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Abstract. First- and second-order accurate implicit difference schemes for the nu-
merical solution of the nonlinear generalized Charney–Obukhov and Hasegawa–
Mima equations with scalar nonlinearity are constructed. On the basis of numer-
ical calculations accomplished by means of these schemes, the dynamics of two-
dimensional nonlinear solitary vortical structures are studied. The problem of sta-
bility for the first-order accurate semi-discrete scheme is investigated. The dynamic
relation between solutions of the generalized Charney–Obukhov and Hasegawa–
Mima equations is established. It is shown that, contrary to existing opinion,
the scalar nonlinearity in the case of the generalized Hasegawa–Mima equation
develops monopolar anticyclone, while in case of the generalized Charney–Obukhov
equation it develops monopolar cyclone.

1. Statement of the problem and implicit difference schemes
Generalized Charney–Obukhov (GChO) and Hasegawa–Mima (GHM) equations
describe the propagation dynamics of nonlinear solitary vortical structures in geo-
physical flows and magnetized plasmas, respectively. In the frame of reference
moving with velocity v along the axis OX, these dimensionless equations can be
written in the following form:

∂(∆ψ − γψ)
∂t

+ β
∂ψ

∂x
− v

∂(∆ψ − γψ)
∂x

+ J(ψ,∆ψ) ± αψ
∂ψ

∂x
= 0, (1)

where α, β and γ are positive constants defined through physical characteristics of
the medium. The ‘+’ at α defines the GChO equation when γ = 1, α = β = vR is
the dimensionless Rossby velocity, and ψ is the variable part of fluid depth. The
‘−’ at α corresponds to the GHM equation when γ = 1, β = vd is the dimensionless
drift velocity, and ψ is the perturbed potential. The Jacobian (Poisson bracket)

J(ψ,∆ψ) =
∂ψ

∂x

∂∆ψ

∂y
− ∂ψ

∂y

∂∆ψ

∂x

describes the contribution of so-called vectorial nonlinearity, while the Korteweg–
de Vries (KdV) type last term in (1) describes the contribution of so-called scalar
nonlinearity.
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If we introduce the generalized vorticityW = ∆ψ−γψ+βy, (1) can be rewritten
in terms of ψ and W :

∂W

∂t
+ J (ψ,W ) − v

∂W

∂x
± αψ

∂ψ

∂x
= 0, (2)

∆ψ − γψ = W − βy. (3)

Our aim is to solve the system (2), (3) numerically in the cylindrical domain
QT = Ω×]0, T [, where Ω is the rectangle, Ω =] − a1, a1[×] − a2, a2[. Space variables
x, y vary in the domain Ω, and the variable t varies in the interval ]0, T [. As an
initial condition at time t = 0 we take the well-known solitary dipole solution
ψ(x, y, 0)= ψ0(x, y) [1].
Let us introduce a time step τ = T/m (m > 1) and approximate (2) at the point

(x, y, tk), where tk = kτ (k = 1, . . . , m), by the following semi-discrete scheme:

W k − W k−1

τ
+ θJ(ψk−1,W k) + (1 − θ)J(ψk,W k−1)

− v

(
θ
∂W k

∂x
+ (1 − θ)

∂W k−1

∂x

)
± α

(
θψk−1 ∂ψk

∂x
+ (1 − θ)ψk ∂ψk−1

∂x

)
= 0, (4)

where the weight θ ∈ [0, 1]. We assume thatW (t, x, y) and ψ(t, x, y) are sufficiently
smooth functions. Equation (4) approximates (2) at the point (x, y, tk) with an
accuracy O((1 − 2θ)τ + τ2). When θ = 0.5, we obtain the second-order accurate
scheme, in all other cases we have the first-order accurate scheme.
Let us cover area Ω by a grid and denote by h1 a grid spacing in the x-direction

and by h2 in the y-direction, h1 = 2a1/N1, h2 = 2a2/N2, where N1(> 1) and
N2(> 1) are natural numbers. If in (4) we replace the first-order derivatives with
respect to spatial variables by central differences, we obtain the following difference
equation:

W k
i,j − W k−1

i,j

τ
+ F

(
ψk−1

i,j , ψk
i,j ,W

k−1
i,j ,W k

i,j

)
= 0, (5)

where i = 1, . . . , N1 − 1, j = 1, . . . , N2 − 1,

F
(
ψk−1

i,j , ψk
i,j ,W

k−1
i,j ,W k

i,j

)
= θĴ

(
ψk−1

i,j ,W k
i,j

)
+ (1 − θ)Ĵ

(
ψk

i,j ,W
k−1
i,j

)
− v

(
θδxW k

i,j + (1 − θ)δxW k−1
i,j

)
± α

(
θψk−1

i,j δxψk
i,j + (1 − θ)ψk

i,jδxψk−1
i,j

)
and Ĵ(ψi,j ,Wi,j) = (δxψi,j)(δyWi,j)−(δyψi,j)(δxWi,j); the operator δx is the central
difference analogy of the first-order derivative with respect to x variable (analog-
ously defined by δy). The difference equation (5) approximates (2) with accuracy
O((1 − 2θ)τ + τ2 + h2

1 + h2
2) at the point (xi, yj , tk).

Reconstruction of the perturbed potentialψ bymeans of the generalized vorticity
W can be accomplished from the standard difference equation corresponding to (3).
We solve the system of difference equations (2), (3) by the following iteration (in

order to simplify writing we omit the index k in W k
i,j and ψk

i,j):

n

W i,j= W k−1
i,j + τF

(
ψk−1

i,j ,
n−1

ψ i,j ,W
k−1
i,j ,

n−1

W i,j

)
, (6)
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n

ψi+1,j −2
n

ψi,j +
n

ψi−1,j

h2
1

+

n

ψi,j+1 −2
n

ψi,j +
n

ψi,j−1

h2
2

− γ
n

ψi,j =
n

W i,j −βyj , (7)

where n is an iteration number (n = 1, 2, . . .), initial approximation is defined

as (
0

W i,j ,
0

ψi,j) = (W k−1
i,j , ψk−1

i,j ), and the nth iteration (
n

W i,j ,
n

ψi,j) is calculated from

(6), (7) by means of the previous (
n−1

W i,j ,
n−1

ψ i,j) iteration. The transition step τ from
one time level to the next is subject to the condition

1
γ

(1 − θ)
(

τ

h1
c4 +

τ

h2
c3 + ταc1

)
+ θ

(
τ

h2
c1 +

τ

h1

(
c2 + v +

1
γ

c0α

))
< 1, (8)

where c0, c1, c2, c3 and c4 are maximums of |ψk−1
i,j |, |δxψk−1

i,j |, |δyψk−1
i,j |, |δxW k−1

i,j | and
|δyW k−1

i,j | (i = 1, . . . , N1 − 1, j = 1, . . . , N2 − 1), respectively. Inequality (7) repres-
ents a sufficient condition of convergence of the iteration process (6), (7). We solve
the system of difference equations (6) with respect to the variable x by means of
factorization method, and with respect to the variable y by means of iteration.
For problem (2),(3), a uniqueness of the solution in the case of periodic boundary

conditions may be proved. It may be also proved that, in the case when θ = 1, the
solutions obtained by the semi-discrete scheme (4) are uniformly bounded by the
norm L2, which gives us enough information about the stability of the scheme. That
is also confirmed by the results of numerical calculations.

2. Discussions and conclusions
On the basis of implicit difference schemes constructed in the given paper we carried
out the numerical calculations of GChO and GHM (1) for various parameters γ, β, v
and α. Numerical calculations accomplished for the domain a1 = a2 = 5. The
influence of scalar nonlinearity (of KdV type) on the dynamics of propagation of
solitary vortical structures is investigated numerically. It was shown that even for
very small α these equations have a qualitatively different behavior in the long time
limit due to the existence of new solitary waves that have peak amplitude varying
as 1/α. We may conclude that scalar nonlinearity in case of the GHM equation
stimulates the amplification of anticyclone (ψ > 0, see Fig. 1(a1), (a2), (a3)). In
case of the GChO equation the result changes symmetrically and a cyclone (ψ < 0,
see Fig. 1(b1), (b2), (b3)) will dominate. Indeed the transformation x → x, y → −y,
ψ(x, y, t) → −ψ(x, y, t) changes sign at the α in (1). So, if the solution of the one
equation is such a function ψ(x, y, t) whose initial value at the t = 0 moment is an
odd function ψ(x, y, 0) with respect to the spatial variable y, then the solution of
the other equation with the same initial condition will be the −ψ(x, −y, t) function
defined on the whole (x, y) plane. From this, follows the important dynamic relation
between the solutions of GChO and GHM equations: if for one equation at a
certain moment a cyclone (anticyclone) was formed, then for the second equation
an anticyclone (cyclone) will be formed automatically. This conclusion is confirmed
by numerous numerical calculations of our work.
It should be noted that a decrease of steps h and τ , beginning from the limiting

value, has no real effect on the results, but the calculation time increases substan-
tially. The fact that a decrease of steps does not spoil the results confirms practically
the stability of the presented scheme.
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Figure 1.Dynamics of variation of the numerical solution of (1). (a1), (a2) and (a3) correspond
to the case of GHM equation and (b1), (b2) and (b3) to the case of GChO equation. On (a1)
and (b1) the surfaces are given and on (a2), (a3), (b2) and (b3) the isolines are given. θ =1,
α=1, h1 =h2 =0.05, τ =0.00625 and the accurate parameter of iterative process ε=0.001.
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