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COUNTABLY PERFECTLY MEAGER SETS

ROMAN POL AND PIOTR ZAKRZEWSKI

Abstract. We study a strengthening of the notion of a perfectly meager set. We say that a subset A
of a perfect Polish space X is countably perfectly meager in X, if for every sequence of perfect subsets
{Pn : n ∈ N} of X, there exists an F� -set F in X such that A ⊆ F and F ∩ Pn is meager in Pn for each
n. We give various characterizations and examples of countably perfectly meager sets. We prove that not
every universally meager set is countably perfectly meager correcting an earlier result of Bartoszyński.

§1. Introduction. Let us recall that a subset A of a perfect Polish space X is
universally meager (A ∈ UM; see [1, 2, 24, 25]), if for every Borel isomorphism f
between X and any perfect Polish space Y the image of A under f is meager in Y
(this class of sets was earlier introduced and studied by Grzegorek [8–10] under the
name of absolutely of the first category sets).

Let us also recall that A is perfectly meager (A ∈ PM), if for all perfect subsets P
of X, the set A ∩ P is meager in P. Clearly, A ∈ PM if and only if for every perfect
subset P of X, there exists an F�-set F in X such that A ⊆ F and F ∩ P is meager
in P (cf. [2, Theorem 6]).

We shall say that A is countably perfectly meager (A ∈ PM�), if for every sequence
of perfect subsets {Pn : n ∈ N} of X, there exists an F�-set F in X such that A ⊆ F
and F ∩ Pn is meager in Pn for each n.

It follows directly from the definition that the class PM� is, exactly as the other
two classes, a �-ideal of subsets of the underlying space X (shortly: a �-ideal on X),
i.e., it is hereditary, closed under taking countable unions and contains all singletons.

One readily checks that UM ⊆ PM and it is consistent that UM � PM but also
that UM = PM (see [1]).

Bartoszyński [2, Theorem 7, (3) ⇒ (2) ⇒ (1)] proved that PM� ⊆ UM. Actually,
it is in that paper where the property used by us to define the class PM� first
appeared (without any specific name) and where it was claimed that this property
characterizes universally meager sets in the Cantor space 2N. Unfortunately, there
is a flaw in the part of the argument showing the inclusion UM ⊆ PM� (cf. [2,
Theorem 7, (1) ⇒ (3)]).

In fact, the following theorem immediately implies that it is consistent (in
particular, true under CH) that there exists a universally meager subset of 2N which
is not countably perfectly meager in 2N.
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COUNTABLY PERFECTLY MEAGER SETS 1215

Theorem 1.1. Let T be a subset of 2N of cardinality 2ℵ0 . There exist a set
H ⊆ T × 2N intersecting each vertical section {t} × 2N, t ∈ T , in a singleton and
a homeomorphic copy E of H in 2N which is not a PM�-set in 2N. In particular, T is a
continuous injective image of E.

Under the notation from Theorem 1.1 it follows that if T is universally meager then
H is universally meager as well (UM being closed with respect to preimages under
continuous injections, see [24]) and so is its homeomorphic copy E. A refinement
of this argument also shows that, at least consistently, in contrast to both PM
and UM the class PM� is not closed with respect to homeomorphic images (see
Theorem 3.1(3)). Consequently, unlike in the case of PM and UM, the statement
that a subspace A of a Polish space is countably perfectly meager makes sense only
if we specify a Polish space X in which it is embedded. We shall therefore speak of
countably perfectly meager sets in X unless X is clear from the context.

In Section 2 we present various characterizations and some examples of countably
perfectly meager sets in 2N. These include (for the definitions see Section 2.2):

• sets perfectly meager in the transitive sense, in particular:
– �-sets,
– strongly meager sets.

• sets with the Hurewicz property and no perfect subsets,
• �′-sets.

Section 3 is largely devoted to a proof of Theorem 1.1. We derive from it various
examples of subsets of 2N which are universally meager but not countably perfectly
meager in 2N.

In particular, if there is a �-set in 2N of cardinality of the continuum, then there is
also one which is not countably perfectly meager in 2N (see Theorem 3.1(2)).

Moreover, if there exists a �′-set in 2N of cardinality of the continuum, then there
is also one whose homeomorphic copy is not countably perfectly meager in 2N (see
Theorem 3.1(3)). This strengthens the result of Sierpiński [21] that �′-property is
not invariant under homeomorphisms.

We end Section 3 with a proof based on one of the characterizations of Section 2
that the class PM� is closed under products in the sense that if A and B are PM�-sets
in perfect Polish spaces X and Y, respectively, then A× B is a PM�-set in X × Y
(see Theorem 3.2).

In Section 4 we gather some additional comments.
In Section 4.1 we present an example of a countably perfectly meager set in 2N

which has neither the Hurewicz property nor �′-property (see Example 4.1). We
also give an example of a countably perfectly meager set in 2N which is not perfectly
meager in the transitive sense (see Example 4.4).

Section 4.2 contains remarks on some �-ideals related to the classes PM and
PM� .

§2. Characterizations and examples of countably perfectly meager sets.

2.1. Characterizations of countably perfectly meager sets. In this subsection A is
always a subset of a perfect (i.e., with no isolated points) Polish (i.e., a separable
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1216 ROMAN POL AND PIOTR ZAKRZEWSKI

completely metrizable) topological space X and PM� is the family of all subsets of
X which are countably perfectly meager in X.

Let us recall that A is an s0-set if for every perfect (i.e., non-empty, closed, and with
no isolated points) set P there is a copy of the Cantor set K ⊆ P with K ∩ A = ∅.
Clearly, every perfectly meager set has property s0.

Theorem 2.1. The following are equivalent:
(1) A ∈ PM� .
(2) For every sequence {Kn : n ∈ N} of copies of the Cantor set in X there is an
F�-set F in X such that A ⊆ F and Km �⊆ F for each m ∈ N.

(3) For every sequence {Kn : n ∈ N} of copies of the Cantor set in X there are
closed sets Fn in X such that A ⊆

⋃
n Fn and Km �⊆ Fn for each m, n ∈ N.

(4) For every sequence {Kn : n ∈ N} of pairwise disjoint copies of the Cantor set
in X there are closed sets Fn in X such that A ⊆

⋃
n Fn and Km �⊆ Fn for each

m, n ∈ N.
(5) A is an s0-set and for every sequence {Kn : n ∈ N} of pairwise disjoint and

disjoint from A copies of the Cantor set in X there are closed sets Fn in X such
that A ⊆

⋃
n Fn and Km �⊆ Fn for each m, n ∈ N.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
To prove that (4) ⇒ (5), it only suffices to show that if (4) holds, then A is an

s0-set. To see this, let us fix a perfect set P and let K0, K1, ... be pairwise disjoint
copies of the Cantor set in P such that each non-empty relatively open set in P
contains some Kn. Now, by (4), A ⊆

⋃
n Fn for some closed sets Fn in X such that

no Fn covers any Km. It follows that Fn ∩ P is nowhere dense in P for each n and so
there exists a perfect set K ⊆ P disjoint from

⋃
n Fn. Then K ∩ A = ∅ as well.

To prove that (5) ⇒ (1), we shall need the following simple observation.

Claim 2.2. For every sequence of perfect sets {Pn : n ∈ N} in X, there is a sequence
of pairwise disjoint Cantor sets {Kn : n ∈ N} with Kn ⊆ Pn for each n.

Indeed, first pick points xi ∈ Pi with xi �= xj for i �= j, and then choose
successively the Cantor sets Kn in Pn disjoint from Ki , for i < n, and {xj : j > n}.

Now let us assume (5) and let {Pn : n ∈ N} be a sequence of perfect subsets of X.
For each n let {Unm : m ∈ N} be a basis of non-empty relatively open subsets of

Pn and for each m let us pick a Cantor set Knm ⊆ Unm. By the claim and the fact that
A is an s0-set we may assume that the sets Knm, n,m ∈ N, are pairwise disjoint and
disjoint from A.

By (5), there are closed sets Fi in X such that A ⊆
⋃
i Fi and Knm �⊆ Fi for each

m, n, i ∈ N. Letting F =
⋃
i Fi we easily conclude that F ∩ Pn is meager in Pn for

each n. �
As a corollary let us formulate a characterization of countably perfectly meager

sets stated and partially proved by Bartoszyński in [1].

Theorem 2.3. The following are equivalent:
(1) A ∈ PM� .
(2) For every sequence of countable dense-in-itself sets {An : n ∈ N } there are sets
Bn ⊆ An such that An = Bn for each n ∈ N and

⋃
n Bn is a G�-set relative to

A ∪
⋃
n An.
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Proof. (1) ⇒ (2) was proved by Bartoszyński [1, Theorem 7, (3) ⇒ (2)].
(2) ⇒ (1). To prove that A ∈ PM� , we shall check that A satisfies condition (5)

of Theorem 2.1.
First note that A ∈ PM (for a proof see [1, Theorem 6, (2) ⇒ (1)]; in fact,

Bartoszyński [1, Theorem 7, (2) ⇒ (1)] proved that A ∈ UM) which implies that A
is an s0-set.

Let {Kn : n ∈ N} be a sequence of (pairwise disjoint but this assumption is
superfluous) copies of the Cantor set disjoint from A. We shall show that there
is an F�-set F such that A ⊆ F and Kn\F �= ∅ for each n. To this end, for each n let
us choose a countable dense subset An of Kn. By (2), there are sets Bn ⊆ An such
that Bn = Kn for each n ∈ N and a G�-subset G of X such that (A ∪

⋃
n An) ∩G =⋃

n Bn. Let F = X\G . Then A ⊆ F and for each n we have Bn ⊆ Kn\F , so F is as
required. �

Remark 2.4. The characterization of PM�-sets from Theorem 2.3 should be
compared with the following characterization of PM-sets by Bennett, Hosobuchi,
and Lutzer [4] (for a short proof see [1, Theorem 6]):

The following are equivalent:

(1) A ∈ PM.
(2) For every countable dense-in-itself set A0 there exists a set B0 ⊆ A such that
A0 = B0 and B0 is a G�-set relative to A ∪ A0.

Our last characterization of PM�-sets is closely related to a characterization of
UM sets (cf. Remark 2.7).

Theorem 2.5. The following are equivalent:

(1) A ∈ PM� .
(2) For every continuous bijection f : NN →X there are closed sets Fn in X such

that A ⊆
⋃
n Fn and f–1(Fn) is nowhere dense in NN for each n ∈ N.

Proof. (1) ⇒ (2). Since open sets inNN are mapped by f onto Borel sets, one can
choose a sequence {Bn : n ∈ N} of Borel subsets of X such that {f–1(Bn) : n ∈ N}
is a basis of the topology of NN. For each n let us pick a Cantor set Kn ⊆ Bn. Since
A ∈ PM� , there are closed sets Fn in X such that A ⊆

⋃
n Fn and Km �⊆ Fn for each

m, n ∈ N. It readily follows that f–1(Fn) is nowhere dense in NN for each n ∈ N.
(2) ⇒ (1). To prove that A ∈ PM� , we shall check condition (4) of Theorem 2.1.
Let {Kn : n ∈ N} be a sequence of pairwise disjoint Cantor sets in X.
A key observation is the following fact.

Claim 2.6. There is a continuous bijection f : NN →X such that f–1(Kn) is open
in NN for each n ∈ N.

To prove the claim, let � be the (perfect Polish) topology of X and let us first
extend � to the topology �′ whose basic open sets are elements of � and relatively
open subsets of Kn’s. More precisely, let �n be the topology generated by � ∪ {Kn}
and then let �′ be the topology generated by

⋃
n �n. This topology is Polish (cf. [12,

13.A, Exercise 7.15]) and it is easy to check that it is also perfect. It follows (cf. [12,
7.15]) that there is a bijection f : NN →X which is continuous in the sense of �′

hence also in the sense of �.
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1218 ROMAN POL AND PIOTR ZAKRZEWSKI

Having proved the claim we may now apply the assumption about A to find closed
setsFn in X such thatA ⊆

⋃
n Fn andf–1(Fn) is nowhere dense inNN for each n ∈ N.

But f–1(Km) being open in NN we conclude that Km �⊆ Fn for each m, n ∈ N. This
shows that A satisfies condition (4) of Theorem 2.1 completing the proof. �

Remark 2.7. The characterization of PM�-sets from Theorem 2.5 should be
compared with the following characterization of UM-sets (cf. [25, Theorem 2.4]):

The following are equivalent:
(1) A ∈ UM.
(2) For every continuous bijection f : NN →X there are sets Fn in X such that
A ⊆

⋃
n Fn and f–1(Fn) is closed and nowhere dense in NN for each n ∈ N.

In particular, in view of Theorem 2.5, this gives another proof of the inclusion
PM� ⊆ UM.

2.2. Examples of countably perfectly meager sets. Let us recall that a subset A of
2N is perfectly meager in the transitive sense (A ∈ AFC′; cf. [15, 16, 23]) if for every
perfect subset P of 2N, there exists anF�-set F in X such thatA ⊆ F andF ∩ (P + t)
is meager in P + t for each t ∈ 2N or, equivalently (cf. [16, Lemma 6]), if for every
sequence {Kn : n ∈ N} of copies of the Cantor set in 2N there are closed sets Fn in
2N such thatA ⊆

⋃
n Fn andKm + t �⊆ Fn for eachm, n ∈ N and t ∈ 2N. Combining

this with Theorem 2.1 we get the following result which somewhat strengthens the
fact that AFC′ ⊆ UM established by Nowik and Weiss [16, Theorem 2] by a similar
argument.

Theorem 2.8. Every subset of 2N which is perfectly meager in the transitive sense
is countably perfectly meager in 2N.

As a corollary we obtain a list of some classical classes of sets which being perfectly
meager in the transitive sense are countably perfectly meager as well.

Corollary 2.9. The following collections of subsets of 2N are countably perfectly
meager in 2N:

(1) meager-additive sets,
(2) �-sets,
(3) strongly meager sets,
(4) Sierpiński sets.

Proof.

(1). See [26, Proposition 6.6].
(2). See [15]. This also follows from (1), since by [17, Proposition 3.7], every �-set

is meager-additive.
(3). See [15, Theorem 9].
(4). This follows from (3), since Pawlikowski [18] proved that every Sierpiński set

is strongly meager. �
The following result gives more examples of universally meager sets which are

countably perfectly meager as well.
Let us recall that given a perfect Polish space X a set A ⊆ X
• has the Hurewicz property, if every continuous image of A in NN is bounded in

the ordering ≤∗ of eventual domination,
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• is a �′-set in X if every countable set D ⊆ X is relatively G� in A ∪D.
The cardinal number b is the minimal cardinality of a subset of NN which is

unbounded in the ordering ≤∗.

Proposition 2.10. The following collections of sets are countably perfectly meager
in the respective spaces:

(1) subsets of a perfect Polish space X with the Hurewicz property and no perfect
subsets; in particular, subsets of X of cardinality less than b,

(2) �′-subsets in a perfect Polish space X, in particular:
(a) sets in NN of the form {fα : α < b} where

• α < � < b implies fα <∗ f� ,
• for every f ∈ NN there is α < b with fα �∗ f.

(b) Hausdorff (	1, 	
∗
1 )-gaps in P(N).

Proof. (1). This was actually shown in Proposition 2.3 of Zakrzewski [24].
(2). Let A be a �′-set in X. To prove that A ∈ PM� , we shall check condition (5)

of Theorem 2.1. Clearly, A is an s0-set. For a sequence {Kn : n ∈ N} of pairwise
disjoint and disjoint from A copies of the Cantor set in X for each n let us pick a
point dn ∈ Kn and letD = {dn : n ∈ N}. Then, A being a �′-set, there is an F� set F
in X such that A ⊆ F and F ∩D = ∅, so dn witnesses that Kn �⊆ F for any n ∈ N.

Sets described in (a) and (b) are classical examples of �′ sets due to Rothberger
and Hausdorff (see [14]). �

Remark 2.11. An easier way of proving that every Sierpiński set in 2N is in PM�

(cf. Corollary 2.9) is to combine Proposition 2.10(1) with Theorem 7 of Fremlin
and Miller [6] which states that every Sierpiński set has the Hurewicz property.

Likewise, another way of proving that every �-set in 2N is in PM� (cf. Corollary
2.9) is to combine Proposition 2.10(1) with Theorem 2 of Galvin and Miller [7]
which states that every �-set has the Hurewicz property.

On the other hand, the set described in Proposition 2.10(2)(a) is �′ in NN but does
not have the Hurewicz property as an unbounded subset of NN. Likewise, not every
subset of 2N with the Hurewicz property and no perfect subsets (cf. Proposition
2.10(1)) is a �′-set in 2N; see Example 4.1 in the comment section below.

§3. PM� versus UM. Theorem 1.1, which we are now going to prove, reveals an
essential difference between the classes UM and PM� .

Proof of Theorem 1.1. Let C0, C1, ... be pairwise disjoint meager Cantor sets in
2N such that:

(1) each non-empty open set in 2N contains some Cn.
Let P = 2N\

⋃
n Cn.

We shall justify the theorem in three steps (A), (B), and (C).

(A) We claim that there exists a setH ⊆ T × P intersecting each vertical section
{t} × P, t ∈ T , in a singleton, such that each F�-set in 2N × 2N containing H
contains also {t} × V for some t ∈ T and a non-empty open set V in 2N.

Indeed, let {Ft : t ∈ T} be a parametrization on T of all F�-sets in 2N × 2N. For
each t ∈ T , we pick (t, ϕ(t)) ∈ ({t} × P)\Ft , whenever this is possible, and we let
ϕ(t) be an arbitrary fixed element of P, otherwise.
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1220 ROMAN POL AND PIOTR ZAKRZEWSKI

Let us check that the graph H = {(t, ϕ(t)) : t ∈ T} has the required property.
Let F be an F�-set in 2N × 2N containing H, and let t ∈ T be such that F = Ft .

Then (t, ϕ(t)) ∈ Ft , hence Ft contains {t} × P. Consequently, P being a dense G�-
set in 2N, the Baire category theorem provides a non-empty open set V in 2N with
{t} × V ⊆ Ft , completing the proof of the claim.

(B) For any s ∈ 2<N let Ns = {x ∈ 2N : s ⊆ x} be the standard basic open set in
2N determined by s.

Let ∼ be the equivalence relation on 2N × 2N, whose equivalence classes are given
by:

[(x, y)]∼ =
{
Nx|n × {y}, if y ∈ Cn,
{(x, y)}, if y ∈ P.

Let �(x, y) = [(x, y)]∼ be the quotient map onto the quotient space K =
(2N × 2N)/ ∼ (whose topology consists of sets U ⊆ K such that �–1(U ) is open
in 2N × 2N).

Claim. The space K is homeomorphic to 2N.

The equivalence classes of ∼ form an upper-semicontinuous decomposition of
2N × 2N (i.e., the saturation of every closed set in 2N × 2N is closed). It follows that
the decomposition space K = 2N × 2N/ ∼ is metrizable (cf. [5, Theorem 4.2.13]).
Moreover, K is compact, zero-dimensional, and has no isolated points, and hence the
claim follows. However, for reader’s convenience, we shall provide a direct argument
to that effect, avoiding the metrization theorem.

Let B consist of clopen subsets of 2N × 2N of the form Ns ×Nt , where s, t ∈ 2<N

and Nt ∩ Ck = ∅ for each k < length(s). We shall show that {�(B) : B ∈ B} is a
countable basis for K consisting of clopen sets.

First, let us note that each set from B is saturated, i.e., is the union of equivalence
classes. Indeed, if (x, y) ∈ Ns ×Nt , Nt ∩

⋃
k<n Ck = ∅ and n = length(s), then

either y ∈ P and then [(x, y)]∼ = {(x, y)} or y ∈ Cm for somem ≥ n which implies
that [(x, y)]∼ = Nx|m × {y} ⊆ Ns ×Nt .

It follows that for each B ∈ B, �(B) and �((2N × 2N)\B) are disjoint open sets
in K, hence �(B) is clopen in K.

Next, let us fix an open set W in K and let c = �(x, y) ∈W . Then, since �–1(W )
is open in 2N × 2N and (x, y) ∈ �–1(W ), we haveNx|n ×Ny|m ⊆ �–1(W ) for some n
and m. Moreover, if y ∈

⋃
k Ck , then we additionally assume that n is the unique k

for which y ∈ Ck (let us note that in this case (x, y) ∈ Nx|n × {y} ⊆ �–1(W )). In any
case,y /∈

⋃
k<n Ck and

⋃
k<n Ck being closed, there is large enoughm′ ≥ m for which

Ny|m′ ∩
⋃
k<n Ck = ∅. Then B = Nx|n ×Ny|m′ ∈ B and �(B) is a neighbourhood

of c contained in W.
We have checked that {�(B) : B ∈ B} is a countable basis for K consisting of

clopen sets. Clearly, no �(B) is a singleton, hence K has no isolated points.
Finally, the equivalence classes of ∼ are closed in 2N × 2N, hence the singletons

of K are closed.
It follows that the space K, being T1 and having a basis consisting of clopen sets,

is also Hausdorff and it is compact as a continuous image of 2N × 2N. Consequently,
being a compact, Hausdorff, second countable, zero-dimensional topological space
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without isolated points, K is homeomorphic to 2N, which completes the proof of
the claim.

Let us also note that the sets

(2) Ps = �(Ns × Cn),

where s ∈ 2<N and n = length(s) are perfect subsets of K.

(C) Finally, let E = �(H ) (cf. (A)). Clearly, E is a homeomorphic copy of H in
K and T is the injective image of E under the continuous function proj1 ◦ �–1|E,
where proj1 is the projection of 2N × 2N onto the first axis.

We shall show that

(3) E is not a PM�-set in K.

To that end, let us consider an F�-set F ∗ in K such that E ⊆ F ∗. Then

(4) F = �–1(F ∗)

is an F�-set in 2N × 2N containing H, so there are t ∈ T and a non-empty open set
V in 2N such {t} × V ⊆ F (cf. (A)).

Let us fix Cn ⊆ V (cf. (1)) and let s = t|n be the unique sequence in 2n such that
t ∈ Ns . We have {t} × Cn ⊆ F and let us notice that �({t} × Cn) = Ps (cf. (2)).

Consequently, Ps ⊆ F ∗ (cf. (4)).
It follows that anyF�-set in K containing E also contains somePs , which confirms

(3), completing the proof of the theorem. �
As a corollary we have the following result which shows that, at least consistency-

wise, the classes UM and PM� are different (part (1)).
Its part (2) strengthens the result of Nowik, Scheepers, and Weiss [15] that

assuming the Continuum Hypothesis there is a �-set in 2N which is not perfectly
meager in the transitive sense (A is a �-set if every countable set D ⊆ A is relatively
G� in A).

Part (3) strengthens the result of Sierpiński [21] that (assuming the continuum
hypothesis) �′-property is not invariant under homeomorphisms.

Theorem 3.1.

(1) If there exists a universally meager set in 2N of cardinality of the continuum,
then there is also one which is not countably perfectly meager.

(2) If there exists a �-set in 2N of cardinality of the continuum, then there is also
one which is not countably perfectly meager.

(3) If there exists a �′-set in 2N of cardinality of the continuum, then there is also one
whose homeomorphic copy in 2N is not countably perfectly meager. In particular,
the class PM� is not closed with respect to homeomorphic images.

In particular, assuming the continuum hypothesis there is a �′-set in 2N whose
homeomorphic copy in 2N is not countably perfectly meager.

Proof. We keep the notation from the proof of Theorem 1.1. For a set T ⊆ 2N

of cardinality 2ℵ0 letH ⊆ T × P and E ⊆ 2N satisfy the assertions of Theorem 1.1.
(1) and (2). It suffices to notice that if T is either universally meager or a �-set,

then so is E, respectively (cf. [24]). But E �∈ PM� .
(3). It can be readily checked that if T is a �′-set in 2N, then H is �′-set in 2N × P.

Since P can be homeomorphically embedded as a G�-set in 2N, we may identify H
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with a �′-set in 2N. But then E is a homeomorphic copy of H in 2N which is not
PM� in 2N. �

We close this section by showing that like UM (see [24]) (but, at least consistency-
wise, unlike PM; see [19]), the class PM� is closed under products.

Theorem 3.2. The product of two countably perfectly meager sets is countably
perfectly meager in the sense that if A and B are PM�-sets in perfect Polish spaces X
and Y, respectively, then A× B is a PM�-set in X × Y .

Proof. Let A and B be PM�-sets in perfect Polish spaces X and Y, respectively.
To prove that A× B is a PM�-set in X × Y , we shall check condition (3) of

Theorem 2.1.
Let {Kn : n ∈ N} be a sequence of Cantor sets in Z = X × Y and for each n let

Ln andMn be the images of Kn under projections of Z onto X and Y, respectively.
Let S = {n ∈ N : Ln is uncountable} and for each n ∈ S let us pick a Cantor set

L′
n ⊆ Ln. Likewise, let T = {n ∈ N :Mn is uncountable} and for each n ∈ T let us

pick a Cantor setM ′
n ⊆Mn.

The sets A and B being countably perfectly meager, there are sequences {F Ai : i ∈
N} and {F Bj : j ∈ N} of closed sets in X and Y, respectively, such that A ⊆

⋃
i F
A
i ,

B ⊆
⋃
j F

B
j , L′

m �⊆ F Ai , andM ′
n �⊆ F Bj whenever m ∈ S, n ∈ T , and n,m, j, i ∈ N.

Let Fi,j = F Ai × F Bj for i, j ∈ N.
Clearly, A× B ⊆

⋃
i,j Fi,j and we claim that for any n, i, j we have Kn �⊆ Fi,j .

Indeed, let us notice that S ∪ T = N since for each n we have Kn ⊆ Ln ×Mn.
It follows that either L′

n �⊆ F Ai (if n ∈ S) orM ′
n �⊆ F Bj (if n ∈ T ), so in either case

Kn �⊆ Fi,j . This completes the proof. �

§4. Comments.

4.1. PM� versus �′, Hurewicz property, and AFC′. The relationship of classes of
subsets of 2N with the Hurewicz property (and no perfect subsets; cf. Proposition
2.10(1)), or of �′-sets (cf. Proposition 2.10(2)), or of AFC′-sets (cf. Theorem 2.9) to
an apparently larger class of PM�-sets seems particularly close.

For example, the characterizations of PM�-sets given in Theorem 2.1 somewhat
resemble the following characterization of sets with the Hurewicz property, obtained
by Just, Miller, Scheepers, and Szeptycki [11, Theorem 5.7]: A ⊆ 2N has the
Hurewicz property if and only if for every sequence {Kn : n ∈ N} of copies of the
Cantor set in 2N disjoint from A there are closed sets Fn in 2N such that A ⊆

⋃
n Fn

andKm ∩ Fn = ∅ for eachm, n ∈ N. In particular, ifA ⊆ 2N has either the Hurewicz
property or �′-property, then for every countable set D ⊆ 2N disjoint from A there
is an F�-set F in 2N such that A ⊆ F and F ∩D = ∅.

The following example, based on a result of Bartoszyński and Shelah [3] and
classical ideas of Rothberger (cf. [14]), shows that there exists (in ZFC) a countably
perfectly meager set in 2N of cardinality b which lacks the latter property and thus
has neither the Hurewicz nor �′ property. It also shows that the Hurewicz and �′

properties are not the same.

Example 4.1. Inductively, one easily constructs a subset {fα : α < b} of NN with
the following properties (cf. Proposition 2.10(2(a))):
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• fα is strictly increasing,
• α < � < b implies fα <∗ f� ,
• for every f ∈ NN there is α < b with fα �∗ f.

By identifying each fα with the characteristic function of its range, we obtain a
homeomorphic copy A of {fα : α < b} in 2N.

Let B = A ∪Q, where Q consists of all eventually zero binary sequences. Then:

• {fα : α < b}, being unbounded in NN, does not have the Hurewicz property,
• {fα : α < b} is a �′-set in NN (cf. Proposition 2.10(2)(a)),
• B has the Hurewicz property and has no perfect subsets (cf. [3, Theorem 1],

[22, Theorem 2.12], and Remark 4.2 below) so, by Proposition 2.10(1), B is
countably perfectly meager in 2N,

• A is countably perfectly meager in 2N as a subset of B,
• A does not the Hurewicz property as the homeomorphic image of {fα : α < b},
• if F is any F� -set in 2N such that A ⊆ F , then F ∩Q �= ∅ (since otherwise F

viewed as a subset of NN is bounded, whereas A is unbounded). In particular,
neither A nor B are �′-sets in 2N.

Remark 4.2. It seems useful to indicate another proof of the fact that the set B
described in Example 4.1 has the Hurewicz property. In fact, in the argument below
it is enough to assume that {fα : α < b} is any well-ordered by eventual domination
and unbounded subset of NN, h : NN →P is a homeomorphism onto the set P of
irrationals in I = [0, 1], Q = I \P, A = {h(fα) : α < b}, and B = A ∪Q.

Let us recall that the Hurewicz property of H ⊆ I is equivalent to the following
covering property (this is the original Hurewicz’s definition; cf. [22]):

for each sequence U1,U2, ... of open in I covers of H, there are finite subfamilies
Fn ⊆ Un such that H ⊆

⋃
n

⋂
m≥n(

⋃
Fm).

Proof. Let U1,U2, ... be open in I covers of B and let G =
⋂
n(

⋃
Un). Since

I \G = P\G is�-compact and so isS = h–1(P\G), there isf ∈ NN such thatg ≤∗ f
for any g ∈ S. Let us pick α < b so that fα �∗ f. Then T = {g ∈ NN : fα ≤∗ g}
is an F�-set in NN disjoint from S and f� ∈ T , whenever � ≥ α.

Let L = h(T ) ∪Q. Then |B\L| < b, as B\L ⊆ {h(f�) : � < α}. Consequently,
B\L has the Hurewicz property and since B\L ⊆ G , there are finite collections
F ′
n ⊆ Un such that B\L ⊆

⋃
n

⋂
m≥n(

⋃
F ′
m).

Let us notice that the set L is �-compact in I so it also has the Hurewicz property
and since L ⊆ G , we can pick finite F ′′

n ⊆ Un such that L ⊆
⋃
n

⋂
m≥n(

⋃
F ′
m).

Then, letting Fn = F ′
n ∪ F ′′

n , we get finite collections Fn ⊆ Un such that B ⊆⋃
n

⋂
m≥n(

⋃
Fm). This shows that B has the Hurewicz property. �

The fact that AFC′-subsets of 2N are closely related to PM�-sets in 2N is revealed
by the following characterization of Bartoszyński (private communication). We are
grateful to Tomek Bartoszyński for allowing us to include his result in our paper.

Proposition 4.3 (T. Bartoszyński). For a setA ⊆ 2N the following are equivalent:
(1) A ∈ PM� .
(2) For every perfect subset P of 2N, there exists an F�-set F in 2N such that A ⊆ F

and F ∩ (P + q) is meager in P + q for every q ∈ Q, where Q consists of all
eventually zero binary sequences.
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Proof. Implication (1) ⇒ (2) follows directly from the definition of countably
perfectly meager sets.

To prove that (2) ⇒ (1), we shall appeal to condition (2) of Theorem 2.1. So
let {Kn : n ∈ N} be a sequence of Cantor sets in 2N. For each n one can pick a
non-empty relatively open compact set Ln in Kn (an intersection of Kn with a basic
neighborhood in 2N) and qn ∈ Q such that all points in Tn = Ln + qn have n first
coordinates zero, and the sets Tn are pairwise disjoint. Then the union P of {0} and
the sets Tn is perfect and (Kn + qn) ∩ P has relatively non-empty interior in P for
each n ∈ N.

Using (2), we fix an F�-set F in 2N such that A ⊆ F and (F + q) ∩ P is meager in
P for every q ∈ Q.

But now it is clear that Kn ⊆ F for no n ∈ N, since otherwise we would have
(Kn + qn) ∩ P ⊆ (F + qn) ∩ P, contradicting the choice of F. �

The following example is a slight modification of a remarkable construction of
Recław [20] and shows that, at least consistently, there exists a countably perfectly
meager in 2N, in fact a �′-set in 2N, which is not perfectly meager in the transitive
sense (a similar construction was also used by Weiss [23, Theorem 3] in his proof
that the existence of a universally meager set in 2N of cardinality of the continuum
implies that there is also one which is not perfectly meager in the transitive sense).
This is also yet another (cf. Theorem 3.1) strengthening of the result of Nowik,
Scheepers, and Weiss [15] that under the Continuum Hypothesis there is a �-set in
2N which is not perfectly meager in the transitive sense.

Example 4.4. Let us assume that there exists a �′-set in 2N of cardinality of the
continuum.

Let C, D be disjoint copies of the Cantor set in 2N such that

(1) the operation + of addition is a homeomorphism betweenC ×D andC +D
(cf. [20]).

Let T ⊆ C be a �′-set in C of cardinality of the continuum.
Arguing as in part (A) of the proof of Theorem 1.1, we obtain a set H ⊆ T ×D

intersecting each vertical section {t} ×D, t ∈ T , in a singleton, such that

(2) each F�-set in C ×D containing H contains also {t} ×D for some t ∈ T .

Now, T being a �′-set in C, one readily checks that H is a �′-set in C ×D (cf. the
proof of Theorem 3.1(3)). It follows that (cf. (1)), if we let Y = +(H ), then Y is a
�′-set in C +D and hence also in 2N.

On the other hand, Y is not perfectly meager in the transitive sense. Indeed, if F
is an arbitrary F�-set in 2N with Y ⊆ F and we let E = (+)–1(F ∩ (C +D)), then
E is an F�-set in C ×D containing H so it also contains (cf. (2)) {t} ×D for some
t ∈ T . Consequently, t +D ⊆ F, completing the proof.

4.2. Remarks on related �-ideals. In this section F always denotes a countable
(possibly finite but non-empty) collection of perfect sets in a perfect Polish space X.

If I is a �-ideal of subsets of X, then by I ∗ we denote the �-ideal generated by the
closed subsets of X which belong to I.
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4.2.1. The �-idealsMGR(F). Following Kechris and Solecki [13] let us put

MGR(F) = {A ⊆ X : A ∩ P is meager in P for every P ∈ F}.

Let us note thatMGR(F) is a �-ideal on X generated by Borel, in fact F��-sets,
and fulfills the c.c.c. Moreover, the quotient Boolean algebra Bor(X )/(MGR(F) ∩
Bor(X )) is isomorphic to the Cohen algebra (cf. [2]). Clearly, the intersection of all
�-ideals of the formMGR(F) is precisely the �-ideal PM.

On the other hand, by [24, Theorem 2.1], the �-ideal UM is the intersection of
all �-ideals I on X such that the quotient Boolean algebra Bor(X )/(I ∩ Bor(X ))
is isomorphic to the Cohen algebra. Any such I is precisely of the form M(X, �),
by which we denote the �-ideal consisting of meager sets with respect to a perfect
Polish topology � on X giving the original Borel structure of X.

4.2.2. The �-ideals MGR∗(F). By the definition (see the beginning of
Section 4), the �-ideal MGR∗(F) consists of such sets A ⊆ X that there exists
an F�-set F in X with A ⊆ F and such that F ∩ P is meager in P for every P ∈ F .
It is the �-ideal MGR∗(F) (not the �-ideal MGR(F) erroneously employed in
[2, Theorem 7, (1) ⇒ (3)]) that is relevant to the definition of countably perfectly
meager sets. Indeed, the intersection of all �-ideals of the form MGR∗(F) is
precisely the �-ideal PM� .

It turns out that not all of the �-ideals of the formMGR∗(F) fulfill the c.c.c. Let
us elaborate on this a little further with the help of a theory developed by Kechris
and Solecki [13].

Proposition 4.5.

(1) If every non-empty open set U in X contains a nowhere dense set P ∈ F , then
the �-idealMGR∗(F) does not fulfill the c.c.c.

(2) The intersection of all �-ideals in X generated by closed sets which fulfill the
c.c.c. is precisely the �-ideal PM.

(3) The intersection of all �-ideals of the formMGR∗(F) which fulfill the c.c.c. is
precisely the �-ideal PM.

(4) The intersection of all �-ideals of the form MGR∗(F) which do not fulfill the
c.c.c. is precisely the �-ideal PM� .

Proof. (1). This immediately follows from [13, Lemma 9].
(2) and (3). First, let A ∈ PM and let I be a �-ideal in X which is generated by

closed sets and fulfills the c.c.c. Then, by [13, Theorem 3], I is of the formMGR(F)
for a countable family of perfect subsets of X. Consequently, A ∈ I .

For the other direction, assume that A ∈MGR∗(F) for every F such that the �-
idealMGR∗(F) fulfills the c.c.c. Suppose that P is an arbitrary perfect subset of X
and let F = {P}. Then we haveMGR∗(F) =MGR(F), so the �-idealMGR∗(F)
fulfills the c.c.c. Consequently, A ∈MGR∗(F) which just means that A ∩ P is
meager in P, completing the proof that A ∈ PM.

(4). Let us assume that A ∈MGR∗(F) for every F such that the �-ideal
MGR∗(F) does not fulfill the c.c.c. To prove that A ∈ PM� , let F be an arbitrary
countable family of perfect subsets of X. By extending F , if necessary, we may
assume that every non-empty open set U in X contains a nowhere dense set
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P ∈ F . By part (1), the �-idealMGR∗(F) does not fulfill the c.c.c. Consequently,
A ∈MGR∗(F) and we are done. �

4.2.3. The �-ideals M∗(X, �). In this subsection � always denotes a perfect Polish
topology on X giving the original Borel structure of X. Recall that M(X, �) is the
�-ideal of meager sets with respect to � and M∗(X, �) consists of such A ⊆ X that
there exists an F�-set F in X (with the original Polish topology) with A ⊆ F and
F ∈ M(X, �).

It turns out that we can characterize perfectly meager and countably perfectly
meager sets with the help of the �-ideals M∗(X, �) in an analogous way to their
characterizations in terms of the �-idealsMGR∗(F) (cf. Proposition 4.5).

Proposition 4.6.

(1) The intersection of all �-ideals of the form M∗(X, �) which fulfill the c.c.c. is
precisely the �-ideal PM.

(2) The intersection of all �-ideals of the form M∗(X, �) is precisely the �-ideal
PM� . Moreover, for a set A to be countably perfectly meager it is enough to
belong to all �-ideals of the form M∗(X, �) which do not fulfill the c.c.c.

Proof. (1). This follows directly from points (2) and (3) of Proposition 4.5, since
every �-ideal of the form MGR∗(F) is also of the form M∗(X, �) which in turn is
generated by closed sets.

(2). Let us assume that A ∈ PM� and let {Un : n ∈ N} be a basis of a perfect
Polish topology � on X such that every Un is an (uncountable) Borel set in X. For
each n let us pick a Cantor setKn ⊆ Un. We complete the argument exactly as in the
proof of implication (1) ⇒ (2) in Theorem 2.5.

For the other direction we again use the fact that every �-ideal of the form
MGR∗(F) is also of the form M∗(X, �) and apply point (4) of Proposition 4.5. �
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[21] W. Sierpiński, Sur la non-invariance topologique de la propriéte �’. Fundamenta Mathematicae,
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