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The discovery of governing equations from data is revolutionizing the development of
some research fields, where the scientific data are abundant but the well-characterized
quantitative descriptions are probably scarce. In this work, we propose to combine
the direct simulation Monte Carlo (DSMC) method, which is a popular molecular
simulation tool for gas flows, and machine learning to discover the governing
equations for fluid dynamics. The DSMC method does not assume any macroscopic
governing equations a priori but just relies on the model of molecular interactions
at the microscopic level. The data generated by DSMC are utilized to derive the
underlying governing equations using a sparse regression method proposed recently.
We demonstrate that this strategy is capable of deriving a variety of equations in
fluid dynamics, such as the momentum equation, diffusion equation, Fokker–Planck
equation and vorticity transport equation. The data-driven discovery not only provides
the right forms of the governing equations, but also determines accurate values
of the transport coefficients such as viscosity and diffusivity. This work proves
that data-driven discovery combined with molecular simulations is a promising and
alternative method to derive governing equations in fluid dynamics, and it is expected
to pave a new way to establish the governing equations of non-equilibrium flows and
complex fluids.

Key words: molecular dynamics

1. Introduction

Historically, the macroscopic governing equations of fluid dynamics, i.e. the
well-known Navier–Stokes equations, were derived from the basic principles of
continuity of mass and momentum, with the assumption that the fluid at the
macroscopic scale is a continuous substance (Batchelor 2000). Note that the general
form of the Navier–Stokes equations is essentially not closed, as the stress tensor is
unknown except that a constitutive relation is assumed a priori. For Newtonian fluids,
a reasonable assumption is that the stress tensor is linearly proportional to the local
strain rate. For complex fluids or non-equilibrium flows, the constitutive relation is
not so straightforward and usually depends on phenomenological models.
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Although the Navier–Stokes equations have been widely applied to describe fluid
flows, it is commonly believed that they fail in the description of flows at large
Knudsen numbers (Kn> 0.1), where the non-equilibrium gas effect plays an important
role (Bird 1994). The Knudsen number is defined as the ratio between the molecular
mean free path, i.e. the average distance travelled by one molecule between two
subsequent collisions, and the characteristic chord length of the system, e.g. the
chord length of an airfoil or the diameter of a cylinder. For non-equilibrium gas
flows such as micro-flows and near-space flights, the Knudsen numbers are prone to
be larger than 0.1, and thus a reliable set of equations above the Navier–Stokes level
is highly desirable.

Theoretically, the macroscopic transport equations for non-equilibrium gas flows can
be derived from the Boltzmann equation, which describes the microscopic behaviour
of gases from a statistical point of view by accounting for molecular movements and
collisions. One classical method for the derivation of macroscopic equations is the
Chapman–Enskog method (Chapman & Cowling 1990), which expands the distribution
function around equilibrium state in a series of the Knudsen number. To the first order
of Knudsen number, the Navier–Stokes equations are reproduced, while expansions
to the second and third orders of Knudsen number give rise to the so-called Burnett
and super-Burnett equations, respectively. Another method is Grad’s moment method
(Struchtrup 2005), which expands the distribution function in Hermite polynomials, the
coefficients of which are linear combinations of the moments. In Grad’s seminal work,
he truncated the distribution function at the third order in Hermite polynomials and
derived the well-known 13 moment equations (Struchtrup 2005). Afterwards, a lot of
efforts have been made in this research direction, including the regularized 13 moment
equations (Struchtrup & Torrilhon 2003) and the regularized 26 moment equations (Gu
& Emerson 2009; Gu et al. 2019). The applicability of these derived macroscopic
governing equations to moderate non-equilibrium gas flows has been well validated,
while the applicability to highly non-equilibrium gas flows is still limited and obscure.

Advances in machine learning (Jordan & Mitchell 2015; Duraisamy, Iaccarino &
Xiao 2019; Brunton, Noack & Koumoutsakos 2020) and data science (Marx 2013;
Brunton & Kutz 2019) have provided engineers and scientists across all disciplines
new opportunities for data-driven discovery, which has been referred to as the fourth
paradigm of scientific discovery (Hey, Tansley & Tolle 2009). Particularly, many
concepts and methods from statistical learning can be employed to develop accurate
models for complex dynamical systems directly from data. Methods for data-driven
discovery of dynamical systems include equation-free modelling (Kevrekidis et al.
2003), artificial neural networks (Gonzalez, Rico & Kevrekidis 1998) and automated
inference of the dynamics (Daniels & Nemenman 2015), just to name a few. In this
series of developments, a seminal breakthrough was made by Bongard & Lipson
(2007) and Schmidt & Lipson (2009), who used symbolic regression to determine a
nonlinear dynamic system from data directly. The disadvantage of symbolic regression
is that it is usually expensive and prone to overfitting.

More recently, sparsity (Tibshirani 1996; Loiseau & Brunton 2018) has been used
to determine, in a highly efficient computational manner, the governing equations
of a dynamical system. Significant progress in this direction has been made by
Brunton, Proctor & Kutz (2016), who combined a sparsity-promoting technique and
machine learning with nonlinear dynamical systems to discover ordinary differential
equations (ODEs) from noisy measurement data. In particular, the sparse regression
avoids overfitting by selecting parsimonious models that balance model accuracy
with complexity. Only those terms that are most informative about the dynamics are
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selected as part of the discovered ODEs. Afterwards, Rudy et al. (2017) extended
this method to handle spatio-temporal data or high-dimensional measurements and
to discover the governing partial differential equations (PDEs) of the system. The
algorithm they proposed is called PDE functional identification of nonlinear dynamics
(PDE-FIND), which is computationally efficient, robust and has been successfully
applied to a variety of canonical problems including fluid dynamics governed by
Navier–Stokes equations. Note that a similar algorithm to PDE-FIND has also been
proposed by Schaeffer (2017) independently.

In the applications of PDE-FIND provided in the original work of Rudy et al.
(2017), the data used to derive the PDEs were virtually generated by the numerical
solutions of the associated governing equations. A more convincing demonstration
would consider data from experimental observations or numerical simulations, which
are independent of the derived governing equations. In this work, we generate
spatio-temporal data of flow fields through a popular molecular simulation method,
specifically, the direct simulation Monte Carlo (DSMC) method. DSMC method
employs a large number of representative molecules to model gas flows. Note that, in
the DSMC method, there is no need to assume any macroscopic governing equations
a priori. The macroscopic quantities, such as density and velocity, are obtained
by sampling molecular information and making an average at the computational
cells. Theoretically, DSMC has been proved to be a particle method for solving the
Boltzmann equation (Wagner 1992). Based on the spatio-temporal data obtained by
DSMC, we derive the macroscopic governing equations for a variety of fluid flows
using the PDE-FIND method.

Our ultimate objective is to develop general macroscopic governing equations
for a wide range of non-equilibrium gas flows based on the data generated by
DSMC, for which applicability to the whole range of Knudsen number flows has
been validated. As a first step, in this work we focus on data-driven discovery of
macroscopic governing equations at the Navier–Stokes level, i.e. in the continuum
regime, where the theoretical macroscopic governing equations have been well
established. The purpose is to verify that the data-driven discovery combined with
molecular simulations is an alternative method to derive governing equations in fluid
dynamics, besides the Chapman–Enskog expansion from the Boltzmann equation. To
the best of our knowledge, this is the first time that macroscopic governing equations
are derived by molecular simulations combined with a machine learning method.

The remainder of this paper is organized as follows. In § 2, we first describe
the DSMC method for generating data, and then introduce the methodology for
data-driven discovery, i.e. the PDE-FIND algorithm. In § 3, a variety of benchmark
cases are provided to check the validity of our strategy for data-driven discovery
of macroscopic governing equations, including the momentum equation, diffusion
equation, Fokker–Planck equation and vorticity transport equation. Conclusions are
given in § 4.

2. Methodology
2.1. DSMC method

The direct simulation Monte Carlo method was first proposed by Bird in the 1960s
and is a stochastic particle-based algorithm to solve the Boltzmann equation by
approximating the continuous molecular velocity distribution function with a discrete
number of simulation molecules (Oran, Oh & Cybyk 1998; Zhang et al. 2019a).
Figure 1 is a schematic of the DSMC method, where each simulation molecule
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FIGURE 1. Schematic diagram of DSMC method.

displayed by a blue sphere is randomly selected from a large number of real
molecules. These simulation molecules are tracked as they move with their velocities,
collide with other molecules and reflect from boundaries within a computational
domain. Macroscopic gas properties are obtained by sampling corresponding molecular
information and making an average at the computational cells, which are marked by
red dashed lines in figure 1. Specifically, density (ρ) and macroscopic velocity (u)
are given by,

ρ =

N∑
i=1

mi

δV
, (2.1)

u=

N∑
i=1

Ci

N
, (2.2)

where mi and Ci are molecular mass and molecular velocity, respectively, δV is
the volume of the computational cell and N is the number of molecules in the
computational cell for sampling and averaging. To reduce statistical errors, a time
average and ensemble average are usually used.

For any application of the DSMC method, the first step is initializing simulation
molecules according to the density distribution in the computational domain, and the
following steps implement two sequential processes in each calculated time interval,
i.e. molecular motions and inter-molecular collisions, which are assumed uncoupled
during one time step. The molecular motions are implemented in a deterministic way,
that is, every molecule moves ballistically from its original position to a new position,
and the displacement is equal to the product of its velocity times the time step. If the
predicted new position of one molecule crosses any boundary of the computational
domain, an appropriate boundary condition needs to be applied. Specifically, the
time at which the molecule hits the wall is first identified according to the distance
between the molecule and the boundary divided by the molecular velocity, and then
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the molecular velocity reflected from the boundary is determined by the imposed
gas–wall interaction model, such as specular, diffuse and Maxwell reflection models.
Afterwards, the molecule moves according to its new reflected velocity within the
remaining time of one calculating time step.

The inter-molecular collisions in the DSMC method are implemented in a
probabilistic way, which is inherently different from other deterministic methods
such as molecular dynamics. Several algorithms for the modelling of inter-molecular
collisions have been proposed within the framework of DSMC. The most widely used
model now is the no-time-counter (NTC) technique proposed by Bird (1994). In the
NTC method, molecules in the same cells are randomly chosen as collision partners.
The probability of selecting a collision pair is proportional to the relative speed
between these two selected molecules. The post-collision velocities of molecules
depend on the molecular model employed, which plays an important role for
the accurate modelling of the real gas flows. The DSMC method allows for the
introduction of phenomenological models such as the hard sphere (HS) and variable
hard sphere models (Bird 1994). For the argon gas at a fixed temperature used in this
work, we employ the simplest HS model to describe interactions between gaseous
molecules. Specifically, the molecular diameter is set to d = 3.659× 10−10 m, which
is determined by the Chapman–Enskog theory and has been proven to give a correct
prediction of viscosity.

The DSMC method was first applied to the simulation of high-speed gas flows
in the context of aerospace engineering. Afterwards, the DSMC method has been
successfully extended to investigate a variety of gas flows at the molecular level,
such as micro-flows (Sun & Boyd 2002), flow instability (Stefanov, Roussinov &
Cercignani 2002; Zhang & Fan 2009; Zhang, Fan & Fei 2010; Manela & Zhang
2012) and even turbulence (Gallis et al. 2017; Zhang et al. 2019b). Theoretically, the
DSMC method can be applied to simulate the whole regime of gas flows. It should
be emphasized that, for an accurate simulation using the DSMC method, the time
step needs to be smaller than the molecular mean collision time, and the cell sizes
for the selection of collision pairs need to be smaller than the molecular mean free
path (Alexander, Garcia & Alder 1998; Garcia & Wagner 2000).

2.2. PDE-FIND method
We employ the PDE-FIND algorithm proposed by Rudy et al. (2017) to derive the
macroscopic governing equations based on the spatio-temporal results obtained by the
DSMC method. Here, we just provide a brief description of the basic algorithm of
the PDF-FIND method, and we refer readers to the original paper and supplementary
materials (Rudy et al. 2017) for details.

The spatial and temporal evolution of flow fields such as the velocity u(x, t) are
obtained through DSMC calculations. We assume that the evolution of the flow field
satisfies a PDE in terms of a general form as

ut =N(u, ux, uxx, . . .)=

d∑
j=1

Nj(u, ux, uxx, . . .)ξj, (2.3)

where N(·) is a complex nonlinear function that can be expanded as a sum of simple
monomial basis functions Nj of u and its derivatives multiplied by the corresponding
coefficient ξj. The derivatives of the data with respect to time and space can be
obtained using either a finite difference or polynomial interpolation method. Generally,
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the polynomial interpolation method performs better than the finite difference method
if the data are associated with noise. Considering that the data generated from
DSMC have inherent noise as DSMC is a stochastic particle method, the polynomial
interpolation method is employed in this work to determine the derivatives.

Given a dataset comprising of m time steps and n grid points, the data and their
derivatives are constructed to form a linear problem as follows:

ut(x1, t1)

ut(x2, t1)
...

ut(xn, tm)


︸ ︷︷ ︸

Ut

=


1 u(x1, t1) u2(x1, t1) · · · u3uxxx(x1, t1)

1 u(x2, t1) u2(x2, t1) · · · u3uxxx(x2, t1)
...

...
...

...

1 u(xn, tm) u2(xn, tm) · · · u3uxxx(xn, tm)


︸ ︷︷ ︸

Θ(U)

ξ . (2.4)

In (2.4), each row represents an observation of the dynamics at a specific point in
time and space, and ξ is a vector of coefficients which need to be determined.
If we assume Θ on the right-hand side of (2.4) is an over complete library,
which has sufficient potential terms, then the dynamics of the system should be
well described by the assumed governing equation. Theoretically, the candidate
functions have arbitrary options including any order of nonlinearities and partial
derivatives. Considering the characteristics of the fluid dynamics problems studied
in this work, the highest-order term in Θ is composed of the third power of
u multiplied by the third derivative of u. For the sake of clarity, here, we list
all the candidate functions considered for a one-dimensional problem, that is,
1, u, u2, u3, ux, uux, u2ux, u3ux, uxx, uuxx, u2uxx, u3uxx, uxxx, uuxxx, u2uxxx and u3uxxx.

The key point in PDE-FIND is to select a sparse subset of active terms from
the candidate functions, in other words, to determine the values of the vector
of coefficients ξ . If the coefficient of one specific term is non-zero, then the
corresponding candidate function is selected. For an unbiased representation of the
dynamics, one straightforward method for determining ξ is to solve the least-squares
problem. However, as reported by Rudy et al. (2017), the least-squares solution
may be inaccurate even only with numerical round-off errors. In particular, ξ tends
to have non-negligible values, suggesting a PDE with all the prescribed functional
forms in the library. In this way, the derived PDE is too complicated to be used,
although it is mathematically correct. More importantly, the least-squares problem is
essentially poorly conditioned for regression problems. Numerical error in computing
the derivatives of the data could be magnified when inverting Θ . On the other hand,
sparse regression has been demonstrated to be an efficient method, ensuring that the
coefficients of the candidate functions which do not appear in the governing equations
are exactly zero (Brunton et al. 2016). Recently, Rudy et al. (2017) proposed utilizing
sparse regression to approximate the solution of ξ as follows:

ξ = arg min
ξ̂

‖Θξ̂ −Ut‖
2
2 + λ‖ξ̂‖0. (2.5)

This means that the prescribed terms only show up in the derived PDE if their effect
on the error ‖Θξ̂ −Ut‖ is greater than their addition to ‖ξ̂‖0. The `0 term, i.e. the
last term on the right-hand side of (2.5), makes this problem np-hard.

Specifically, the convex relaxation of the `0 optimization problem in (2.5) can be
written as

ξ = arg min
ξ̂

‖Θξ̂ −Ut‖
2
2 + λ‖ξ̂‖1. (2.6)
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This convex optimization problem can be solved by the least absolute shrinkage and
selection operator (LASSO) (Tibshirani 1996). However, previous studies demonstrated
that LASSO tends to have difficulty in finding a sparse basis if the columns in
the matrix Θ are correlated. Recently, Rudy et al. (2017) proposed an alternative
method, called the sequentially threshold least-squares (STLS) method. In STLS,
a least-squares predictor is obtained and a hard threshold is performed on the
regression coefficients. The process is repeated recursively on the remaining non-zero
coefficients.

As reported by Rudy et al. (2017), STLS performed better than LASSO in most
cases but still has the challenge of correlation in the data. In order to overcome this
problem, ridge regression with an `2 regularizer has been proposed by Rudy et al.
(2017) to replace the least squares in STLS, that is,

ξ̂ = arg min
ξ

‖Θξ −Ut‖
2
2 + λ‖ξ‖

2
2 = (Θ

TΘ + λI)−1ΘTUt. (2.7)

This method is called sequential threshold ridge regression (STRidge) (Rudy et al.
2017). A variation of test cases in the recent works Rudy et al. (2017, 2019) have
demonstrated that STRidge has the best empirical performance. Note that a different
threshold tolerance would result in a different level of sparsity in the final solution.
To find the best tolerance, predictors are trained for varying tolerances and their
performances are evaluated.

3. Results and discussion
3.1. Shear flow and momentum equation

We simulate two-dimensional unbounded flow of argon gas at standard conditions,
i.e. pressure p=1.01×105 Pa and temperature T=273 K. According to the equation of
state for perfect gases, the number density is n= 2.69× 1025 m−3. The computational
domain is a square of side length L = 100λ, where λ is the molecular mean free
path with the definition of λ= 1/(

√
2πd2n) for HS gas molecules. Consequently, the

Knudsen number (Kn = λ/L) is 0.01, and the flow can be considered to be in the
continuum regime. Periodic boundary conditions are assumed in both directions. This
means that, in the process of molecular movements, one molecule that gets through a
specific boundary will re-enter the computational domain from the opposite boundary.

The whole computational domain is divided into 256× 256 cells, and in each cell
approximately 4000 simulation molecules are randomly distributed at the initial time,
with one simulation molecule representing approximately 4× 106 real molecules. The
initial thermal velocities of the simulation molecules are sampled randomly from a
Maxwell distribution function at 273 K. The computational time step is set to 0.1τ ,
where τ is the molecular mean collision time with the definition of τ = λ/c. Note that
c is the molecular mean speed, i.e. c=

√
8kT/πm, where k and m are the Boltzmann

constant and molecular mass, respectively. For the sake of clarity, the length scale
and the time scale are normalized by the mean free path λ and the mean collision
time τ , respectively. Correspondingly, the velocity and kinematic viscosity coefficient
can be normalized by λ/τ and λ2/τ , respectively. In the following description, all
the non-dimensional quantities are denoted with a superscript asterisk, for instance,
y∗ represents the non-dimensional coordinate in the vertical direction.

To simulate a velocity decay process caused by viscous shear stress, we impose a
spatially periodic macroscopic velocity field with a form of u∗ = u∗0(1 − cos(2πy∗/
L∗))ex at the initial time, where u∗0 = 0.13, and ex is the unit vector in the x direction.
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FIGURE 2. (a) The velocity contours at the initial time obtained by DSMC simulations;
(b) temporal evolution of the velocity distribution along the vertical direction.

For each simulation molecule, its initial velocity is a sum of two parts, i.e. the
imposed macroscopic velocity and the random thermal velocity. In the simulation
process, we obtain the macroscopic velocities for each cell by sampling of the
molecular velocities in a short time period (10 mean collision times) and output the
velocities on-the-fly, that is, at the time instants t∗ = 0, 10, 20, . . . , 1000. Figure 2(a)
shows the initial macroscopic velocity field generated in DSMC simulations. It can be
seen from figure 2(a) that the flow is along the horizontal direction, and the amplitude
of the horizontal velocity is uniform in the horizontal direction and only changes in
the vertical direction. Note that fluctuations in the velocity field are caused by the
molecular thermal motions, which are inevitable due to molecular thermal velocities
in molecular simulations. To reduce the statistical fluctuations to an acceptable level,
we make an average along the horizontal direction and focus on the changes in the
vertical direction. Figure 2(b) shows the temporal evolution of the distribution of
the horizontal velocity along the vertical direction. It can be seen that the initial
distribution in terms of the cosine function gradually becomes smoother over time
due to viscous dissipation.

We employ the values of the horizontal velocity at the discretized space–time points,
i.e. 256 computational cells and 100 time instants, to construct the input dataset. Using
the PDE-FIND method, we derive the governing equation in a parsimonious form, as
shown in table 1. The coefficient of the term on the right-hand side is approximately
0.49 with a tolerance of ±0.01. Note that, for the one-dimensional incompressible
shear flow studied here, the non-dimensional Navier–Stokes equation can be simplified
as follows:

∂u∗

∂t∗
= ν∗

∂2u∗

∂y∗2
, (3.1)

where ν∗ is the non-dimensional viscosity coefficient. According to the Chapman–
Enskog theory, the viscosity coefficient for a HS gas at the first-order approximation
reads as (Chapman & Cowling 1990)

ν =
5π

32
λc=

5π

32
λ2

τ
. (3.2)

Therefore, the non-dimensional viscosity coefficient ν∗ is 5π/32 ≈ 0.49. Comparing
the derived governing equation with the theoretical counterpart in table 1, we can
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Derived governing equation
∂u∗

∂t∗
= (0.49± 0.01)

∂2u∗

∂y∗2

Theoretical momentum equation
∂u∗

∂t∗
= 0.49

∂2u∗

∂y∗2

TABLE 1. Governing equation for one-dimensional incompressible shear flow of argon gas.

conclude that the derived governing equation not only has the expected form
determined from the theoretical counterpart, but also gives an accurate estimation
of the viscous coefficient.

It should be noted that the PDE-FIND method is sensitive to noisy data, and
the data generated by molecular simulations inevitably have statistical fluctuations
or errors. According to the theory of statistical mechanics, the fractional error
of the velocity is inversely proportional to the square root of the sampling size
(Hadjiconstantinou et al. 2003), that is,

Eu ≈
1

√
NMa

, (3.3)

where N is the sampling size, and Ma is the Mach number. Note that, in the preceding
case of shear flow, there are approximately 4000 simulation molecules in each
computational cell. To reduce fraction errors, we employ a short-time average (100
calculating time steps) and spatial average (256 computational cells in the horizontal
direction) to obtain the temporal evolution of the velocity field in the vertical direction.
Specifically, for each computational cell, the sampling size is 4000× 100× 256≈ 108,
and thus the fraction error at the initial time (Ma ≈ 0.3) according to (3.3) is
approximately 0.03 %. As the simulation progresses, the macroscopic velocities and
the Mach number decrease due to viscous dissipation, and hence the fraction error
increases continuously. In this numerical case, the maximum fraction error of the
viscosity coefficient in the derived equation is approximately 2 %, as shown in
table 1.

We run three other cases of the shear flow with different sampling sizes of 105, 106

and 107 for each computational cell, and the fractional errors of the velocity fields at
the initial time are 1.0 %, 0.3 % and 0.1 %, respectively. If the initial fractional error
is as large as 1.0 %, we cannot obtain an expected governing equation. For the next
two cases, the PDE-FIND method can derive governing equations in the right forms
based on DSMC data, and the maximum fraction errors of the viscosity coefficient
in the derived equations are 6.0 % and 4.0 %, respectively. It is demonstrated that
the accuracy of the derived governing equation using the PDE-FIND method is quite
sensitive to noisy data. To obtain an expected derived equation, the fraction errors
of the data generated by the molecular simulations must be reduced to an acceptable
level.

3.2. Diffusion problem and diffusion equation
The simulation model for diffusion is also at the standard conditions, and it has the
same geometry and boundary conditions as those employed for the shear flow in
§ 3.1. The differences are that two species of gas are employed to mimic the diffusion
process, and the initial macroscopic velocity in the computational domain is set to
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FIGURE 3. (a) The density contours of species-A at the initial time obtained by DSMC
simulations; (b) temporal evolution of density distribution of species-A along the vertical
direction.

Derived governing equation
∂ρ∗

∂t∗
= (0.59± 0.01)

∂2ρ∗

∂y∗2

Theoretical diffusion equation
∂ρ∗

∂t∗
= 0.59

∂2ρ∗

∂y∗2

TABLE 2. Governing equation for the diffusion of argon gas.

zero uniformly. For the sake of simplicity, the two species are virtually like argon
gas with the same molecular diameters, but are denoted as species-A and species-B.
The initial distribution of non-dimensional densities for species-A and species-B are
ρ∗A = 0.5(1− cos(2πy∗/L∗)) and ρ∗B = 0.5(1+ cos(2πy∗/L∗)), respectively. Figure 3(a)
shows the density contours of species-A at the initial time. In the whole simulation
process, the macroscopic velocity is always zero and the total density of the two
species remains uniform in the computational domain, while the respective densities of
species-A and species-B change with space and time. Therefore, the simulation model
can be considered as a pure diffusion problem.

To reduce the statistical fluctuations, we also make an average of the density
along the horizontal direction. Figure 3(b) shows the temporal evolution of the
density distribution of species-A along the vertical direction. It is shown that the
initial density distribution tends to be evenly distributed as the simulation proceeds
due to the diffusion mechanism. Using the density of species-A at the discretized
256 computational cells and 100 time instants as the input dataset, we employ the
PDE-FIND method to derive the corresponding governing equation, as shown in
table 2. The coefficient of the term on the right-hand side is approximately 0.59 with
a tolerance of ±0.01. It is known that the non-dimensional diffusion equation with a
constant diffusion coefficient is,

∂ρ∗

∂t∗
=D∗

∂2ρ∗

∂y∗2
. (3.4)
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FIGURE 4. (a) A single trace of molecular motion; (b) probability density function of
molecular displacements for different time intervals.

According to the Chapman–Enskog theory, the diffusion coefficient for a HS gas at
the first-order approximation reads as (Chapman & Cowling 1990)

D=
3π

16
λc=

3π

16
λ2

τ
. (3.5)

Therefore, the non-dimensional diffusion coefficient is 3π/16 ≈ 0.59. It can be
concluded from the results shown in table 2 that the form of the derived governing
equation for the diffusion problem agrees well with the theoretical diffusion equation,
and gives an accurate estimation of the diffusion coefficient.

The advantage of molecular simulations like the DSMC method is that they not
only can obtain the macroscopic quantities by sampling and averaging, but also
provide molecular information such as the velocities and positions in detail. Our
previous studies (Zhang et al. 2010; Zhang & Önskog 2017; Zhang et al. 2019b)
have demonstrated that on a time scale larger than the molecular mean collision time,
the characteristics of molecular motion conform to Brownian motion. Therefore, it
is intriguing to investigate whether the diffusion equation can be derived directly
from molecular movements. To this end, in the simulation case of the diffusion
problem, we randomly select 100 representatives from all the simulation molecules
and record their positions every 10τ . Figure 4(a) shows one representative simulation
molecule’s trajectory, that is, the position versus time, which seems like Brownian
motion qualitatively.

In order to analyse the characteristics of molecular motions quantitatively, we first
determine the molecular displacements 1y∗ over any time interval 1t∗ based on
100 trajectories of selected simulation molecules, and then we obtain the probability
density function of displacements by taking a statistical average for a specific time
interval, i.e. f (1y∗, 1t∗), as shown in figure 4(b). It can be seen that the probability
density functions conform to a normal distribution, and their variance increases with
the time interval. These are virtually the typical characteristics of Brownian motion.

Using f (1y∗,1t∗) as the input dataset, we further employ the PDE-FIND method to
derive the governing equation of the probability density function, as shown in table 3.
Note that the mathematical symbol (delta) in front of y∗ and t∗ is dismissed for the
sake of simplicity. According to the theory of stochastic processes, the Brownian
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Derived governing equation
∂f
∂t∗
= (0.59± 0.01)

∂2f
∂y∗2

Simplified Fokker–Planck equation
∂f
∂t∗
= 0.59

∂2f
∂y∗2

TABLE 3. Governing equation for the molecular diffusion of argon gas.

motion can be described by the Wiener process using a Langevin-type equation, or
equivalently, by a Fokker–Planck-type equation in terms of the probability density
function. Specifically, the non-dimensional Fokker–Planck equation for Brownian
motion with a constant diffusion coefficient and without any macroscopic velocities
reads as,

∂f
∂t∗
=D∗

∂2f
∂y∗2

, (3.6)

where D∗ is the non-dimensional diffusion coefficient, which has the same physical
meaning as that in the diffusion equation and has the value of 0.59 for HS gas
molecules. Comparing the two equations shown in table 3, we can conclude that the
molecular motions in DSMC, over a time scale larger than the molecular collision
time, can be described using a Fokker–Planck-type equation, with a well-defined
diffusion coefficient based on kinetic theory.

3.3. Taylor–Green vortex and vorticity transport equation
The above two cases in §§ 3.1 and 3.2 are virtually one-dimensional as there are no
gradients in the horizontal direction, and in the following we study one real two-
dimensional problem of fluid dynamics. It is well known that, for two-dimensional
incompressible viscous flow, the non-dimensional Navier–Stokes equations read as,

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0,

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
=−

∂p∗

∂x∗
+ ν∗

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
,

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
=−

∂p∗

∂y∗
+ ν∗

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
.


(3.7)

Note that the length scale and the time scale are also normalized by the mean free
path and the mean collision time, respectively; u∗ and v∗ are the non-dimensional
velocities in the horizontal and vertical directions, respectively. By defining the
vorticity −→ω = ∇ ×

−→v and taking the curl of the Navier–Stokes equations, we can
obtain the non-dimensional vorticity equation for two-dimensional incompressible
flows as follows:

∂ω∗z

∂t∗
+ u∗

∂ω∗z

∂x∗
+ v∗

∂ω∗z

∂y∗
= ν∗

(
∂2ω∗z

∂x∗2
+
∂2ω∗z

∂y∗2

)
, (3.8)

where ω∗z is the non-dimensional vorticity component in the z direction, and
ω∗x = ω∗y = 0. In the community of fluid dynamics, the Taylor–Green vortex is
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widely used as a benchmark case in validating solvers and formulations in numerical
computations, as it has an exact analytical solution to (3.7) and (3.8), that is,

u∗ =U∗0 cos(2πx∗/L∗x) sin(2πy∗/L∗y) exp(−2v∗t∗),
v∗ =−U∗0 sin(2πx∗/L∗x) cos(2πy∗/L∗y) exp(−2v∗t∗).

}
(3.9)

Here, we employ the DSMC method to simulate argon gas flow with initial conditions
provided by the Taylor–Green vortex, and then we utilize the dataset obtained
by DSMC to derive the underlying governing equation. Specifically, we simulate
argon gas flow in a square of side length L∗x = L∗y = 100, and periodic boundary
conditions are applied for all the boundaries. The initial macroscopic velocity is
given by (3.9) at t∗ = 0, and we choose U∗0 = 0.08 to ensure that the gas flow
conforms to the assumption of incompressibility. The initial reference state is at
standard conditions with uniform density and a small variation of pressure as
p∗=p∗0− (ρ

∗

0 U∗20 )/4(cos(4πx∗/L∗x)+ cos(4πy∗/L∗y)), to ensure that the initial conditions
completely satisfy the solution of (3.7).

The whole computational domain is divided into 64× 64 sampling cells, and each
cell has approximately 4 × 105 simulation molecules. The macroscopic quantities
such as velocities are obtained by sampling the molecular velocities in the sampling
cells. Each sampling cell is divided into enough sub-cells within which collision
pairs are selected, and the sizes of the sub-cells are guaranteed to be less than the
mean free path. We record the velocity field every 10 mean collision times (100
computational time steps) and obtain the vorticity field by taking the curl of the
velocity vectors. To reduce the statistical errors, 10 independent runs with different
random number sequences are performed to make an ensemble average. Figure 5
shows the contours of vorticity at t∗ = 0, 100, 200, 300 obtained by DSMC. At
the initial time (Ma ≈ 0.1), the fraction error of the velocities according to (3.3) is
approximately 0.05 %. As shown in figure 5(a), our DSMC results are consistent
with the theoretical results shown by the solid black lines, which are determined by
(3.9). Due to viscous dissipation, the magnitude of the velocities and hence the Mach
number would decrease as the simulation progresses. Consequently, the fractional
errors increase continuously, as shown in figures 5(b), 5(c) and 5(d). Basically, our
DSMC results agree well with theoretical results, and the maximum fraction error is
less than 1 %.

Using the velocity and vorticity fields at 64×64 sampling cells and 65 time instants
obtained by DSMC as the input dataset, we derive the governing equation shown in
table 4. At first glance, the derived governing equation lacks two convective terms
on the left-hand side compared with the theoretical vorticity transport equation shown
in table 4. On the other hand, the two viscous terms on the right-hand side of the
derived equation have the same forms as those in the theoretical equation, and their
coefficients are quite close. Virtually, the derived governing equation is not wrong, but
just in a simplified form for the specific problem of the Taylor–Green vortex.

It should be mentioned that the DSMC results are consistent with the exact
analytical solution, equation (3.9), for the Taylor–Green vortex, except that the
DSMC results are somewhat noisy. Substituting the velocity and vorticity fields
determined by (3.9) into the two convective terms u∗(∂ω∗z /∂x∗) and v∗(∂ω∗z /∂y∗), it is
obvious that their sum is always zero. In this case, they are automatically eliminated
in the derived governing equation, since the PDE-FIND method aims to find the most
parsimonious form for the underlying governing equation.
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FIGURE 5. Contours of vorticity for the Taylor–Green vortex obtained by the DSMC
method at different time instants: (a) t∗ = 0; (b) t∗ = 100; (c) t∗ = 200; (d) t∗ = 300. The
solid black lines represent the theoretical solutions of the Taylor–Green vortex.

In order to check whether the data generated by DSMC can derive the complete
vorticity transport equation, we simulate another case with an artificial initial condition
as follows:

u∗ =U∗0 cos(4πx∗/L∗x) sin(2πy∗/L∗y),
v∗ =−2U∗0 sin(4πx∗/L∗x) cos(2πy∗/L∗y).

}
(3.10)

Note that the wavenumber in the horizontal direction in (3.10) is double that of the
standard Taylor–Green vortex. In order to satisfy the continuity equation of fluid
dynamics, the amplitude of the velocity in the vertical direction is also doubled. The
simulation domain is a square of side length L∗x = L∗y = 200, and other computation
parameters are the same as those in the Taylor–Green vortex.
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Derived equation for Taylor–Green vortex
∂ω∗z

∂t∗
= (0.49± 0.03)

(
∂2ω∗z

∂x∗2
+
∂2ω∗z

∂y∗2

)

Derived equation for artificial vortex

∂ω∗z

∂t∗
+ (1.01± 0.06)u∗

∂ω∗z

∂x∗
+ (1.01± 0.06)v∗

∂ω∗z

∂y∗

= (0.49± 0.03)
(
∂2ω∗z

∂x∗2
+
∂2ω∗z

∂y∗2

)
Theoretical vorticity transport equation

∂ω∗z

∂t∗
+ u∗

∂ω∗z

∂x∗
+ v∗

∂ω∗z

∂y∗
= 0.49

(
∂2ω∗z

∂x∗2
+
∂2ω∗z

∂y∗2

)
TABLE 4. Governing equation for the diffusion of argon gas.

Figure 6 shows the contours of the vorticity field obtained by DSMC for the
case with the artificial initial condition defined by (3.10) at t∗ = 0, 100, 200, 300.
Using the dataset generated by DSMC, we also derive the governing equation, as
shown in table 4. It has complete terms, including convective and viscous terms,
as with the theoretical equation. The coefficients of the convective terms in the
horizontal and vertical directions are 1.01 with a tolerance of ±0.06, while the
coefficients of the viscous terms are 0.49 with a tolerance of ±0.03. The maximum
relative error is approximately 6 % compared with the theoretical value. Considering
that the DSMC results inevitably have noise as DSMC is a statistical simulation
method, the prediction of the coefficients is acceptable. It is expected that we can
get more accurate coefficients if we have larger sampling sizes, but this needs more
computational resources.

Note that, in this work, we employ the simulation cases with an initial condition
in terms of the Taylor–Green vortex and its variant to derive the vorticity transport
equation. Essentially, the discovery of the vorticity transport equation is not limited
to these special cases, and it can be realized as long as the flow problem is able to
provide the spatial-temporal evolution of the velocity and vorticity fields, such as flow
around a cylinder with shedding vortices.

4. Conclusions

In this work, we employed the DSMC method on the molecular level to simulate
three benchmark cases of fluid dynamics and obtained the data of the spatial-temporal
evolution of the flow fields. The generated data are used to derive the macroscopic
governing equations via the PDE-FIND method. Our simulation results of shear flow,
diffusion problem and the Taylor–Green vortex obtained by DSMC are successfully
applied to discover the momentum equation, diffusion equation and vorticity transport
equation, respectively. For the diffusion problem, we also demonstrate that it is
possible to derive the macroscopic equation using molecular information, such as the
trajectories of the molecules instead of macroscopic quantities. The equations derived
by the data-driven discovery method not only have the same form as the theoretical
ones, but also provide accurate predictions of the transport coefficients contained in
the governing equations.

This work provides strong proof that microscopic molecular movements and
macroscopic flow phenomena governed by the underlying macroscopic equations
have a close relationship, in terms of data-driven discovery. It should be noted that
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FIGURE 6. Contours of vorticity fields for the case with artificial initial conditions
obtained by the DSMC method at different time instants: (a) t∗= 0; (b) t∗= 100; (c) t∗=
200; (d) t∗ = 300.

we have only focused on simple flow problems where the theoretical governing
equations are well established so far, but the strategy proposed in this work can be
extended to more complex problems such as rarefied gas flows, where the validity of
the conventional Navier–Stokes equations is questionable and a variety of higher-order
equation sets have been proposed. However, no single higher-order equation set has
demonstrated universal superiority in the prediction of rarefied gas flows, especially
for the capture of the Knudsen layer behaviour (Lockerby, Reese & Gallis 2005).
Due to the complexity of the Knudsen layer and boundary conditions, the application
of data-driven discovery of the governing equations to rarefied gas flows would be
quite challenging. Research work in this direction is expected to be carried out in
the future.
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