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It is shown that the formal expression for the effective viscosity of a dilute suspension
of arbitrary-shaped particles in Poiseuille flow contains a novel quadrupole term,
besides the expected stresslet. This term becomes important for a very confined
geometry. For a high-frequency flow field (in the sense used in Feuillebois et al.
(J. Fluid Mech., vol. 764, 2015, pp. 133–147), the suspension rheology is Newtonian
at first order in volume fraction. The effective viscosity is calculated for suspensions
of N-bead rods and of prolate spheroids with the same length, volume and aspect ratio
(up to 6), entrained by the Poiseuille flow between two infinite parallel flat hard walls.
The numerical computations, based on solving the Stokes equations, indicate that the
quadrupole term gives a significant positive contribution to the intrinsic viscosity [µ]
if the distance between the walls is less than ten times the particle width, or less. It is
found that the intrinsic viscosity in bounded Poiseuille flow is generally smaller than
the corresponding value in unbounded flow, except for extremely narrow gaps when it
becomes larger because of lubrication effects. The intrinsic viscosity is at a minimum
for a gap between walls of the order of 1.5–2 particle width. For spheroids, the
intrinsic viscosity is generally smaller than for chains of beads with the same aspect
ratio, but when normalized by its value in the bulk, the results are qualitatively the
same. Therefore, a rigid chain of beads can serve as a simple model of an orthotropic
particle with a more complicated shape. The important conclusion is that the intrinsic
viscosity in shear flow is larger than in the Poiseuille flow between two walls, and
the difference is significant even for relatively wide channels, e.g. three times wider
than the particle length. For such confined geometries, the hydrodynamic interactions
with the walls are significant and should be taken into account.
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112 F. Feuillebois and others

1. Introduction
The way to determine the effective viscosity of a dilute suspension from the

effective stress tensor was first found by Einstein (1906) for spherical particles in
unbounded fluid, based on the quasi-steady Stokes equations. The derived expressions
are valid for any flow field. The intrinsic viscosity of ellipsoids was studied by
Sheraga (1955) and Brenner (1970). In this case, there appears the problem of
dependence of the orientation probability distribution on the ambient flow field, and
rotatory Brownian motion needs to be considered.

In a number of articles, the shear flow problem was considered in a confined
geometry, i.e. between two parallel solid flat walls, see references in Feuillebois
et al. (2015) (hereafter denoted as (I)). In particular, Zurita-Gotor, Bławzdziewicz &
Wajnryb (2007) studied a dilute suspension of rods shorter than the distance between
the walls, and Sangani, Acrivos & Peyla (2011) investigated the role of hydrodynamic
particle–particle and particle–wall interactions in suspensions of spherical particles in
very narrow channels. Park, Bricker & Butler (2007) considered polymers modelled
as rigid slender bodies embedded in a shear flow near a single wall. They took
into account the migration of the centre of mass of the rotating fibre because of its
interaction with the wall. Park & Butler (2009) extended their approach to fibres in
either shear or Poiseuille flow between two parallel walls. However, they only used
the one-wall Green tensor for determining the migration of the particle centre of
mass. Pressure-driven flow of a suspension of spherical particles was considered by
Bławzdziewicz & Wajnryb (2008).

The important problem is to evaluate the effective viscosity of a dilute suspension,
by averaging over a channel so as to obtain a quantity accessible to experiment.
This approach was considered for particles in a tube by Brenner (1970) and Cox
& Mason (1971) and more recently by Navardi & Bhattacharya (2010). In general,
it is important to determine how large the influence of the confined geometry on
the intrinsic viscosity is, and whether its value is sensitive to the method of the
measurement, for example how much it differs when either in shear or in Poiseuille
flow.

The goal of this article is first to derive a general formula for the effective viscosity
of a dilute suspension of freely transported particles in a Poiseuille flow between
parallel walls separated by a distance H.

A high-frequency flow field is considered here in the same sense as in (I). That
is, the Poiseuille flow is periodic with a period T that is assumed to be small
compared with H/um, where um is the maximum fluid velocity in the gap. Then, the
fluid performs small oscillations. Considering elongated particles of length `. O(H),
their positions and orientations are practically frozen. In particular, they do not have
time during a period to rotate along a Jeffery orbit (see Jeffery 1922). A second
assumption is that the period T is large compared with the typical time H2/ν for
diffusion of vorticity across the gap, where ν is the fluid kinematic viscosity. The
two preceding assumptions imply that the Reynolds number based on H and um
is low compared with unity, that is Re = umH/ν � 1. From these conditions, the
quasi-steady Stokes equations apply. Consider, for example, a channel with gap
H = 1 mm containing an oil of kinematic viscosity ν = 10−3 m2 s−1, undergoing
oscillatory flow with the period T = 0.1 s and maximum velocity um = 0.1 mm s−1.
We find that T = (1/100)H/um, T = 100 H2/ν and Re= 10−4.

A more complicated situation, left for future studies, is when the positions and
orientations of particles evolve when entrained by the flow field. This type of structure
was studied by Zurita-Gotor et al. (2007) for non-Brownian particles in confined shear
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FIGURE 1. Sketch of a dilute suspension of particles in a Poiseuille flow bounded by two
parallel walls, u0 = u0(z)ex with (2.2).

flow and by Ezhilan & Saintillan (2015) for active elongated particles in Poiseuille
flow. Analogous results would then have to be introduced into the calculation of the
effective viscosity.

We start by considering particles of any shape between parallel walls and take into
account both wall effects, which are of primary importance for confined suspensions.
The general formula derived below for the effective viscosity of the dilute suspension
will allow for the possibility to calculate these wall effects explicitly, using e.g. the
method of multipoles for spheres or clusters of spheres and the boundary integral
method for non-spherical particles.

The outline is as follows. The definition of the effective viscosity in Poiseuille flow
is presented in § 2. The suspension is assumed to be dilute, that is the volume fraction
is small compared with unity. In the first approximation, the contributions of particles
to the stress tensor of the suspension may then be superposed. The contribution of
one particle is derived in § 3. Like in Brenner (1970), we use the reciprocity theorem.
By superposition, the effective viscosity of the suspension is then obtained in § 4.
The case of a suspension of spherical particles is described in § 5. Then, results for
a suspension of axisymmetric orthotropic particles are presented in § 6. Finally, the
discussion and conclusion are in § 7.

2. Definition of the effective viscosity and case of a dilute suspension
2.1. Notation for the Poiseuille flow

We consider a dilute system of rigid particles suspended in a viscous fluid bounded by
two infinite parallel plane walls separated by a distance H (see figure 1). The position
vector is denoted by x, and we use a Cartesian coordinates system (x, y, z) with normal
unit vectors (ex, ey, ez), such that the walls (W1,W2) are in the planes z= 0 and z=H,
respectively.

In the absence of the particles, the parabolic fluid flow is driven by an imposed
constant pressure gradient 1p0/L along the x direction, where L is a length that is
large compared with H. The corresponding two-dimensional Poiseuille flow velocity
field is

u0 = u0ex, (2.1)
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114 F. Feuillebois and others

where
u0(z)= k1z+ k2z2 (2.2)

is parabolic, with the coefficients k1 and k2 given by

k1 =− H
2µ0

1p0

L
, k2 =−k1

H
. (2.3a,b)

Both these coefficients are proportional to the pressure drop per unit channel length
1p0/L and inversely proportional to the fluid viscosity µ0. The local shear rate at a
position z between the planes is

γ̇ (z)= k1 + 2k2z. (2.4)

The associated stress tensor is

σ0 =−p0(x)I +µ0γ̇ (z)(exez + ezex), (2.5)

with the dynamic pressure
p0(x)= 2µ0k2x, (2.6)

and the identity tensor I . Note that the coefficient k2 is negative, so that the pressure
drop 1p0 = p0(L /2)− p0(−L /2) is also negative.

The volume flow rate ū0H (per unit channel length in the transverse direction y) is
expressed in terms of the fluid velocity averaged across the channel width,

ū0 = 1
H

∫ H

z=0
u0(z) dz. (2.7)

By inserting (2.2) and (2.3) into (2.7) we obtain the expression

1p0

L
=− 12

H2
µ0ū0 (2.8)

for the pressure drop per unit length of the channel. Equation (2.8) can also be
considered as providing the viscosity, once the fluid volume flow rate ū0H per unit
length in the transverse direction and the pressure gradient in the flow direction
1p0/L are known.

2.2. Definition of the effective viscosity
In a similar way, the effective viscosity of a suspension is defined from the linear
relationship between the volume flow rate ū0H and the average pressure gradient on
a distance L such that L /H →∞ with H/a fixed, where a represents a typical
particle size.

That is, for an imposed fluid volume flow rate with average velocity ū0, the average
of the pressure gradient 1P/L in the suspension is expressed as〈

lim
L→∞

1P
L

〉
=− 12

H2
µeff ū0, (2.9)

where µeff denotes the effective viscosity. In (2.9), 〈·〉 denotes an average over all
possible positions and orientations of the particles.

The above global definition of the effective viscosity naturally arises when
measuring the viscosity of a suspension by the classical pipe flow viscometer
technique. The theoretical analysis of this quantity is the main focus of this article.
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FIGURE 2. (Colour online) Three-dimensional sketch of the control domain around a
particle (centred on the line x= y= 0) in a Poiseuille flow bounded by two parallel walls
(the sketch is not to scale here, since H� L�w).

2.3. Dilute suspension and the one particle problem
Since the suspension is dilute, each particle contributes independently to the effective
stress tensor of the suspension and thus to the pressure gradient.

Consider therefore only one particle labelled i with surface Si and centre of mass at
position xi= (xi, yi, zi), as represented schematically in figure 1. Our analysis involves
a finite control domain of length L in the flow direction x, width w in the transverse
direction y (parallel to the walls and normal to the flow) and thickness H in the
direction z. It is assumed that H�L�w. The geometry of the control domain and the
corresponding notation are illustrated in figure 2. The relationship between the scale
L for a single particle and the scale L for the suspension will be made clear below
in § 3.2.

The flow field perturbed by the presence of particle i is sought as the sum of
the unperturbed flow (indicated by the subscript 0) and a perturbation (indicated by
the prime). Accordingly, the perturbed flow velocity, stress tensor and pressure are
written as

u= u0 + u′, (2.10a)
σ = σ0 + σ ′, (2.10b)
p= p0 + p′. (2.10c)

The boundary conditions for the perturbed flow field velocity on the walls and the
particle are

on W1 and W2 : u= 0 (2.11a)
on Si : u=Ui +Ωi × (x− xi), (2.11b)

where Ui is the translation velocity of the centre of mass of particle i and Ωi is its
rotation velocity. The values of these velocities will be chosen so that the particle is
freely moving in the flow field.
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116 F. Feuillebois and others

The remaining control surfaces (see figure 2),

SL = {s−L/2
x ∪ sL/2

x }, (2.12a)
Sw = {s−w/2

y ∪ sw/2
y }, (2.12b)

are located at large distances from the particle. More precisely, following our above
assumption on dimensions, we consider the infinite-system-size limit where the side
control surfaces Sw recede to infinity before the upstream and downstream control
surfaces SL also go to infinity. In dimensionless variables we thus have

w/L→∞ and L/H→∞, (2.13a,b)

with H/a fixed.
In this limit, the perturbation flow and stress fields tend to zero. Due to the slow

decay of these fields at infinity (as discussed in appendix A), the boundary conditions
on SL and Sw need to be carefully specified so as to obtain in the limit a well-defined
relationship between the suspension flux and average pressure drop in a multiparticle
system.

We assume that the fluid volume flow rate per unit length in direction y in the
suspension is the same as in the pure fluid, Φ = ū0H, and search for the pressure
drop 1P that is necessary to maintain this condition. The possibility to apply this
flow rate condition in the limit of large distances is made clear below in § 3.1.2.

After taking the ensemble average in a dilute multiparticle system, this problem
yields the effective suspension viscosity using (2.9).

3. Supplementary pressure gradient produced by independent rigid particles in a
parallel-wall channel

In this section we first use the Lorentz reciprocity theorem to evaluate the
perturbation flux and excess pressure force difference produced by a particle in terms
of force multipoles induced on this particle, § 3.1. We then derive a corresponding
expression for the average supplementary pressure gradient in a dilute particle system,
§ 3.2.

3.1. Lorentz reciprocity theorem for a single confined particle
To determine the perturbation flux and excess pressure force difference produced by
a particle, we use the Lorentz reciprocity theorem for the product of the unperturbed
flow u0 and the perturbation flow u′ due to the particle,∫

(Si∪SL∪Sw∪W)
u0 · σ

′
· n dS=

∫
(Si∪SL∪Sw∪W)

u′ · σ0 · n dS. (3.1)

This relationship is applied in the fluid region contained in the control domain defined
above in § 2.3. The control domain contains a single suspended particle i at a position
xi, and the infinite-system-size limit (2.13) is then taken. It is assumed that the unit
normal vector n is pointing into the fluid.

As shown in § B.1, the integrals over the wall surface W and the side control
surfaces Sw vanish. Below we derive the non-zero contributions of the integrals over
the particle surface Si and the upstream and downstream control surfaces SL.
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High-frequency viscosity of a suspension of particles in Poiseuille flow 117

3.1.1. The integrals over the particle surface Si

Using the decompositions (2.10a) and (2.10b) for the perturbation velocity and
stress fields, the difference between the integrals over the particle surface Si in the
left-hand side and right-hand side of (3.1) can be expressed as∫

Si

u0 · σ
′
· n dS−

∫
Si

u′ · σ0 · n dS=
∫

Si

u0 · σ · n dS−
∫

Si

u · σ0 · n dS, (3.2)

since the terms that involve the product of the unperturbed fields cancel out exactly.
The second term on the right-hand side of the above equation vanishes,∫

Si

u · σ0 · n dS= 0, (3.3)

as demonstrated in § B.2. The first term can be evaluated in terms of the first three
moments of the surface density of the hydrodynamic friction force f = σ · n. By
expressing the unperturbed flow (2.2) as a superposition of a constant flow, shear flow
and quadratic flow at the position of the particle centre,

u0(z)= u0(zi)+ γ̇ (zi)(z− zi)+ k2(z− zi)
2, (3.4)

we obtain ∫
Si

u0 · σ · n dS = u0(zi)

∫
Si

ex · f dS+ γ̇ (zi)

∫
Si

(z− zi)ex · f dS

+ k2

∫
Si

(z− zi)
2ex · f dS, (3.5)

where u0(zi) and γ̇ (zi) are the velocity (2.2) and shear rate (2.4) evaluated at the
position of the particle centre z = zi. Using the isotropic, symmetric and deviatoric
components of the Stokes doublet to represent the second term on the right-hand side
of (3.5) yields∫

Si

u0 · σ · n dS= u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz, (3.6)

where

Fi =
∫

Si

f dS, (3.7a)

Ci =
∫

Si

ri × f dS (3.7b)

are the hydrodynamic force and torque exerted on the particle by the fluid,

Si =
∫

Si

[
1
2
(ri f + f ri)− 1

3
(ri · f )I

]
dS (3.8)

is the stresslet and
Qi =

∫
Si

f riri dS (3.9)
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is the second moment of the force distribution. In the above equations, ri = x − xi,
and the indices x, y, z denote Cartesian components of vectors and tensors. The
isotropic part of the Stokes doublet does not contribute to the result (3.6), because
(3.5) involves only off-diagonal terms.

Following Chwang & Wu (1975), the second moment (3.9) will be called a
quadrupole of stresses on particle Si. Since in (3.6) the moment Qi,xzz is multiplied
by the magnitude k2 of the parabolic flow component, the quadrupolar stresslet term
is not present in linear flows.

For a freely suspended particle, the hydrodynamic force and torque (3.7) are zero,
and therefore the first two terms on the right-hand side of (3.6) vanish. However, these
terms yield a finite contribution for immobile particles (e.g. particles adsorbed at the
channel walls).

3.1.2. The integrals over the far upstream s−L/2
x and far downstream sL/2

x surfaces
The integrals over the control surfaces SL in (3.1) allow us to link the hydrodynamic

force moments (3.7)–(3.9) with the associated correction to the pressure drop across
the channel.

The integral of the product of the unperturbed velocity field u0 and the perturbation
stress σ ′ is evaluated by decomposing σ ′ as its pressure and deviatoric-stress
contributions,

σ ′ =−p′I + σ ′d. (3.10)

The integral of the deviatoric part vanishes in the infinite system limit (2.13),

lim
L→∞

∫
SL

u0 · σ
′
d · n dS= 0, (3.11)

(where n=±ex and u0∼ ex), because the perturbation flow far from the particle tends
to a dipolar Hele-Shaw flow (A 3), which yields a small, O(L−3) projection on the x
direction. It follows that∫

SL

u0 · σ
′
· n dS=−

∫
s−L/2

x

u0p′ dS+
∫

sL/2
x

u0p′ dS. (3.12)

The pressure p′ at large distance L� H from the particle is practically independent
of z according to (A 3), and the external flow u0 depends only on z. Therefore,∫

s±L/2
x

u0(z)p′(±L/2, y) dS= ū0 f ′±, (3.13)

where ū0 is the average unperturbed flow velocity (2.7) and f ′± is the excess force

f ′± =H
∫

s±L/2
x

p′(±L/2, y) dy (3.14)

exerted on the plane s±L/2 due to the presence of the particle. Accordingly,
equation (3.12) yields ∫

SL

u0 · σ
′
· n dS= ū01f ′, (3.15)

where
1f ′ = f ′+ − f ′− (3.16)

is the difference in excess forces on the downstream and upstream control surfaces.
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High-frequency viscosity of a suspension of particles in Poiseuille flow 119

The integral of the product of the perturbation velocity field and the unperturbed
stress over the surface SL in (3.1) can be expressed as∫

SL

u′ · σ0 · n dS=Φ ′1p0, (3.17)

where the excess fluid flux Φ ′ is defined by equation

Φ ′ =Φ ′± =
∫

s±L/2
x

u′ · ex dS. (3.18)

The result (3.17) follows from the fact that far from the particle, the perturbation
flow u′ exponentially tends to Hele-Shaw flow (A 1) (which has only horizontal
components), and from the expression (2.5), with (2.6) of the unperturbed stress
tensor.

The flux Φ ′ can then be set to zero

Φ ′ = 0, (3.19)

by applying appropriate boundary conditions on the upstream and downstream surfaces
SL. That is, the flow rate condition for Φ may be applied in the limit of large
distances.

3.2. Result for the supplementary pressure gradient
Combining (3.6), (3.15), and (3.19), the Lorentz reciprocity theorem (3.1) eventually
yields

u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz +1f ′ū0 = 0. (3.20)

Consider now N� 1 independent particles with surfaces Si and centres of mass at
positions xi= (xi, yi, zi), i= 1, . . . ,N. The centres are located in a portion of length L
of the channel, such that L � L. (Note that for some particles near the edges of this
portion of channel, the attached control domain of length L may not be included in it,
which would invalidate the demonstration leading to (3.20). However, since L � L,
the number of such particles is small as compared with N.)

By linearity of Stokes equations, the relationship (3.20) can be generalised to this
collection of N particles. The total force difference due to the N particles is

1F′ =− 1
ū0

N∑
i=1

[u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz]. (3.21)

We assume that the suspension is statistically homogeneous in the x and y directions
along the walls. Dividing (3.21) by the volume V containing the N particles and taking
the thermodynamic limit for L →∞ (with N→∞ and n=N/V kept constant) yields
the result

lim
L→∞

1P′

L
=− 1

ū0
lim

L→∞
1
V

N∑
i=1

[u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz], (3.22)

in which 1P′ is the difference in supplementary macroscopic pressures between the
downstream and upstream cross-sections. We note that individual terms on the right-
hand side of (3.22) depend on the reference point representing the particle position
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(here chosen to be the centre of mass). However the combination of all the terms is
independent of this choice, resulting in a well-defined expression for the pressure drop
produced by the particles.

Results equivalent to (3.22) were derived by Bławzdziewicz & Wajnryb (2008) for
a confined suspension with periodic boundary conditions, using an entirely different
method. Their approach combined ensemble averaging techniques with an analysis of
the far-field Hele-Shaw dipolar flow produced by the particles. Moreover, the mobility
formulation was used, where the particles contributed to the average flow rather than
the pressure drop. Comparing the current results with the far-field analyses by
Bhattacharya, Bławzdziewicz & Wajnryb (2006), Bławzdziewicz & Wajnryb (2008),
we conclude that all hydrodynamic force multipoles on the right-hand side of (3.22)
(and only those) produce the dominant far-field Hele-Shaw dipoles, which contribute
to the average flow and/or average pressure drop in a confined suspension flow.

4. Intrinsic viscosity of a dilute suspension
In this section, the results of § 3 are used to determine the intrinsic viscosity of a

confined suspension undergoing pressure-driven flow. We show that in a parabolic flow,
in addition to the standard stresslet term, there also is a quadrupolar contribution. In
this way we generalize the stresslet formula for the intrinsic viscosity of an unbounded
(Batchelor 1970) or bounded (Feuillebois et al. 2015) suspension in linear shear flow.

4.1. General expression for the intrinsic viscosity
In what follows we consider a suspension of freely suspended particles, i.e. we assume
that the particles are force and torque free,

Fi = 0, Ci = 0. (4.1a,b)

Thus, the first two terms under the summation sign in (3.22) vanish. Using P= p0+P′
and the definition (2.9) of the intrinsic viscosity yields〈

lim
L→∞

1P
L

〉
= lim

L→∞
1p0

L
+
〈

lim
L→∞

1P′

L

〉
=− 12

H2
µeff ū0. (4.2)

Inserting (3.22) for the supplementary pressure gradient into (4.2) and applying
assumption (4.1) we obtain the following key result

µeff =µ0 + H2

12ū2
0

〈
lim

L→∞
1
V

N∑
i=1

[γ̇ (zi)Si,xz + k2Qi,xzz]
〉
. (4.3)

The quadrupole singularity Qi appears to be new in this context of the effective
viscosity.

4.2. Expression for a monodisperse suspension
Consider identical particles with volume v. The volume fraction of particles is φ= nv
and the suspension is dilute, φ� 1. The intrinsic viscosity is defined as

[µ] = µeff −µ0

µ0φ
. (4.4)
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In a monodisperse suspension, all particle contributions are statistically equivalent, so
that the expression (4.3) of the effective viscosity becomes

[µ] = H2

12ū2
0vµ0
〈γ̇ (z)Sxz + k2Qxzz〉, (4.5)

where z, Sxz and Qxzz stand respectively for the centre position, the stresslet and the
quadrupole of a test particle in an unbounded canal. Alternatively, writing all constants
in terms of k1, the simplified final result is

[µ] = 3
µ0vk1

〈(
1− 2

z
H

)
Sxz − Qxzz

H

〉
. (4.6)

This result may be compared with that for the effective viscosity in a pure
(linear) shear flow between parallel walls with a constant rate of shear γ̇ (see (I),
equation (2.5)):

[µ]pure shear = 1
µ0vγ̇

〈Sxz〉. (4.7)

In that case of a linear shear flow, the only contribution to the effective viscosity
comes from stresslets. Now here, quadrupoles also appear in (4.6) because of the
quadratic shear flow created by the pressure gradient. The relative importance of the
quadrupole term in (4.6) compared with the stresslet term is (µ0k2/H)/(µ0k1)∼ 1/H2.
It thus becomes important for a confined geometry, which is the focus of this article.

4.3. High-frequency flow field
Similarly to the case of a bounded shear flow in (I), we consider here a high-frequency
oscillating Poiseuille flow. That is, the oscillating frequency is high enough for
the distributions of particle centre-of-mass position z and orientation angles to be
practically frozen, yet small enough for the flow to be quasi-steady.

Note that for a steady flow field, these distributions would evolve with the
hydrodynamics. Their calculation would require supplementary efforts (see Zurita-
Gotor et al. (2007) and Ezhilan & Saintillan (2015) for examples of such calculations).

With uniform distributions, in (4.6) Sxz is proportional to µ0k1 and Qxzz/H is
proportional to −µ0k1/H2, so that by (2.3) and (2.4), the result for [µ] only depends
on H and on the particle properties. The result that [µ] is independent of the flow
field tells us that the suspension has a Newtonian behaviour at first order in volume
fraction φ when in a high-frequency oscillating Poiseuille flow.

4.4. Numerical methods for calculating the stresslet and quadrupole
The stresslet Si,xz and quadrupole Qi,xzz are calculated numerically with methods
that are relevant for Stokes flow. An integral equation with the appropriate Green
tensor taking into account both walls is solved by two different methods, namely
the boundary element method (BEM) and the multipole method. Details about these
techniques are given in (I). The calculation of the stresslet is the same here as in that
preceding article. As for the additional quadrupole Qi,xzz, it is obtained by integrating
on the particle the local stress which is directly provided with the BEM approach.
In contrast, the multipole method requires some supplementary effort. The truncation
order used for this purpose (see Ekiel-Jeżewska & Wajnryb 2009) is L = 6 for all
computations.
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Component z/a N = 74 N = 242 N = 1058 L= 9 L= 6 L= 3

Si,xz 1.1 0.1061 0.1074 0.1069 0.1070 0.1070 0.1094
Si,xz 1.3 0.0416 0.0418 0.0419 0.0419 0.0419 0.0431
Qi,xzz 1.1 1.5663 1.5768 1.5575 1.5571 1.5586 1.6523
Qi,xzz 1.3 1.1760 1.1685 1.1653 1.1650 1.1650 1.2133

TABLE 1. Computed values of the normalised stresslet component Si,xz=3Si,xz/[10πµ0ka3]
and quadrupole component Qi,xzz = −3HQi,xzz/[8πµ0ka5] for a sphere with radius a and
centre distance to wall W1 equal to z = 1.1a, 1.3a. The gap between walls is H = 3a
and different N-node meshes on the sphere surface are employed for the BEM while the
multipole method is run with different truncation numbers L.

Results for normalised stresslet and quadrupole from both methods are presented in
table 1 for the case of one sphere with radius a at different locations in a narrow
canal with gap dimension H = 3a. Results are in perfect agreement (the difference is
of order 10−4 when using N = 1058 meshes for the BEM and a truncation number
L= 9 for the multipole method).

5. Monodisperse dilute suspension of spherical particles
As an example, consider in this section the case of a homogeneous dilute

monodisperse suspension of spherical particles of radius a in Poiseuille flow. For
this case, the averaging in (4.6) is only performed on the position of the sphere
centre (viz. not on the particle orientation), that is by symmetry relative to the centre
of the gap:

〈 f 〉 = 2
H − 2a

∫ H/2

a
f (z) dz. (5.1)

5.1. Neglecting interactions with walls
As a consistency check, consider in this subsection the case when hydrodynamic
interactions between the particles and walls are neglected.

5.1.1. The stresslet part
The result for the xz component of the stresslet on a spherical particle in a pure

straining motion with shear rate tensor E is (see e.g. Batchelor 1970)

Sxz = 5vµ0Exz. (5.2)

Now, in a linear shear flow with local shear rate γ̇ (z), the relevant shear rate
component is Exz(z) = γ̇ (z)/2. As for the average in the expression (4.6) of the
effective viscosity, we use here the same definition (5.1) as for the full problem
involving hydrodynamic interactions with walls, in order to allow below for
comparisons of average quantities. Calculating the average of γ̇ (z)Sxz(z) in (4.6),
we eventually obtain the stresslet contribution to the effective viscosity:

[µ]S = 5
2
− 10

( a
H

)
+ 10

( a
H

)2
. (5.3)

In the limit a/H → 0, we recover the Einstein result for the shear flow in an
unbounded fluid:

[µ]∞ = 5
2 . (5.4)
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The other terms in (5.3) come from the variation of the shear rate in the gap. At
first order in a/H, the effective viscosity of the dilute suspension in Poiseuille flow is
lower than that in unbounded fluid (the Einstein result). This may come as a surprise
because the Einstein viscosity is known to be independent of the flow field. However,
it should be emphasized that: (i) Einstein’s viscosity is a local one; (ii) our definition
of the effective viscosity involves an average over the gap over which the shear stress
varies; (iii) the variation of the shear stress decays from some value at z= a, H − a
(that is close to that at infinity for large H/a) down to zero in the centre of the gap.

Recall that our definition of the effective viscosity is appropriate for experiments
with the pipe flow viscometer involving measurements of the pressure drop and
flow rate. Thus, even without hydrodynamic interactions with walls, corrections to
Einstein’s results are to be expected in the measured results for the effective viscosity.

5.1.2. The quadrupole part
The result for the xzz component of the quadrupole on a freely moving spherical

particle in a quadratic shear flow with coefficient k2 is derived in appendix C. From
(C 6),

Qxzz = 2a2vµ0k2. (5.5)

Since it does not depend on z, then 〈Qxzz〉 = Qxzz. The contribution of Qxzz to the
intrinsic viscosity in (4.6) is

[µ]Q =− 3
µ0vk1

Qxzz

H
= 6

(
ak2

k1

)2

= 6
( a

H

)2
, (5.6)

that is of second order for small a/H. Recall that this contribution arises in Poiseuille
flow because of the present definition of the effective viscosity which involves an
average over the gap.

5.1.3. Result for the intrinsic viscosity
Using the preceding results (5.3) and (5.6), the intrinsic viscosity for a suspension

of spherical particles in Poiseuille flow, when ignoring the interactions with walls, is

[µ] = 5
2
− 10

( a
H

)
+ 16

( a
H

)2
. (5.7)

5.2. First-order interactions with nearest wall
An improvement over the results of § 5.1 can be obtained by considering the
hydrodynamic interactions of freely moving spheres with the nearest wall. Indeed, it
was shown in Pasol et al. (2011) that this approximation provides a good accuracy
for the sphere translation velocity between two parallel walls in Poiseuille flow in a
large range of parameters. It is then expected that this approximation also provides
a good estimate of the stresslet and quadrupole on a freely moving sphere between
parallel walls.

Consider then a freely moving sphere in a parabolic shear flow u0(z)= k1z+ k2z2,
which is the sum of a linear and parabolic shear flow. Results for the stresslets on a
sphere that is freely moving in these two flow fields, say S1

xz and S2
xz, were calculated

in bispherical coordinates by Pasol (2003). The formal expressions in bispherical
coordinates may then be expanded as series in a/z (where z represents the position
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of the sphere centre), using the technique shown in Feuillebois et al. (2012). The
results are, in dimensionless form

s1
xz =

S1
xz

5
2µ0vk1

= 1+ 15
16

(
a
z

)3

−
(

a
z

)5

+ 225
256

(
a
z

)6

· · · (5.8a)

s2
xz =

S2
xz

5µ0vk2z
= 1+ 15

16

(
a
z

)3

− 79
64

(
a
z

)5

+ 225
256

(
a
z

)6

· · · (5.8b)

By construction, the dimensionless stresslets have the limit of unity when the sphere
is far away from the wall, a/z→ 0. It is remarkable that the two expansions (5.8a)
and (5.8b) are identical up to order (a/z)4. The stresslet on a sphere in a parabolic
flow near a wall is, by linearity

Sxz = S1
xz + S2

xz (5.9)

in which we use (2.3).
This result is now introduced into the expression (4.6) for the intrinsic viscosity.

Keeping only terms up to (a/z)4 in (5.8) and performing the average using (5.1) (this
half-gap definition being well suited to this nearest wall problem), the result for the
stresslet contribution is

[µ]S = 5
2
− 95

32

( a
H

)
− 515

16

( a
H

)2
. (5.10)

Like for the result (5.3) without a wall interaction, the intrinsic viscosity decays at
first order in a/H. Now, the coefficients are affected by hydrodynamic interactions:
we have in (5.10) −95/32 ' −2.97 and −515/16 ' −32.19 instead of −10 and 10
for the result (5.3) which ignores interactions with walls. At this point, we omit the
contribution of the quadrupole which is not calculated in bispherical coordinates (and
would require some substantial effort). It is expected that this contribution would be
of order (a/H)2. Considering only the −6.48(a/H) term in (5.10), as compared with
the −10(a/H) in (5.3) it is found that the effective viscosity is increased. This is
expected because of the increased dissipation due to the hydrodynamic interactions
with the walls. Yet, the general tendency that the effective viscosity is smaller than
that in unbounded fluid still holds.

5.3. Results from method of multipoles
The method of multipoles is well suited to spheres and is chosen here for its accuracy
and calculation speed. It also allows to study small gaps between the particle to wall
down to contact. Results from the method of multipoles for the intrinsic viscosity of
suspensions of spheres are shown in figure 3 (see also figure 5 for N = 1). The full
result from the method of multipoles taking into account both stresslet and quadrupole
is shown in figure 3 as a solid line and the partial result taking only into account the
stresslet is shown as a dashed line.

Consider first this last quantity, say [µ]S. From (4.6) in which we put Qxzz= 0, the
quantity to average varies like the square of the shear rate γ̇ (z)2 = k2

1(1− 2z/H)2. In
the limit of H/d→ 1, the particle centre is in the middle of the channel where the
shear rate vanishes. This is why [µ]S vanishes for H/d→ 1.

Consider now the full result for [µ]. Then the contribution of the quadrupole
becomes important for small gaps since it is related to the curvature k2 =−k1/H of
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 0.5

 0

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10

Stresslet and quadrupole

Stresslet and quadrupole, no wall effect
Stresslet only

Stresslet only, no wall effect
Nearest wall, first order

FIGURE 3. Intrinsic viscosity [µ] of a dilute suspension of spheres versus H/d, with H
the distance between walls and d the diameter of a sphere. Solid line: from method of
multipoles, taking both stresslet and quadrupole into account. At contact, H/d= 1, there is
a finite value (not shown) of [µ] = 7.09. Dashed line: from method of multipoles, taking
only the stresslet into account. Solid line with circles: using the stresslet and quadrupole
in unbounded space (viz., no wall effect), equation (5.7). Dashed line with circles: using
only the stresslet in unbounded space (viz., no wall effect), equation (5.3). Dash-dotted
line: first-order interactions with nearest wall, equation (5.10) up to a/H, shown here only
for H/d> 3.

the velocity profile. In the limit H/d→ 1, the particle centre is in the middle of the
channel where the curvature k2 is at a maximum. In this limit, [µ] has a finite limit
shown in table 3 (N = 1). The solid line in figure 3, by comparison with the dashed
line, clearly shows the contribution of the quadrupole.

As for large gaps, fitting the results by a polynomial in a/H, we obtain the
approximation

[µ] = 5
2
− A1

( a
H

)
− A2

( a
H

)2
, (5.11)

with A1=3.436 and A2=17.72, valid for H/d>10. Note that the coefficient of (a/H)2
is negative, unlike in (5.7).

The formula (5.7) using the stresslet and quadrupole in unbounded space, which
is ignoring any wall effect, is represented for comparison in figure 3 as a solid line
with circles. It has the same shape as the precise result which takes hydrodynamic
interactions into account. Yet, there is a displacement towards the lower viscosity,
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showing that hydrodynamic interactions with walls increase the viscous dissipation and
thus the effective viscosity, an expected feature.

The formula (5.3) using only the stresslet in unbounded space, i.e. also ignoring
any wall effect, is represented in figure 3 as a dashed line with circles. For the same
reason as [µ]S, this quantity vanishes for H/d→ 1. As expected, it matches the curve
for the stresslet and quadrupole for large H/d.

The formula (5.10) taking into account the first-order hydrodynamic interaction with
the nearest wall, i.e. [µ] = 5/2− 95/32(a/H), is shown in figure 3 as a dash-dotted
line in the range H/d > 3. It has a similar shape as the other curves. It is above
the no-wall approximation as expected since it models some viscous dissipation. It is
different from the curve from multipoles for the ‘stresslet only’ (dashed curve) since
it takes into account only a part of the dissipation due to the stresslet.

6. Suspension of axisymmetric orthotropic particles
6.1. Formulation

The general case of an arbitrarily shaped particle would be quite demanding
numerically since defining its position as a solid body would require using its
centre position along z plus the three Euler angles. We thus restrict our attention to
the particular case of axisymmetric orthotropic particles.

The position of such a particle in the channel is defined by its centre location at z
and its orientation angles θ of its symmetry axis relative to the normal to walls and
ϕ around the normal to walls, as depicted in figure 1. Depending upon the particle
shape and its orientation, its centre position z has a minimum zmin when the particle
touches the wall. The angle θ at z varies between bounds θ1(z) and θ2(z) such that
0 6 θ1(z)6 θ2(z)6π/2 and ϕ varies in [0, 2π].

The quantity to average in (4.6) depends on these quantities. Let:

R(z, θ, ϕ)=
(

1− 2
z
H

)
Sxz − Qxzz

H
. (6.1)

By symmetry, it is sufficient to consider z < H/2 in the averaging. Like for the
stresslet (see (I), equation (4.2)), it may be shown by linearity of Stokes equations
and symmetries that

R(z, θ, ϕ)=R(z, θ, 0) cos2 ϕ +R(z, θ,π/2) sin2 ϕ. (6.2)

Expressing the average in (4.6) then yields an expression analogous to (4.3), (4.4)
in (I):

[µ] = 3B
µ0vk1A

, A=
∫ H/2

zmin

[∫ θ2(z)

θ1(z)
sin θ dθ

]
dz, (6.3a,b)

B=
∫ H/2

zmin

[∫ θ2(z)

θ1(z)
R(z, θ,π/4) sin θ dθ

]
dz. (6.3c)

Consider in particular chains of beads and prolate spheroids. Chains of beads are
constructed with N aligned touching equal spheres with radius a. The spheres are
rigidly connected, that is they are not free to rotate relative to one another. Prolate
spheroids have a width d = 2a and a slenderness ratio s. If s is an integer N, the
spheroid with the same length Nd as the chain of N beads also has the same aspect
ratio and the same volume, as already noted in (I). For these particles, the geometrical
formulae for zmin, θ1(z), θ2(z) and A displayed in (4.5)–(4.9) in (I) still hold. Only B
has to be calculated here.
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1 2 3 4 5 6 7 8 9 10

 0.5

 0

1.0

1.5

2.0

2.5

FIGURE 4. (Colour online) Intrinsic viscosity [µ] versus H/d for suspensions of doublets
of touching spheres of diameter d and suspensions of spheroids of width d and length 2d.
See the legend for details (Red online corresponds to doublets of spheres). For doublets
at contact with walls, H/d= 1, there is a finite value (not shown) of [µ] = 6.71.

6.2. Doublets of equal touching spheres and equivalent prolate spheroids
The results for a suspension of doublets of touching spheres of diameter d and
spheroids of the same length 2d and same width d are displayed in figure 4. Results
for the doublets are from the method of multipoles and those for the spheroids are
from the BEM. The solid curves show the full results using both the stresslet and
quadrupole and the dashed curves the results using only the stresslet. For the (solid
and dashed) lines with circles (for doublets) and squares (for spheroids), wall effects
are ignored.

The full value of [µ] for doublets when taking both the stresslet and quadrupole
into account is larger than that for spheroids. This is related to the shape difference.

The solid curve for the full value of [µ] in figure 4 exhibits a local maximum at
H/d∼ 2. This is due to the new quadrupole term since, in contrast, the dashed curve
for ‘stresslet only’ has no local maximum. Note that in the case of a linear shear
flow in paper (I), there is a significant local maximum due to the stresslet. Thus, the
stresslet contribution to the local maximum depends on the flow field.

The bump at H/d ' 2 on the solid lines occurs at the boundary of restricted
geometrical configurations when the particle axis is normal to the walls. This bump
is a local maximum for the doublets. A weaker bump also exists for spheroids at
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N 1 2 3 4 5 6

H/d 1.67 1.59 1.57 1.62 1.67 1.70
[µ] with Sxz and Qxzz 1.58 1.86 1.49 1.39 1.33 1.29
[µ] with only Sxz 0.852 1.02 0.399 0.408 0.423 0.430

TABLE 2. Values of H/d at the minimum of [µ] for chains of N beads and values of this
minimum when taking into account both the stresslet Sxz and quadrupole Qxzz (third line).
Values of [µ] at these values of H/d when considering only the stresslet Sxz (fourth line).

N 1 2 3 4 5 6

[µ] 7.09 6.71 7.06 7.58 8.16 8.76

TABLE 3. Computed intrinsic viscosity [µ] for the N-bead rods in the limit of contact
H/d→ 1.

H/d ' 2, but it does not correspond to a maximum. For both types of particles,
the bump is due to the quadrupole since it does not appear on the ‘stresslet only’
curves (the dashed curves).

Considering the curves for stresslet only (the dashed curves), that for spheroids is
above that for doublets when H/d> 3 and below for H/d< 3. For large H/d, this is
related to the increased dissipation due to the configuration of doublets, as explained
above for the solid curves. Now for low H/d, the influence of the quadrupole appears
to be larger for spheroids.

Curves for which interactions with walls are omitted, i.e. the solid lines with
circles for doublets and with triangles for spheroids, are very similar to the ones
taking wall interactions into account. They are lower since the viscous dissipation
from interactions with walls is omitted. The bump at H/d ' 2 is also observed on
the solid lines with circles and triangles. In this case also, it is due to the quadrupole
since it does not appear on the ‘stresslet only’ curves (the dashed curves with circles
and triangles).

Results from the multipoles are obtained for gaps down to contact, whereas the
BEM is limited to gaps H/d > 1.4 here. For H/d < 2, the intrinsic viscosity first
decays, then goes to a minimum (table 2 for N = 2) and then increases for narrow
gaps. This minimum is related to the decaying influence of the stresslet together with
the growing influence of the quadrupole for decaying H/d. In the limit of contact
with both walls H/d→ 1 where all particles are at rest, [µ] has a finite limit shown
in table 3 (for N = 2). This is in contrast to the shear flow case in (I) for which
the limit H/d→ 1 corresponds to moving particles with singularities at contact points
leading to infinite viscosity.

6.3. Results for chains of beads
Results for the effective viscosity of chains of beads made of N = 1, . . . , 6 equal
touching spheres are displayed in figure 5. For N > 2 like for the cases N = 1, 2, the
intrinsic viscosity taking only into account the stresslet (represented by the dashed
lines) vanishes for H/d − 1→ 0. This is again because the particle is then limited
to the centre of the gap where the shear rate vanishes. The full results taking both
stresslet and quadrupole into account show a rich behaviour:
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5
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10010–110–210–310–4 102101

FIGURE 5. (Colour online) Intrinsic viscosity [µ] of N-bead chains (N 6 6) versus
H/d − 1, with H the distance between walls and d the diameter of a bead. Solid lines:
taking both stresslet and quadrupole into account. Dashed lines: taking only the stresslet
into account. The logarithmic scale is used to show the lubrication behaviour for narrow
gaps.

(i) There is a regular variation for H/d > N, which we call the ‘weakly confined
regime’. In this regime, unlike for the case of a shear flow in (I), the intrinsic
viscosity [µ] decreases for decreasing gap H/d− 1. This is because the particle,
being limited to the middle of the channel, is subject to a decaying shear rate;
this is the influence of the varying stresslet, as explained above.

(ii) At H/d ' N, there is a sudden change in slope on the solid curves. For any
N, like for the case N = 2 considered above, this happens at the boundary of
restricted geometrical configurations. This is due to the quadrupole since it does
not appear on the ‘stresslet only’ curves (dashed curves). The quadrupole is
effective when the particle is limited to the central region in which the curvature
of the velocity profile is larger. For H/d > N, the particle position escapes this
limitation and there are fewer possibilities for the quadrupole to take over and
provide dissipation. Thus, [µ] increases slower for H/d>N.

(iii) For all values of N like in the case N=2, when H/d decays below N the intrinsic
viscosity first decays, then goes to a minimum at H/d=Hmin/d' 1.6− 1.7 and
then increases for narrow gaps. The values of the minimum are shown in table 2.
Like for a shear flow in (I), the part for H >Hmin, where the range of possible
orientations is limited, may be called the ‘semi-confined’ regime and the part
for H < Hmin the ‘strongly confined’ regime. In the present case, unlike in (I),
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N [µ]∞, chains [µ]∞, spheroids

1 2.5 2.5
2 3.05 2.58
3 3.53 2.79
4 4.04 3.08
5 4.62 3.43
6 5.24 3.84

TABLE 4. Values of the bulk intrinsic viscosity for chains of beads and spheroids of
slenderness ratio 1, . . . , 6.

all curves have a minimum. This is related to the decaying influence of the
stresslet together with the growing influence of the quadrupole for decaying H/d.
Like for N = 2, in the limit of contact H/d→ 1 all curves have a limit (see
table 3) whereas for the shear flow case in (I) the limit H/d→ 1 corresponds
to an infinite viscosity.

6.4. Results for prolate spheroids
Results for the intrinsic viscosity of a suspension of prolate spheroids of slenderness
ratio s = 1, 1.5, 2, 2.5, 3, 4, 5, 6 are plotted versus H/d in figure 6. The cases s =
1, 1.5, 2, 2.5 and s= 3, 4, 5, 6 are displayed separately for clarity. It is remarked that
the value of [µ] at H/d = 10 decays when s increases from 1 to 2.5 and increases
when s increases from 3 to 6. Values of [µ] for the s= 2.5 and s= 3 spheroids are
close for H/d> 5.

The shapes of curves are analogous to those found for chains of beads:

(i) For H/d > s there is a regular variation in the ‘weakly confined regime’.
(ii) At H/d ' s, there is a sudden change in slope due to restricted geometrical

configurations, except for the sphere (s=1). Note that the change of slope already
occurs for the s=1.5 spheroid, as expected. For s=2.5, there is even a minimum
at H/d= 2 and the maximum curvature found at H/d= s for other curves is here
moreover a local maximum.

(iii) For all values of s, when H/d decays below s (for cases s > 1) the intrinsic
viscosity first decays, then goes to a minimum and then increases. Even though
the limitation in possibilities of the BEM does not allow to study narrow gaps,
it is expected that this increase would be similar to the one for chains of beads,
since it is due to lubrication around the particle waist. Like for chains of beads,
the part for H > Hmin where the range of possible orientations is limited is the
‘semi-confined’ regime and the part for H <Hmin the ‘strongly confined’ regime.

6.5. Comparison of results for chains of beads and spheroids
Comprehensive results for chains of N spheres with N= 1, . . . , 6 and spheroids of the
same length Nd and width d are displayed in figures 7 and 8. In figure 7, values of
the intrinsic viscosity are normalized by their relevant bulk values (viz. in unbounded
fluid), which are displayed in table 4.

For each value of N, the curves for the chains of beads and the spheroids in figure 7
have a similar shape, with a change of slope at the same value of H/d = N and a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.378


High-frequency viscosity of a suspension of particles in Poiseuille flow 131

1.4

1.6

1.8

2.0

2.2

2.4

2.6

(a)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(b)

FIGURE 6. (Colour online) Intrinsic viscosity [µ] of spheroids of slenderness ratio
s = 1, 1.5, 2, 2.5, 3, 4, 5, 6 versus H/d, with H the distance between walls and d the
width of the spheroid.

minimum value of [µ]/[µ]∞ (the calculation for spheroids by BEM is not numerically
possible for small gaps below this minimum).
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FIGURE 7. Intrinsic viscosity [µ], normalised by the bulk intrinsic viscosity (in unbounded
fluid) [µ]∞, for chains of N spheres of radius a (solid lines) and suspensions of spheroids
of the same length Nd and width d (solid lines with crosses), for N = 1, . . . , 6.

Figure 8 shows that, like for N=2 (see figure 4), the value of [µ] is for other values
of N > 2 (and for H/d large enough) larger for chains of spheres than for spheroids.
However, this effect appears to be screened by walls since figure 7 shows that the
intrinsic viscosity normalised by the bulk one [µ]∞ is larger for spheroids than for
chains of beads. Figure 8 also shows that there is a range of small H/d (smaller than
around 3) for which the intrinsic viscosity of spheroids with N > 2 is larger than that
of chains of beads. This difference increases with N. This may be due to the increased
dissipation in the gap between the large radius of the elongated spheroid and the wall
when in the lubrication regime.

6.6. Comparison with earlier results for pure shear flow
The comparison between results for the intrinsic viscosity of chains of beads in a pure
shear flow from (I) and the present results in Poiseuille flow is displayed in figure 9.
Figure 9(a), the intrinsic viscosity is normalized by its value in unbounded fluid, [µ]∞.
It is observed that the viscosity in bounded pure shear flow is generally larger than
the corresponding value in unbounded flow, whereas it is the contrary for the viscosity
in Poiseuille flow.

This is mainly due to two effects:

(i) Shear stresses between particles and walls are large in pure shear flow for small
gaps because the particles are subject to a shear rate and the resulting dissipation
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FIGURE 8. Intrinsic viscosity [µ] for chains of N spheres of radius a (solid lines) and
suspensions of spheroids of the same length Nd and width d (solid lines with crosses),
for N = 1, . . . , 6.
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FIGURE 9. (Colour online) Intrinsic viscosity when in a shear flow (solid curves) and in
Poiseuille flow (dashed curves), for chains of N spheres (N = 1, 2, 6). (a) [µ], normalized
by the intrinsic viscosity in unbounded fluid [µ]∞, versus H/d. (b) [µ] versus H/d− 1.

leads to an increase in viscosity. No such shear stress is imposed on a particle
in a narrow channel close to both walls in Poiseuille flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.378


134 F. Feuillebois and others

2 3 4 5 6 7 2 3 4 5 6 7

2 3 4 5 6 7 2 3 4 5 6 7

 0.5

 0

1.0

1.5

2.0

2.5

 0.5

 0

1.0

1.5

2.0

2.5

5

6

1

2

3

4

5

6

1

2

3

4

(a) (b)

(c) (d )

FIGURE 10. Comparison of the intrinsic viscosity when in a shear flow (solid curves)
and in Poiseuille flow (dashed curves), for chains of beads (lines without symbol) and
spheroids (lines with crosses) of the same length Nd and width d. (a,b) N= 2. (c,d) N= 6.
(a,c) [µ], normalized by the intrinsic viscosity in unbounded fluid [µ]∞, versus H/d.
(b,d) [µ] versus H/d.

(ii) The effective viscosity in Poiseuille flow being defined in terms of an average
across the gap in which the shear stress decays to zero in the centre, its value
is generally smaller than the one in unbounded fluid. Only for extremely small
gaps of the order of (H/d)− 1= 10−1 for N= 1 and (H/d)− 1= 10−4 for N= 6,
the lubrication stresses increase the dissipation so as to give an effective viscosity
larger than the value in unbounded fluid.

The comparison for the intrinsic viscosity of chains of beads and spheroids in a pure
shear flow from (I) and in Poiseuille flow is displayed in figure 10. Particles have the
same length Nd and width d. Chosen values are N = 2 and N = 6. Because of the
used BEM, displayed results for spheroids are limited to the region 1.4 6 H/d 6 7.
Results for chains of beads can be viewed as a zoom of those of figure 9. Like for
chains of beads, the intrinsic viscosity for spheroids is generally larger for pure shear
flow than for Poiseuille flow; this is also explained by the effects (i) and (ii) above.
As remarked already in figures 7 and 8 for Poiseuille flow, the intrinsic viscosity for
spheroids is generally smaller than that for chains of beads. Behaviours for Poiseuille
flow and pure shear flow are analogous in this respect. For N= 6, when in pure shear
flow there is a minimum of [µ] which is well marked for chains of beads and not so
marked for spheroids. In Poiseuille flow, the minimum still exists but is much smaller.
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7. Discussion and conclusion
Results show that the intrinsic viscosity [µ] in bounded Poiseuille flow is smaller

than its value [µ]∞ in unbounded flow, except for extremely narrow gaps of the order
of (H/d)−1=10−1 for N=1 and (H/d)−1=10−4 for N=6, when it becomes larger.
In addition, the intrinsic viscosity [µ] has a minimum for a gap H between walls of
the order of 1.5–2 particle width d.

As it was observed by Feuillebois et al. (2015) for a dilute suspension in shear flow,
the minimum and the shape of the curve for the intrinsic viscosity in Poiseuille flow
correspond to three characteristic regimes (see figures 5 and 6). In a ‘weakly confined’
regime, with H larger than the particle length, the intrinsic viscosity slowly increases
with H towards the bulk value. In a ‘semi-confined’ regime, which corresponds to
smaller channel widths, a minimum of [µ] occurs around H/d = 1− 3 (similarly as
in case of the shear flow). This is due to limited orientations of a particle when its
length becomes larger than the gap. In a ‘strongly confined’ regime, for the ratio of
the channel width to the particle width smaller than around 1.2, we observe a rapid
(but limited) increase of [µ].

The lubrication regime for small gaps is well visible in figure 9(b) for chains of
beads. For H/d→ 1, the viscosity increases to infinity in pure shear flow whereas it
reaches a finite value in Poiseuille flow. This is due to lubrication effects (explained
in item (i) in § 6.6), which are enhanced for small gaps in shear flow when both close
walls moving with respect to each other not only prevent the particle from rotating,
but also create a significant relative local velocity of the particle surface with respect
to the wall close by. In Poiseuille flow inside a narrow channel the particle stays
close to the central plane where the local shear vanishes, and therefore there is no
lubrication divergence. Even though the lubrication regime cannot be calculated for
spheroids by the BEM, the tendency for small gaps from figure 10 is the same and
we may anticipate similar results.

The difference between the intrinsic viscosities in Poiseuille and shear flows is
significant even for relatively wide channels, e.g. three times wider than the particle
length as seen in figure 10. As seen in figure 9(b) for chains of beads, this difference
can be neglected only if the walls are so far away from each other, that the intrinsic
viscosity is practically equal to its value in the bulk fluid, which is typically for
H/d > 100. For thinner channels, hydrodynamic interactions with the walls have to
be taken into account in the calculation of [µ].

The comparison of the results for spheroids and rods made of beads leads to the
conclusion that for spheroids, the intrinsic viscosity is slightly smaller than for chains
of beads with the same aspect ratio, with slightly less deep minima for spheroids in
the weakly confined regime. However, the overall behaviour is qualitatively the same
for both shapes. Therefore, in order to save significantly the computational time, a
rigid chain of beads can serve as a simple model of an orthotropic particle with a
more complicated shape, keeping the same volume and slenderness ratio.

Finally, we remind that the quadrupole term has to be taken into account while
evaluating the intrinsic viscosity in Poiseuille flow. The results based on the stresslet
term only would lead to underestimated values of [µ], with a large discrepancy for
thin channels. The approximation based on the stresslet only is justified only in the
case of very wide channels, at least one order of magnitude larger than the particle
length.

The present results may be applied to some practical situations in which a small
amplitude oscillatory flow is imposed to a bounded suspension. Our work moreover
provides a theoretical basis for further calculations in which the particle distribution
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and orientation are affected by the flow field. There is no fundamental difficulty to
treat that problem, on the basis of the present formulae for the averaging together
with a Fokker–Planck equation for the particle position and orientation probability.
The extensive numerical calculations which would have to be performed for all
configurations would deserve a separate project.
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Appendix A. Far-field flow produced by a particle in a parallel-wall channel
As discussed by Bhattacharya et al. (2006) and by Bhattacharya & Bławzdziewicz

(2008), the flow uf produced by an arbitrary bounded force distribution in a fluid
confined between two parallel walls tends at large distances either to zero or to the
asymptotic Hele-Shaw form,

uHS(x)=− 1
2µ
−1z(H − z)∇pHS(x, y), (A 1)

where the pressure pHS is independent of z and satisfies the Laplace equation

∇2pHS(x, y)= 0. (A 2)

The approach of uf to the asymptotic Hele-Shaw form (A 1) is exponential on the
length scale H. For a typical force distribution, the leading-order asymptotic behaviour
is the Hele-Shaw flow driven by the pressure dipole,

pHS(x, y)= 1
2π

D ·
ρ

ρ2
, (A 3)

where ρ = xex + yey, ρ = |ρ|, and D is the dipole moment associated with the
distribution of the forces applied to the fluid.

Since a solid particle in external flow can be represented in terms of induced forces
distributed on the particle surface, equations (A 1)–(A 3) are valid for the scattered
flow and stress fields produced by the particles in our effective viscosity problem. In
particular these equations yield the following relations for the far-field behaviour of
the perturbation pressure, velocity and deviatoric-stress fields,

p′ ∼ ρ−1, (A 4a)
u′ ∼ ρ−2, (A 4b)

σ ′d,αβ ∼ ρ−3, α, β = x, y, (A 4c,d)

where σ ′d,αβ are the αβ components of the deviatoric part of the far-field stress tensor
(3.10) (evaluated in the asymptotic far-field flow regime).

The slow decay of the perturbation pressure and flow fields p′ and u′ results in a
non-trivial dependence of the average flow and pressure drop on the control domain
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shape and the boundary conditions in a many particle system. This non-trivial
non-local dependence stems from the presence of conditionally convergent integrals
and sums of O(ρ−1) and O(ρ−2) contributions when the infinite-system-size limit
is performed (see Bhattacharya 2008; Bławzdziewicz & Wajnryb 2008, for more
details). In our analysis (see §§2–4) a well-defined result, equivalent to a unique
local relationship between local volume flux and statistically averaged pressure
gradient, is obtained by considering a cuboidal control domain in the limit (2.13).

Appendix B. Evaluation of surface integrals in Lorentz reciprocity relationship
(3.1)

B.1. Integrals over the channel walls W and side control surfaces Sw

The integrals over the wall surfaces W1 and W2 in (3.1) vanish because of the no-slip
boundary conditions for the unperturbed flow u0 and the perturbation flow u′.

To evaluate the integral over the side control surfaces Sw in the left-hand side of
(3.1), we note that the external flow (2.1) has only the x component and that n =
±ey on Sw. Thus, by employing the decomposition (3.10) of the stress tensor as its
isotropic and deviatoric components and using (A 4a,c,d) we obtain the asymptotic
behaviour of the integrand

u0 · σ
′
· n∼ ρ−1, (B 1)

which yields ∫
Sw

u0 · σ
′
· n dS∼ L/w. (B 2)

The integral (B 2) vanishes in the limit (2.13) because L/w→ 0.
A similar argument applies to the integral over the surface Sw in the right-hand side

of (3.1). In this case, using (2.5) and the fact that in the asymptotic Hele-Shaw regime
(A 1) the perturbation flow u′ has only lateral components, we find

u′ · σ0 · n∼=−p0u′ · n∼ ρ−2, (B 3)

according to (A 4b). The asymptotic behaviour of the corresponding integral is∫
Sw

u′ · σ0 · n dS∼ L2/w2, (B 4)

where an additional factor L stems from the position dependence of the pressure field
p0. Similar to (B 2), integral (B 4) also vanishes in the limit (2.13).

B.2. Derivation of (3.3)
Using the notation f 0 = σ0 · n for surface density of the hydrodynamic force and the
no-slip boundary condition (2.11b) on the particle surface, the integral on the left-hand
side of (3.3) can be expressed as∫

Si

u · f 0 dS =
∫

Si

(Ui +Ωi × ri) · f 0 dS

= Ui ·

∫
Si

f 0 dS+Ωi ·

∫
Si

(ri × f 0) dS, (B 5)
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where ri = x− xi, and the identity∫
Si

(Ωi × ri) · f 0 dS=Ωi ·

∫
Si

(ri × f 0) dS (B 6)

has been applied. The integrals on the right-hand side of (B 5) vanish, because in the
unperturbed flow the fluid enclosed by the surface in Si is force and torque free.

Appendix C. Quadrupole of stresses on a sphere surface in an unbounded
quadratic flow

Consider a fixed sphere in an unbounded quadratic flow with velocity

u0 = k2Z2ex, (C 1)

where Z = 0 is at the sphere centre. The x component of the stress f on the sphere
is

f q
x =− 1

4 k2µ0a[2(n · ex)
2 − 17(n · ez)

2 + 3] (C 2a)

− 2k2µ0a[(n · ex)
2 − (n · ez)

2], (C 2b)

where the part (C 2a) comes from the flow relative to the sphere and the part (C 2b)
from the ambient quadratic flow. Using spherical coordinates (r, θ, φ), we have

n · ex = sin θ cos φ, n · ey = sin θ sin φ, n · ez = cos θ. (C 3a−c)

Since the solid spherical particle is freely moving in the quadratic flow, its velocity
is from Faxen’s formula: (a2/3)k2ex. The stress on the sphere is uniform for the
translation problem and its value (which is along x) is here

f t
x =− 1

2 k2µ0a. (C 4)

The total stress on the translating sphere surface is

fx = f q
x + f t

x =− 5
4 k2µ0a[2(n · ex)

2 − 5(n · ez)
2 + 1] (C 5)

and the required component of the quadrupole is

Qxzz =
∫

S
ZZfx dS

= −5
4

k2µ0a5
∫ π

θ=0

∫ 2π

φ=0
cos2 θ [2(sin θ cos φ)2 − 5 cos2 θ + 1] sin θ dθ dφ

= 8π

3
k2µ0a5. (C 6)
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