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This paper concerns with the existence of multiple solutions for a class of elliptic
problems with discontinuous nonlinearity. By using dual variational methods,
properties of the Nehari manifolds and Ekeland’s variational principle, we show how
the ‘shape’ of the graph of the function A affects the number of nontrivial
solutions.
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1. Introduction

We consider the existence of multiple solutions for the following discontinuous
problem

{
−Δu+ u = A(εx)f(u(x)) a.e. in R

N ,

u ∈W
2,p/p−1
loc (RN ) ∩W 1,p(RN ),

(1.1)
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Existence and multiplicity of solutions 549

where N � 1, ε is a positive parameter and f : R → R is the odd function given
by

f(t) =

{
t|t|p−2, t ∈ [0, a],
(1 + δ)t|t|p−2, t > a,

with a, δ > 0 and p ∈ (2, 2∗),

2∗ =

{
2N

N−2 , if N � 3,
+∞, if N = 1, 2.

Moreover, the function A : R
N → R is a continuous function satisfying the following

conditions:

(H1) A : R
N → R is a C2(R,R) function such that A, ∂A/∂xi and ∂2A/∂xixj

are bounded functions in whole R
N for all i, j ∈ {1, 2, . . . , N} and

lim
|x|→∞

A(x) = A∞,

with 0 < A∞ < A(x) for any x ∈ R
N .

(H2) There exist l points z1, z2, . . . , zl in R
N with z1 = 0 such that

1 = A(zi) = max
x∈RN

A(x) for 1 � i � l.

In [13] Cao and Noussair have considered the existence and multiplicity of solu-
tions for problem (1.1) with δ = 0. In this case, f(t) = |t|p−2t for t ∈ R and the
problem becomes {

−Δu+ u = A(εx)|u|p−2u in R
N ,

u ∈ H1(RN ).
(1.2)

By using Ekeland’s variational principle and concentration compactness principle
of Lions [23], Cao and Noussair proved that if A has k equal maximum points, then
problem (1.2) has at least k positive solutions and k nodal solutions if ε is small
enough. Later, Wu in [28] has proved the existence of at least � positive solutions
for the perturbed problem{

−Δu+ u = h(εx)|u|r−2u+ λg(εx)|u|q−2u in R
N ,

u ∈ H1(RN ),
(P2)

where λ is a positive small parameter, q ∈ [1, 2) and g : R
N → R is a nonnegative

continuous function satisfying

g(x) → 0 and |x| → +∞.

In [19] the authors have considered the following class of quasilinear problems{
−Δpu+ |u|p−2u = h(εx)|u|r−2u+ λg(εx) in R

N ,

u ∈W 1,p(RN ),
(P3)
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with N � 3 and 2 � p < N . In that paper, the authors have proved the same type
of results found in [13] and [28].

For the case δ > 0, the function f is discontinuous and the study of the existence
of solution for problem (1.1) is completely different from the case δ = 0, since we
cannot directly use the methods for C1-functionals, as for example, there is no
Nehari manifold associated with the energy functional. This fact brings us some
difficulties to use traditional methods to obtain the multiplicity of solutions of
problem (1.1). In order to overcome this difficulty, we will use a method, called
Clark’s dual action principle, which was employed in [6,10] and [8].

As is well known, many free boundary problems and obstacle problems may be
reduced to partial differential equations with nonsmooth potentials. The area of
nonsmooth analysis is closely related with the development of critical points the-
ory for nondifferentiable functions, in particular, for locally Lipschitz continuous
functionals based on Clarke’s generalized gradient [15]. It provides an appro-
priate mathematical framework to extend the classic critical point theory for
C1-functionals in a natural way, and to meet specific needs in applications, such as
in nonsmooth mechanics and engineering. For a comprehensive understanding, we
refer to the monographs of [17,24,25] and references [1–5,9,11,14,16,18,20,
21,29].

Our main result is the following:

Theorem 1.1. There are δ∗, ε∗, a∗ > 0 such that for each δ ∈ (0, δ∗), ε ∈ (0, ε∗) and
a ∈ (0, a∗), problem (1.1) has at least l nontrivial solutions.

This paper is organized as follows. In § 2, we present an auxiliary problem and
some necessary preliminary knowledge. We prove our main result in § 3.

2. An auxiliary problem

In this section, we discuss the energy function Iε : H1(RN ) → R associated
with (1.1) given by

Iε(u) =
1
2

∫
RN

(|∇u|2 + |u|2) dx−
∫

RN

A(εx)F (u) dx,

where F (t) =
∫ t

0
f(s) ds. Notice that Iε is not a differentiable functional, because

F is only a continuous function. Hence, there does not exist any Nehari Manifold
associated with Iε, which brings some difficulties to show the existence of multiplic-
ity of solutions, and makes the problem more interesting from the mathematical
point of view. To avoid this difficulty, we will adapt for our problem an approach
developed in Ambrosetti and Badiale [8].

In what follows, we denote by g : R → R the odd function given by

g(s) =

⎧⎪⎨
⎪⎩
|s|p′−2s, s ∈ [0, ap−1],
a, s ∈ [ap−1, (1 + δ)ap−1],
(1 + δ)−1/p−1|s|p′−2s, s ∈ [(1 + δ)ap−1,+∞),
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where p′ = p/p− 1. The functions f and g are related each other of the following
way:

f(g(s)) =

{
s, s �∈ [ap−1, (1 + δ)ap−1],
ap−1, s ∈ [ap−1, (1 + δ)ap−1],

(a)

and

g(f(t)) = t, ∀t ∈ R. (b)

In the sequel G denotes the primitive function of g, i.e.,

G(s) :=
∫ s

0

g(r) dr.

By the definition of g, G is an even function with

G(s) =

⎧⎪⎨
⎪⎩

1
p′ s

p′
, s ∈ [0, ap−1],

as− ap

p , s ∈ [ap−1, (1 + δ)ap−1],
γδ

p′ s
p′

+ δ ap

p , s ∈ [(1 + δ)ap−1,+∞),

for γδ = (1 + δ)−1/(p−1). Thus

γδ|s|1/p−1 � |g(s)| � |s|1/p−1, ∀s ∈ R, (2.1)

and
γδ

p′
|s|p′ � G(s) � 1

p′
|s|p′

, ∀s ∈ R. (2.2)

The next step is to define the dual functional associated with Iε. By
[12, theorem 9.32], we know that for each u ∈ Lp′

(RN ) there is a unique solution
w ∈W 1,p′

(RN ) ∩W 2,p′
(RN ) for the equation

− Δw + w = u, in R
N . (2.3)

Moreover, there is a positive constant C independent of w such that

‖w‖W 2,p′ (RN ) � C|u|p′ .

The above information permits to define a linear operator K : Lp′
(RN ) →

W 2,p′
(RN ), such that for u ∈ Lp′

(RN ), K(u) is the unique solution of (2.3). Hence,

‖K(u)‖W 2,p′ (RN ) � C|u|p′ , ∀u ∈ Lp′
(RN ),

from which it follows that K is continuous. On the other hand, since the embedding

W 2,p′
(RN ) ↪→ Ls(RN ), ∀s ∈ [p′, (p′)∗)

are continuous for

(p′)∗ =

⎧⎪⎨
⎪⎩

Np′

N − 2p′
, N > 2p′,

+∞, 1 � N � 2p′,
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we can ensure that K : Lp′
(RN ) → Lp(RN ) is a linear continuous operator, because

p ∈ (2, 2∗) if, and only if, p ∈ (p′, (p′)∗). Moreover, it is easy to check that∫
RN

K(u)v dx =
∫

RN

K(v)u dx, ∀u, v ∈ Lp′
(RN ). (2.4)

By the results of compactness Sobolev embeddings, one can easily obtain the
following lemma:

Lemma 2.1. If un ⇀ u in Lp′
(RN ), then for some subsequence,

K(un) ⇀ K(u) in Lp(RN )

and

K(un) → K(u) in Lp(BR(0)), ∀R > 0.

Using the above notation, we set the functional Jε : Lp′
(RN ) → R given by

Jε(u) =
∫

RN

A(εx)−1/(p−1)G(u) dx− 1
2

∫
RN

K(u)u dx.

Jε is called the dual functional associated with Iε. It is obvious that Jε ∈
C1(Lp′

(RN ),R) and

J ′
ε(u)v =

∫
RN

A(εx)−1/(p−1)g(u)v dx−
∫

RN

K(u)v dx, ∀u, v ∈ Lp′
(RN ).

From the above equality, we have the following lemma.

Lemma 2.2. If u is a critical point of Jε, then v(x) = A(εx)−1/(p−1)g(u(x)) is a
solution of problem (1.1) if a, ε are small enough.

Proof. If u is a critical point of Jε, then

v(x) = K(u(x)) a.e. in R
N ,

i.e.,

−Δv(x) + v(x) = u(x) a.e. in R
N .

Hence, if |v(x)| �= aA(εx)−1/(p−1), then

−Δv(x) + v(x) = u(x) = A(εx)f(v(x)) a.e. in R
N .

If v(x) = aA(εx)−1/(p−1), we have that

u(x) ∈ [ap−1, (1 + δ)ap−1],

and so,

− aε2Δ(A−1/(p−1))(εx) + aA(εx)−1/(p−1) ∈ [ap−1, (1 + δ)ap−1]

a.e. in Ωa,ε =
{
x ∈ R

N : v(x) = aA(εx)−1/(p−1)
}
,
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or equivalently,

− ε2Δ(A−1/(p−1))(εx) +A(εx)−1/(p−1) ∈ [ap−2, (1 + δ)ap−2]

a.e. in Ωa,ε =
{
x ∈ R

N : v(x) = aA(εx)−1/(p−1)
}
.

Since p ∈ (2, 2∗), infz∈RN A(z) > 0 and supz∈RN Δ(A−1/(p−1))(z) < +∞, if a, ε are
small enough, we deduce that |Ωa,ε| = 0, uniformly for all δ > 0. A similar argument
works to prove that |Ω−a,ε| = 0. This completes the proof. �

Lemma 2.3. Let {un} ⊂ Lp′
(RN ) be a (PS)d sequence for Jε. Then, there exist

a∗, ε∗, δ∗ > 0 such that, {un} is bounded in Lp′
(RN ), and for some subsequence,

there is u ∈ Lp′
(RN ) such that

un ⇀ u in Lp′
(RN ),

un(x) → u(x) a.e. in R
N ,

and

J ′
ε(u) = 0,

for all a ∈ [0, a∗], ε ∈ [0, ε∗] and δ ∈ [0, δ∗].

Proof. For each n ∈ N,

Jε(un) − 1
2
J ′

ε(un)un =
∫

RN

A(εx)−1/(p−1)

(
G(un) − 1

2
g(un)un

)
dx. (2.5)

Note that G and g are even and odd functions respectively, then by (2.1) and (2.2),

G(t) − 1
2
g(t)t �

(
γδ

p′
− 1

2

)
|t|p′

, ∀t ∈ R.

Since p′ = p/p− 1 < 2 and γδ = (1 + δ)−1/(p−1), there exists δ∗ > 0 such that(
γδ

p′
− 1

2

)
> 0, ∀δ ∈ [0, δ∗].

Therefore, from (2.5), (H1) and (H2),

Jε(un) − 1
2
J ′

ε(un)un �
(
γδ

p′
− 1

2

)
|un|p

′
p′ . (2.6)

Using the fact that {un} is a (PS)d sequence, there is n0 ∈ N such that

Jε(un) − 1
2
J ′

ε(un)un � d+ 1 + |un|p′ , ∀n � n0. (2.7)

From (2.6) and (2.7), {un} is a bounded sequence in Lp′
(RN ). Therefore, there is

u ∈ Lp′
(RN ) and a subsequence of {un}, still denoted by itself, such that

un ⇀ u in Lp′
(RN ).
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Using again the fact that {un} is a (PS)d sequence for Jε, we derive that

sup
|v|

Lp′ (RN )
�1

∫
RN

(A(εx)−1/(p−1)g(un) −K(un))v dx→ 0.

Then by Riesz Representation theorem,

|A(εx)−1/(p−1)g(un) −K(un)|Lp(RN ) → 0.

Setting vn = K(un), it follows from lemma 2.1 that

vn ⇀ v = K(u) in Lp′
(RN )

and

vn(x) → v(x) a.e. in R
N .

Hence,

A(εx)−1/(p−1)g(un) ⇀ v in Lp′
(RN ),

and

A(εx)−1/(p−1)g(un(x)) → v(x) a.e. in R
N .

The above limits together with the growth conditions on g yield

u(x) = A(εx)f(v(x)) if |v(x)| �= aA−1/(p−1)(εx),

and

|u(x)| ∈ [ap−1, (1 + δ)ap−1] a.e. in |v(x)| = aA−1/(p−1)(εx).

Recalling that

−Δv + v = u, a.e. in R
N ,

we deduce that
∣∣{x ∈ R

N : |v(x)| = aA−1/(p−1)(εx)}∣∣ = 0 if a, ε are sufficiently small
(see the proof of lemma 2.2). Therefore,

un(x) → u(x) a.e. in R
N .

Now, fixed φ ∈ Lp′
(RN ), the last limit combined with the J ′

ε(un)φ = on(1) gives
J ′

ε(u)φ = 0, which shows that J ′
ε(u) = 0. �

Hereafter, we assume that a ∈ [0, a∗], ε ∈ [0, ε∗] and δ ∈ [0, δ∗]. In § 3, we will make
some adjustments in ε∗, decreasing it if necessary. For more details see lemmas 3.3
and 3.4.
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In the sequel, set

J∞(u) =
∫

RN

G(u) dx− 1
2

∫
RN

K(u)u dx

and

JA∞(u) = A−1/(p−1)
∞

∫
RN

G(u) dx− 1
2

∫
RN

K(u)u dx.

Furthermore, we denote by cε and c∞ the mountain pass levels of Jε and J∞
respectively, which can be characterized as

cε = inf
u∈Mε

Jε(u) and c∞ = inf
u∈M∞

J∞(u), (2.8)

where

Mε = {u ∈ Lp′
(RN ) \ {0} : J ′

ε(u)u = 0}

=
{
u ∈ Lp′

(RN ) \ {0} :
∫

RN

A(εx)−1/(p−1)g(u)u dx =
∫

RN

K(u)u dx
}
,

and

M∞ = {u ∈ Lp′
(RN ) \ {0} : J ′

∞(u)u = 0}

=
{
u ∈ Lp′

(RN ) \ {0} :
∫

RN

g(u)u dx =
∫

RN

K(u)u dx
}
.

The sets Mε and M∞ are called Nehari manifolds associated with Jε and J∞
respectively.

As g is not a C1 function, we cannot say that Mε is a differentiable manifold,
and this brings us some difficulties to employ Lagrange multiplier on M. Here, we
overcome this difficulty by using some arguments found in [26].

Lemma 2.4. The functional Jε is bounded from below on Mε for all ε > 0 and
δ ∈ [0, δ∗]. Moreover, Jε is coercive on Mε for all ε > 0.

Proof. For each u ∈ Mε,

Jε(u) = Jε(u) − 1
2
J ′

ε(u)u =
∫

RN

A(εx)−1/(p−1)

(
G(u) − 1

2
g(u)u

)
dx. (2.9)

Note that G and g are even and odd functions respectively, then by (2.1) and (2.2),
one has

G(t) − 1
2
g(t)t �

(
γδ

p′
− 1

2

)
|t|p′

, ∀t ∈ R.

Since p′ = p/p− 1 < 2 and γδ = (1 + δ)−1/(p−1), there exists δ∗0 > 0 such that(
γδ

p′
− 1

2

)
> 0, ∀δ ∈ [0, δ∗0 ].
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Therefore, it follows from (2.9), (H1) and (H2) that

Jε(u) �
(
γδ

p′
− 1

2

)
|u|p′

p′ ,

showing that Jε is bounded from below and coercive on Mε. �

It follows from the continuity of K and A, and the inequality G(t) − 1
2g(t)t �

C|t|p′
for all t ∈ R that we can derive the next lemma.

Lemma 2.5. There exists θ = θ(p) > 0 such that

|u|p′ , Jε(u) > θ, ∀u ∈ Mε.

Since the function g is odd, g(t)/t is decreasing for t > 0 and K is a linear
operator, by using the same method in [27, Chapter 4], we have the following
lemma.

Lemma 2.6. For each v ∈ Lp′
(RN ) \ {0}, there exists a unique tv > 0 such that

J ′
ε(tvv)(tvv) = 0. (2.10)

Proof. Let v ∈ Lp′
(RN ) \ {0} be fixed and define the function H(t) = Jε(tv) on

[0,∞). Clearly, we have

H ′(t) = 0 ⇔ v ∈ Mε ⇔
∫

RN

K(v)v dx =
1
t

∫
RN

A(εx)−1/(p−1)g(tv)v dx.

Note that g(tv)/t is decreasing on [0,∞), H(0) = 0, H(t) > 0 for t small and
H(t) < 0 for t large. Hence maxt∈[0,∞)H(t) is achieved at a unique t = tv so that
H ′(tv) = 0 and tvv ∈ Mε. �

From the last lemma, combined with the definition of cε, one has the following
corollary:

Corollary 2.1. If u is a critical point of Jε with u± �= 0, then Jε(u) � 2cε.

Proof. If u is a critical point of J , then 0 = J ′(u)u+ = J ′(u+)u+ and 0 = J ′(u)u− =
J ′(u−)u−. Hence, if u± �= 0, we must have that u± ∈ Mε, and so, J(u±) � cε. Now,
the corollary follows by using the equality J(u) = J(u+) + J(u−). �

The following lemma is very important in our paper, because it ensures the
continuity of the function v �→ tv in Lp′

(RN ) \ {0}.

Lemma 2.7. For {un} ⊂ Lp′
(RN ) and u ∈ Lp′

(RN ) \ {0}, let tun
, tu > 0 be as

in (2.10). If un → u in Lp′
(RN ), then tun

→ tu.
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Proof. Firstly, we prove tun
� 0. Set v = vn in (2.10). By virtue of Hölder inequality

and the continuity of K, one has∫
RN

K(u)u dx � C|u|2p′ , ∀u ∈ Lp′
(RN ). (2.11)

It follows from (2.1) and (2.11) that

γδt
p′
un

|un|p
′

p′ �
∫

RN

A(εx)−1/(p−1)g(tun
un)tun

un dx

=
∫

RN

K(tun
un)(tun

un) dx � Ct2un
|un|2p′ dx � Ct2un

|un|2p′ .

Hence for some c > 0

c|un|p
′−2

p′ � t2−p′
un

, ∀n ∈ N.

Since p′ ∈ (1, 2) and {un} is a bounded sequence in Lp′
(RN ), one can easily obtain

tun
� 0.

Secondly, we show that {tun
} is a bounded sequence. According to (2.1), (2.10)

and the continuity of K, we have

cA
−1/(p−1)
0 tp

′−2
un

|un|p
′

p′ � 1
t2un

∫
RN

A(εx)−1/(p−1)g(tun
un)tun

un dx

=
∫

RN

K(un)un dx→
∫

RN

K(u)u dx > 0,

where A0 = infx∈RN A(x), and thus

t2−p′
un

< c1A
−1/(p−1)
0 |un|p

′
p′ ,

for some c1 > 0, which means the boundedness of {tun
}. Finally, from Lebesgue’s

theorem, passing to a subsequence, we have tun
→ t0, and so,∫

RN

A(εx)−1/(p−1)g(t0u)t0u dx = lim
n→∞

∫
RN

A(εx)−1/(p−1)g(tun
un)tun

un dx

= lim
n→∞

∫
RN

K(tun
un)tun

un dx =
∫

RN

K(t0u)t0u dx.

Now, the uniqueness of tu guarantees that tu = t0 = limn→+∞ tun
. �

Similar as in [6], one has the following two lemmas.

Lemma 2.8. If {un} ⊂ Lp′
(RN ) is a (PS)d sequence for Jε, then there exists tn > 0

such that tnun ∈ Mε, i.e., J ′
ε(tnun)tnun = 0 and tn → 1 as n→ ∞.

Lemma 2.9. If A satisfies hypotheses (H1) and (H2), then

(i) Jε(0) = 0 and there exists ρ > 0 such that inf |u|p′=ρ Jε(u) > 0 and Jε(u) � 0
for u ∈ Lp′

(RN ) with |u|p′ � ρ;
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(ii) There exists e ∈ Lp′
(RN ) such that |e|p′ > ρ and Jε(e) < 0.

The next lemma is a crucial result to prove that the weak limit of some (PS)
sequences can be chosen nontrivial.

Lemma 2.10. Let {un} ⊂ Lp′
(RN ) be a (PS)d sequence for Jε. Then, for some

subsequence either

(i) un → 0 in Lp′
(RN ), or

(ii) there are r, β > 0 and (yn) ⊂ R
N such that∫

Br(yn)

|un|p′
dx � β, ∀n ∈ N.

Proof. Assume that (ii) does not hold for r > 0. Then,

lim
n→+∞ sup

y∈RN

∫
Br(y)

|un|p′
= 0, ∀n ∈ N. (2.12)

It follows from the fact that {un} is a (PS)d sequence that

sup
|v|

Lp′ (RN )
�1

∫
RN

(A(εx)−1/(p−1)g(un) −K(un))v dx→ 0. (2.13)

Then by Riesz Representation theorem, we have

|A−1/(p−1)(εx)g(un) −K(un)|Lp(RN ) → 0. (2.14)

By the growth condition of g, it is possible to find some c > 0 such that

|A−1/(p−1)(εx)g(t)|p � c|t|p′
, ∀t ∈ R and x ∈ R

N . (2.15)

Combining (2.12) and (2.15), we derive that

lim sup
n→+∞

∫
BR(yn)

|A−1/(p−1)(εx)g(un)|p dx = 0.

Therefore, from (2.14),

lim
n→+∞ sup

y∈RN

∫
BR(y)

|K(un)|p dx = 0.

Thus, by a well-known result due to Lions [22],

K(un) → 0 in Lp(RN ). (2.16)

According to (2.14) and (2.16) we obtain that

A−1/(p−1)(εx)g(un) → 0 in Lp(RN ),
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which implies

g(un) → 0 in Lp(RN ). (2.17)

Since {un} is a bounded sequence in Lp′
(RN ), we derive that∫

RN

g(un)un dx→ 0.

Recall that there exists c > 0 such that

c|t|p′ � |g(t)t|, ∀t ∈ R,

then the last limit implies that un → 0 in Lp′
(RN ), which proves (i). �

Remark 2.1. The reader is invited to observe that a version of lemma 2.10 is also
true, if we replace Jε by J∞.

As a byproduct of the above lemma, we have the following corollary:

Corollary 2.2. Let {un} be a (PS)d sequence for Jε with d > 0 and un ⇀ 0 in
Lp′

(RN ). Then, for each r > 0, there are {yn} ⊂ R
N and β > 0 such that∫

Br(yn)

|un|p′
dx � β, ∀n ∈ N.

Proof. If the corollary does not hold, for some subsequence, we must have

lim
n→+∞ sup

y∈RN

∫
Br(y)

|un|p′
dx = 0.

Then by lemma 2.10,

un → 0 in Lp′
(RN ),

which is absurd, because d > 0. �

Corollary 2.3. Let {un} be a (PS)d sequence for J∞ with d > 0 and un ⇀ 0
in Lp′

(RN ). Then, there is {yn} ⊂ R
N such that wn(x) = un(x+ yn) is a (PS)d

sequence for Jε with wn ⇀ w in Lp′
(RN ) and w �= 0.

Proof. Firstly, we would like to point out that a version of corollary 2.2 holds with
Jε replaced by J∞. Thus, fixed r > 0, there are {yn} ⊂ R

N and β > 0 such that∫
Br(yn)

|un|p′
dx � β, ∀n ∈ N.

Since J∞ is invariant by translation, it is easy to check that {wn} is a (PS)d

sequence for J∞ and ∫
Br(0)

|wn|p′
dx � β, ∀n ∈ N.
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Consequently, by assumptions on g, we derive

∫
Br(0)

g(wn)wn dx � β1, ∀n ∈ N,

for some β1 > 0. Arguing as in the proof of lemma 2.10, we get

∫
Br(0)

K(wn)wn dx � β2, ∀n ∈ N,

for some β2 > 0. Since wn ⇀ w in Lp(RN ), by lemma 2.1 we have K(wn) → K(w)
in Lp(Br(0)), and so,

∫
Br(0)

K(w)w dx � β2, ∀n ∈ N,

from which it follows that w �= 0. �

Since the functional J∞ is invariant by translation in R
N , corollary 2.3 permits

us to use a standard argument to show the following result:

Proposition 2.1. There is u∗ ∈ M∞ such that

J∞(u∗) = c∞ and J ′
∞(u∗) = 0.

The following result is a key point in our arguments, because in some sense it
establishes a compactness result for J∞ on M∞.

Theorem 2.1 Compactness theorem on Nehari manifold. Let {un} ⊂ Lp′
(RN ) be

a sequence satisfying

J∞(un) → c∞, J ′
ε(un) → 0 and un ∈ M∞.

Then, for some subsequence either

(i) {un} is strongly convergent,
or

(ii) there exists {yn} ⊂ R
N with |yn| → ∞ such that the sequence vn

(x) = un(x+ yn) is strongly convergent to a function v ∈ Lp′
(RN ) with

J∞(v) = c∞, J ′
∞(v) = 0 and v ∈ M∞.
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Proof. First of all, arguing as in lemma 2.3, we can assume that {un} is bounded
in Lp′

(RN ), and that there is u ∈ Lp′
(RN ) such that

un ⇀ u in Lp′
(RN ),

un(x) → u(x) a.e. in R
N ,

and

J ′
∞(u) = 0.

If u �= 0, we see that u ∈ M∞ and

c∞ = J∞(u) = J∞(u) − 1
2
J ′
∞(u)u =

∫
RN

(
G(u) − 1

2
g(u)u

)
dx

� lim inf
n→∞

∫
RN

(
G(un) − 1

2
g(un)un

)
dx

� lim sup
n→∞

∫
RN

(
G(un) − 1

2
g(un)un

)
dx = lim

n→∞(J∞(un) − 1
2
J ′
∞(un)un) = c∞,

and so,

lim sup
n→∞

∫
RN

(
G(un) − 1

2
g(un)un

)
dx =

∫
RN

(
G(u) − 1

2
g(u)u

)
dx.

Recalling that G(t) − 1
2g(t)t � 0 for all t ∈ R, the above limit yields

G(un) − 1
2
g(un)un → G(u) − 1

2
g(u)u in L1(RN ).

From the above limit and the growth conditions on g we can easily have

un → u in Lp′
(RN ).

Therefore, u ∈ M∞, J∞(u) = c∞ and J ′
∞(u) = 0.

If u = 0, we can use corollary 2.3 to find a sequence {yn} ⊂ R
N such that

wn(x) = un(x+ yn) is a (PS)c∞ sequence with wn ⇀ w in Lp′
(RN ) and w �= 0.

Then, by previous arguments wn → w in Lp′
(RN ), and so, w ∈ M∞, J∞(w) = c∞

and J ′
∞(w) = 0. �

The following step would be to check whether or not the restriction of Jε to Mε

satisfies the (PS)-condition. A standard method would lead us to deal with the
second derivative of Jε, which does not adapt our situation, because the functional
is not twice differentiable. With this aim in mind, we will adopt some ideas applied
in [26].

Consider the application

m̂ε : Lp′
(RN ) \ {0} → Mε,

given by m̂ε(u) = tuu, where tu is defined by (2.10). Using the above notations it
is possible to show that
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(i) m̂ε is a continuous application;

(ii) There exists τ > 0 such that tu > τ , ∀u ∈ Sp′ = {u ∈ Lp′
(RN ) : |u|p′ = 1}.

Indeed, if {un} ⊂ Lp′
(RN ) and tun

→ 0 as n→ ∞, then tun
un → 0 as n→ ∞,

and this contradicts lemma 2.5 for tun
un ∈ Mε.

(iii) Given W ⊂ Sp′ compact, there is CW > tu, ∀u ∈ W.

In the sequel, we consider the application mε : Sp′ → Mε, the restriction of m̂ε

to the sphere Sp′ . Observe that mε is a homeomorphism, with its inverse given by

m−1
ε (u) =

u

|u|p′
, ∀u ∈ Mε.

Let us also consider the application Ψ̂ε : Lp′
(RN ) \ {0} → R given by

Ψ̂ε(u) := Jε(m̂ε(u)),

and its restriction to the sphere, Ψε(u) : Sp′ → R. Note that both Ψ̂ε and Ψε are
continuous. The following lemma is very important in our approach, and the proof
can be found in [26, Chapter 3].

Lemma 2.11 [26]. The applications defined above satisfy:

(i) Ψ̂ε ∈ C1(Lp′
(RN ) \ {0},R) and, for u ∈ Lp′

(RN ) \ {0},

Ψ̂′
ε(u)v =

|m̂ε(u)|p′

|u|p′
J ′

ε(m̂ε(u))v

= tuJ
′
ε(m̂ε(u))v, ∀v ∈ Lp′

(RN );

(ii) Ψε ∈ C1(Sp′ ,R) and, for u ∈ Sp′ ,

Ψε(u)v = |mε(u)|p′J ′
ε(mε(u))v, ∀v ∈ TuSp′ ,

where TuSp′ denotes the tangent space of Sp′ at u;

(iii) If {un} ⊂ Sp′ is a (PS)-sequence for Ψε, then {mε(un)} is a (PS)-sequence
for Jε. Reciprocally, if {mε(un)} is a (PS)-sequence for Jε, then {m−1

ε (un)}
is a (PS)-sequence for Ψε;

(iv) u ∈ Sp′ is a critical point of Ψε if, and only if mε is a (nonzero) critical of
Jε. Moreover,

inf
Sp′

Ψε = inf
Mε

Jε.

We would like to point out that a version of lemma 2.11 also holds for the
functional J∞. Hereafter, Ψ̂∞ and Ψ∞ are the functionals given in lemma 2.11
with Jε replaced by J∞. Combining lemma 2.11 and proposition 2.1, we have the
following result:

Corollary 2.4. There is ω∗ ∈ Sp′ such that

Ψ∞(ω∗) = c∞ and Ψ′
∞(ω∗) = 0.
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3. Estimates involving the minimax levels

In this section, we will prove some estimates involving the minimax levels cε and
c∞. From

J∞(u) � Jε(u) ∀u ∈ Lp′
(RN ),

we have

c∞ � cε.

Lemma 3.1. The minimax levels cε and cA∞ satisfy the inequality cε < cA∞ . Then
c∞ < cA∞ .

Proof. Arguing as in the proof of theorem 2.1, there exists u ∈ Lp′
(RN ) such that

JA∞(u0) = cA∞ and J ′
A∞(u0) = 0,

where JA∞ : Lp′
(RN ) → R denotes the dual energy functional associated with the

problem

{
−Δu+ u = A∞f(u(x)) a.e. in R

N ,

u ∈W 2,p/p−1(RN ),
(3.1)

and cA∞ denotes the mountain pass level of JA∞ .
By lemma 2.6, there exists t > 0 such that tu0 ∈ Mε, i.e.,

cε � Jε(tu0) =
∫

RN

A(εx)−1/(p−1)G(tu0) dx− 1
2

∫
RN

(tu0)K(tu0) dx.

Since A(εx) > A∞ for all x ∈ R
N , we have

cε � JA∞(tu0) � max
s�0

JA∞(su0) = JA∞(u0) = cA∞ ,

which finishes the proof. �

The next lemma is very useful in verifying (PS)c condition for some values of c.

Lemma 3.2. The functional Ψε satisfies the (PS)c condition for c � c∞ + γ, where
γ = 1

2 (cA∞ − c∞).

Proof. Let (ωn) ⊂ Sp′ be a (PS)c sequence for Ψε. From lemma 2.11 un = mε(ωn)
is also a (PS)c sequence for functional Jε. Then by lemma 2.3, {un} is a bounded
sequence in Lp′

(RN ), passing to a subsequence of {un}, still denoted by {un}, there

https://doi.org/10.1017/prm.2020.30 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.30


564 C. O. Alves, Z. Yuan and L. Huang

exists u ∈ Lp′
(RN ) such that

un ⇀ u in Lp′
(RN ) and un(x) → u(x) a.e. in R

N .

As G ∈ C1(R), the same argument found in [7, propositions 2.1 and 4.1] works to
show that

Jε(un) − Jε(wn) − Jε(u) = on(1), (3.2)

where wn = un − u. Now, we will show that

‖J ′
ε(un) − J ′

ε(wn) − J ′
ε(u)‖ = on(1). (3.3)

Unfortunately, we cannot use [7], because g is not C1(R). Here the idea is the
following: For each v ∈ Lp′

(RN ) with |v|p′ � 1, as {un} and {wn} are bounded
sequences in Lp′

(RN ), combining the growth conditions on g and Hölder inequality,
we can ensure that, given τ > 0, there exists R > 0, which is independent of n and
v, such that

sup
|v|p′�1

∫
Bc

R(0)

|g(un) − g(wn) − g(u)||v|dx � τ

2
, ∀n ∈ N. (3.4)

On the other hand, arguing as in the proof of lemma 2.3, and using lemma 2.1, we
know that

|g(un) −K(un)|p → 0,

K(un) ⇀ K(u) in Lp(RN ),

and

K(un) → K(u) in Lp(BR(0)), ∀R > 0.

Then, for R > 0 fixed, there is h1 ∈ Lp(BR(0)) such that

|K(un)| � h1 a.e. in BR(0).

From this, there is h2 ∈ Lp(BR(0)) such that

|g(un)| � h2 a.e. in BR(0).

By growth condition on g, there exists h3 ∈ Lp′
(BR(0)) such that

|un| � h3 a.e. in BR(0).

Recalling that un(x) → u(x) a.e in R
N , the Lebesgue theorem gives

g(un) − g(wn) − g(u) → 0 in Lp(BR(0)).

From this, we derive that there is n0 ∈ N such that

sup
|v|p′�1

∫
BR(0)

|g(un) − g(wn) − g(u)||v|dx � τ

2
, ∀n � n0. (3.5)

Then (3.3) follows from (3.4) and (3.5).
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Recalling that J ′
ε(u) = 0 and Jε(u) � 0, it follows from (3.2) and (3.3) that

‖J ′
ε(wn)‖ = on(1) and Jε(wn) → c∗ = c− Jε(u). (3.6)

This implies that {wn} is a (PS)c∗ sequence for Jε with c∗ � c∞ + γ.
Claim 1. For each R > 0 fixed,

lim
n→+∞ sup

y∈RN

∫
BR(y)

|wn|p′
dx = 0. (3.7)

Indeed, we can apply lemma 2.10 to deduce that wn → 0 in Lp′
(RN ), or equivalently,

un → u in Lp′
(RN ). From this we have ωn = m−1

ε (un) → m−1
ε (u) = ω in Lp′

(RN ).
Then the lemma is proved.

Now, we are going to prove Claim 1. If the claim is false, by lemma 2.10, there
are ξ > 0 and {yn} ⊂ R

N such that

lim sup
n→+∞

∫
BR(yn)

|wn|p′
dx � ξ > 0.

Hence, there is c > 0 such that

lim sup
n→+∞

∫
BR(yn)

g(wn)wn dx � ξ > 0.

Due to the fact that wn ⇀ 0 in Lp′
(RN ) and {g(wn)} is convergent in Lp(BR(0)),

it means that {yn} is an unbounded sequence. Setting

w̃n = wn(.+ yn),

we have that {w̃n} is a bounded sequence in Lp′
(RN ). Hence, there exist w̃ ∈

Lp′
(RN ) \ {0} and a subsequence of {w̃n}, still denoted by itself, such that

w̃n ⇀ w̃ in Lp′
(RN ).

Moreover, the same arguments used in the proof of lemma 2.3 give

w̃n(x) → w̃(x) a.e. in R
N .

Since J ′
ε(wn)ψ(.− yn) = on(1) for ∀ψ ∈ Lp′

(RN ), the above limits ensure that∫
RN

A−1/(p−1)
∞ g(w̃)ψ dx =

∫
RN

K(w̃)ψ dx,

implying that w̃ is a nontrivial critical point of solution of JA∞ . As a consequence

cA∞ � JA∞(w̄)

= JA∞(w̄) − 1
2
J ′

A∞(w̄)w̄

= lim
n→∞

∫
RN

A(ε(x+ yn))−1/(p−1)

(
G(w̃n) − 1

2
g(w̃n)w̃n

)
dx

� lim inf
n→∞

[
Jε(wn) − 1

2
J ′

ε(wn)wn

]

= c∗ � c∞ + γ,
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which contradicts to the fact that γ < cA∞ − c∞. Hence Ψε satisfies the (PS)c

condition for c � c∞ + γ. �

In the following, fix ρ0, r0 > 0 satisfying Bρ0(zi) ∩Bρ0(zj) = Ø for i �= j and i, j ∈
{1, . . . , l}, ⋃l

i=1Bρ0(zi) ⊂ Br0(0) and Kρ0/2 =
⋃l

i=1Bρ0/2(zi). Moreover, we also
set the function Qε : Lp′

(RN ) → R
N by

Qε(u) =

∫
RN χ(εx)|u|p′

dx∫
RN |u|p′ dx

,

where χ : R
N → R

N is given by

χ(x) =

{
x, if |x| � r0,

r0
x
|x| , if |x| > r0.

The following lemma is very useful to obtain (PS)c sequences associated with Ψε.

Lemma 3.3. There exist α0 > 0 and ε1 > 0 such that if u ∈ Sp′ and Ψε � c∞ + α0,
then Qε(u) ∈ Kρ0/2, ∀ε ∈ (0, ε1).

Proof. If the lemma is not true, then there exist αn → 0, εn → 0 and ωn ∈ Sp′ such
that

Ψεn
(ωn) � c∞ + αn

and

Qεn
(ωn) �∈ Kρ0/2.

From the definitions of Ψ∞ and Ψε we have

c∞ � Ψ∞(ωn) � Ψεn
(ωn) � c∞ + αn, ∀n ∈ N.

Then

{ωn} ⊂ Sp′ and Ψ∞(ωn) → c∞.

By Ekeland’s Variational principle, we can assume that Ψ′
∞(ωn) → 0. Hence,

un = m∞(ωn) verifies

{un} ⊂ M∞, J∞(un) → c∞ and J ′
ε(un) → 0.

By virtue of theorem 2.1, we need to consider the following two cases:

(i) un → u �= 0 in Lp′
(RN ),

or

(ii) there exists {yn} ⊂ R
N with |yn| → ∞ such that the sequence vn = un(.+ yn)

is convergent in Lp′
(RN ) for some v ∈ Lp′

(RN ) \ {0}.
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Analysis of (i): Applying Lebesgue’s dominated convergence theorem, we have

Qεn
(un) =

∫
RN χ(εnx)|un|p′

dx∫
RN |un|p′ dx

→
∫

RN χ(0)|u|p′
dx∫

RN |u|p′ dx
= 0 ∈ Kρ0/2.

Then Qεn
(ωn) = Qεn

(un) ∈ Kρ0/2 for n large enough, which is a contradiction.
Analysis of (ii): By J ′

ε(un)un = 0, we have

∫
RN

A(εnx+ εnyn)−1/p−1g(vn)vn dx =
∫

RN

vnK(vn) dx. (3.8)

Next, we consider two cases:

(I) {εnyn} → +∞, and

(II) εnyn → y for some y ∈ R
N , for some subsequence.

If (I) holds, it follows from vn → v in Lp′
(RN ) and (3.8) that

∫
RN

A−1/p−1
∞ g(v)v dx =

∫
RN

vK(v) dx,

and so, v ∈ M∞. Thereby

cA∞ � JA∞(v)

= JA∞(v) − 1
2
J ′

A∞(v)v

= lim
n→+∞

∫
RN

A(εnx+ εnyn)−1/(p−1)

(
G(vn) − 1

2
g(vn)vn

)
dx.

Since

∫
RN

A(εnx+ εnyn)−1/(p−1)

(
G(vn) − 1

2
g(vn)vn

)
dx

=
∫

RN

A−1/(p−1)(x)
(
G(un) − 1

2
g(un)un

)
dx

= J∞(un) − 1
2
J ′
∞(un)un,

we obtain

cA∞ � lim
n→∞

(
J∞(un) − 1

2
J ′
∞(un)un

)
= lim

n→∞ J∞(un) = c∞,

which contradicts to lemma 3.1.
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Now, if (II) holds, the previous argument yields

cA(y) � c∞, (3.9)

where cA(y) is the mountain pass level of the functional JA(y)(u) : Lp′
(RN ) → R

given by

JA(y)(u) = A(y)−1/(p−1)

∫
RN

G(u) dx− 1
2

∫
RN

uK(u) dx.

One can see that

cA(y) = inf
u∈MA(y)

JA(y)(u),

where

MA(y) = {u ∈ Lp′
(RN ) \ {0} : J ′

A(y)(u)u = 0}.
If A(y) < 1, it is possible to prove that cA(y) > c∞, which contradicts (3.9). Then
A(y) = 1 and y = zi for some i = 1, . . . , l. Hence

Qεn
(un) =

∫
RN χ(εnx)|un|p′

dx∫
RN |un|p′ dx

=

∫
RN χ(εnx+ εnyn)|vn|p′

dx∫
RN |vn|p′ dx

→
∫

RN χ(y)|v|p′
dx∫

RN |v|p′ dx

= ai ∈ Kρ0/2

from which it follows that Qεn
(ωn) = Qεn

(un) ∈ Kρ0/2 for n large, which is absurd,
because we are assuming that Qεn

(ωn) �∈ Kρ0/2. Then the proof is completed. �

Next, we give the following symbols.

Ωi
ε = {u ∈ Sp′ : |Qε(u) − zi| < ρ0},

∂Ωi
ε = {u ∈ Sp′ : |Qε(u) − zi| = ρ0},
αi

ε = inf
u∈Ωi

ε

Ψε(u),

α̃i
ε = inf

u∈∂Ωi
ε

Ψε(u).

Lemma 3.4. There exists ε2 > 0 such that

αi
ε < c∞ + γ and αi

ε < α̃i
ε,

for all ε ∈ (0, ε2), where γ = 1
2 (cA∞ − c∞) > 0.

Proof. Let u ∈ Lp′
(RN ) be a ground state critical of Ψ∞, i.e.,

u ∈ Sp′ , Ψ∞(u) = c∞ and Ψ′
∞(u) = 0 (See corollary 2.4).

For 1 � i � l and ε > 0, we define the function ũi
ε : R

N → R by ũi
ε(x) = u(x− zi/ε).

Clearly ũi ∈ Sp′ and the following claim holds:
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Claim 2. For all 1 � i � l, we have

lim sup
ε→0

(
sup
t�0

Jε(tũi
ε)

)
� c∞.

In fact, by a simple change of variable,

Jε(tũi
ε) =

∫
RN

A(εx+ zi)−1/p−1G(tu) dx− 1
2

∫
RN

tuK(tu) dx.

By virtue of a direct computation there exists s = s(ε) > 0 such that

max
t�0

Jε(tũi
ε) = Jε(sũi

ε).

Furthermore, it is possible to show that s(ε) → s0 > 0 as ε→ 0. Hence

lim sup
ε→0

(
max
t�0

Jε(tũi
ε)

)
=

∫
RN

A(zi)−1/p−1G(s0u) dx− 1
2

∫
RN

s0uK(s0u) dx

� J∞(s0u) � max
s�0

J∞(u) = c∞.

Then

lim sup
ε→0

(
sup
t�0

Jε(tũi
ε)

)
� c∞,

for i ∈ {1, . . . , l} and Claim 2 is proved.
Once Qε(ũi

ε) → zi as ε→ 0, it means that ũi
ε ∈ Ωi

ε for ε sufficiently small. On the
other hand, from Claim 2 one has

lim sup
ε→0

Ψε(ũi
ε) < c∞ +

α0

4
.

Hence, there is ε∗ > 0 such that

αi
ε < c∞ +

α0

4
, ∀ε ∈ (0, ε∗). (3.10)

Then, decreasing α0 if necessary, we derive

αi
ε < c∞ + γ, ∀ε ∈ (0, ε∗),

which proves the first inequality. We now show the second one. Note that if u ∈ ∂Ωi
ε,

then

u ∈ Sp′ and |Qε(u) − zi| = ρ0 >
ρ0

2
,

that is, Qε(u) �∈ Kρ0/2. Thus, from lemma 3.3 we obtain that

Ψε(u) > c∞ + α0 forallu ∈ ∂Ωi
ε and ε ∈ (0, ε1),

and so

α̃i
ε = inf

u∈∂Ωi
ε

Ψε(u) � c∞ + α0, ∀ε ∈ (0, ε1). (3.11)
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Consequently, it follows from (3.10) and (3.11) that

αi
ε < α̃i

ε for ∀ε ∈ (0, ε1).

Then the results are proved by fixing ε2 = min{ε1, ε∗}. �

Proof of theorem 1.1. From lemma 3.4 there exists ε2 > 0 such that

αi
ε < α̃i

ε for∀ε ∈ (0, ε1).

It follows from lemma 2.4 that Ψε is bounded from on Sp′ . By Ekeland’s variational
principle there exists a minimizing sequence (ui

n) ⊂ Ωi
ε such that

Ψε(ui
n) → αi

ε (3.12)

and

Ψε(ui
n) < Ψε(u) +

1
n
|u− ui

n|p′ , ∀u ∈ Ωi
ε, u �= ui

n. (3.13)

Fixing v ∈ Lp′
(RN ) and τ i

n small enough, we set the path γi
n : (−τ i

n, τ
i
n) → Ωi

ε by

γi
n(s) =

ui
n + sv

|ui
n + sv|p′

.

A simple computation gives that γi
n ∈ C1((−τ i

n, τ
i
n),Ωi

ε) with

γi
n(0) = ui

n and (γi
n)′(0) = v − ui

n

∫
RN

|ui
n|p

′−2ui
nv dx. (3.14)

From (3.13),

Ψε(ui
n) < Ψε(γi

n(s)) +
1
n
|γi

n(s) − ui
n|p′ , ∀s ∈ (−τ i

n, τ
i
n),

leading to

− 1
n

∣∣∣∣γi
n(s) − ui

n

s

∣∣∣∣
p′
<

Ψε(γi
n(s)) − Ψε(ui

n)
s

, ∀s ∈ (0, τ i
n).

Taking the limit of s→ 0+, we get

− 1
n
|(γi

n)′(0)| � Ψ′
ε(γ

i
n(0))((γi

n)′(0)). (3.15)

Since |ui
n|p′ = 1, by Hölder inequality there is C > 0 such that

|(γi
n)′(0)| � C|v|p′ . (3.16)

On the other hand, by (3.14),

Ψ′
ε(γ

i
n(0))((γi

n)′(0)) = Ψ′
ε(u

i
n)((γi

n)′(0))

= Ψ′
ε(u

i
n)(v) −

(∫
RN

|ui
n|p

′−2ui
nv dx

)
Ψ′

ε(u
i
n)(ui

n).
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Using the fact that Ψ′
ε(u

i
n)(ui

n) = 0, it follows that

Ψ′
ε(γ

i
n(0))((γi

n)′(0)) = Ψ′
ε(u

i
n)(v). (3.17)

From (3.15)–(3.17),

−C
n
|v| � Ψ′

ε(u
i
n)(v), ∀v ∈ Lp′

(RN ),

and so,

‖Ψ′
ε(u

i
n)‖ � 1

n
, ∀n ∈ N.

The above study ensures that (ui
n) is a (PS)αi

ε
sequence for Ψε. Noting that αi

ε <

c∞ + ρ, from lemma 3.2 there exists ui such that ui
n → ui in Lp′

(RN ). So

ui ∈ Ωi
ε, Ψε(ui) = αi

ε and Ψ′
ε(u

i) = 0.

Since

Qε(ui) ∈ Bρ0(zi), Qε(uj) ∈ Bρ0(zj),

Bρ0(zi) ∩Bρ0(zj) = ∅ for i �= j,

we deduce that ui �= uj for i �= j for 1 � i, j � l. Hence Ψε possess at least l non-
trivial critical points for all ε ∈ (0, ε∗) on Sp′ , with ε∗ ∈ (0, ε2). From lemma 2.11,
Jε possess at least l nontrivial critical points for all ε ∈ (0, ε2) in Lp′

(RN ). Hence,
by lemma 2.2, problem (1.1) has at least l nontrivial solutions. �
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