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1. Introduction
Let G be a semisimple real, connected, Lie group of non-compact type. Let K be a
maximal compact subgroup of G, and A a maximal torus of G for which there is a Cartan
decomposition. Let M be the centralizer of A in K . We establish mixing properties for
right action by translation of one-parameter subgroups of A on quotients 0\G/M where
0 is a discrete, Zariski dense subgroup of G.

The particular case when G is of real rank one is well known. In this case, the symmetric
space X = G/K is a complete, connected, simply connected Riemannian manifold of
negative curvature. The right action by translation of A on G/M coincides with the
geodesic flow on T 1 X . Dal’bo [Dal00] proved that it is mixing (on its non-wandering
set) if and only if the length spectrum is non-arithmetic. The latter holds when 0 is a
Zariski dense subgroup; see Benoist [Ben00], Kim [Kim06].

We are interested in cases where G is of higher real rank k ≥ 2. When 0\G/M is of
finite volume, that is, when 0 is a lattice, it follows from the Howe–Moore theorem that
the action of any non-compact subgroup of G is mixing.

We study the general situation of any discrete, Zariski dense subgroup, which of course
includes the case of lattices.

If 0\G/M has infinite volume, the known results are not as general.
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In the particular case of so-called ping-pong subgroups of PSL(k + 1, R), Thirion
[Thi07, Thi09] proved mixing with respect to a natural measure on a natural closed
A-invariant set �(X)⊂ 0\G/M , for a one-parameter flow associated to the ‘maximal
growth vector’ introduced by Quint in [Qui02]. Sambarino [Sam15] did the same for
hyperconvex representations.

Conze and Guivarc’h in [CG02] proved the topological transitivity (i.e. existence
of dense orbits) of the right A-action on �(X) for any Zariski dense subgroup of
PSL(k + 1, R).

Let a' Rk be the Cartan Lie subalgebra over A and a++ the choice of a positive Weyl
chamber. For any θ ∈ a++, the Weyl chamber flow (φθt ) corresponds to the right action
by translation of exp(tθ). Benoist [Ben97] introduced a convex limit cone C(0)⊂ a and
proved that for Zariski dense semigroups, the limit cone is of non-empty interior. We prove
topological mixing for any direction of the interior of C(0).

THEOREM 1.1. Let G be a semisimple, connected, real linear Lie group, of non-compact
type. Let 0 be a Zariski dense, discrete subgroup of G. Let θ ∈ a++. Then the dynamical
system (�(X), φθt ) is topologically mixing if and only if θ is in the interior of the limit
cone C(0).

Taking �̃⊂ G/M to be the universal cover of �(X), we remark that this theorem is a
direct consequence of the following statement, where 0 is a Zariski dense semigroup of
G. We insist that under this hypothesis, 0 is not necessarily a subgroup and can even be
non-discrete.

THEOREM 1.2. Let G be a semisimple, connected, real linear Lie group, of non-compact
type. Let 0 be a Zariski dense semigroup of G. Let θ ∈ a++. Then θ is in the interior of
the limit cone if and only if for all non-empty open subsets Ũ , Ṽ ⊂ �̃, there exists T > 0
so that for any later time t > T , there exists γt ∈ 0 with

γtŨ ∩ φθt (Ṽ ) 6= ∅.

In §2 we give some background on globally symmetric spaces. We introduce the space
of Weyl chambers, the Weyl chamber flow, give a bordification of the space of Weyl
chambers and present a higher- rank generalization of the Hopf coordinates.

In §3 we introduce the main tools: Schottky semigroups and estimations on the
spectrum of products of elements in G.

In §4 we introduce the non-wandering Weyl chambers set, a closed A-invariant subset
�(X)⊂ 0\G/M . Then we study topological transitivity in Proposition 4.7. We prove
that if the flow φθt is topologically transitive in �(X), where θ ∈ a++, then the direction
θ must be in the interior of the limit cone. Since topological mixing implies topological
transitivity, this provides one direction of the main Theorem 1.2.

In §5 we prove a key proposition, Proposition 5.4, using density results that come from
non-arithmeticity of the length spectrum. Then we prove the main theorem.

In the Appendix we prove a density lemma of subgroups of Rn needed in the proof of
Proposition 5.4.

Throughout this paper, G is a semisimple, connected, real linear Lie group, of non-
compact type.
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2. Background on symmetric spaces
Classical references for this section are [Thi07, Ch. 8, §§8.B, 8.D, 8.E, 8.G], [GJT12,
Ch. III, §1–4] and [Hel01, Chs. IV– VI].

Let K be a maximal compact subgroup of G. Then X = G/K is a globally symmetric
space of non-compact type. The group G is the identity component of its isometry group.
It acts transitively on X , by left multiplication. We fix a point o= K ∈ X . Then K is in
the fixed point set of the involutive automorphism induced by the geodesic symmetry in o
(cf. [Hel01, Ch. VI, Theorem 1.1]).

Denote by g (respectively, k) the Lie algebra of G (respectively, K ). The differential of
the involutive automorphism induced by the geodesic symmetry in o is a Cartan involution
of g. Then k is the eigenspace of the eigenvalue 1 (for the Cartan involution) and we
denote by p the eigenspace of the eigenvalue−1. The decomposition g= k⊕ p is a Cartan
decomposition.

2.1. Flats, Weyl chambers, classical decompositions. A flat of the symmetric space X
is a totally geodesic, isometric embedding of a Euclidean space. We are interested in flats
of maximal dimension in X , called maximal flats. One can construct the space of maximal
flats following [Thi07, Ch. 8, §§8.D, 8.D] thanks to [Hel01, Ch. V, Proposition 6.1]. Let
a⊂ p be a Cartan subspace of g, that is, a maximal abelian subspace such that the adjoint
endomorphism of every element is semisimple. We denote by A the subgroup exp(a). The
real rank of the symmetric space X , denoted by rG , is the dimension of the real vector
space a.

Definition 2.1. A parametrized flat is an embedding of a of the form g f0, where g ∈ G
and f0 is the map defined by

f0 : a−→ X

v 7−→ exp(v)o.

We denote by W(X) the set of parametrized flats of X .

By definition, the set of parametrized flats is the orbit of f0 under the left action
by multiplication of G. The stabilizer of f0 is the centralizer of A in K , denoted by
M . We deduce that the set of parametrized flats W(X) identifies with the homogeneous
space G/M . For any parametrized flat f ∈W(X), there is an element g f in G such that
f = g f f0. Hence, the map

W(X)
∼
−→ G/M

f 7−→ g f M

is a G-equivariant bijection.
For any linear form α on a, set gα := {v ∈ g | ∀u ∈ a, [u, v] = α(u)v}. The set of

restricted roots is 6 := {α ∈ a∗ \ {0} | gα 6= {0}}. The kernel of each restricted root
is a hyperplane of a. The Weyl chambers of a are the connected components of
a \

⋃
α∈6 ker(α). We fix such a component, call it the positive Weyl chamber and denote

it (respectively, its closure) by a++ (respectively, a+).
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We denote by NK (A) the normalizer of A in K . The group NK (A)/M is called the
Weyl group. The positive Weyl chamber of a allows us to tessellate the maximal flats in
the symmetric space X . Indeed, f0(a

+) is a fundamental domain for the action of the
Weyl group on the maximal flat f0(a) and G acts transitively on the space of parametrized
flats. Finally, the orbit G. f0(a

+) identifies with the space of parametrized flats, and the
image of g. f0(a

+) is a geometric Weyl chamber. This explains why the set of parametrized
flats is also called the space of Weyl chambers. For any geometric Weyl chamber f (a+) ∈
G. f0(a

+), the image of 0 ∈ a+ is the origin. Furthermore,

G/M 'W(X)' G. f0(a
+).

Definition 2.2. The right action of a on W(X) is defined by α · f : v 7→ f (v + α) for all
α ∈ a and f ∈W(X). The Weyl chamber flow is defined for all θ ∈ a++1 and f ∈W(X)
by

φθ ( f ) : R−→W(X)

t 7−→ φθt ( f )= f (v + θ t)= f (v)eθ t .

Remark that the Weyl chamber flow φθt is also the right action of the one-parameter
subgroup exp(tθ) on the space of Weyl chambers.

The set of positive roots, denoted by 6+, is the subset of roots which take positive
values in the positive Weyl chamber. The positive Weyl chamber also allows us to define
two particular nilpotent subalgebras n=

⊕
α∈6+ gα and n− =

⊕
α∈6+ g−α . Finally, set

A+ := exp(a+), A++ := exp(a++), N := exp(n) and N− := exp(n−). For all a ∈ A++,
h+ ∈ N , h− ∈ N−, notice that

a−nh±an
−→
±∞

idG . (1)

Definition 2.3. For any g ∈ G, we define, by Cartan decomposition, a unique element
µ(g) ∈ a+ such that g ∈ K exp(µ(g))K . The map µ : G→ a+ is called the Cartan
projection.

The Cartan projection allows us to define an a+-valued function on X × X , denoted by
da+ , following Thirion [Thi07, Def-Thm 8.38]. For any x, x ′ ∈ X , there exists g, g′ ∈ G
such that x = gK and x ′ = g′K , and we set

da+(x, x ′) := µ(g′−1g).

This function is independent of the choice of g and g′ up to right multiplication by K .
Recall [Hel01, Ch. V, Lemma 5.4] that a is endowed with a scalar product coming from
the Killing form on g, and the norm of da+(x, x ′) coincides with the distance between x
and x ′ in the symmetric space X .

An element of G is unipotent if all its eigenvalues are equal to 1, or equivalently if it is
the exponential of a nilpotent element. An element of G is semisimple if it is diagonalizable
over C, elliptic (respectively, hyperbolic) if it is semisimple with eigenvalues of modulus 1
(respectively, real eigenvalues). Equivalently, elliptic (respectively, hyperbolic, unipotent)
elements are conjugated to elements in K (respectively, A, N ).

Any element g ∈ G admits a unique decomposition (in G) g = gegh gu , called the
Jordan decomposition, where ge, gh and gu commute and ge (respectively, gh , gu) is
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elliptic (respectively, hyperbolic, unipotent). The element ge (respectively, gh , gu) is called
the elliptic part (respectively, hyperbolic part, unipotent part) of g.

Definition 2.4. For any element g ∈ G, there is a unique element λ(g) ∈ a+ such that the
hyperbolic part of g is conjugated to exp(λ(g)) ∈ A+. The map λ : G→ a+ is called the
Jordan projection.

An element g ∈ G is loxodromic if λ(g) ∈ a++. Since any element of N that commutes
with a++ is trivial, the unipotent part of loxodromic elements is trivial. Furthermore, the
only elements of K that commute with a++ are in M . We deduce that the elliptic part of
loxodromic elements is conjugated to elements in M . Hence, for any loxodromic element
g ∈ G, there exist hg ∈ G and m(g) ∈ M so that we can write g = hgm(g)eλ(g)h−1

g . For
any m ∈ M we can also write g = (hgm)(m−1m(g)m)eλ(g)(hgm)−1. This allows us to
associate to any loxodromic element g ∈ G an angular part m(g) which is defined up to
conjugacy by M .

The spectral radius formula [BQ16, Corollary 5.34]

λ(g)= lim
n→∞

1
n
µ(gn)

allows us to compute the Jordan projection thanks to the Cartan projection.
Recall that by Iwasawa decomposition (see, for example, [Hel01, Ch. IX, Theorem 1.3])

for any g ∈ G, there exists a unique triple (k, v, n) ∈ K × a× N such that g = k exp(v)n.
Furthermore, the map

K × a× N −→ G

(k, v, n) 7−→ kevn

is a diffeomorphism.

2.2. Asymptotic Weyl chambers, Busemann–Iwasawa cocycle. The main references for
this subsection are [Thi07, Ch. 8, §8.D], [GJT12] and [BQ16].

We endow the space of geometric Weyl chambers with the equivalence relation

f1(a
+)∼ f2(a

+)⇔ sup
u∈a++

d( f1(u), f2(u)) <∞.

Equivalently, f1(a
+)∼ f2(a

+) if and only if for any v ∈ a++, the geodesics t 7→ f1(tv)
and t 7→ f2(tv) are at bounded distance when t→+∞. Equivalence classes for this
relation are called asymptotic Weyl chambers. We denote by F(X) the set of asymptotic
Weyl chambers and by η0 the asymptotic class of the Weyl chamber f0(a

+).

FACT 2.5. The set F(X) identifies with the Furstenberg boundary G/P, where P =
M AN. Furthermore,

G/P ' F(X)' K/M ' K .η0.

Proof. Since G acts transitively on the space of Weyl chambers, it also acts transitively on
the set of asymptotic Weyl chambers.
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We show that P is the stabilizer of η0. For any g ∈ G and u ∈ a++, we compute the
distance

d(g f0(u), f0(u))= ‖da+(g f0(u), f0(u))‖ = ‖µ(e−u geu)‖.

By Bruhat decomposition (see [Hel01, Ch. IX, Theorem 1.4]), there exist an element w in
the normalizer of A in K and elements p1, p2 ∈ P = M AN such that g = p1wp2. Then

e−u geu
= (e−u p1eu)e−u(weuw−1)w(e−u p2eu).

Note that by equation (1), the sets {e−u pi eu
}u∈a++,i=1,2 are bounded. Hence, the sets

{e−u geu
}u∈a++ and {e−uweuw−1

}u∈a++ have the same behavior. Notice the simplification
e−uweuw−1

= e−u+Ad(w)u which is bounded uniformly in a++ only when w ∈ M . We
deduce that {e−u geu

}u∈a++ is bounded only when g ∈ P . Hence the subgroup P is the
stabilizer of the asymptotic class η0.

The geometric Weyl chambers whose origin is o ∈ X are in the orbit K . f0(a
+). Any

equivalence class in F(X) admits, by Iwasawa decomposition, a unique representative in
K . f0(a

+). Moreover, K/M identifies with the orbit K . f0(a
+) since M is the stabilizer of

f0 in K . �

For any asymptotic Weyl chamber η ∈ F(X) and g ∈ G, consider, by Iwasawa
decomposition, the unique element σ(g, η) ∈ a, called the Iwasawa cocycle, such that
if kη ∈ K satisfies η = kηη0, then

gkη ∈ K exp(σ (g, η))N .

The cocycle relation holds (cf. [BQ16, Lemma 5.29]), that is to say, for all g1, g2 ∈ G and
η ∈ F(X),

σ(g1g2, η)= σ(g1, g2η)+ σ(g2, η).

For any pair of points x, y ∈ X , any asymptotic Weyl chamber η ∈ F(X) and u ∈ a++,
we consider a representative fη(a+) of η and define the Busemann cocycle by

β fη,u(x, y)= lim
t→+∞

da+( fη(tu), x)− da+( fη(tu), y).

Remark that the following equivariance relation holds for any g ∈ G, any pair of points
x, y ∈ X , any asymptotic Weyl chamber η ∈ F(X) and u ∈ a++:

βg fη,u(gx, gy)= β fη,u(x, y). (2)

It turns out that the Busemann cocycle depends neither on the choice of the geometric Weyl
chamber in the class η, nor on the choice of u ∈ a++. We will write β fη,u(x, y)= βη(x, y).
By [BQ16, Corollary 5.34], the Iwasawa and Busemann cocycles coincide in the sense that
for all g ∈ G, η ∈ F(X) and u ∈ a++,

β fη,u(g
−1o, o)= σ(g, η). (3)

We associate attracting and repelling asymptotic geometric Weyl chambers to
loxodromic elements of G as follows.

Recall that for any loxodromic element g ∈ G, there is an element hg ∈ G and
an angular part m(g) ∈ M such that g = hgeλ(g)m(g)h−1

g . We set g+ := [hg. f0(a
+)]

and g− := [hg. f0(−a
+)]. Then g+ ∈ F(X) (respectively, g−) is called the attracting

(respectively, repelling) asymptotic Weyl chamber.
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FACT 2.6. Let g ∈ G be a loxodromic element. Then σ(g, g+)= λ(g).

Proof. Let g ∈ G be a loxodromic element. Consider an element hg ∈ G and an angular
part m(g) ∈ M such that g = hgeλ(g)m(g)h−1

g . Denote by fg the parametrized flat
fg : v 7→ hgevo. Then the geometric Weyl chamber fg(a

+) (respectively, fg(−a
+)) is

a representative of the limit points g+ (respectively, g−).
Fix any u ∈ a++. Then by equation (3) and by intercalating the point fg(0) we deduce

σ(g, g+)= β fg,u(g
−1o, o)= β fg,u(g

−1o, g−1 fg(0))

+ β fg,u(g
−1 fg(0), fg(0))+ β fg,u( fg(0), o).

Using equation (2), the first term simplifies to β fg,u(g
−1o, g−1 fg(0))= βg−1 fg,u

(o, fg(0)). Because g−1 fixes g+, the first and third terms cancel out. We deduce that
σ(g, g+)= β fg,u(g

−1 fg(0), fg(0))

= lim
t→+∞

da+( fg(tu), g−1 fg(0))− da+( fg(tu), fg(0))

= lim
t→+∞

da+(g fg(tu), fg(0))− tu

= lim
t→+∞

da+( fg(tu + λ(g)), fg(0))− tu

= λ(g). �

2.3. Hopf parametrization. Our main reference for this subsection is [Thi07, Ch. 8,
§8.G.2].

In the geometric compactification of the hyperbolic plane, any bi-infinite geodesic
defines opposite points in the geometric boundary. In a similar way, we introduce
asymptotic Weyl chambers in general position.

We endow the product F(X)× F(X) with the diagonal left G-action. For any pair
of elements (ξ, η) ∈ F(X)× F(X) and g ∈ G, we set g.(ξ, η) := (g.ξ, g.η). For any
parametrized flat f ∈W(X), denote by f+ (respectively, f−) the asymptotic class of the
geometric Weyl chamber f (a+) (respectively, f (−a+)). Then the map

H(2)
:W(X)−→ F(X)× F(X)

f 7−→ ( f+, f−)

is G-equivariant.
Two asymptotic Weyl chambers ξ, η ∈ F(X) are in general position or opposite, if

they are in the image H(2)(W(X)), that is, if there exists a parametrized flat f ∈W(X)
such that the geometric Weyl chamber f+ (respectively, f−) is a representative of ξ
(respectively, η).

We denote by F (2)(X) the set of asymptotic Weyl chambers in general position. The
product topology on the product space F(X)× F(X) (where F(X) is identified with
G/M AN ) induces a natural topology on F (2)(X).

FACT 2.7. [Thi09, §3.2] The set F (2)(X) identifies with the homogeneous space G/AM.
Furthermore, if we denote by η0 (respectively, η̌0) the asymptotic class of the Weyl chamber
f0(a
+) (respectively, f0(−a

+)), then

G.(η0, η̌0)' F (2)(X)' G/AM.
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The Hopf coordinates map is defined by

H : W(X)−→ F (2)(X)× a

f 7−→ ( f+, f−; β f+( f (0), o)).

Using the identifications W(X)' G/M and F (2)(X)' G.(η0, η̌0), it reads

G/M −→ G.(η0, η̌0)× a

gM 7−→ (gη0, gη̌0; σ(g, η0)).

We define the left G-action on the skew product F (2)(X)× a as follows. For any g ∈ G
and (ξ, η; v) ∈ F (2)(X)× a, we set

g.(ξ, η; v)= (g.ξ, g.η; v + βg.ξ (g.o, o)).

The right a-action defined for any α ∈ a and (ξ, η; v) ∈ F (2)(X)× a by

α · (ξ, η; v)= (ξ, η; v + α)

is called the right a-action by translation.
Similarly, for any θ ∈ a++1 , we define the Weyl chamber flow φθ on the skew product:

for all (ξ, η; v) ∈ F (2)(X)× a and t ∈ R+,

φθt (ξ, η; v)= (ξ, η; v + θ t).

PROPOSITION 2.8. [Thi07, Proposition 8.54] The Hopf coordinates map is a (G, a)-
equivariant homeomorphism in the sense that:
(i) the left action of G on W(X) reads in the Hopf coordinates as the left G-action on

the skew product F (2)(X)× a;
(ii) the right action of a on W(X) reads in the Hopf coordinates map as the right

a-action by translation on the skew product F (2)(X)× a.
Furthermore, for any θ ∈ a++1 and t ∈ R+, for all f ∈W(X), we obtain

H(φθt ( f ))= φθt (H( f )).

3. Loxodromic elements
We first study loxodromic elements in GL(V ) for a real vector space V of finite
dimension endowed with a Euclidean norm ‖ · ‖. Then we give some background on
representations of semisimple Lie groups. Finally, we study the dynamical properties of
the representations of G acting on the projective space of those representations.

3.1. Proximal elements of GL(V ). Denote by X = P(V ) the projective space of V . We
endow X with the distance

d(Rx, Ry)= inf{‖vx − vy‖ | ‖vx‖ = ‖vy‖ = 1, vx ∈ Rx, vy ∈ Ry}.

For g ∈ End(V ), denote by λ1(g) its spectral radius.

Definition 3.1. An element g ∈ End(V ) \ {0} is proximal on X if it has a unique
eigenvalue α ∈ C such that |α| = λ1(g) and this eigenvalue is simple (therefore α is a
real number). Denote by V+(g) the one-dimensional eigenspace corresponding to α

and V−(g) the supplementary g-invariant hyperplane. In the projective space, denote by
x+(g)= P(V+(g)) (respectively, X−(g)= P(V−(g))) the attracting point (respectively,
the repelling hyperplane).
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The open ball centered in x ∈ X of radius ε > 0 is denoted by B(x, ε). For every subset
Y ⊂ X , we denote by Vε(Y ) the open ε-neighborhood of Y . The following definition gives
uniform control over the geometry of proximal elements (parametrized by r ) and their
contracting dynamics (parametrized by ε).

Definition 3.2. Let 0< ε ≤ r . A proximal element g is (r, ε)-proximal if d(x+(g),
X−(g))≥ 2r , g maps Vε(X−(g))c into the ball B(x+(g), ε) and its restriction to the subset
Vε(X−(g))c is an ε-Lipschitz map.

We give three remarks that follow from the definition.
(1) If an element is (r, ε)-proximal, then it is (r ′, ε)-proximal for ε ≤ r ′ ≤ r .
(2) If an element is (r, ε)-proximal, then it is (r, ε′)-proximal for r ≥ ε′ ≥ ε.
(3) If g is (r, ε)-proximal, then gn is also (r, ε)-proximal for n ≥ 1.
The numbers r and ε depend on the metric of the projective space, which, in our case,
depends on the choice of norm on the finite-dimensional vector space. However, in [Ser16,
Remark 2.3] Sert claims the following statement. We provide a proof for completeness.

LEMMA 3.3. For every proximal transformation g, there exist r > 0, an integer n0 ∈ N
and a sequence of non-increasing positive numbers (εn)n≥n0 that converge to 0 such that
for all n ≥ n0 large enough, gn is (r, εn)-proximal.

Since GL(V ) is endowed with a Euclidean norm, it admits a canonical basis
(e j )1≤ j≤dim(V ). We set x0 := P(e1) and H0 := P(⊕dim(V )

j=2 Re j ). Recall that GL(V )
admits a polar decomposition, that is, for any g ∈ GL(V ), there exist orthogonal
endomorphisms kg, lg ∈ O(V ) and a unique symmetric endomorphism ag of eigenvalues
(ag( j))1≤ j≤dim(V ) with ag(1)≥ ag(2)≥ · · · ≥ ag(dim(V )) such that g = kgaglg . Let us
introduce a key [BG03, Lemma 3.4], due to Breuillard and Gelander, which is needed to
obtain the Lipschitz properties.

LEMMA 3.4. [BG03] Let r, δ ∈ (0, 1]. Let g ∈ GL(V ). If |ag(2)/ag(1)| ≤ δ, then g is
δ/r2-Lipschitz on Vr (l−1

g H0)
c.

Proof of Lemma 3.3. Let g ∈ GL(V ) be a proximal element and assume without loss of
generality that its first eigenvalue is positive. Set r := 1

2 d(x+(g), X−(g)). By proximality,
r is positive. Let us prove that for all 0< ε ≤ r , there exists n0 such that gn is (r, ε)-
proximal for all n ≥ n0.

Denote by πg the projector of kernel V−(g) and of image V+(g). Then

gn

λ1(g)n
= πg +

gn
|V−(g)

λ1(g)n
.

By proximality, the spectral radius of g|V−(g) is strictly smaller than λ1(g). It follows
immediately by the spectral radius formula that gn/(λ1(g)n) −→

n→+∞
πg . Hence for any

y ∈ X \ X−(g), uniformly on any compact subset of X \ X−(g),

gn .y −→
n→+∞

x+(g).
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It remains to show the Lipschitz properties of gn , for n big enough. For all n ∈ N, we
denote by kn, ln (respectively, an) the orthogonal (respectively, symmetric) components of
gn so that gn = knanln . We also set xn := kn x0 and Hn := l−1

n H0.
For any n ≥ 1, choose an endomorphism of norm 1 pxn ,Hn such that P(im(pxn ,Hn ))= xn

and P(ker(pxn ,Hn ))= Hn and (by polar decomposition)

gn

an(1)
= pxn ,Hn + O

(
an(2)
an(1)

)
.

By the spectral radius formula, |an(2)/an(1)|1/n
−→
n→∞

(λ1(g|V−(g)))/λ1(g) < 1. Hence

lim
n→∞

an(2)
an(1)

= 0.

Let (x, H) be an accumulating point of the sequence (xn, Hn)n≥1. Then there is a
converging subsequence xϕ(n), Hϕ(n) −→

n→+∞
x, H . Denote by px,H the endomorphism of

norm 1 such that P(im(px,H ))= x and P(ker(px,H ))= H . Then

gϕ(n)

aϕ(n)(1)
−→

n→+∞
px,H .

This allows us to deduce, in particular, that for any y ∈ X \ {H, X−(g)},

gϕ(n).y −→
n→+∞

x .

However, by proximality of g and uniqueness of the limit, we obtain that x = x+(g).
Similarly, by duality, we obtain that H = X−(g). Hence (xn, Hn)n≥1 converges toward

(x+(g), X−(g)).
Fix 0< ε ≤ r . Then for n large enough, the inclusion Vε(X−(g))⊃ Vε/2(Hn) holds. By

Lemma 3.4, the restriction of gn to Vε(X−(g))c ⊂ Vε/2(Hn)
c is then a |an(2)/an(1)|4/ε2-

Lipschitz map. Finally, for n large enough so that |an(2)/an(1)|4/ε2 < ε, the restriction
of gn to Vε(X−(g))c is ε-Lipschitz. �

The following proximality criterion is due to Tits [Tit71], and one can find the statement
in this form in [Ben00].

LEMMA 3.5. Fix 0< ε ≤ r . Let x ∈ P(V ) and a hyperplane Y ⊂ P(V ) such that
d(x, Y )≥ 6r . Let g ∈ GL(V ). If
(i) gVε(Y )c ⊂ B(x, ε),
(ii) g restricted to Vε(Y )c is ε-Lipschitz,
then g is (2r, 2ε)-proximal. Furthermore, the attracting point x+(g) is in B(x, ε) and the
repelling hyperplane X−(g) in a ε-neighborhood of Y .

COROLLARY 3.6. Fix 0< ε ≤ r . Let g ∈ GL(V ) be an (r, ε/2)-proximal element such
that d(x+(g), X−(g))≥ 7r . Then for any h ∈ GL(V ) such that ‖h − idV ‖ ≤ ε/2, the
product gh is (2r, 2ε)-proximal, with x+(gh) ∈ B(x+(g), ε).

Proof. Consider an (r, ε/2)-proximal element g and h ∈ GL(V ) as in the hypothesis.
Remark that gh maps h−1Vε/2(X−(g))c to the open ball B(x+(g), ε/2). Furthermore,

by proximality of g, the restriction of gh to h−1Vε/2(X−(g))c is ε/2-Lipschitz.
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Since h is close to idV , we have that Vε(h−1 X−(g))c ⊂ h−1Vε/2(X−(g))c. Hence
gh restricted to Vε(h−1 X−(g))c is ε-Lipschitz of image in the open ball B(x+(g), ε).
Furthermore, d(x+(g), h−1 X−(g))≥ d(x+(g), X−(g))− ε > 7r − ε ≥ 6r .

Finally, by Lemma 3.5, we deduce that gh is (2r, 2ε)-proximal, with x+(gh) ∈
B(x+(g), ε). �

For all proximal elements g, h of End(V ) such that x+(h) /∈ X−(g), we consider two
unit eigenvectors v+(h) ∈ x+(h) and v+(g) ∈ x+(g) and denote by c(g, h) the unique real
number such that v1 − c(g, h)v2 ∈ H . A priori, c(g, h) depends on the choice of the unit
vectors, but its absolute value does not.

Given g1, . . . , gl of End(V ), set g0 = gl and assume x+(gi−1) /∈ X−(gi ) for all 1≤
i ≤ l. We set

ν1(gl , . . . , g1)=
∑

1≤ j≤l

log |c(g j , g j−1)|.

The following proposition explains how to control the spectral radius λ1(γ ) when γ is
a product of (r, ε)-proximal elements.

PROPOSITION 3.7. [Ben00] For all 0< ε ≤ r , there exist positive constants Cr,ε such that
for all r > 0, limε→0 Cr,ε = 0 and such that the following holds. If γ1, . . . , γl are (r, ε)-
proximal elements, such that d(x+(γi−1), X−(γi ))≥ 6r for all 1≤ i ≤ l with γ0 = γl , then
for all n1, . . . , nl ≥ 1,∣∣∣∣log(λ1(γ

nl
l . . . γ

n1
1 ))−

l∑
i=1

ni log(λ1(γi ))− ν1(γl , . . . , γ1)

∣∣∣∣≤ lCr,ε.

Furthermore, the map γ
nl
l . . . γ

n1
1 is (2r, 2ε)-proximal with x+(γ

nl
l . . . γ

n1
1 ) ∈

B(x+(γl), ε) and X−(γ
nl
l . . . γ

n1
1 )⊂ Vε(X−(γ1)).

Proof. Taking the logarithm in Benoist’s [Ben00, Lemma 1.4] gives us the first part of the
statement (the estimates). We only give a proof of the proximality and the localization of
the attracting points and repelling hyperplane.

Let n1, . . . , nl ≥ 1 and assume that 0< ε ≤ r and ε < 1. Let us prove that gn :=

γ
nl
l . . . γ

n1
1 satisfies assumptions (i) and (ii) of the proximality criterion Lemma 3.5. More

precisely, we prove by induction on l that gn restricted to Vε(X−(γ1))
c is ε-Lipschitz and

gnVε(X−(γ1))
c
⊂ B(x+(γl), ε).

By (r, ε)-proximality of γ n1
1 , the restriction of γ n1

1 to Vε(γ1)
c is an ε-Lipschitz map and

γ
n1
1 Vε(γ1)

c
⊂ B(x+(γ1), ε).

Assume for some 1≤ i ≤ l that γ ni
i . . . γ

n1
1 restricted to Vε(X−(γ1))

c is ε-Lipschitz
and γ ni

i . . . γ
n1
1 Vε(X−(γ1))

c
⊂ B(x+(γi ), ε). Since d(x+(γi ), X−(γi+1))≥ 6r and 0<

ε ≤ r we obtain B(x+(γi ), ε)⊂ Vε(X−(γi+1))
c. Then, using (r, ε)-proximality of γi+1,

its restriction to B(x+(γi ), ε) is ε-Lipschitz and γ
ni+1
i+1 B(x+(γi ), ε)⊂ B(x+(γi+1), ε).

Hence by the induction hypothesis and using ε < 1, the map γ ni+1
i+1 . . . γ

n1
1 restricted to

Vε(X−(γ1))
c is ε-Lipschitz and γ ni+1

i+1 . . . γ
n1
1 Vε(X−(γ1))

c
⊂ B(x+(γi+1), ε).

We conclude the proof. By assumption, d(x+(γl), X−(γ1))≥ 6r . Finally, by
Lemma 3.5 we deduce (2r, 2ε)-proximality of gn with x+(gn) ∈ B(x+(γl), ε) and
X−(gn)⊂ Vε(X−(γ1)). �
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The previous proposition motivates the next definition.

Definition 3.8. Let 0< ε ≤ r . A semigroup 0 ⊂ GL(V ) is strongly (r, ε)-Schottky if:
(i) every h ∈ 0 is (r, ε)-proximal;
(ii) d(x+(h), X−(h′))≥ 6r for all h, h′ ∈ 0.
We also write that 0 is a strong (r, ε)-Schottky semigroup.

3.2. Representations of a semisimple Lie group G. Let (V, ρ) be a representation of G
in a real vector space of finite dimension. For every character χ of a, denote the associated
eigenspace by Vχ := {v ∈ V | ∀a ∈ a, ρ(a)v = χ(a)v}. The set of restricted weights of V
is the set 6(ρ) := {χ |Vχ 6= 0}. Simultaneous diagonalization leads to the decomposition
V =

⊕
χ∈6(ρ)

Vχ . The set of weights is partially ordered as follows:

(χ1 ≤ χ2)⇔ (∀a ∈ A+, χ1(a)≤ χ2(a)).

Whenever ρ is irreducible, the set 6(ρ) has a highest element χρ,max which is the highest
restricted weight of V . Denote by Vχρ,max the eigenspace of the highest restricted weight,
and by Yρ the a-invariant supplementary subspace of Vρ , that is,

Yρ := ker(V ∗χρ,max
)=

⊕
χ∈6(ρ)\{χmax}

Vχ .

The irreducible representation ρ is proximal when dim(Vχρ,max)= 1. The following
lemma can be found in [BQ16, Lemma 5.32]. It is due to Tits [Tit71].

Denote by 5⊂6+ the subset of simple roots of the set of positive roots for the adjoint
representation of G.

LEMMA 3.9. [Tit71] For every simple root α ∈5, there exists a proximal irreducible
algebraic representation (ρα, Vα) of G whose highest weight χρα,max is orthogonal to β
for every simple root β 6= α. These weights (χρα,max)α∈5 form a basis of the dual space
a∗.

Moreover, the map

F(X) y
−→

∏
α∈5

P(Vα)

η := kηη0 7−→ (yα(η) := ρα(kη)Vχρα,max)α∈5

is an embedding of the set of asymptotic Weyl chambers in this product of projective spaces.

We also define a dual map H : F(X)→
∏
α∈5 Grdim(Vα)−1(Vα) as follows. For every

ξ ∈ F(X), let kξ ∈ K be an element so that ξ = kξ η̌0. Then

F(X) Y
−→

∏
α∈5

Grdim(Vα)−1(Vα)

ξ := kξ η̌0 7−→ (Yα(ξ) := ρα(kξ )Yρα )α∈5.

The maps y and Y provide us two ways to embed the space of asymptotic Weyl
chambers F(X).
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COROLLARY 3.10. The map

F (2)(X)−→
∏
α∈5

P(Vα)× Grdim(V )−1(Vα)

( f+, f−) 7−→ (yα( f+), Yα( f−))α∈5

is a G-equivariant injective map of the space of flags in general position into this product
of projective spaces in general position, that is, the associated subspaces are in direct sum.

We now give an interpretation of the Cartan projection, the Iwasawa cocycle and the
Jordan projection in terms of representations of G. The complete proof can be found in
[BQ16].

LEMMA 3.11. [BQ16, Lemma 5.33] Let α ∈5 be a simple root and consider (Vα, ρα)
the proximal representation of G given by Lemma 3.9. Then:
(a) there exists a ρα(K )-invariant Euclidean norm on Vα such that, for all a ∈ A, the

endomorphism ρα(a) is symmetric;
(b) for such a norm and the corresponding subordinate norm on End(Vα), for all g ∈ G,

η ∈ F(X) and vη ∈ yα(η),
(i) χρα,max(µ(g))= log(‖ρα(g)‖);
(ii) χρα,max(λ(g))= log(λ1(ρα(g)));
(iii) χρα,max(σ (g, η))= log (‖ρα(g)vη‖/‖vη‖).

The following lemma gives estimations on the Cartan projection of products of any pair
of elements in G.

LEMMA 3.12. There exists a continuous, left and right K -invariant, function h ∈ G 7→
Ch ∈ R+ such that:
(i) for any g ∈ G, the Cartan projections µ(gh)− µ(g) and µ(hg)− µ(g) are in the

ball Ba(0, Ch);
(ii) for any η ∈ F(X), the Iwasawa cocycle σ(h, η) ∈ Ba(0, Ch).

Proof. In an abuse of terminology, we say that a function is K -invariant when it is K -
invariant for both left and right action.

Let us prove the first point. For any α ∈5, we consider the proximal irreducible
representation (ρα, Vα) of G given by Lemma 3.9.

Using Lemma 3.11, we endow each vector space Vα with the ρα(K )-invariant Euclidean
norm. Classical properties of the norm lead, for all α ∈5 and every g, h ∈ G, to

‖ρα(g)‖
‖ρα(h−1)‖

≤ ‖ρα(gh)‖ ≤ ‖ρα(g)‖‖ρα(h)‖,

1
‖ρα(h−1)‖

≤
‖ρα(gh)‖
‖ρα(g)‖

≤ ‖ρα(h)‖.

Note that we obtain the same inequalities for hg. By Lemma 3.11, we deduce

− χρα,max(µ(h−1))≤ χρα,max(µ(gh)− µ(g))≤ χρα,max(µ(h)). (4)

For any α ∈5, set hα :=max(χρα,max(µ(h)), χρα,max(µ(h−1))). Furthermore, by
Lemma 3.9, the weights (χρα,max)α∈5 form a basis of the dual space a∗. In other words,
they admit a dual basis in a. Denote by Ch > 0 the real number such that Ba(0, Ch) is the
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smallest closed ball containing any point of dual coordinates in ([−hα, hα])α∈5 for the
dual basis of (χmax,α)α∈5. Hence Ba(0, Ch) is compact and contains µ(gh)− µ(g) and
µ(hg)− µ(g).

It remains to show that the function h 7→ Ch is continuous and K -invariant. This is due
to the fact that the Cartan projection and the map h 7→ µ(h−1) are both continuous and
K -invariant. Hence, by taking the supremum in each coordinate, the map h 7→ (hα)α∈5
is continuous and K -invariant. Furthermore, by definition of Ch , we obtain K -invariance
and continuity of h 7→ Ch .

Similarly, the second point is a direct consequence of Lemma 3.11, (i) and (iii) and of
the inequality

1
‖ρα(h−1)‖

≤
‖ρα(h)(vη)‖
‖vη‖

≤ ‖ρα(h)‖, (5)

where η ∈ F(X) and vη ∈ Vα is the associated non-trivial vector. �

3.3. Loxodromic elements. Let us now study the dynamical properties of loxodromic
elements in the representations of the previous paragraph. [BQ16, Lemma 5.37] states that
any element of G is loxodromic if and only if its image is proximal for every representation
given by Lemma 3.9. This allows us to extend the notions and results on proximal elements
to loxodromic elements in G.

Definition 3.13. An element g ∈ G is loxodromic if its Jordan projection λ(g) is in the
interior of the Weyl chamber a++ or (equivalently) if for every α ∈5 the endomorphism
ρα(g) is proximal.

Let 0< ε ≤ r . An element g ∈ G is (r, ε)-loxodromic if for every α ∈5 the
endomorphism ρα(g) is (r, ε)-proximal.

Finally, a semigroup 0 of G is said to be strongly (r, ε)-Schottky if for every α ∈5 the
semigroup ρα(0)⊂ End(Vα) is strongly (r, ε)-Schottky.

Attracting and repelling asymptotic Weyl chambers of loxodromic elements were
defined in §2.2 as follows. For any loxodromic element g ∈ G, we have (g+, g−) :=
hg(η0, η̌0) ∈ F (2)(X), where hg ∈ G is an element such that there is an angular part
m(g) ∈ M with g = hgeλ(g)m(g)h−1

g .
The G-equivariant map ( f+, f−) ∈ F (2)(X)→ (yα( f+), Yα(g−))α∈5 given by

Corollary 3.10 allows us to characterize attracting and repelling points in F(X) for
loxodromic elements.

LEMMA 3.14. For any loxodromic element g ∈ G, the following statements are true.
(i) g−1 is loxodromic, of attracting point g− and repelling point g+.
(ii) The image of (g+, g−) ∈ F (2)(X) by the above map is the family of attracting points

and repelling hyperplanes in general position (x+(ρα(g)), X−(ρα(g)))α∈5.
(iii) Any point η ∈ F(X) in general position with g− is attracted to g+ that is,

lim
n→+∞

gnη = g+.

(iv) For any non-empty open set O− ⊂ F(X) in general position with g+, for any non-
empty open neighborhood U− ⊂ F(X) of g−, there exists N ∈ N such that for any
n ≥ N, we have O− ∩ gnU− 6= ∅.
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Proof. Let g ∈ G be a loxodromic element. Consider an element hg ∈ G and an angular
part m(g) ∈ M such that g = hgm(g)eλ(g)h−1

g . Then g−1
= hgm(g)−1e−λ(g)h−1

g . Remark
that −λ(g) is in the interior of the Weyl chamber −a+. Consider the element of the Weyl
group NK (A)/M whose adjoint action on a sends a+ onto−a+. Denote one representative
by kι ∈ NK (A). Then −Ad(kι)(λ(g)) ∈ a++, hence

g−1
= hgkι(k−1

ι m(g)kι)−1e−Ad(kι)(λ(g))(hgkι)−1.

Remark that k−1
ι Mkι is in the centralizer of k−1

ι Akι = A, hence k−1
ι m(g)kι ∈ k−1

ι Mkι =
M . We deduce that λ(g−1)=−Ad(kι)(λ(g)) and set hg−1 = hgkι with angular part
m(g−1)= (k−1

ι m(g)kι)−1. Then the pair of attracting and repelling points of g−1 in F(X)
is (hgkιη0, hgkιη̌0). Since kιη0 = η̌0 and kιη̌0 = η0 we obtain the first statement, that is,
that g− (respectively, g+) is the attracting (respectively, repelling) point of g−1.

For the second point, it suffices to prove that for any loxodromic element g ∈ G, for
every α ∈5, the vector space ρα(hg)Vρα = yα(g+) is the eigenspace associated to the
spectral radius of ρα(g) and that ρα(hg)Yρα = Yα(g−) is the direct sum of the other
eigenspaces.

Let g ∈ G be a loxodromic element and let α ∈5. By Lemma 3.11, the spectral radius
of ρα(g) is exp(χρα,max(λ(g))). We deduce that the eigenspace of the highest eigenvalue
is ρα(hg)Vρα . Furthermore, by definition of proximality, x+(ρα(g))= P(ρα(hg)Vρα )=
yα(g+).

Remark that the other eigenvalues of ρα(g) are given by the other non-maximal
restricted weights of the representation (ρα, Vα). Hence ρα(hg)Yρα is the direct sum of
the other eigenspaces of ρα(hg). The projective space P(ρα(hg)Yρα ) is thus the repelling
hyperplane of ρα(g). Hence the second statement is true.

For any point η ∈ F(X) in general position with g− and for any α ∈5, the point yα(η)
is then in general position with the hyperplane Yα(g−). Hence lim

n→+∞
ρα(gn)yα(η)=

x+(ρα(g)). This gives the third statement.
For the last statement, we apply the third statement to g−1. This means that, for any

non-empty open set O− ⊂ F(X) in general position with g+ and for any non-empty open
neighborhood U− ⊂ F(X) of g−, there exists N ∈ N such that, for any n ≥ N ,

(g−1)n O− ∩U− 6= ∅.

Hence, for any n ≥ N ,
gn(g−n O− ∩U−) 6= ∅,

and finally,
O− ∩ gnU− 6= ∅. �

Lemma 3.3 and Corollary 3.6 extend to loxodromic elements.

LEMMA 3.15. For every loxodromic element g ∈ G, there exist r > 0 and n0 ∈ N such that
for all n ≥ n0 large enough, gn is (r, εn)-loxodromic with εn →n→∞

0.

COROLLARY 3.16. Fix 0< ε ≤ r . Let g ∈ G be a (r, ε/2)-loxodromic element such
that d(g+, g−)≥ 7r . Then for any h ∈ G such that ‖h − idG‖ ≤ ε/2, the product gh
is (2r, 2ε)-loxodromic, with (gh)+ ∈ B(g+, ε).
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Likewise, we generalize estimates of Proposition 3.7 to products of loxodromic
elements of G in general configuration.

Given l loxodromic elements g1, . . . , gl of G, set g0 = gl and assume that the
asymptotic points g+i−1 and g−i are opposite for all 1≤ i ≤ l. Thanks to Lemma 3.9,
there exists a unique element ν = ν(g1, . . . , gl) ∈ a whose coordinates in the dual basis
of (χρα,max)α∈5 are

(χρα,max(ν))α∈5 := (ν1(ρα(g1), . . . , ρα(gl)))α∈5.

The product of projective spaces
∏
α∈5 P(Vα) is endowed with the natural distance.

PROPOSITION 3.17. [Ben00, Benoist] For all 0< ε ≤ r , there exist positive constants
Cr,ε such that for all r > 0, limε→0 Cr,ε = 0 and such that the following holds. If
γ1, . . . , γl are (r, ε)-loxodromic elements, such that for all 1≤ i ≤ l with γ0 = γl we have
d(y(γ+i−1), Y (γ−i ))≥ 6r , then for all n1, . . . , nl ≥ 1,

λ(γ
nl
l . . . γ

n1
1 )−

l∑
i=1

niλ(γi )− ν(γl , . . . , γ1) ∈ Ba(0, lCr,ε).

Furthermore, the map g := γ nl
l . . . γ

n1
1 is (2r, 2ε)-loxodromic with y(g+) ∈ B(y(γ+l ), ε)

and repelling hyperplanes Y (g−) ∈ Vε(Y (γ−1 )).

Using Proposition 3.17, one can construct finitely generated, strong (r, ε)-Schottky
semigroups as follows. Let 0< ε ≤ r . Let S ⊂ G be a family of (r/2, ε/2)-loxodromic
elements such that d(y(h+), Y (h′−))≥ 7r for all h, h′ ∈ S. Denote by 0′ the semigroup
generated by S. Then every element g ∈ 0 is a non-commuting product of proximal
elements of the form gnl

l . . . gn1
1 with n1, . . . , nl ≥ 1 and gi 6= gi+1 ∈ S for all 1≤ i < l.

By Proposition 3.17, we deduce d(y(g+), Y (g−))≥ d(y(g+l ), Y (g−1 ))− ε ≥ 6r and that
g is (r, ε)-loxodromic. Thus, 0′ is strongly (r, ε)-Schottky.

4. Topological transitivity
Recall the definition of topological transitivity. We denote by a+1 (respectively, a++1 ) the
intersection of the unit sphere in a with a+ (respectively, a++).

Definition 4.1. Let �̃⊂W(X) be a 0-invariant and a-invariant subset of parametric flats.
Let � := 0\�̃. Fix a direction θ ∈ a++1 . The Weyl chamber flow φθR is topologically
transitive on � if for all open non-empty subsets U, V ⊂�, there exists tn→+∞ such
that for every n ≥ 1, we have U ∩ φθtn (V ) 6= ∅.

It is a standard fact that this is equivalent to one the following properties.
(1) There is a φθR-dense orbit in �.
(2) For all open non-empty subsets Ũ , Ṽ ⊂ �̃, there exists tn→+∞ such that for every

n ≥ 1, 0Ũ ∩ φθtn (Ṽ ) 6= ∅.
(3) For all open non-empty subsets Ũ , Ṽ ⊂ �̃, there exists tn→+∞ such that for every

n ≥ 1, there exists γn ∈ 0 with γnŨ ∩ φθtn (Ṽ ) 6= ∅.
The equivalence between the definition and property (1) can be found in Eberlein [Ebe72,
Proposition 3.5]. The other equivalences are straightforward.
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4.1. Limit set, limit cone of Zariski dense subgroup. In the remaining parts of this paper,
0 ⊂ G is a Zariski dense semigroup of G.

Definition 4.2. A point η ∈ F(X) is a limit point if there exists a sequence (γn)n≥1 in 0
such that ((γn)∗HaarG/M AN )n≥1 converges weakly toward the Dirac measure in η.

The limit set of 0, denoted by L+(0), is the set of limit points of 0. It is a closed subset
of F(X). Denote by L−(0) the limit set of 0−1 and, finally, let L(2)(0)= (L+(0)×
L−(0)) ∩ F (2)(X).

Note that when 0 is a subgroup, L+(0)= L−(0) and L(2)(0) is the subset of pair of
points of L+(0) in general position. For the hyperbolic plane, we get the product of the
usual limit set minus the diagonal.

LEMMA 4.3. [Ben97, Lemma 3.6] The set of pairs of attracting and repelling points of
loxodromic elements of 0 is dense in L+(0)× L−(0).

Definition 4.4. We denote by �̃(X) the subset of non-wandering Weyl chambers, defined
through the Hopf parametrization by

�̃(X) :=H−1(L(2)(0)× a).

This is a 0-invariant subset of W(X). When 0 is a subgroup, we denote by �(X) :=
0\�̃(X) the quotient space.

Conze and Guivarc’h proved in [CG02, Theorem 6.4] the existence of dense a-orbits
in �̃(X) for G = SL(n, R). By duality, this is equivalent to topological transitivity of left
0-action on �̃(X)/AM ' L(2)(0). We propose a new simpler proof of this result, adapting
that for negatively curved manifolds in Eberlein [Ebe72].

THEOREM 4.5. [CG02] For any open non-empty subsets U (2), V(2) ⊂ L(2)(0) there exists
g ∈ 0 such that gU (2) ∩ V(2) 6= ∅.

Proof. Without loss of generality, we assume that U (2) = U+ × U− and V(2) = V+ × V−,
where U+, V+ (respectively, U−, V−) are open non-empty subsets of L+(0) (respectively,
L−(0)).

We choose an open set W (2)
=W+ ×W− ⊂ L(2)(0) so that V+ and W− (respectively,

W+ and U−) are opposite. Such a choice is always possible. If V+ and U− are opposite,
we can take W (2)

= V(2). Otherwise, by taking U (2) and V(2) smaller, we can always
assume that the subset of points in L+(0) (respectively, L−(0)) in general position with
U− (respectively, V+) is non-empty. Then we choose a suitable opposite pair of open
non-empty subsets W+ ×W− ⊂ L+(0)× L−(0).

Since W+ × U− ⊂ L(2)(0), then, by Lemma 4.3, there are loxodromic elements in
0 with attracting point in W+ and repelling point in U−. By Lemma 3.14, such a
loxodromic element γ1 contracts points that are in general position with γ−1 ∈ U− toward
γ+1 ∈W+. Now apply statement (iv) of Lemma 3.14, to loxodromic element γ1, with
W− in general position with γ+1 and U− containing γ−1 . Hence for any n large enough,
γ n

1 U
(2)
∩W (2)

6= ∅.
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We take an open subset W(2) of γ n
1 U

(2)
∩W (2) of the form W(2)

=W+ ×W−. Then
V+ ×W− ⊂ V+ ×W− ⊂ L(2)(0). Likewise, we choose a loxodromic element γ2 ∈ 0

such that γ2W(2)
∩ V(2) 6= ∅. Then

(γ2γ
n
1 U

(2)
∩ γ2W (2)) ∩ V(2) ⊃ γ2W(2)

∩ V(2) 6= ∅.

Finally, the element g = γ2γ
n
1 satisfies gU (2) ∩ V(2) 6= ∅. �

The following theorem describes the set of directions θ ∈ a+1 for which we will show
that φθt is topologically mixing.

THEOREM 4.6. [Ben97] We define the limit cone of 0 by C(0) :=
⋃
γ∈0

Rλ(γ ). Then

C(0)=
⋂
n≥1

⋃
‖γ ‖≥n
γ∈0

Rµ(γ ),

and the limit cone is closed, convex, of non-empty interior.

The limit cone is also called the Benoist cone.

4.2. Topological transitivity properties. Recall the definition of the subset of non-
wandering Weyl chambers �̃(X)=H−1(L(2)(0)× a).

PROPOSITION 4.7. Let θ ∈ a++. If the flow (�(X), φθt ) is topologically transitive then

θ ∈
◦

C(0).

Proof. We assume that the dynamical system (�(X), φθt ) is topologically transitive, that
is, there exists a dense orbit. Let x ∈�(X) be a point of φθt -dense orbit and choose gx ∈ G
a lift of x .

By density of (φθt (x))x∈R, for any yM ∈ �̃(X)⊂ G/M , there exists tn→+∞, δn→

idG , mn ∈ M and γn ∈ 0 such that

φθtn (gx )= gx etnθ = γn yδnmn .

Thanks to Lemma 3.12, we deduce the estimates

µ(gx etnθ ) ∈ tnθ + Ba(0, Cgx ),

µ(γn yδnmn) ∈ µ(γn)+ Ba(0, Cy + Cδn ).

Therefore, µ(γn) and tnθ are at bounded distance, and by Theorem 4.6 the direction θ
must lie in the (closed) limit cone.

Let us now argue by contradiction that θ cannot be in the boundary of the limit cone.
First, we choose a point v ∈ a such that the line v + Rθ is far from the limit cone (the
distance depends on gx ). Since gx e−v is in gx eaM , which is, by A-invariance, a subset of
�̃(X), we use as above topological transitivity on gx e−v . Then we prove that elements of
the form gx ev+tθmg−1

x δ, with m ∈ M , are loxodromic and very contracting when t is large
enough and δ sufficiently close to idG . In the last step, we estimate the Jordan projection
of such elements: using the proximal representations of Lemma 3.9, we prove that they are
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in a bounded neighborhood of v + tθ when t is sufficiently large and δ sufficiently close
to idG . Finally, we find a contradiction with the choice of v ∈ a.

First, by considering the maps of Corollary 3.10, we set

r :=
1
7

d(y(gxη0), Y (gx η̌0)).

For all α ∈5, we choose pα,gx a rank-one projection of image yα(gxη0) and kernel
Yα(gx η̌0). Set

Dr := sup
ξ∈B(gxη0,r)

sup
α∈5

{|‖pα,gx (vyα(ξ))‖ − 1| | vyα(ξ) ∈ ∂B(0, 1) ∩ yα(ξ)}.

Note that Dr does not depend on the choice of the rank one projection and only depends on
r and gx . Assume by contradiction that θ is in the boundary of C(0). Let H be a supporting
hyperplane of the convex C(0), tangent at θ and H+ the half space not containing C(0).
Pick v ∈ H+ such that

d(v, H)≥ 4Dr .

Then
d(v + R+θ, C(0))= d(v + R+θ, H)= d(v, H)≥ 4Dr . (6)

Let us now use topological transitivity. Since gx e−v ∈ �̃(X), the trajectory (φθt (x))x∈R
comes back infinitely often in any small neighborhood of 0gx e−v. Hence there exist tn→
+∞, δn→ idG , mn ∈ M and γn ∈ 0 such that

φθtn (gx mn)= γngx e−vδn . (7)

Rewrite the previous equation as

gx ev+tnθmngx−1 (gx e−vδ−1
n evg−1

x )= γn .

For every n ≥ 1 we set δ′n := gx e−vδ−1
n evg−1

x . The sequence (δ′n)n≥1 converges toward
idG , and we have

gx ev+tnθmng−1
x δ′n = γn . (8)

Since by hypothesis θ ∈ a++, we choose a positive number tv > 0 such that v + tvθ ∈
a++. For every n large enough such that tn ≥ tv , denote by btn − tvc the integer part of
tn − tv and {tn − tv} its fractionary part. Now set vn := v + (tv + {tn − tv})θ ∈ a++ and
hθ := gx eθg−1

x . Rewrite equation (8) for large integers:

gx evn mng−1
x hbtn−tvc

θ δ′n = γn . (9)

For every n ≥ 1 we set gn := gx ev+tnθmng−1
x = gx evn mng−1

x hbtn−tvc
θ .

Let us now prove that for n large, the gn are very contracting elements. We apply
Lemma 3.15 on the loxodromic elements hbtn−tvc

θ . There is a sequence of εn→ 0 so that
hbtn−tvc
θ is (r, εn)-loxodromic. Then for any n ≥ n0 large enough, gn is the product of

an (r, εn)-loxodromic element and a loxodromic element of the form gx evn mng−1
x , where

vn ∈ a
++ is bounded, and with btn − tvc→+∞. Since gx evn mng−1

x and hbtn−tvc
θ have

the same attracting and repelling point in F(X), we deduce that gn is (r, εn)-loxodromic
for n ≥ n0. Now take ε′n = 2 max(εn, ‖δ

′
n − idG‖). Then there exists n1 so that for n ≥
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max(n0, n1), we have that 0< ε′n ≤ r , and gn is (r, ε′n/2)-loxodromic. Corollary 3.16
shows that gnδ

′
n is (2r, 2ε′n)-loxodromic for n large enough, and (gnδ

′
n)
+
∈ B(gxη0, ε

′
n).

Using Fact 2.6, we compute λ(gnδ
′
n):

λ(gnδ
′
n)= σ(gnδ

′
n, (gnδ

′
n)
+)

= σ(gn, δ
′
n(gnδ

′
n)
+)+ σ(δ′n, (gnδ

′
n)
+)

= σ(gn, gxη0)

+ (σ (gn, δ
′
n(gnδ

′
n)
+)− σ(gn, gxη0))

+ σ(δ′n, (gnδ
′
n)
+).

Remark that σ(gn, gxη0)= λ(gn)= v + tnθ . Hence

λ(gnδ
′
n)− (v + tnθ)= (σ (gn, δ

′
n(gnδ

′
n)
+)− σ(gn, gxη0))+ σ(δ

′
n, (gnδ

′
n)
+). (10)

We analyze separately the two terms of the right-hand side of the last equality. For the last
term, by Lemma 3.12(ii),

‖σ(δ′n, (gnδ
′
n)
+)‖ ≤ Cδ′n .

Now we will bound, independently of v, the term σ(gn, δ
′
n(gnδ

′
n)
+)− σ(gn, gxη0). Let

α ∈5 be a simple root and consider the proximal representation of G associated to α.
By Lemma 3.11(b)(iii), for any ξ ∈ δ′n B(gxη0, ε

′
n), there exists a non-zero representative

vξ ∈ Vα such that

χρα,max(σ (gn, ξ))= log
‖ρα(gn)vξ‖

‖vξ‖
.

Let ξ = δ′n(gnδ
′
n)
+ and consider a unitary vector vξ ∈ Vα . Then

ρα(gn)

λ1(ρα(gn))
(vξ )= pα,gx (vξ )+

ρα(gn)

λ1(ρα(gn))
(vξ − pα,gx (vξ )).

By the triangle inequality,

‖pα,gx (vξ )‖ −

∥∥∥∥ρα(gn)(vξ − pα,gx (vξ ))

λ1(ρα(gn))

∥∥∥∥≤ ‖ρα(gn)vξ‖

λ1(ρα(gn))

≤ ‖pα,gx (vξ )‖ +

∥∥∥∥ρα(gn)(vξ − pα,gx (vξ ))

λ1(ρα(gn))

∥∥∥∥.
The eigenvalues of ρα(gn)/(λ1(ρα(gn))) restricted to the repelling hyperplane

X−(gn)= Yα(gx η̌0) are exp(χα(λ(gn))− χρα,max(λ(gn))), where χα 6= χρα,max is a
restricted weight of 6(ρα). They converge to zero and these endomorphisms are all
diagonalizable. Hence, ∥∥∥∥ρα(gn)|Yα(gx η̌0)

λ1(ρα(gn))

∥∥∥∥ →n+∞ 0.

Taking the logarithm and the upper bound of ‖ρα(gn)vξ‖/(λ1(ρα(gn))) and its inverse,
we obtain for n large enough,

‖σ(gn, ξ)− σ(gn, gxη0)‖ ≤ Dr + sup
α∈5

∥∥∥∥ρα(gn)|Yα(gx η̌0)

λ1(ρα(gn))

∥∥∥∥‖idVα − pα,gx ‖.
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Finally, for any v ∈ a, there exist tn→+∞, δ′n→ idG , such that for any n large enough,

‖λ(γn)− (v + tnθ)‖ ≤ Dr + sup
α∈5

∥∥∥∥ρα(gn)|Yα(gx η̌0)

λ1(ρα(gn))

∥∥∥∥‖idVα − pα,gx ‖ + Cδ′n . (11)

The two last terms converge to zero when n→+∞, hence, for n large enough, the norm
of λ(γn)− (v + tnθ) is uniformly bounded by 3Dr .

To conclude, recall that the limit cone is the smallest closed cone containing all the
Jordan projections of 0. Hence, this implies that for n large enough, the distance
d(v + tnθ, C(0)) is smaller than 3Dr . This is contradictory with the choice of v given
by equation (6).

Hence, topological transitivity of the dynamical system (�(X), φθt ) implies that θ ∈
◦

C(0). �

5. Topological mixing
Recall the definition of topological mixing.

Definition 5.1. Fix a direction θ ∈ a++1 . The Weyl chamber flow φθR is topologically
mixing on �(X) if for all open subsets U, V ⊂�(X), there exists T > 0 such that for
all t ≥ T , we have U ∩ φθt (V ) 6= ∅.

It will sometimes be more convenient to set proofs in the cover �̃(X), where the
topological mixing takes the following form: for all open subsets Ũ , Ṽ ⊂ �̃(X), there
exists T > 0 such that for all t ≥ T there exists γt ∈ 0 with γtŨ ∩ φθt (Ṽ ) 6= ∅.

5.1. Non-arithmetic spectrum. Denote by 0lox the set of loxodromic elements of
0. Dal’bo [Dal00] introduced the notion of non-arithmetic spectrum for subgroups of
I som(Hn), meaning that the length spectrum of such a group is not contained in a discrete
subgroup of R.

We generalize this definition for isometry groups in higher rank.

Definition 5.2. We say that 0 has non-arithmetic spectrum if the length spectrum λ(0lox)

spans a dense subgroup of a.

PROPOSITION 5.3. Every Zariski dense semigroup 0 contains loxodromic elements,
strong (r, ε)-Schottky Zariski dense semigroups and has non-arithmetic spectrum.

Proof. For a general semisimple, connected, real linear Lie group, Benoist proves in
[Ben00, Proposition] that when 0 is a Zariski dense semigroup of G, the additive group
generated by the full length spectrum λ(0) is dense in a. Thus, this Proposition implies
that Zariski dense semigroups containing only loxodromic elements have non-arithmetic
length spectrum. In particular, strong (r, ε)-Schottky Zariski dense semigroups have non-
arithmetic length spectrum. Finally, the existence of Zariski dense Schottky semigroups in
Zariski dense subgroups of G follows from [Ben97, Proposition 4.3 for θ =5]. �
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5.2. A key proposition for mixing. The following proposition is the technical point for
proving the topological mixing of the Weyl chamber flow. Roughly, it shows that among
elements of 0 which do not move too much a flat, (ie. (γ+t , γ

−
t ) ∈ U (2)) for any given

x ∈ a, we can find an element which send 0 to x + θ t for large t (ie. λ(γt ) ∈ B(x + tθ, η))

PROPOSITION 5.4. Fix θ ∈ a++1 in the interior of the limit cone C(0). Then for every non-
empty open subset U (2) ⊂ L(2)(0), for all x ∈ a and η > 0 there exists T > 0 such that for
all t ≥ T there exists a loxodromic element γt ∈ 0 with{

(γ+t , γ
−
t ) ∈ U (2),

λ(γt ) ∈ B(x + tθ, η).
(12)

We will need the following classical density lemma; see, for example, [Ben00,
Lemma 6.2].

LEMMA 5.5. Let V be a real vector space of finite dimension. Let l0, l1, . . . , lt be vectors
of V and η > 0. Set

L :=
∑

0≤i≤t

R+li , M :=
∑

0≤i≤t

Zli , and M+ :=
∑

0≤i≤t

Nli .

Assume that M is η-dense in V . Then there exists v0 ∈ V such that M+ is η-dense in
v0 + L.

Remark that if M+ is η-dense in v0 + L then it is η-dense in v + L for every v ∈ v0 + L .
The following lemma is a consequence of [Ben97, Proposition 4.3].

LEMMA 5.6. For all θ in the interior of the limit cone C(0), there exist a finite set S ⊂ 0,
a positive number ρ > 0 and εn →

+∞
0 such that:

(i) θ is in the interior of the convex cone L(S) :=
∑
γ∈S

R+λ(γ );

(ii) the elements of λ(S) form a basis of a;
(iii) for all n ≥ 1, the family Sn := (γ

n)γ∈S spans a Zariski-dense strong (ρ, εn)-Schottky
semigroup of 0.

Proof. Fix θ in the interior of C(0).
Let us now construct a family of rG open cones in the limit cone C(0). We consider

an affine chart of P(a) centered in Rθ . Since Rθ is in the open set P(
◦

C(0)), it admits
an open, polygonal, convex neighborhood with rG distinct vertices centered in Rθ and

included in P(
◦

C(0)). We denote by p := (Rpi )1≤i≤rG the family of vertices of that convex
neighborhood, and Hp its convex hull. Without loss of generality we can assume that there

exists δ0 > 0 such that the δ0-neighborhood of Hp, Vδ0(Hp) is included in P(
◦

C(0)).
For any δ > 0, we denote by Vδ(∂Hp) the δ-neighborhood of the boundary ∂Hp.

Choose 0< δ ≤ inf(δ0,
1
3 d(Rθ, ∂Hp)) so that Rθ ∈Hp \ Vδ(Hp).

Denote by L p ⊂
◦

C(0) (respectively, Vδ(∂L p)) the closed (respectively, open) cone
whose projective image is Hp (respectively, Vδ(∂Hp)). For all 1≤ i ≤ rG , denote by
(�i )1≤i≤rG the family of open cones such that P(�i ) := BP(a)(pi , δ).
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By [Ben97, Proposition 4.3] applied to the finite family of disjoint open cones
(�i )1≤i≤rG there exist 0< ε0 ≤ ρ and a generating set S := {γi }1≤i≤rG ⊂ 0 of a Zariski
dense (ρ, ε)-Schottky semigroup such that for all 1≤ i ≤ rG the Jordan projection λ(γi )

is in �i . By Lemma 3.3, for any n ≥ 1, the elements of Sn are (ρ, εn)-loxodromic. Thus,
for n large, condition (iii) holds. By construction, λ(S) form a family of rG linearly
independent vectors of a, hence (ii) holds. Set L(S) :=

∑
γ∈SR+λ(γ ). The construction

of L p and Vδ(∂L p) implies that θ ∈ L p \ Vδ(∂L p). Since λ(γi ) ∈�i ⊂ Vδ(∂L p) for all

1≤ i ≤ rG , the boundary of the cone ∂L(S)⊂ Vδ(∂L p). Hence L p \ Vδ(∂L p)⊂
◦

L(S)
and, finally, condition (i) holds: θ is in the interior of the cone L(S). �

Let us give a proof of the key proposition.

Proof of Proposition 5.4. We fix a point θ in the interior of C(0), an open, non-empty set
U = U+ × U− ⊂ L(2)(0), a point x ∈ a and η > 0.

Consider S and ρ > 0 as in Lemma 5.6. Denote by 0n the semigroup spanned by Sn .
By Lemma 3.7, one can pick h ∈ 0lox such that (h+, h−) ∈ U (2) \ (γ−1 , γ

+
rG
). Choose

r > 0 so that
r ≤ inf(ρ, 1

6 d(h+, h−), 1
6 d(γ+rG

, h−), 1
6 d(h+, γ−1 )).

In particular, Proposition 3.17 holds for elements of the form hγ
nrG
rG gγ n1

1 h, where g ∈ 0n .
Choose 0< ε ≤ r small enough so that{

(3rG + 2)Cr,ε ≤ η/2,
B(h+, ε)× B(h−, ε)⊂ U (2), (13)

where (Cr,ε)ε≥0 are constants given by the proposition.
We use Lemma 3.3 and choose n large so that hn, Sn are (r, εn)-loxodromic elements

with εn ≤ ε.
By Proposition 5.3, the subgroup generated by λ(0n) is dense in a. By Lemma A.1

applied to λ(0n), there exists a finite subset F ⊂ 0n containing at most 2rG elements
so that λ(Sn) ∪ λ(F) spans an η/2-dense subgroup of a. We denote by l the number
of elements in S′ := Sn

∪ F and we enumerate the elements of Sn
∪ F by (g1, . . . , gl),

where g1 := γ
n
1 and gl := γ

n
rG

. A crucial fact is that l ≤ 3rG is bounded independently of
λ(0n).

The additive subgroup generated by λ(S′) is η/2-dense in a. Furthermore, θ is still
in the interior of the convex cone L(S′) :=

∑
g∈S′R+λ(g) by (i). Lemma 5.5 gives the

existence of v0 ∈ a such that M+(S′) :=
∑

g∈S′Nλ(g) is η/2- dense in v0 + L(S′).
The interior of L(S′) contains θ . Hence for any v ∈ a, the intersection (v + R+θ) ∩

(v0 + L(S′)) is a half line.
Consider such a half line x − ν(hn, gl , . . . , g1, hn)− 2λ(hn)+ θ [T,+∞) contained

in v0 + L(S′), for some T ∈ R. For all t ≥ T , there exists nt := (nt (1), . . . , nt (l)) ∈ Nl

such that ∥∥∥∥ l∑
i=1

nt (i)λ(gi )− x + ν(hn, gl , . . . , g1, hn)+ 2λ(hn)− θ t
∥∥∥∥≤ η/2. (14)
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Furthermore, Proposition 3.17 applied to γt := hngnt (l)
l . . . gnt (l)

1 hn gives∥∥∥∥λ(γt )−

l∑
i=1

nt (i)λ(gi )− 2λ(hn)− ν(hn, gl , . . . , g1, hn)

∥∥∥∥≤ (l + 2)Cr,ε (15)

and (γ+t , γ
−
t ) ∈ B(h+, ε)× B(h−, ε)⊂ U (2) by (13).

Finally, we have (3rG + 2)Cr,ε ≤ η/2 by the choice of n, Sn , hn . Once again, we
remark that it is necessary for l to be bounded independently of 0 and n. We get the
following bound using the triangle inequality:

‖λ(γt )− x − θ t‖ ≤ η. (16)

This concludes the proof. �

Prasad and Rapinchuk [PR05, Theorem 3] prove that Schanuel’s conjecture in
transcendental number theory implies that every Zariski dense semigroup of G contains a
finite subset F such that λ(F) generates a dense subgroup of a. Assuming that conjecture,
we can remove our Lemma A.1 and simplify our proof as follows. Start by following our
proof, choosing S ⊂ 0 and ρ > 0 as in Lemma 5.6. Now use Prasad and Rapinchuk’s
density theorem: there is a finite subset F of the semigroup generated by S such that
〈λ(F)〉 is dense in a. Remark that for any n ∈ N, the subset S′′n := Fn

∪ Sn is finite, has at
most |F | + rG elements and the subgroup generated by λ(S′′n ) is also dense in a. It suffices
then to follow the end of the proof by taking S′ = S′′n for n large enough so that S′ is a
(r, εn)-Schottky semigroup with (|F | + rG + 2)Cr,εn ≤ η/2.

5.3. Proof of Theorem 1.2. We end the proof of the main theorem with Proposition 5.4
and Theorem 4.5.

If (�(X), φθt ) is topologically mixing, it is in particular topologically transitive.
Therefore, by Proposition 4.7, if (�(X), φθt ) is topologically mixing, θ is in the interior of
the limit cone.

Let us prove that if θ ∈
◦

C(0) ∩ a++1 then (�(X), φθt ) is topologically mixing.
Let Ũ , Ṽ be two open subsets of �̃(X). Without loss of generality, we can assume that

Ũ =H−1(U (2) × B(u, r)) (respectively, Ṽ =H−1(V(2) × B(v, r))), where U (2) and V(2)
are open subsets of L(2)(0), and B(u, r), B(v, r) open balls of a.

Recall that for all g ∈ 0, using Hopf coordinates{
H(2)(g(U (2))× B(u, r))= gU (2),
H(φθt (V(2))× B(v, r)))= V(2) × B(v + θ t, r).

(17)

We begin by transforming the coordinates in L(2)(0) to recover the setting of
Proposition 5.4. By Theorem 4.5, there exists g ∈ 0 such that gU (2) ∩ V(2) 6= ∅. For
such an element g ∈ 0, the subset gU (2) ∩ V(2) is a non-empty open subset of L(2)(0).
Let O(2)

:=O+ ×O− ⊂ gU (2) ∩ V(2) be a non-empty open subset, such that r :=
d(O+,O−) > 0.

Remark that gŨ ∩ (H(2))−1(O(2)) is open and non-empty. Thus it contains an open
box H−1(O(2)

× B(u′, r ′)) with u′ ∈ a and r ′ > 0. Set η :=min(r, r ′).
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By Proposition 5.4 applied to O(2), x = v − u′ ∈ a and η > 0, there exists T > 0 such
that for all t ≥ T there exists γt ∈ 0 with{

(γ+t , γ
−
t ) ∈O(2),

λ(γt ) ∈ B(v − u′ + tθ, η).
(18)

Remark that every loxodromic element γ ∈ 0 fixes its limit points in L(2)(0). Thus for
all such γ ∈ 0 with (γ+, γ−) ∈O(2), the subset γO(2)

∩O(2) is open and non-empty (it
contains (γ+, γ−)). Furthermore, λ(γ )= σ(γ, γ+) by Fact 2.6. Hence{

γtO(2)
∩O(2)

6= ∅,

u′ + σ(γt , γ
+
t ) ∈ B(v + tθ, η).

(19)

The subset γt gŨ ∩ (H(2))−1(γtO(2)
∩O(2)) is open, non-empty and contains the point

of coordinates (γ+t , γ
−
t , u′ + σ(γt , γ

+
t )) ∈H−1(φθt (Ṽ )). Finally, γt gŨ ∩ φθt (Ṽ ) 6= ∅; as

Ũ , Ṽ are arbitrary, it proves that φθt is topological mixing.
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A. Appendix. A density lemma
The following density lemma is crucial for the proof of Proposition 5.4.

LEMMA A.1. Let d ∈ N, and let V be a real vector space of dimension d. For all E ⊂
V spanning a dense additive subgroup of V , for all ε > 0, for any basis B ⊂ E of V ,
there exists a finite subset F ⊂ E of at most 2d elements such that B ∪ F spans a ε-dense
additive subgroup of V .

Proof. We show the lemma by induction.
Let E ⊂ R1

= V be a subset that generates a dense additive subgroup of R. Let x ∈ R
be a basis, that is, a non-zero element. Any element y in E such that 〈y, x〉 is dense is a
solution. We assume that E contains no such element. Consider the quotient R/xZ and the
projection p : R→ R/xZ. The set E projects to an infinite subset of R/xZ, therefore it has
an accumulation point. Let f1 6= f2 ∈ E be two elements such that |p( f1)− p( f2)|< ε.
Then 〈x, f1, f2〉 generates an ε-dense additive subgroup of R, and the lemma is proved
for dim(V )= 1, where F = { f1, f2}.

Now consider a vector space V of dimension d . Let E be a subset of V such that 〈E〉 = V
and B = (b1, . . . , bd)⊂ E , a basis of V . Without loss of generality we suppose that the
basis is the standard basis and the norm is the sup norm: these only affect computations up
to a multiplicative constant.

Suppose that we have f1, f2 ∈ E such that the additive group 〈 f1, f2, B〉 contains a
non-zero vector u of norm ‖u‖ ≤ ε/2. We will show that it is enough to conclude and then
prove the existence of such elements.

Consider V ′ = u⊥, the decomposition V = u ⊕ V ′ and p′ the projection on V ′. Let
E ′ = p′(E) and B′ a basis of V ′ included in p′(B). By induction, there is a finite subset
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F ′ ⊂ E ′ of at most 2(d − 1) elements such that 〈F ′, B′〉 generates an ε/2-dense additive
subgroup of V ′. For all f ′ ∈ F ′ there exist f ∈ E and λ f ∈ R such that f ′ = f + λ f u. A
similar result holds for elements of B′. We denote by F ⊂ E a choice of lifts for elements
of F ′. We claim that the set F = F ∪ { f1, f2} ∪ B generates an ε-dense additive subgroup
of V .

Let x ∈ V , x = x ′ + λx u. By hypothesis, there exist (n f ′) f ′∈F ′ ∈ Z|F
′
|, (nb′)b′B′ ∈

Zd−1 and α ∈ V ′ satisfying ‖α′‖< ε/2 such that

x ′ =
∑
f ′∈F ′

n f ′ f ′ +
∑

b′∈B′
nb′b′ + α′.

Therefore,

x ′ =
∑
f ∈F

n f ′ f +
∑
b∈B

nbb +
(∑

f ∈F
n f ′λ f +

∑
b∈B

nbλb

)
u + α′.

Finally, we get

x =
∑
f ∈F

n f ′ f +
∑
b∈B

nbb + [k]u + (k − [k])u + α′,

where k =
∑

f ∈F n f ′λ f +
∑

b∈B nb + λx and [k] ∈ Z denotes the integer part of k. The
vector

∑
f ∈F n f ′ f +

∑
b∈B nbb + [k]u is in the additive group generated by F and |(k −

[k])u + α| ≤ ε. This proves the claim.
To finish the proof we need to show that for any ε > 0, there are elements f1, f2 ∈ E

such that 〈 f1, f2, B〉 contains a non-zero vector of norm less than ε.
Consider the natural projection p : Rd

→ Rd/
⊕d

k=1 Zbk into the torus Rd/⊕d
k=1 Zbk . If there is an element f ∈ E such that p(Z f ) contains accumulation points,

we choose u, non-zero and small in 〈B, f 〉. We assume now that there is no such element
in E . Choose an integer N such that N > 2

√
d/ε. By the pigeonhole principle on N d

+ 1
distinct elements of E , we deduce the existence of f1, f2 ∈ E with 0< |p( f1 − f2)|<

ε/2. The unique representative of the projection p( f1 − f2) in the fundamental domain∑d
i=1(0, 1]bi is a suitable choice for u. Indeed, it is an element of the subgroup 〈 f1, f2, B〉

and it is of norm at most ε/2. �
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