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Abstract

Most people simultaneously belong to several distinct social networks, in which their relations

can be different. They have opinions about certain topics, which they share and spread on

these networks, and are influenced by the opinions of other persons. In this paper, we build

upon this observation to propose a new nodal centrality measure for multiplex networks.

Our measure, called Opinion centrality, is based on a stochastic model representing opinion

propagation dynamics in such a network. We formulate an optimization problem consisting

in maximizing the opinion of the whole network when controlling an external influence able

to affect each node individually. We find a mathematical closed form of this problem, and

use its solution to derive our centrality measure. According to the opinion centrality, the

more a node is worth investing external influence, and the more it is central. We perform

an empirical study of the proposed centrality over a toy network, as well as a collection of

real-world networks. Our measure is generally negatively correlated with existing multiplex

centrality measures, and highlights different types of nodes, accordingly to its definition.

Keywords: complex networks, centrality measures, multiplex networks, opinion diffusion, convex

optimization and stochastic process

1 Introduction

In our ultra-connected world, many people simultaneously belong to several distinct

social networks, in which their relations can be different. For instance, interpersonal

connections are not necessarily the same in Online Social Networks (OSN) and in the

offline, real-world. Moreover, the way people are interconnected can even differ when

considering several different OSNs, such as Facebook, LinkedIn, or ResearchGate,

due to the fact these services have different purposes. The same can be said about

the various types of interactions one can experience in the real-world. It is possible

for someone to maintain simultaneously several types of relationship with the same

person (collaboration, kinship, friendship, etc.). This has consequences in terms of

information propagation, since one can not only exchange information inside a single

social network, but also receive some information through one network and fetch it

via another one. This situation may occur, for instance, in the framework of Online

Social Networks, when a user gets some news on Twitter and shares it on Facebook.

When identifying the central nodes in such a network, it is of course necessary

to take the multilayer nature of the structure into account, in order to avoid any

information loss. For this purpose, various measures have been proposed in the

literature. Most of them generalize widespread existing unilayer measures such as
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degree (Magnani & Rossi, 2011; de Domenico et al., 2013; Battiston et al., 2014),

betweenness (Magnani et al., 2013; Solé-Ribalta et al., 2014; Chakraborty &

Narayanam, 2016), closeness (Magnani & Rossi, 2011; Solé-Ribalta et al., 2016),

Eigenvector (de Domenico et al., 2013; Solá et al., 2013; Battiston et al., 2014),

PageRank (Ng et al., 2011; Halu et al., 2013; Coscia et al., 2013), or HITS

(Kolda & Bader, 2006). These generalizations rely on the adaptation of unilayer

concepts to the multilayer case. For instance, measures based on matrix decompo-

sition are modified to handle tensors, whereas in others, the concept of geodesic

distance is altered to take inter-layer paths into account. Several recent articles

review multilayer networks and the related centrality measures (de Domenico et al.,

2013; Kivelä et al., 2014; Boccaletti et al., 2014).

In this article, we propose to generalize another type of uniplex approach, based on

the resolution of optimization problems on diffusion models. One of the first opinion

diffusion models was developed by DeGroot (1974). In this model, the persons are

embedded in a social network and update their opinion (a real number in [0, 1])

over time, by taking the average opinion of their neighbors. Some of the major

extensions of this model are summarized in Jackson (2008). Later works focused

not only on understanding the opinion adoption process, but also on controlling it.

Recent papers (Borkar et al., 2010; Bimpikis et al., 2016) suggest that we can use

the theory of optimization and control in order to design efficient strategies for the

control of opinion diffusion. In Borkar et al. (2010), the authors propose to impose

a particular opinion to certain nodes in order to make the whole network adopt

it too. In Bimpikis et al. (2016), the authors study how much a company needs to

invest in a person in order to improve the adoption of some product it wants to

sell to the whole network. The node targeted by these strategies can somehow be

considered as central, and we want to explore this type of centrality in this work.

Our measure is designed specifically for multiplex networks. A multiplex network,

or edge-colored multigraph in Kivelä et al.’s nomenclature (Kivelä et al., 2014),

corresponds to a multilayer network in which all nodes are present in all layers, and

one node is connected to all its counterparts in all layers (the so-called categorical

inter-layer coupling). Our approach is based on a model representing how the

individual opinion, for a topic of interest, evolves among a group of persons. Each

layer represents the influence people have on each other in a given social context or

for a given social media. A person is influenced by his neighbors, like in DeGroot

models. However, we introduce an additional influence in the model, which represents

an external party able to affect each person individually. For example, in a marketing

context, this external influencer could be a firm willing to direct its communication

toward certain persons in the considered social group. Our centrality measure is

related to the solution of the optimization problem consisting in determining, which

amount of external influence to invest in each person, in order to maximize the

overall opinion of the social group.

Our contributions are the following. First, we propose a model of opinion diffusion

for multiplex networks. Second, we define an optimization problem consisting in

maximizing this diffusion when controlling the information entering the network.

Third, we define a multiplex centrality measure based on the solution of this problem.

The rest of this article is organized as follows. In the next section, we describe

our stochastic model of opinion evolution. In Section 3, we define our optimization
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problem, and use it to derive our centrality measure. In Section 4, we study its

behavior on a toy network and on real-world networks, comparing it to existing

multiplex centrality measures.

2 Opinion dynamics: A stochastic model

We propose to model the evolution of the opinion of a group of people belonging

to different social networks. In this section, we describe our model, before using it

to define a multiplex centrality measure in the next section.

Let us consider a group of people, some of which have influence over others.

This can be represented as a network, whose nodes correspond to each individual

and directed links correspond to the influence one individual exerts over another.

In the well-known Degroot model (DeGroot, 1974; Jackson, 2008), the opinion of a

person regarding a topic of interest depends on the opinion of the people influencing

him. The work presented in Bimpikis et al. (2016) is based on this model, with an

additional controlled exogenous influence, able to affect each individual. The authors

use this modified model to identify optimal control strategies in terms of opinion

diffusion. Such a strategy consists in determining which individual to influence, and

how much they should be influenced. Our approach is based on the same principle,

except we extend the model by allowing several media for inter-individual influence.

Suppose, we want to consider not one, but several social networks at once.

This results in a multiplex graph, in which each layer corresponds to the influence

relationships observed in a specific social network (layer). The nodes are the same

in all layers, since they represent the same person in various contexts. Formally, we

note I := {1, . . . , I} the set of persons and C := {1, . . . , C} the set of social networks.

For a given social network c ∈ C (layer), we call Ec ∈ [0, 1]I×I the imitation matrix,

whose ij-entry eijc is the probability that person j is influenced by person i in

social network c, and consequently mimics his opinion. In other words, Ec is the

(normalized) weighted adjacency matrix of the cth layer of our multiplex network.

Let us now describe the process taking place on this network. We assume that

a person i ∈ I is influenced by a source external to the network, according to a

Poisson point process of intensity λi ∈ �+. Moreover, a person i decides to mimic

the opinion of one of his neighbors in layer c according to a Poisson point process of

intensity αic ∈ �+. Let k ∈ �+ denote the kth event (external or internal influence).

We define Λ :=
∑I

j=1

∑C
d=1 λj +αjd. Then, λiΛ

−1 is the probability that the kth event

is individual i undergoing an external influence, whereas αicΛ
−1 is the probability

for this event to be individual i mimicking his neighbors’ opinion in social network

c (i.e. undergoing an internal influence).

For each event k, let xi(k) ∈ [0, 1] be the opinion of person i. A zero value means

person i has no interest for the considered topic, whereas 1 represents a full interest.

By modeling opinions using real values in [0, 1], we follow the line of work of

DeGroot (1974). We call the vector x(k) := (x1(k) . . . , xI (k)) the opinion profile of the

whole social group at event k. As mentioned before, it can be updated due to the

direct influence of other individuals’ opinions, or due to an external influence. For

each i, let xi(0) = x0
i ∈ [0, 1].

Let us now detail how the opinion of a person i is updated. One of three scenarios

are possible as follows:
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1. If at event k, person i receives a message (with probability λiΛ
−1), then his

opinion is updated as follows:

xi(k + 1) = xi(k)(1 − δ) + δ (1)

where δ ∈]0, 1[ is the step-size.

2. If at event k, person i decides to imitate its neighbors in social network c

(which occurs with probability αicΛ
−1), then his opinion is updated as follows:

xi(k + 1) = xi(k)(1 − δ) + δ

⎛
⎝ I∑

j=1

ejicxj(k)

⎞
⎠ (2)

3. If event k does not concern person i (which occurs with probability (
∑

c

∑
j �=i αic

+λj)Λ
−1), then his opinion is updated as follows:

xi(k + 1) = xi(k)(1 − δ) (3)

In this model, opinion evolution is a constant step-size stochastic approximation.

Indeed, for each k and each person i, xi(k) can be rewritten as follows:

xi(k + 1) = xi(k) + δ (Yic(k) − xi(k)) (4)

xi(0) = x0
i ,

where

Yic(k) :=

⎧⎪⎨
⎪⎩

1 w.p λiΛ
−1∑I

j=1 ejicxj(k) w.p αicΛ
−1

0 w.p (
∑

c

∑
j �=i αic + λj)Λ

−1

(5)

The previous equations suggest that for each person i, xi(k) is a stochastic finite

difference Euler schemes of the following system of differential equations:

ẋi(t) = λiΛ
−1 + Λ−1

C∑
c=1

αic

I∑
j=1

ejicxj(t) − xi(t) (6)

xi(0) = x0
i

Let E be a matrix such that the ij-entry of E is equal to eij =
∑C

c=1 αicejic. Let ET

be the transpose of matrix E. Let A be equal to (E − IdI )
−1 where IdI is the identity

matrix of dimension I2.

We are interested to compute, if it is possible, limk→+∞ xi(k). We use the theory

of stochastic approximation (Borkar, 2008), which highlights the relation between

limk→+∞ xi(k) and limt→+∞ xi(t). The next proposition gives us the expected result.

Proposition 1

If for all i,
∑I

j=1 eij < 1, 1
2
[E + E

T
] has negative Eigenvalues and δ � 1, then for

each i,

lim
k→+∞ xi(k) = x∗

i (7)

where x∗
i is solution of

0 = λiΛ
−1 + Λ−1

C∑
c=1

αic

I∑
j=1

ejicx
∗
j − x∗

i (8)
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Proof of Proposition 1

Our proof is constituted of three steps. In the first, we rewrite x(n) as a stochastic

approximation. In the second, we prove the uniqueness of the rest point. In the third,

the stability of the unique rest point is proved by using (Borkar, 2008) (chapter 10

p.131). We conclude by using Theorem 3 p.106 of Borkar (2008).

Step 1: For each i, the evolution of xi(k) is equivalent to the following stochastic

approximation:

xi(k + 1) = xi(k) + δ (Yi(k) − xi(k))

= xi(k) + δ (E[Yi(k)]) − xi(k)) + δ (Yi(k) − E[Yi(k)]))

We observe that for each person i:

Mi(n) := Yi(k) − E[Yi(k)]

is a martingale difference sequence of zero mean (a definition can be found in the

appendix of Borkar (2008)). Thus, for each i, xi(k) is a stochastic approximation.

Step 2: From the fact that xi(k) is a stochastic approximation, we study the

asymptotic behavior of the associated differential equations:

ẋi(t) = λiΛ
−1 + Λ−1

C∑
c=1

αic

I∑
j=1

ejicxj(t) − xi(t) (9)

xi(0) = x0
i

Rest points of Equation (9) are the solutions of the following linear system:

λΛ−1 + (E − IdI )x = 0 (10)

where the ij-entry of E is equal to eij =
∑C

c=1 αicejic and IdI is the identity matrix

of dimension I2. We notice that E − IdI is a strictly diagonally dominant matrix

(Horn & Johnson, 2012). This is the reason why E − IdI is invertible. We can

conclude that Equation (10) has a unique rest point given by:

x∗ = (E − IdI )
−1(−λΛ−1) (11)

Step 3: From the fact the matrix 1
2
[(E−IdI )+(E−IdI )

T ] has negative Eigenvalues,

x∗ is the unique stable point of Equation (9) (see Borkar (2008) chapter 10 p.131).

Finally, we apply theorem 3 p.106 of Borkar (2008) to show that x(n) (whose

components are given by Equation (4)) converges to x∗. �

In this section, we developed a framework that models the evolution of individual

opinion occurring on a multiplex social networks. We provided a mathematical

expression of the asymptotic behavior of opinion dynamics. On this base, in the next

section, we define the multiplex opinion problem and derive a multiplex centrality

measure.

3 An opinion-based multiplex centrality

In our model, the parameter λi determines how much external influence person

i receives. Our centrality measure is based on the control of this parameter. We

assume that the centrality of a person in the whole multiplex network depends
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on the amount of external influence one should exert on him in order to increase

the global opinion level of the whole social group. According to this statement,

finding the most central person amounts to finding the person whose stimulation

(through external influence) maximizes the total opinion. So, in order to process our

centrality, we need first to solve an optimization problem. In the rest of this section,

we describe the problem and derive a mathematical closed form of the solution.

3.1 Opinion maximization problem

We want our centrality to quantify how important an individual is, in term of

resource allocation. For this purpose, we need to maximize the opinion profile

x by controlling the amount of external influence λ := (λ1, . . . , λI ) spent on the

individuals of the social group. We propose a first centrality measure, which we call

Naive Opinion Centrality, and define it as follows:

Definition 2

Let U(x∗(λ)) :=
∑I

i=1 x
∗
i (λ) the utility function with which we compute the opinion

centrality (note it may also be non-linear: we discuss this and provide examples

later). The Naive Opinion Centrality is the vector λNO, which is the optimum of the

following problem:

max
λ�0

U(x∗(λ)) (12)

where, for each i and c, x∗
i (λ) is solution of:

λiΛ
−1 + Λ−1

C∑
c=1

αic

I∑
j=1

ejicx
∗
j (λ) − xi(λ) = 0 (13)

and the total intensity of the external influence is constrained by a so-called budget

R > 0:
I∑

i=1

λi = R (14)

We call this optimization problem the Opinion Maximization Problem (OMP).

According to the previous definition, our centrality defines an index, per person,

which is equal to the amount of resources that an external influencer needs to spend

on each person such that he will maximize the opinion of the whole social group,

regarding some topic or product of interest. Therefore, if a node is twice as central as

another, this can be interpreted as the need to invest twice the amount of resources

in this node in order to obtain optimal diffusion. In addition to creating a ranking

measure, the opinion centrality can also be used to design a targeting strategy. The

budget R is used to prevent the external influencer from targeting every person in

the social group, which would lead to a degenerate situation.

This paper is not the first one making the relation between targeting strategies

and centrality measures. In Borkar & Karnik (2011), Borkar et al. (2010), and

Bimpikis et al. (2016), the authors maximize the opinion in a uniplex social network,

by spending resources on each person. Our paper has two majors differences with

these works. The first one is that, in each of these papers, the authors assume that

the persons are embedded in only one social network, and not several ones as
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proposed in our framework. The second difference is that the authors only mention

a connection to the notion of centrality, but never study it as such.

We now provide an interpretation of the mathematical expression of the utility

U(x) :=
∑I

i=1 x
∗
i (λ). Behind it, there is the assumption that the opinions of distinct

persons are perfect substitutes, i.e. can be exchanged without information loss. More

precisely, an influencer does not distinguish the opinion of two distinct persons,

and so an increase in the opinion of one of them decreases his interest for the

other. This hypothesis is expressed through a linear utility U(x), i.e. we model the

network opinion as the sum of all individual opinions. It could be considered as

strong, however our whole method can be extended by using other non linear utility

functions, such as:

U(x) = min
i∈{1,...,I}

wixi (15)

U(x) =

I∏
i=1

xwi

i (16)

Both functions (15) and (16) are related to the theory of utility function in

economics (Mas-Colell et al., 1995). The first, Equation (15), can be used to describe

perfect complements between opinions. It allows modeling the network opinion as

the smallest individual opinion. The second, Equation (16), is the Cobb–Douglas

function, which is a good trade-off between complement and substitute effects the

network opinion is represented as the product of individual opinions.

3.2 Opinion centrality measure

In the previous subsection, we define the Naive Opinion Centrality and give an

interpretation of this measure. However, we need to ask the following question: Is

the opinion centrality a relevant ranking measure? The answer is negative, and it is

not hard to see that when considering the following lemma:

Lemma 3

If maxj{− ∑I
i=1 aij} is unique and if for all i,

∑I
j=1 eij < 1, then:

λNO
j =

{
R ifj = argmax{− ∑I

i=1 aij}
0 otherwise.

(17)

Proof of Lemma 3

Because the matrix A is diagonally dominant, the solution of Equation (13) is given

by as follows:

x∗ = A(−λΛ−1) (18)

hus, we can rewrite the Naive Opinion Centrality Equation (12) as follows:

max
λ�0

U(x(λ)) := −Λ−1
I∑

i=1

I∑
j=1

aijλj (19)

subject to:
I∑

i=1

λi = R (20)
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Λ−1 is constant and this implies that Equation (19) is a linear program. The con-

clusion follows by using the first order optimality condition (Boyd & Vandenberghe,

2004). �

According to this lemma, the naive opinion centrality, λNO
j , will always be equal

to 0 if j is different from argmax{− ∑I
i=1 aij} and so it is useless in term of ranking.

The intuition behind this result is that the opinion strategy is motivated by finding

the best person to target. However, in the context of centrality measures, one aims at

ranking all the nodes, rather than identifying a single one fulfilling some constraints.

Therefore, comes the question: Can we modify the OMP such that the associated

opinion centrality is appropriate for ranking? We can propose a positive answer to

this question, inspired by machine learning theory. For this purpose, we make use

of a regularization term, which allows us to define our final measure, which we call

Opinion Centrality.

Definition 4
The Opinion centrality is the vector λO, which is the optimum of the following

problem:

max
λ�0

UR(x∗(λ)) :=

I∑
i=1

x∗
i (λ) − γ

2

I∑
i=1

(λi)
2

︸ ︷︷ ︸
Regularization function

(21)

where γ ∈ �+ is the regularization coefficient, and the total intensity of the external

influence is constrained by R > 0:

I∑
i=1

λi = R (22)

We call this optimization problem the Regularized Opinion Maximization Problem

(ROMP).

We are now able to compute a mathematical expression of the opinion centrality.

Proposition 5
If for all i,

∑I
j=1 eij < 1, and if γ is such that

γ > (ΛR)−1I2(max{aij} − min{aij}) (23)

then for all j

λOj = RI−1 + γ−1I−1Λ−1
I∑

i=1

I∑
j=1

aij − γ−1Λ−1
I∑

i=1

aij (24)

Proof Proposition 5
Because the matrix A is diagonally dominant, the solution of Equation (13) is given

by:

x∗ = A(−λΛ−1) (25)

Thus we can rewrite the Regularized Opinion Centrality Equation (21) as follows:

max
λ�0

UR(x∗(λ)) := −Λ−1
I∑

i=1

I∑
j=1

aijλj − γ

2

I∑
i=1

(λi)
2 (26)
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subject to:
I∑

i=1

λi = R (27)

The first order optimality condition (Boyd & Vandenberghe, 2004) is as follows: It

exists β ∈ � such that β and xO are solution of the following system:

−Λ−1
I∑

i=1

aij − γλOi − β = 0 (28)

I∑
i=1

λOi = R = 0 (29)

which is equivalent by taking the sum over i in the first equation, to,

−Λ−1
I∑

i=1

aij − β = γλOi (30)

−Λ−1
I∑

i=1

I∑
j=1

aij − Iβ = γR (31)

Now we can deduce that

−β = I−1γR + I−1Λ−1
I∑

i=1

I∑
j=1

aij (32)

and by injecting −β in the previous equations we get

λOi = RI−1 + γ−1I−1Λ−1
I∑

i=1

I∑
j=1

aij − γ−1Λ−1
I∑

i=1

aij
(23)
> 0 (33)

which concludes the proof. �
Even, if we find a mathematical expression of the opinion centrality, it is still hard

to interpret the impact of α, R and γ over λO . First we observe that for each j and j ′

| λOj − λOj ′ |= γ−1Λ−1 |
I∑

i=1

aij −
I∑

i=1

aij ′ | (34)

Therefore, the difference between two opinion centrality values will increase the more

γ and R decrease (R appears in Λ−1). Despite this fact, the ranking is independent

of γ and R.

Concerning α, we propose to study its behaviour in a particular context. Consider,

for each i and each c, αic = α̂. Then for each i, x∗
i (λ) is solution of

λi(R + CIα̂)−1 + (R + CIα̂)−1Cα̂

I∑
j=1

ejicx
∗
j (λ) − x∗

i (λ) = 0 (35)

⇔ λi + Cα̂

I∑
j=1

ejicx
∗
j (λ) − (R + CIα̂)x∗

i (λ) = 0 (36)

α̂→+∞⇒ λi − (R + CIα̂)x∗
i (λ) = 0 (37)

⇒ λi(R + CIα̂)−1 = x∗
i (λ) (38)
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Fig. 1. Example of multiplex barrel network containing 12 nodes and 2 layers.

(Color online)

and we can conclude that

λOi = RI−1 (39)

In other words, in this context, and for a large α̂, the optimal strategy consists in

investing an equal amount of external influence in all nodes. This is due to the fact

the external influence becomes negligible compared to the internal influence.

4 Experimental validation

To assess the behavior of the opinion centrality, we consider first a toy problem

designed to study some cases of particular interest for our measure (Section 4.1), and

then a collection of real-world multiplex networks (Section 4.2). One could compare

the measures simply based on the values they produce. However, centrality measures

are generally used to compare nodes within a single network, in which case the values

themselves are not relevant. One should consider their rank instead (Solá et al., 2013).

We consequently decided to emphasize this aspect in our experimental assessment.

4.1 Toy problem

We first propose to explore the effect of the different parameters over a specific

multiplex network, called the barrel network. The original version is in fact uniplex,

constituted of two star networks connected by their centers (Bimpikis et al., 2016).

We obtain a multiplex network simply by replicating the same structure to form

several layers, as shown in Figure 1.

The centers, which correspond to nodes 1 and I/2 + 1, are called Hubs, whereas

the rest of the network, i.e. nodes 2, . . . , I/2, I/2+2, . . . , I , are the Leaves. We assume
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Table 1. Expressions of the centrality measures for the barrel network.

Opinion Out-degree In-degree

Node centrality centrality centrality PageRank

Hub 1
1+e′

0(1+e′
2)+e′

1

(1−e′
0)2

e′
0 + e′

1 e′
0

1
I(5−4 e′

0)

Hub I/2 + 1
1+e′

0(1+e′
1)+e′

2

(1−e′
0)2

e′
0 + e′

2 e′
0

1
I(5−4 e0)

Leave 2, . . . , I/2 1 0 e′
1

−4 e′
0+4 e′

1+5

5 I(5−4 e′
0)

Leave I/2 + 2, . . . , I 1 0 e′
2

−4 e′
0+4 e′

2+5

5 I(5−4 e′
0)

that for each i and each c, the ij-entry of matrix Ec is given by:

ejic =

⎧⎪⎪⎨
⎪⎪⎩

e0c if(i, j) = (1, I/2 + 1)or = (I/2 + 1, 1)

e1c ifj = 1, i ∈ {2, . . . , I/2}
e2c ifj = I/2 + 1, i ∈ {I/2 + 2, . . . , I}
0 otherwise

(40)

In other words, for a given layer c, we consider three types of edges: e0c corresponds

to the weight of the edges connecting the hubs, whereas e1c and e2c are the hub-to-leaf

weights for the two stars constituting the layer.

We define e′
j = Λ−1

∑C
c=1 αicejc for each j ∈ {0, 1, 2}. This variable can be seen

as the average effect of a specific type of edge (as defined in Equation (40)) in the

overall multiplex network. In this particular case, we can get a mathematical closed

expression of the opinion degree and PageRank centrality measures (see Table 1).

This computation can be done independently from matrix α. We compute the

degrees and the PageRank centrality over the weighted aggregated network, which

is obtained by collapsing the layers to get a uniplex network. The computation of

the opinion centrality is made without taking into account R, with γ = 1 and by

dividing by Λ. This will not change the order of the nodes, since the budget (that can

be seen as a normalization constraint) and the factor γ do not affect node ordering.

The first observation is that Leaves have always an opinion centrality equal to

1, independently from any e′
j . The same can be said from the out-degree, except

the Leaves have a centrality of 0 instead. It is one major difference with both

other centrality measures, in particular with PageRank, where each node, including

the Leaves depends on certain e′
j . The second observation is about the nature of

the influence of the e′
j over the opinion centrality and PageRank. The opinion

centrality of the Hubs increases in e′
0, e

′
1, and e′

2, and their PageRank increases in e′
0.

Concerning the Leaves, as mentioned before their opinion centrality is not affected

by e′
j , however their PageRank decreases in e′

0 and increases in e′
1 and e′

2. This

highlights the fact the opinion measure behavior differs from the other measures′,
especially PageRank.

In order to understand better how the considered centrality measures differ in

terms of node ranking, we investigate two scenarios, as described in Table 2. In the

first one, we consider that Hubs are not linked together (e′
0 ≈ 0). In the second one,

the inverse situation occurs and Hubs are strongly connected to each other (e′
0 ≈ 1).

In order to simplify the computation, in both scenario we assume that e′
1 ≈ e′

2. In
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Table 2. Node ranks for the considered centrality measures, in two different

scenarios.

Opinion Out-degree In-degree

Scenario centrality centrality centrality PageRank

e′
0 ≈ 0, e′

1 ≈ e′
2 (42) (41) (42) (42)

e′
0 ≈ 1, e′

1 ≈ e′
2 (42) (41) (41) (41)

these cases, one can obtain one of two possible rankings as follows:

Hub 1 ≈ Hub I/2 + 1 > Leave 2, . . . , I/2, I/2 + 2, . . . , I, (41)

Hub 1 ≈ Hub I/2 + 1 < Leave 2, . . . , I/2, I/2 + 2, . . . , I. (42)

Besides the scenarios, Table 2 also shows, which node ranking each measure

provides. Out-degree behaves similarly in both cases, because the out-degree of

Leaves is not influenced by the e′
j . For the other measures, on the contrary, there

is a switch in ranking when changing the scenario. The in-degree and PageRank

measures behave similarly, switching from the second Equation (42) to the first

Equation (41) ranking when e′
0 increases. This is due to the fact e′

0 captures the

connection between nodes, which is crucial in PageRank and in-degree centrality,

as can be observed in their mathematical expression. The opinion centrality does

not undergo any switch: the more e′
0 increases, the more it is important to invest in

the hub to maximize the opinion propagation, even in the case when the hubs are

weakly connected. In the considered network, the opinion centrality is negatively

correlated (in terms of rank correlation) with the out-degree.

As explained before, our model requires to define a parameter α for the opinion

measure, which represents the amount of influence internal to the network (by oppo-

sition to the external influence, which is determined when solving the optimization

problem described in Section 3.1). This α parameter is an I × C matrix, where αic
corresponds to user i in layer c. Here, to simplify our analysis, we consider the

previously introduced α̂, where for each i and each c, αic = α̂. We are interested in

understanding the evolution of the opinion centrality in a 2-layer 12-node barrel

network similar to that depicted in Figure 1, when α̂ grows. Figure 2 displays this

evolution for the different types of nodes, as a function of α̂ ∈ {1, . . . , 100}, with

R = 1, e0c = 0.1, e1c = 0.2 and e2c = 0.3 for all c. We observe that the value of the

opinion centrality per node converges to 0.08332089 ≈ 1
12

. It, therefore, seems that

we converge to a uniform strategy, in which each user receives the same amount

of external influence. This observation confirms the result proved in the previous

section. Moreover, we observe that the growth of α̂ does not affect the node ranks.

4.2 Real-world data

The 20 real-world networks selected for our evaluation are described in Table 3.

They were retrieved from Nexus,1 the network repository of the igraph library, as

1 http://nexus.igraph.org/
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Fig. 2. Evolution of the centrality of the node types from Figure 1, as a function of

α̂. (Color online)

well as from M. De Domenico′s Web page.2 Note there are two multiplex networks

for the Kapferer dataset, corresponding to two successive acquisitions. We selected

these networks in order to get data of various sizes, ranging from 10 to 8, 215 nodes,

35 to 43, 129 links, and 2 to 339 layers.

For each network, we process the opinion centrality, as well as multiplex variants

of classic uniplex measures: Degree, PageRank, Eigenvector, HITS (hub and au-

thority), and Katz centralities. The latter are computed using the software MuxViz3

(de Domenico et al., 2015b), which implements tensorial generalizations. Each of

them is processed for each layer by taking the multiplex information into account,

and an overall measure is obtained by aggregating the resulting values over all

layers. The R scripts we wrote to process the opinion centrality are publicly available

online.4

We first study how the α parameter described in Section 2 affects the opinion

centrality rankings, and then how different these are from those obtained for the

other measures. However, the multiplex networks available online do not include

this information: only the structure of the network (i.e. the Ec matrices, in the

notation of our model). So, we proceed like for the toy problem, and consider

2 http://deim.urv.cat/ manlio.dedomenico/data.php
3 http://muxviz.net/
4 https://github.com/CompNet/MultiplexCentrality
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Table 3. Multiplex real-world networks selected for the experimental assessment.

Name Reference Nodes Layers

Aarhus CS department Magnani et al. (2013) 61 5

Arabidopsis GPI de Domenico et al. (2015c) 6,980 7

C. Elegans GPI de Domenico et al. (2015c) 3,879 6

CKM physicians Coleman et al. (1957) 246 3

Drosophila GPI de Domenico et al. (2015c) 8,215 7

EU-Air transportation Cardillo et al. (2013) 450 37

FAO trade de Domenico et al. (2015c) 183 339

Hepatitus C GPI de Domenico et al. (2015b) 105 3

Human-HIV1 GPI de Domenico et al. (2015b) 1,005 5

Kapferer tailor shop Kapferer (1972) 39 2

Knoke bureaucracies Knoke & Wood (1981) 10 2

Lazega law firm Lazega (2001) 71 3

London transport de Domenico et al. (2014) 369 13

Padgett Florentine families Breiger & Pattison (1986) 16 2

Pierre Auger collaborations de Domenico et al. (2015a) 514 16

Rattus GPI de Domenico et al. (2015c) 2,640 6

Roethlisberger bank Roethlisberger & Dickson (1939) 14 6

Sampson monastery Breiger et al. (1975) 18 8

Thurmann office Thurman (1979) 15 2

Wolfe primates N/A 20 2

α̂ values over a wide range: [0; 100]. Our results show that, as also observed on

the toy problem, when α̂ increases, the opinion centrality values increases (without

considering the budget constraint). We use Spearman’s correlation to compare the

opinion centrality values processed with all considered α̂, and systematically obtain

a maximal correlation of 1. So, it turns out α̂ affects the opinion centrality values,

but not their rank. The value of this parameter is consequently of no importance if

one’s objective is to rank the nodes. Note, however, that if α is provided as a part

of the input data, it is likely to be heterogeneous (by opposition to the unique α̂ we

used here as a substitute), and this can lead to ranking differences. In other words,

α should be used when available, α̂ is only a way to model missing information.

The values obtained with the opinion measure are generally distributed relatively

similarly in the studied networks. These distributions are right-skewed, i.e. most of

the nodes have a higher centrality, with respect to the considered network. Moreover,

they are distributed relatively homogeneously around a characteristic value, which

varies depending on the network. The dispersion around the characteristic value

also depends on the data. The networks can be roughly grouped into four variants

of this distribution, which are illustrated by Figure 3. The distributions obtained

for networks Aarhus, Kapferer, Knoke, Lazega, Padget, Sampson, Roethlisberger,

and Wolfe are similar to the top-left one; networks CKM Phys. and Thurman to

the top-right one; networks Pierre Auger and London to the bottom-left one; and

networks Arabidopsis, C. Elegans, Drosophila, EU-Air, FAO trade, Hepatitus C,

Human-HIV1, and Rattus to the bottom-right one. To ease the comparisons, the

opinion centrality of a node (x axis) is expressed in terms of the proportion of the

budget it receives in the optimal solution, according to our model.
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Fig. 3. Distribution of the opinion measure for the Aarhus CS department (top-left),

CKM Physicians (top-right), Pierre Auger collaborations (bottom left), and EU-Air

transportation (bottom right) networks. (Color online)

We now compare the opinion measure to the other multiplex centrality measures.

For each network, we process Spearman’s correlation to compare the ranks obtained

for the opinion centrality to those of the other measures. The results are displayed in

Table 4. Certain measures (Eigenvector, HITS, Katz, and PageRank) could not be

processed for the largest networks, due to their memory cost. This point, as well as

other computational aspects, are discussed at the end of this section. Missing in- and

out-degree values correspond to undirected networks. The correlations vary much

depending on both the network and measure of comparison, ranging from −0.97

to 0.26. Overall, we observe a mild- to strong-negative correlation for all considered

measures. However, it is worth noticing that, for a given measure, the magnitude of

the correlation varies depending on the network. For instance, it ranges from −0.96

to 0.26 for Katz. This means the opinion measure does not simply systematically

reverse the rankings of the considered measure. Moreover, the correlation also

varies for a given network, e.g. it ranges from −0.96 to 0.02 for CKM Phys. These
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Fig. 4. Rank difference for each individual node, in the CKM Phys. (left) and Lazega

(right) networks. The left plot compares the opinion centrality to the Authority

measure, whereas it is the out-degree in the right one. Each bar corresponds to a

node, and its height matches the rank difference. (Color online)

observations confirm empirically that the opinion measure characterizes nodes based

on different criteria than the other considered centrality measures, as designed.

To get a better insight of the opinion measure, We consider the nodes individually.

The left plot in Figure 4 represents the difference in ranking between the opinion

centrality and the Authority measure, on the CKM Phys. network. The right plot

is built similarly, but focuses on the out-degree in the Lazega network. Both plots

are very typical of what we observe for other data and centrality measures. For

a given centrality measure (here: the Authority and the out-degree), the nodes are

ordered on the x axis by increasing centrality values, whereas the y axis represents

how the node ranking changes from the considered measure to the opinion measure.

On the extremes, the opinion measure tends to demote the nodes the most central

according to the other measures, whereas it promotes the least central ones. Those

all become moderately central, according to the opinion measure. On the contrary,

certain nodes previously with intermediate ranking are placed among the most or

least central nodes by the opinion measure. By comparison, the same plot built to

compare two alternative multiplex measure typically leads to a flatter figure, with

smaller ranking differences, especially regarding the most and least central nodes.

Figure 5 gives a more global outlook of the opinion centrality behavior relatively

to the other measures. Each plot is built on the same principle than the ones in

Figure 4, and consequently focuses on a specific alternative measure. However, this

time all the networks appear at once, in each plot, and are restricted to their 5 most

central nodes (according to the considered alternative measure). Moreover, to get

comparable y values, the rank difference is normalized: we divide it by n−1 (n being

the number of nodes in each layer) in order to get a value between −1 and +1.

These plots confirm certain of the observations we previously made. In particular,

the most central nodes tend to undergo some dramatic ranking changes, but this

depends on both the considered measure and network.

The ranking differences observed between the opinion centrality and the other

multiplex measures are due to the optimization problem it is based upon. Indeed,

in this problem, it can be necessary to externally stimulate certain nodes, which do
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Fig. 5. Rank difference for each network. Each plot compares the opinion centrality

with one of the alternative multiplex measures considered in this article. The principle

is the same than in Figure 4, except only the 5 most central nodes (according to

the alternative measure) are represented for each network, and the y is normalized

according to the network size for readability purposes. (Color online)

not have a particularly high degree, or have no neighbors with a particularly high

degree. For instance, a leaf node whose unique link is directed towards the rest of

the network will not be reachable from another node. So, if one wants to influence

the opinion of the whole network, it is worth acting directly on this node. This

kind of node is typically considered by measures such as the Degree or Eigenvector

centralities as not central. This highlights the fact the semantics of the opinion

measure is clearly unlike that of the other measures considered here.

Finally, we compare the computational costs of the measures. During the pro-

cessing of the opinion centrality, the most expensive operation is the inversion of an

n× n matrix (n being the number of nodes by layer). Therefore, the time complexity

associated to the opinion centrality is in O(n3). We do not have access to the

algorithmic complexity for the other multiplex measures considered in this article,

so, we compare the measures empirically. Figure 6 displays the processing times
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Fig. 6. Processing times of the main considered measures, as functions of the numbers

of links (left) and nodes (right). (Color online)

obtained when computing our opinion centrality, as well as the multiplex versions

of the degree, PageRank, and Eigenvector measures. We used a plain desktop PC

(i5 3.00 GHz quadcore processor with 16 GB RAM). Note that both axes use a

logarithmic scale. The left plot contains the processing times as a function of the

number of links in the network, whereas the right one focuses on the number of

nodes. We did not include all measures for readability matters, and because in- and

out-degree behave like degree, whereas Hub, Authority, and Katz performances are

located in between Eigenvector and PageRank.

The processing time for the degree is quite stable, as expected from this purely local

measure. For the Eigenvector and PageRank measures, it increases exponentially

with both the number of nodes and links in the network. The opinion measure also

undergoes a very fast increase, but clearly slower than Eigenvector and PageRank.

For the largest network, it is a matter of minutes. In terms of memory usage, the

opinion centrality is also less expensive, as illustrated by the fact we could not

process the Eigenvector, Authority, Hub, Katz, and PageRank measures for the

largest networks considered in this study, due to memory limits. Finally, we did not

detect any effect of the opinion centrality parameters on its processing time.

5 Conclusion

In this article, we presented the opinion centrality, a measure designed to characterize

the relative position of nodes in a multiplex network. Our work relies on a

stochastic model representing opinion diffusion dynamics in a social group of

persons communicating through several independent media. The opinion centrality

is derived from the solution of an optimization problem defined on this model,

and consisting in maximizing the overall opinion of the social group through direct

individual influence. We show on a toy example and a collection of real-world

networks that the node rankings obtained with the opinion centrality clearly differ

from other multiplex measures. In particular, high degree nodes are not necessarily

considered as central, and low degree nodes can be seen as central if they allow a

better control of the opinion diffusion.
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Table 4. Spearman’s correlation between the opinion measure and the other considered multiplex centrality measures.

Degree HITS
Eigen Page

Network Total In Out Vector Auth. Hub Katz Rank

Aarhus −0.81 − − −0.94 −0.74 −0.74 −0.74 −0.74

Arabidopsis −0.76 −0.45 −0.65 − − − − −
Celegans −0.38 −0.72 0.13 −0.96 − − − −
CKM Phys. −0.80 −0.96 −0.17 −0.86 − 0.02 −0.49 −0.15

Drosophila −0.73 −0.89 −0.36 − − − − −
EU-Air −0.95 − − −0.96 − − − −
FAO Trade −0.41 −1.00 0.02 − − − − −
Hepatitus −0.18 0.01 −0.01 −0.57 − −0.17 −0.49 −
Human-HIV1 −0.48 −0.51 −0.12 −0.72 −0.30 −0.11 0.26 −0.12

Kapferer1 −0.90 −0.91 −0.86 −0.98 −0.78 −0.68 −0.77 −0.66

Kapferer2 −0.90 −0.91 −0.87 −0.95 −0.83 −0.76 −0.82 −0.75

Knoke −0.68 −0.72 −0.34 −0.76 −0.77 −0.16 −0.89 −0.10

Lazega −0.83 −0.93 −0.50 −0.94 −0.90 −0.48 −0.95 −0.48

London −0.72 − − −0.77 −0.03 −0.03 −0.03 −0.06

Padgett −0.93 − − −0.94 −0.89 −0.89 −0.89 −0.89

Pierre Auger −0.46 − − −0.73 − −0.40 −0.40 −0.47

Rattus −0.50 −0.73 −0.08 −0.88 − − − −
Roethlisberger −0.60 −0.66 −0.59 −0.89 −0.79 −0.73 −0.82 −0.77

Sampson −0.71 −0.93 0.14 −0.82 −0.82 0.00 −0.96 −0.06

Thurmann −0.73 −0.97 −0.70 −0.96 −0.82 −0.71 −0.78 −
Wolfe −0.50 −0.59 −0.45 −0.44 −0.38 −0.36 −0.38 −0.36
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Our work can be extended in various ways. First, we limited our experimental

assessment to uniform internal influence coefficients (parameter α in our model),

because the available real-world data do not provide this type of information, and

therefore do not allow any validation regarding the use of non-uniform values.

However, it would be interesting to explore this trail, possibly using artificially

generated networks. On the same note, we also used the simplest available utility

function (plain sum), but we want to explore how the measure behaves when using

more advanced utilities such as the ones we mentioned earlier in the article (weighted

sum, minimum, and product). Second, to ease human interpretation and to allow

comparisons with other multiplex measures, we focused our tests on small and

medium-sized real-world networks only. The next step will consist in studying how

the opinion measure scales when applied to much larger networks, such as those

provided with MuxViz.

Third, regarding the model itself, we can think of two promising extensions. The

first one is the temporal network extension. There are several very different ways

of modeling opinion dynamics in a temporal network. For instance, it is necessary

to decide if the network structure and the opinion dynamics evolve simultaneously.

Concerning the opinion centrality, its calculation could not rely on static control,

like in this paper, and one should rather use the theory of optimal control. The

other extension is related to the amount of information available when processing

the opinion centrality. It would be interesting to consider the case where we do

not know the structure of the network, and only get some feedback from the users.

This problem could be solved by using an approximate gradient algorithm. In the

worst case scenario, there would be no feed back at all, and we could use matrix

completion techniques coupled with gradient optimization in order to recover the

opinion centrality.

Supplementary material

To view supplementary material for this article, please visit https://dx.doi.org/

10.1017/nws.2017.7
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. . . Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports,

544(1), 1–122.

Borkar, V. S. (2008). Stochastic approximation – a dynamical systems viewpoint. Cambridge

Books.

Borkar, V. S., & Karnik, A. (2011). Controlled gossip. In Proceedings of the , 2011 49th

Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE,

pp. 707–711.

Borkar, V. S., Nair, J., & Sanketh, N. (2010). Manufacturing consent. In Communication,

Control, and Computing (allerton), IEEE, pp. 1550–1555.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

https://doi.org/10.1017/nws.2017.7 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.7


Opinion-based centrality in multiplex networks 233

Breiger, R., Boorman, S., & Arabie, P. (1975). An algorithm for clustering relational data

with applications to social network analysis and comparison with multidimensional scaling.

Journal of Mathematical Psychology, 12(3), 328–383.
Breiger, R., & Pattison, P. (1986). Cumulated social roles: The duality of persons and their

algebras. Social Networks, 8(3), 215–256.
Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., & Boccaletti,

S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3, 1344.
Chakraborty, T., & Narayanam, R. (2016). Cross-layer betweenness centrality in multiplex

networks with applications. In Proceedings of the 32nd IEEE International Conference on

Data Engineering, pp. 397–408.
Coleman, J., Katz, E., & Menzel, H. (1957). The diffusion of an innovation among physicians.

Sociometry, 20(4), 253–270.
Coscia, M., Rossetti, G., Pennacchioli, D., Ceccarelli, D., & Giannotti, F. (2013). You know

because i know: A multidimensional network approach to human resources problem. In

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,

pp. 434–441.
de Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015a). Identifying modular

flows on multilayer networks reveals highly overlapping organization in interconnected

systems. Physical Review X, 5(1), 011027.
de Domenico, M., Nicosia, V., Arenas, A., & Latora, V. (2015c). Structural reducibility of

multilayer networks. Nature Communications, 6, 6864.
de Domenico, M., Porter, M. A., & Arenas, A. (2015b). Muxviz: A tool for multilayer analysis

and visualization of networks. Journal of Complex Networks, 3(2), 159–176.
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de Domenico, M., Solé-Ribalta, A., Gómez, S., & Arenas, A. (2014). Navigability of

interconnected networks under random failures. Proceedings of the National Academy of

Sciences, 11(23), 8351–8356.
DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association,

69(345), 118–121.
Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex pagerank. Plos

One, 8(10), e78293.
Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. New York, NY, USA, Cambridge

University Press.
Jackson, M. O. (2008). Social and economic networks. Vol. 3. Princeton: Princeton University

Press.
Kapferer, B. (1972). Strategy and transaction in an african factory. Manchester, UK,

Manchester University Press.
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Solé-Ribalta, A., de Domenico, M., Gómez, S., & Arenas, A. (2016). Random walk centrality

in interconnected multilayer networks. Physica D, 323–324, 73–79.

Thurman, B. (1979). In the office: Networks and coalitions. Social Networks, 2(1), 47–63.

https://doi.org/10.1017/nws.2017.7 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.7



