fi(l)(a, b) — Fi(l)(a, b: kl, kz) — pilliri2szi1i2+i3k1+i4k27i3i4
X F((ky —ip)(kp —ip) —igh —iza+isig,
(ky —ig)(ky —i3),(@a—i3)(b—iy)). (59)

Combining all the aboveve deduce

Ko—1 ky—1
s=3 3 <N1—k1+b><N2—k2+a>< > <—1>>“k‘ﬂkFi<1><a,b>—Qf>.
a=ag b=by ie{o,1}*

(60)

Arguing in exactly the same waye may also comput8,, S;, andS, (the technical
details are lengthy but straightforward u

5. NUMERICAL COMPARISONS

In Table 1 we providgfor selected values of, kq, ky, ny,and p, the values of
the bounds described in formulékl), (18), (29), (37) (or (38) for r = 2), and(41)
(they have been labeldd:p, LEp, Uk, Uk, andUS;, respectively along with the
Bonferroni-type bounds developed by Makri and PsilldRik(for the casen; = n,
andk; = k,). These bounds have been labeled gg,; andUg,s. We also provide a
simulated valuéRgm,) and an approximate valu®,ppr00) based on the results of
Boutsikas and Koutrag!].

Itis worth stressing that for large systefes., n;, n, > 30), the computer times
for assessing the simulated valuefare extremely largeespecially when a large
number of iterations are performethis is why in most caseswe were forced to
reduce the number of iterations to“6r 10° (only in Table 1 do we employ f0O
iterations. This fact may have resulted in quite crude approximations of the exact
reliability. However the bounds are easily evaluated no matter how large the values
of nandk are

A careful inspection of Table 1 reveals tH4t, is the best lower bound of the
three for each of the cases we considérereasfor very high component survival
probabilities US; is the best of the four upper bound®r lower-component sur-
vival probabilities the leading bounds atgS (for smallr) or Uggps.

https://doi.org/10.1017/50269964803174062 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803174062

522

M. V. Boutsikas and M. V. Koutras

TABLE 1. Values of Bounds for Selected Values
of r, ky, ky, Ny, Ny, andp

p I-EP L%P LBonf Rapprox Rsimul UBonf UFK UF<|3< U(?B
r=2, k1=3, k2=3, n;=30, n,=30
982 Q0402 0.0476 —7.2781 Q0777 0.0838 0.3536 01604 0.1154 0.7995
986 01431 0.1551 —4.1247 Q01980 0.2071 04603 02849 0.2400 0.5339
.99 03709 0.3821 —1.6731 04199 0.4284 0.6127 04837 0.4514 0.5387
994 06997 0.7043 0.0171 Q7197 0.7237 0.8044 Q7436 0.7314 0.7478
998 09611 0.9613 0.8886 09622 0.9624 0.9717 Q09634 0.9628 0.9645
999 09901 0.9902 0.9720 Q09903 0.9902 0.9926 Q9904 0.9903 0.9908
r=3, k1=4, k2=4, n, =100 n, =100
.99 01429 0.1669 —3.7749 02080 0.2207 0.5003 03596 0.3383 0.5403
992 03692 0.3937 —1.4936 04321 0.4464 0.6486 05511 0.5359 0.5497
994 06568 0.6704 —0.0729 06910 0.6959 0.8033 Q7513 Q7439 0.7217
996 08829 0.8865 0.6758 08920 0.8916 0.9281 Q9081 Q9061 0.8973
.998 09846 0.9848 0.9587 09852 0.9850 0.9899 09864 Q9862 0.9856
r =26,k =3, ky=3,n,=100Q n, =1000
.93 00001 0.0003 —7.1775 Q0008 0.0009 0.1346 0.2581 02451 10089
.94 00221 0.0386 —2.3322 Q0522 0.0518 0.2645 0.4883 04772 03769
.95 02791 0.3264 —0.1464 03554 0.3614 04953 Q7265 Q7205 0.4196
.96 Q7157 0.7397 0.6913 Q7532 0.7545 0.7658 08948 08928 0.7591
.97 09422 0.9464 0.9436 09487 0.9470 0.9491 Q9742 Q9738 0.9490
.98 09948 0.9950 0.9949 09952 0.9951 0.9952 Q9970 Q9969 0.9952
r=12 k; =4,k,=4,n,=100 n, =100
N 0.0001 0.0822 —1.5003 Q1777 0.1862 0.4462 1. 0.9994 14161
72 00188 0.2992 —0.2075 04164 0.4265 0.6067 1. 0.9996 08312
74 01955 0.5789 0.4529 06603 0.6615 0.7515 1. 0.9998 Q7769
.76 05354 0.7944 0.7697 08336 0.8352 0.8647 1 0.9999 0.8625
.78 08026 0.9149 0.911 Q9297 0.9292 0.9364 1 0.9999 0.9363
.8 09323 0.9694 0.9689 09740 0.9737 0.9755 1 1. 0.9754
.82 09804 0.9905 0.9904 09917 0.9916 0.9919 1 1. 0.9919
r=5, k1=5, k2=5, n,; =100 n, =100
.97 00025 0.0246 —6.1884 Q0755 0.0967 0.4292 0.8001 Q7533 24923
975 00903 0.1993 —2.1440 Q3018 0.3331 0.6088 0.8554 08288 10415
.98 04547 0.5641 —0.1208 06361 0.6543 0.7956 09149 Q9030 0.7895
985 08294 0.8631 0.7107 08838 0.8888 0.9313 Q9641 Q9605 0.9042
.99 09757 0.9792 0.9586 09815 0.9821 0.9882 09917 Q9912 0.9829
995 09992 0.9993 0.9986 09993 0.9993 0.9996 Q09996 Q9995 0.9994
r= 20, kl =5 kz =5n= 100Q Ny = 1000
.64 Q0000 0.0002 -—7.6897 Q0014 0.0013 0.1673 1. 1 3.3426
.66 00000 0.0411 -—21925 Q0809 0.0793 0.3328 1. 1. 1.0427
.68 00013 0.3362 —0.0902 04106 0.4066 0.5641 1. 1 0.6145
7 01592 0.7097 0.6570 Q7489 0.7481 0.7869 1 1. 0.7807
.72 06298 0.9063 0.9016 09182 0.9120 0.9229 1 1. 0.9227
.74 09003 0.9749 0.9746 Q9777 0.9780 0.9783 1 1. 0.9783
.76 09790 0.9942 0.9942 Q9947 0.9945 0.9948 1 1. 0.9948
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TaBLE 1. continued
p LEP L%P LBonf Rapprox Rsimul UBonf UFK UF?< UCGB

r=2ky=4,k,=4,n, =500 n, =500
.9992 00221 0.0225 -—-17.827 Q0239 0.0250 0.2750 00268 0.0254 0.1312
.9993 00540 0.0546 —13428 Q0570 0.0588 0.3301 Q0614 0.0594 0.1281
.9994 01171 0.1179 —9.6105 01211 0.1223 0.4005 01271 0.1243 0.1650
.9995 02255 0.2264 —6.3754 02300 0.2334 04892 02365 0.2335 0.2547
19996 03855 0.3863 —3.7247 03894 0.3900 05985 Q03950 0.3924 0.4018
.9997 05850 0.5855 —1.6601 05875 0.5893 0.7251 05910 0.5894 0.5928
.9998 07879 0.7882 —0.1834 (07890 0.7883 0.8554 Q7904 0.7897 0.7908
19999 09422 0.9422 0.7039 09423 0.9424 009592 09425 0.9424 0.9427
199995 (09852 0.9852 0.9259 09852 0.9852 0.9895 Q09853 0.9852 0.9853
r=3, k1:2, k2:5, n; =10Q n, =20
.965 Q0155 0.0292 0.0608 0.0678 0.2640 0.2106 1.1422
.97 00726 0.1026 0.1549 0.1635 0.3718 0.3232 0.7218
.975 Q02193 0.2595 0.3192 0.3282 0.5092 0.4712 0.5743
.98 04598 0.4931 0.5386 0.5476 0.6656 06418 0.6340
.985 Q7205 0.7368 0.7585 0.7640 0.8170 08063 0.7877
.99 09074 0.9115 0.9170 0.9175 0.9300 Q9292 0.9237
.995 Q9879 0.9882 0.9886 0.9888 0.9897 Q9895 0.9893
r=15 k1= 6, k2=3, n1=1OOQ n2=100
7 0.3197 0.6543 0.7071 0.7090 1 1 0.7581
72 06669 0.8498 0.8723 0.8718 1 1 0.8832
.74 08752 0.9439 0.9515 0.9513 1 1 0.9538
.76 09607 0.9815 0.9837 0.9830 1 1 0.9842
.78 09892 0.9946 0.9951 0.9949 1 1 0.9952

6. ASYMPTOTIC RESULTS

Many real-life applications call for the study of the two-dimensional scan stafistic
in a large square grid of sizg X n, (i.e., for largen; andn,) or, equivalentlyfor the
study of huge two-dimensionalwithin-consecutivek; X k,-out-of-n; X n, relia-
bility structures with high-quality component these caseghe evaluation of
lower and upper boundalthough feasiblequickly become tedioug\n asymptotic
estimate of the tail probability or system’s reliabiligan thereforg be useful In
this sectionwe aim at an asymptotic result concerning the case wheandn,
converge to infinity andat the same timeq — 0 so thatn,n,q" converges to a
positive numberTo achieve thiswe may use either the bounds developed in the
previous sectionge.g., Lgp andUgx) or the general results for coherent structures
presented by Fu and Koutrgs|.
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ProrosiTION 7: If r, kq, and k are fixed and g, n, — co and q— 0 such that

<<k1k2> ((kl - 1)k2> <k1(k2 - 1))
n1n2 - -
r r r

(k1 — (k= 1)
+ < >) g — A € (0,00), (61)

r
then
Rr,kl, Ko, Ny, Ny - e_)‘- (62)

Proor: It suffices to observe that mialxC | remains bounded as, n, — oo (cf.
(28)) and then apply Corollary.2. of Fu and Koutra$7]. The desired result follows
immediately using expressiofil4) for |C|. An alternative proof of the same result
can also be established by using the simpler bounrg@ndUg« developed in the
previous sections u

We now present an interesting consequence of Proposition 7 relating to the
asymptotic distribution of the time to failur€ of a two-dimensional-within-
consecutivek; X k,-out-of-n; X n, reliability system More specifically suppose
that this system starts functioning at time 0 equipped wjti, new (unused com-
ponents and denote @ythe time until the system’s failure and By the lifetime of
the(i, j) componentThen we have the next result

CoroLLARY 1: Let the common lifetime distributions of the components be of the
form

P(T; =t) =q(t) = 6%* + o(t?), t=0, (63)

where a and are positive constants. Then, the asymptotic lifetime T of the system
(properly normalized) follows a Weibull distribution with parameter

<<k1 k2> ((kl - 1)k2) <k1(k2 - 1)) <(k1 =1k, — 1)))1/ar
0 =0 - _ N ;
r r r r

(64)
more specifically,
P((nyny)YaT > t) = R((nynp) ¥2t) — e (@'V% (65)

as n, N, — oo.
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Proor: It is an immediate consequence of Proposition 7 becagse
g((nyny)~¥"t) — 0 and

nin,q" = nynyq((nyny) Yt)"

N Nx(62(ngny) Yt + o((nyny) "))"

—1/r r
— <0ata + M) RN (Ot)af (66)

(nyny) "

asny, N, — co. u

Note that the assumption made above that the components’ failure distribution
satisfiesq(t) = 62t? + o(t?),t = 0, is a rather mild ong(it is equivalent to
lim_o-t72q(t) € (0,00) for somea > 0). There are quite a few lifetime distribu-
tions which satisfy this conditigincluding exponentiaWeibull, gammauniform,
and so forth
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