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Abstract Let S̃p(2n) be the metaplectic covering of Sp(2n) over a local field of characteristic zero. The

core of the theory of endoscopy for S̃p(2n) is the geometric transfer of orbital integrals to its elliptic
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character relations which should reveal the internal structure of L-packets. As a first step, we characterize
the image of the collective geometric transfer in the non-archimedean case, then reduce the spectral

transfer to the case of cuspidal test functions by using a simple stable trace formula. In the archimedean

case, we establish the character relations and determine the spectral transfer factors by rephrasing the
works by Adams and Renard.
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1. Introduction

Our aim is to initiate the study of local spectral transfer for Weil’s metaplectic covering

S̃p(W )� Sp(W ) over a local field F of characteristic zero. To begin with, let us explain

the ideas by reviewing the case of reductive groups.

Review of the reductive case Under simplifying assumptions, the theory of

endoscopy for a connected reductive F-group G provides a collective transfer map

T E
: I(G) −→

⊕
G!∈Eell(G)

SI(G !)

fG 7−→ f E = ( f !)G!∈Eell(G)

where

• I(G) stands for the space of strongly regular semisimple orbital integrals on G, viewed

as functions on the set 0reg(G) of strongly regular semisimple conjugacy classes;
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• Eell(G) is the set of equivalence classes of elliptic endoscopic data (G !,G!, s, ξ̂ ) for G
with G ! being the corresponding endoscopic group of G, and we often identify such a

datum with G ! by abusing notations;

• SI(G !) stands for the space of stable strongly regular semisimple orbital integrals on

G !, viewed as functions on the stable avatar 1reg(G !) of 0reg(G !).

For every endoscopic datum there are: (i) a correspondence between 0reg(G) and

1reg(G !), conveniently denoted as γ ↔ δ; (ii) a notion of compatible Haar measures

for comparing the orbital integrals along δ and the stable orbital integrals along γ , for

various γ ↔ δ; (iii) a transfer factor 1(γ, δ) for (γ, δ) ∈ 1reg(G !)×0reg(G) satisfying

γ ↔ δ; the choice is unique up to C×. The transfer map T E is characterized by requiring

that for every fG ∈ I(G), the component f ! ∈ SI(G !) of f E satisfies

f !(γ ) =
∑

δ∈0reg(G)
γ↔δ

1(γ, δ) fG(δ)

for γ ∈ 1reg(G !) in general position, called the G-regular ones; here we use compatible

Haar measures to define fG(δ) and f !(γ ). For this reason T E is deemed the geometric

transfer, or the collective geometric transfer since we considered all G ! at once. Here we

omit some subtleties such as z-extensions.

This theory is invented by Langlands and his collaborators in order to stabilize the

Arthur–Selberg trace formula; we refer to [17] for a detailed survey. The bottleneck turns

out to be the existence of transfer, the so-called Fundamental Lemma in the unramified

case and its weighted version, which are established in a series of works by Waldspurger,

B. C. Ngô, Chaudouard and Laumon. By dualizing fG 7→ f !, we may transfer stable

distributions on G !(F) (i.e. elements of SI(G !)∨) to invariant distributions on G(F), for

various G !. This is expected to yield endoscopic local character relations. Granting the

local Langlands conjecture, the tempered stable characters of G ! should be mapped to

certain virtual tempered characters on G whose coefficients should be explicitly given in

terms of the internal structure of the L-packets on G — whence the name ‘endoscopy’.

These issues are discussed in depth in Arthur’s articles [3, 6].

The local Langlands correspondence and the endoscopic spectral transfers have been

settled in [10] for many classical groups, including the split SO(2n+ 1) that we need. A

general treatment on the spectral transfer for real groups can be found in [42, 43].

Metaplectic coverings As is well known, certain coverings of connected reductive

groups play a prominent rôle in the study of automorphic representations and arithmetic.

Let F be local as before and fix an additive character ψ of F . Our basic example is Weil’s

metaplectic covering of G = Sp(W ), where (W, 〈·|·〉) is a symplectic F-vector space of

dimension 2n. It is a central extension

1→ µ8 → G̃
p
−→ G(F)→ 1,

µ8 := {z ∈ C× : z8
= 1}

of locally compact groups. It is customary to use µ2 = {±1} instead, but the enlarged

version (obtained by push-forward via µ2 ↪→ µ8) is preferred in this article. Its global
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avatar is crucial in understanding the Siegel modular forms of half-integral weights. In a

harmonic analyst’s eyes, the upshot is to investigate

• the irreducible admissible representations π of G̃ which are genuine, meaning that

π(ε) = ε · id for all ε ∈ µ8;

• the anti-genuine test functions f on G̃, meaning that f (εx̃) = ε−1 f (x̃);

• the orbital integrals of anti-genuine test functions.

Furthermore, we have to consider the inverse images under p of Levi subgroups of G(F)
as well, hereafter called Levi subgroups of G̃. Thanks to the choice of eightfold coverings,

they take the form M̃ =
∏

i∈I GL(ni )× S̃p(W [) with 2
∑

i ni + dimF W [
= dimF W , called

the coverings of metaplectic type. For the rudiments of harmonic analysis on general

coverings, see [31].

Our long-term goal is to bring G̃ into Langlands’ formalism. The first requirement

seems to be a reasonable theory of endoscopy for G̃, together with transfer, fundamental

lemma and a partial stabilization of the trace formula as a reality check. Based upon prior

works by Adams and Renard in the case F = R, such a theory has been proposed in [30].

Roughly speaking, folk wisdom suggests a close relation between G̃ and the split SO(2n+
1), as exemplified by the θ -correspondence for the dual pair (O(V, q), Sp(W )) with (V, q)
being a (2n+ 1)-dimensional quadratic F-space. Accordingly, one may imagine that the

dual group of G̃ ‘is’ Sp(2n,C). These definitions have evident generalizations to coverings

of metaplectic type. The precise formalism will be reviewed in § 3.3.

For the impatient reader, the recipe is simply to replace G by G̃ (passage to coverings)

and I(G) by I (G̃) (passage to anti-genuine orbital integrals) in all the foregoing

discussions. The elliptic endoscopic data are in bijection with pairs (n′, n′′) ∈ Z2
>0 with

n′+ n′′ = n, with G ! = SO(2n′+ 1)×SO(2n′′+ 1). The transfer of orbital integrals and

the fundamental lemma still hold true in this setup. The stabilization of the elliptic

terms of the Arthur–Selberg trace formula is established in [36], which in turn relies on

the invariant trace formula established in [35] for a more general class of coverings.

Main ingredients The next stage is to undertake the spectral transfer for G̃. We shall

take our lead from [6]. The first step is to set up the spectral parameters and regard

fG̃ , f E as functions on the relevant spaces. On the endoscopic side, we form the space

of endoscopic spectral parameters T E
ell(G̃) by taking the disjoint union of discrete series

L-parameters of each G !. Doing the same construction for every Levi subgroup M̃ , we

define

T E (G̃) =
⊔

M/conj

T E
ell(M̃)/W G(M)

where W G(M) = NG(M)(F)/M(F). As to the side of G̃, a reasonable choice is to take the

genuine tempered spectrum 5temp,−(G̃). However, Arthur’s formalism in [4] is to work

with a space

T−(G̃) =
⊔

M/conj

Tell,−(M̃)/W G(M)
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of virtual genuine tempered characters of G̃ derived from Knapp–Stein theory, that

is better-suited for the study of orthogonality questions; cf. [31, § 5.4] for the case of

coverings. Note that there are parallel constructions for the geometric parameters, i.e.

conjugacy and stable conjugacy classes.

To begin with, assume F is non-archimedean. Let IE (G̃) stand for the image of T E . By

the trace Paley–Wiener theorem, elements in I (G̃) (resp. IE (G̃)) may be regarded as

certain C-valued functions on T−(G̃) (resp. T E (G̃)); these spaces of functions are called

Paley–Wiener spaces. The desideratum is an equality of the form

f E (φ) =
∑

τ∈T−(G̃)

1(φ, τ) fG̃(τ ), φ ∈ T E (G̃) (1)

for suitably spectral transfer factors 1(φ, τ), where f E = T E ( fG̃) ∈ IE (G̃). This is our

Main Theorem 6.3.1, reinterpreted as in Remark 6.3.2. The approach in [5] may be

rephrased as follows.

1. An element fG̃ ∈ I (G̃) is called cuspidal if it vanishes off the elliptic locus. There is

a similar notion on the endoscopic side, and geometric transfer preserves cuspidality.

2. Characterize the image of I
cusp

(G̃) under T E ; this is a technical tour de force.

3. It is straightforward to obtain (1) for cuspidal fG̃ and spectral parameters (φ, τ ) ∈

T E
ell(G̃)× Tell,−(G̃), with uniquely determined spectral transfer factors 1(φ, τ). The

upshot is to extend (1) to all fG̃ ; the case of non-elliptic (φ, τ ) will then follow by

the compatibility of geometric transfer with parabolic induction, together with

recurrence on dimF W . As a consequence, we can also characterize the full image

IE (G̃) of T E (Corollary 6.3.3).

In the last step we invoke a local–global argument based on the simple stable trace

formula for G̃ in [36]. Equation (1) may also be seen as a description of the image of φ

(as a linear functional on IE (G̃)) under the dual of T E . This is what we mean by local

character relations.

In this Introduction, we cannot explain in depth the basic ideas of proof, or even the

relevant definitions. Nonetheless, we point out below a few differences between the present

work and Arthur’s.

1. For the covering G̃, the geometric transfer T E , fundamental lemma and the simple

stable trace formula are surely highly non-trivial. Fortunately, they are already

dealt with in [30, 36].

2. To characterize the geometric transfer of cuspidal genuine orbital integrals, we

proceed as in [6] via Harish-Chandra’s technique of descent. For G̃ this is the

technical core of [30], and eventually we are reduced to a similar characterization

of the images of

• standard endoscopic transfer for classical groups,

• non-standard endoscopic transfer for the datum (Spin(2n+ 1),Sp(2n), . . .),

both on the level of Lie algebras. For the first case, we may reuse Arthur’s results in

[6] with minor improvements. The second case is even simpler, since non-standard

endoscopic transfer is bijective by its very definition; cf. the proof of Theorem 5.3.1.
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3. Recall that the spectral parameters in T E (G̃) are built as a disjoint union over

conjugacy classes of Levi subgroups of G̃: they are essentially the discrete series

L-parameters of elliptic endoscopic groups M ! of M̃ . But one can also go the other

way around: consider M ! as a Levi subgroup of some elliptic endoscopic group G !

of G̃. The situation is conveniently represented by

G ! G̃

M ! M̃

ell.

endo.

ell.

endo.

Levi Levi

Such endoscopic data G ! together with embeddings M ! ↪→ G ! (up to conjugacy) can

be parametrized by a finite set EM !(G̃) 6= ∅; we write G ! = G[s] if it is parametrized

by s ∈ EM !(G̃). In contrast with the case of reductive groups, passing from the route

M ! 99K M̃ 99K G̃ to M ! 99K G ! 99K G̃ introduces a twist by some z[s] ∈ Z M !(F) in

geometric transfer (Lemma 3.3.13).

This phenomenon is inherent in the endoscopy for G̃ since the correspondence of

conjugacy classes has a twist by −1. We have to take care of these subtle twists

throughout this article. Note that z[s] are essentially certain sign factors; their effect

might be compared with the central signs in Waldspurger’s work [48] for n = 1.

4. The local–global argument is more delicate for coverings. One potential problem is

that on an adélic covering ˜̊G � G̊(A), it is not so straightforward to extract the

local component γ̃V of a rational element γ̊ ∈ G̊(F̊) ↪→ ˜̊G, where V is a sufficiently

large set of places. Moreover, a priori it is unclear if two conjugate elements in G̊(F̊)
have conjugate local components, whenever the latter make sense. The question has

been studied in [34] for general coverings; here we need some input from the Weil

representation of G̃; cf. the proof of Proposition 8.4.2.

One obvious defect is that we have no formula for 1(φ, τ). Hopefully this will be treated

in a sequel to this article. New techniques will be needed.

The archimedean case The case F = R has been considered by Adams [1] for the

principal endoscopic datum (n, 0), and Renard [38, 39] in a somewhat different framework.

In this article, we rephrase their results and establish the spectral transfer as identities

f E (φ) =
∑

π∈5temp,−(G̃)

1(φ, π) fG̃(π), φ ∈ T E (G̃) (2)

for certain spectral transfer factors 1(φ, π); cf. (1). A striking result (Theorem 7.4.2)

is that for discrete series L-parameters φ, the factor 1(φ, π) are certain natural

generalizations of the central signs in Waldspurger’s work [48] for the case n = 1.

Following Shelstad’s approach [42], we define the adjoint spectral transfer factors

1(π, φ) and establish the relevant inversion formulas (Theorem 7.5.3 and Corollary 7.5.4)

for φ ∈ T E (G̃) and π ∈ 52↑,−(G̃), where 52↑,−(G̃) is an explicitly defined set of genuine

limits of discrete series; the awkward notation means ‘lifted from 52(G !)’ for some elliptic
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endoscopic group G !. This is surely just the first step. A simple yet important observation

is that inversion can be achieved without the K -group machinery in [42].

Layout of this article In § 2, we summarize the basic properties of the eightfold local

metaplectic coverings p : S̃p(W )→ Sp(W ) as well as the coverings of metaplectic types.

The unramified and adélic settings are also briefly reviewed. Endoscopy for S̃p(W ) is

reviewed in § 3. These results are all contained in the prior works [30–32, 36], albeit in

French.

In § 4 we collect Arthur’s basic results in [10] on the local Langlands correspondence

for SO(2n+ 1), as well as a discussion on the archimedean cases.

An in-depth study of geometric transfer is undertaken in § 5. We introduce the collective

geometric transfer T E and the key notion of adjoint transfer, due to Kottwitz. Then

we establish the key Theorem 5.3.1 that T E restricts to an isometric isomorphism

I
cusp

(G̃)
∼
→
⊕

G! SIcusp(G !) for non-archimedean F .

The non-archimedean spectral transfer is discussed in § 6; some of the formalisms are

also used later in the archimedean case. The Main Theorem 6.3.1 and its equivalent

forms are stated. In § 7, the results by Adams and Renard for F = R are rephrased in our

formalism. The local character relations are explicitly written down. A short discussion

for the case F = C is also included.

The proof of Theorem 6.3.1 occupies § 8, in which the necessary stable simple trace

formula and reduction steps are set up.

Conventions

Generalities Set S1
:= {z ∈ C× : |z| = 1}. For every m ∈ Z>1 we set

µm := {z ∈ C× : zm
= 1}.

The group of permutations on a set I is denoted by S(I ).
The dual space of a vector space E will be denoted by E∨ unless otherwise specified;

Sym E stands for the symmetric algebra of E . The complexification of an R-vector space

E is denoted by EC. The trace of an endomorphism A : E → E of trace class is denoted

by trA.

Fields Let F be a local field. Fix a separable closure F̄ of F and define

• 0F := Gal(F̄/F): the absolute Galois group;

•WF : the Weil group of F ;

• the Weil–Deligne group is WDF :=WF ×SU(2) when F is non-archimedean, otherwise

WDF := WF ;

• | · |: the normalized absolute value on F .

For non-archimedean F , we denote by oF the ring of integers, and pF ⊂ oF the maximal

ideal. Write qF := |oF/pF |.

For a global field F we still have 0F and WF . The completion at a place v is denoted

by Fv, with ring of integers ov and maximal ideal pv. We denote by A := AF =
∏
′

vFv
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the ring of adèles of F . For any finite set V of place of F , we write FV =
∏
v∈V Fv and

F V
=
∏
′

v /∈V Fv.
In any case, the Galois cohomology over F is denoted by H•(F, ·); the relevant groups

of cocycles and coboundaries are denoted as Z•(· · · ) and B•(· · · ), respectively.

Groups Let k be a commutative ring with 1. For any k-scheme X and a k-algebra

A, we denote by X (A) the set of A-points of X . For a ring extension k′ ⊃ k we write

Xk′ := X ×k k′ for the base change. Now take k = F to be a field and assume X is a group

variety. The identity connected component of X will be denoted by X0. If F is endowed

with a topology, we topologize X (F) accordingly.

Specialize now to the case of F-group varieties, or simply the F-groups. Let G be an

F-group. We write g := Lie(G). When F is algebraically closed, G will be systematically

identified with G(F). Centralizers (resp. normalizers) in G are denoted by ZG(·) (resp.

NG(·)); denote by ZG the center of G. These notations also pertain to abstract groups.

The symbol Ad(· · · ) denotes the adjoint action of a group on itself, namely Ad(x) :
g 7→ gxg−1. An F-group G also acts on its Lie algebra by the adjoint action, written as

X 7→ gXg−1; on the other hand, for every X ∈ g we have ad(X) : Y 7→ [X, Y ], Y ∈ g.

Hereafter G is assumed to be connected and reductive. The derived subgroup (resp.

adjoint group) of G is written as Gder (resp. GAD := G/ZG). For δ ∈ G(F), we set

Gδ
:= ZG(δ) and Gδ := ZG(δ)

0. A maximal F-torus T in G is called elliptic if T/ZG
is anisotropic. The set of semisimple elements of G(F) is denoted by G(F)ss. An element

δ ∈ G(F)ss is called strongly regular if Gδ
= Gδ is a torus; note that strong regularity

is equivalent to the usual regularity when Gder is simply connected. The Zariski open

dense subset of strongly regular elements in G is denoted by Greg. More generally, for

any subvariety U ⊂ G we denote

Ureg := U ∩Greg.

An element δ ∈ Greg(F) is called elliptic if Gδ is an elliptic maximal F-torus.

The general notion of stable conjugacy in G(F) can be found in [25, § 3]; in this article

the following special cases will suffice. Let x, y ∈ G(F) be semisimple. If Gder is simply

connected or if x, y are strongly regular, then x and y are stably conjugate if and only if

they are conjugate in G(F̄), where F̄ is an algebraic closure of F .

Define the spaces

0ss(G) := {semisimple conjugacy classes in G(F)},

1ss(G) := {semisimple stable conjugacy classes in G(F)}.

These notations have self-evident variants such as 0reg(G), 0reg,ell(G), 1reg(G),
1reg,ell(G), etc. If M is a Levi subgroup of G, an element of M(F) is called G-strongly

regular if it becomes strongly regular in G; define 0G-reg(M) and 1G-reg(M), etc.,

accordingly.

Note that the ‘stable’ notions will mainly be applied to quasisplit groups.

Call two maximal F-tori T1, T2 of G stably conjugate if there exists g ∈ G(F̄) such that

• gT1,F̄ g−1
= T2,F̄ ,

• g−1τ(g) ∈ T1(F̄) for every τ ∈ 0F .
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In this case Ad(g) defines an isomorphism T1
∼
→ T2 of F-tori, and vice versa. If δ1, δ2 ∈

Greg(F), Ti := Gδi and g ∈ G(F̄) realizes a stable conjugation gδ1g−1
= δ2, then g realizes

a stable conjugation Ad(g) : T1
∼
→ T2 between maximal F-tori.

Using the adjoint action of G on g, we define 0reg,ell(g), 1reg,ell(g), etc.; for X ∈ g(F)
we write G X

:= ZG(X), G X := ZG(X)0.

The Langlands dual group of G is defined over C; the relevant definitions will be

reviewed in § 4.1.

Classical groups The general linear group on a finite-dimensional F-vector space V is

written as GL(V ), or simply as GL(n) if dimF V = n.

Assume the field F to be of characteristic 6= 2. In this article, the notation SO(2n+ 1)
always means a split special orthogonal group associated to a quadratic form on an

F-vector space V of dimension 2n+ 1. We give a precise recipe below: take V with basis

e−n, . . . , e−1, e0, e1, . . . , en , with the quadratic form q : V × V → F given by

q(ei |e− j ) := δi, j , −n 6 i, j 6 n.

Here δi, j is Kronecker’s delta. Similar conventions pertain to Spin(2n+ 1).
The symplectic group associated to a symplectic F-vector space (W, 〈·|·〉) is denoted

by Sp(W ), or sometimes by Sp(2n) if dimF W = 2n. It will be reviewed in detail in § 2.1.

Unless otherwise specified, we shall identify all these F-group schemes with their groups

of F-points, to save clutter.

Combinatorics As usual, G denotes a connected reductive F-group. For a Levi

subgroup M of G, define the following finite sets

• P(M): the set of parabolic subgroups of G with Levi component M ;

• L(M): the set of Levi subgroups of G containing M ;

• W (M) := NG(M)(F)/M(F), a finite group.

The Levi decomposition is written as P = MU , where U denotes the unipotent radical of

P. When the rôle of G is to be emphasized, we shall write PG(M), LG(M) and W G(M)
instead. For a minimal Levi subgroup M = M0, we use the shorthand W G

0 := W G(M0).

Assume F to be of characteristic zero and fix a maximal F-torus T ⊂ G. The associated

set of absolute roots is denoted by Σ(G, T )F̄ and the absolute coroots by Σ(G, T )∨
F̄

; the

root–coroot correspondence is written as α ↔ α∨. There are at least three types of Weyl

groups that we need.

1. The relative Weyl group W (G, T ) := NG(T )(F)/T (F).

2. The group W (G, T )(F) := (NG(T )/ZG(T )) (F); here we regard NG(T )/ZG(T ) as

an F-group scheme. By Galois descent we have

W (G, T )(F) =
{
g ∈ NG(T )(F̄) : ∀τ ∈ 0F , g−1τ(g) ∈ T (F̄)

}/
T (F̄). (3)

3. The absolute Weyl group W (G, T )(F̄) := W (G F̄ , TF̄ ) = (NG(T )/ZG(T )) (F̄), or

equivalently NG(T )(F̄)/T (F̄).
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Note that W (G, T )(F̄) ⊃ W (G, T )(F) ⊃ W (G, T ). Galois descent gives

W (G, T )(F) =
{
w ∈ W (G F̄ , TF̄ ) : Ad(w) : TF̄

∼
→ TF̄ is defined over F

}
.

For an F-torus T, we write X∗(T) :=HomF−grp(T,Gm) and X∗(T) :=HomF−grp(Gm, T);
note that 0F acts on X∗(TF̄ ) and X∗(TF̄ ).

In a similar manner, define X∗(G) := HomF−grp(G,Gm) and set aG := Hom(X∗(G),R).
For every M as above, there is a canonically split short exact sequence of finite-

dimensional R-vector spaces

0→ aG → aM � aG
M → 0.

Their dual spaces are denoted by a∗G , etc. When F is local, the Harish-Chandra

homomorphism HG : G(F)→ aG is the homomorphism characterized by

〈χ, HG(x)〉 = log |χ(x)|F , χ ∈ X∗(G).

Representations The representations under consideration are all over C-vector spaces.

Let G be a connected reductive F-group where F is a local field. The representations of

G(F) are supposed to be smooth, admissible etc., which will be clear according to the

context. Define

• 5(G): the set of equivalence classes of representations of G(F);

• 5unit(G): the subset of unitarizable representations;

• 5temp(G): the subset of tempered representations;

• 52,temp(G): the subset of unitarizable representations which are square-integrable

modulo the center, i.e. the discrete series representations.

These notions have obvious variants for finite coverings G̃ of G(F). The appropriate object

turns out to be the set of genuine representations 5−(G̃); see § 2.1. For an abstract group

S, the notation 5(S) will also be used to denote its set of irreducible representations,

taken up to equivalence.

For λ ∈ a∗G,C and π ∈ 5(G), we define πλ ∈ 5(G) by

πλ := e〈λ,HG (·)〉⊗π. (4)

Note that πλ+µ = (πλ)µ. When restricted to λ ∈ ia∗G , this operation preserves 5temp(G)
and 52,temp(G).

Consider a parabolic subgroup P = MU of G. The modulus character δP : P(F)→ R>0
is specified by

(left Haar measure) = δP · (right Haar measure).

The normalized parabolic induction functor from P to G is denoted by I G
P (·) :=

IndG
P (δ

1/2
P ⊗ ·), often abbreviated as IP (·).

2. Review of the metaplectic covering

We shall review the materials in [30] concerning the eightfold metaplectic covering

p : S̃p(W )� Sp(W ) attached to a symplectic vector space W . The usual twofold version

S̃p
(2)
(W )� Sp(W ) will be reviewed in Remark 2.2.1.
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2.1. The central extension

Weil’s metaplectic covering Let F be a field of characteristic 6= 2. By a symplectic

F-vector space, we mean a pair (W, 〈·|·〉) where W is a finite-dimensional F-vector space,

and 〈·|·〉 : W ×W → F is a non-degenerate alternating bilinear form. A maximal totally

isotropic subspace (i.e. on which 〈·|·〉 is identically zero) of W is called a Lagrangian,

usually denoted by `. Define

Sp(W ) := {g ∈ GL(W ) : ∀x, y ∈ W, 〈gx |gy〉 = 〈x |y〉} .

This actually defines a semisimple F-group.

Assume henceforth that F is a local field of characteristic zero, so that Sp(W ) becomes

a locally compact group. Fix a non-trivial additive character ψ : F → S1. In this article,

Weil’s metaplectic covering is a central extension

1→ µ8 → S̃p(W )
p
−→ Sp(W )→ 1 (5)

of locally compact groups. This covering is non-linear, i.e. does not come from a central

extension of F-groups, unless F = C. We identify µ8 as a subgroup of S̃p(W ).

Since the symplectic F-vector spaces are classified up to isomorphism by their

dimension, say dimF W = 2n, we occasionally write Sp(2n), S̃p(2n) instead. If W =
W1⊕W2 as symplectic F-vector spaces, there is then a canonical homomorphism

j : S̃p(W1)× S̃p(W2)→ S̃p(W )

such that

• ker( j) =
{
(ε, ε−1) : ε ∈ µ8

}
,

• j covers the natural embedding Sp(W1)×Sp(W2) ↪→ Sp(W ).

Covering groups in general Consider a connected reductive F-group G together with

a central extension of locally compact groups

1→ µm → G̃
p
−→ G(F)→ 1 (6)

where m ∈ Z>1. These data form a covering group, and there is an evident notion of

isomorphisms between coverings. By parabolic (resp. Levi) subgroups of G̃ we mean the

inverse images of parabolic (resp. Levi) subgroups of G(F).
The objects living on G̃ will be systematically decorated with a ∼, such as x̃ ∈ G̃; we

also write x := p(x̃) in that case. If E is a subset of G(F), we denote Ẽ := p−1(E). We

say that an element of G̃ is semisimple, regular, etc., if its image in G(F) is. Note that

G(F) acts on G̃ by conjugation: we denote this action by x̃ 7→ gx̃g−1, for all g ∈ G(F).

• The notions of C∞c functions, orbital integrals, smooth and admissible representations,

etc., make sense on G̃; see [31]. Note that when F is archimedean, G̃ is a group

in Harish-Chandra class; our notions of parabolic and Levi subgroups of G̃ are also

consistent with the usual ones.

• A function f : G̃ → C, or more generally f : Ẽ → C where E is a subset of G(F), is

called anti-genuine if

∀ε ∈ µm, f (ε·) = ε−1 f (·).

It is called genuine if we require f (ε·) = ε f (·) instead.
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• A representation (π, V ) of G̃ is called genuine if

∀ε ∈ µm, π(ε) = ε · id.

It is called anti-genuine if we require π(ε) = ε−1
· id instead.

• A distribution D (regarded as a linear functional C∞c (G̃)→ C) is called genuine if for

all f ∈ C∞c (G̃), we have

∀ε ∈ µm, D( f ε) = ε · D( f ),

where f ε(·) := f (ε−1
·). It is called anti-genuine if we require D( f ε) = ε−1 D( f ) instead.

•We use the subscript − (resp. ) to denote the genuine (resp. anti-genuine) objects.

For example, C∞c, (G̃) denotes the space of anti-genuine C∞c functions on G̃, whereas

5−(G̃) denotes the space of irreducible admissible representations of G̃, up to

equivalence.

• Note that a genuine distribution D is completely determined by its restriction on

C∞c, (G̃). The character 2π : f 7→ tr(π( f )) of π ∈ 5−(G̃) is a genuine distribution, as

expected.

• The character 2π is actually locally L1 and smooth on G̃reg; for non-archimedean

F , we have local character expansions around each semisimple element in terms of

Fourier transforms of unipotent orbital integrals. This is Harish-Chandra’s celebrated

regularity theorem for characters, at least when F is archimedean or when G̃ = G(F).
For non-archimedean F , the corresponding result for coverings is proved in [31,

Théorème 4.3.2].

In broad terms, the study of harmonic analysis on G̃ is the study of its genuine

representations.

Denote by 0reg(G̃) (resp. 0ell, reg(G̃)) the spaces of strongly regular (resp. strongly

regular and elliptic) semisimple classes in G̃. They are equipped with natural maps

0reg(G̃)� 0reg(G), whose fibers are acted upon by µm ; thus there is an evident notion

of genuine/anti-genuine functions 0reg(G̃)→ C.

Finally, suppose that a Haar measure on G(F) is chosen. Define the Haar measure on

G̃ by requiring that

mes(Ẽ) = mes(E) (7)

for every measurable subset E of G(F). Consequently, for every function φ : G̃ → C which

factors through G(F), we have
∫

G̃ φ =
∫

G(F) φ whenever it is integrable.

2.2. The Weil representation and its character

For a chosen ψ , the covering group S̃p(W ) carries a special genuine representation

(ωψ , Sψ ), called the Weil representation or the oscillator representation. It admits various

realizations, such as the Schrödinger model, lattice model, mixed model, etc. We refer to

[37] for details. We fix a Haar measure on Sp(W ), hence a Haar measure on S̃p(W ) by

the recipe (7).
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The representation ωψ decomposes canonically into

ωψ = ω
+

ψ ⊕ω
−

ψ ,

called the even and odd parts of ωψ , respectively. Each piece is an irreducible admissible

unitarizable representation of S̃p(W ). It follows that the character

2±ψ : f 7→ tr
(
ω±ψ ( f )

)
as a genuine distribution on S̃p(W ), is locally L1 and smooth on S̃p(W )reg. So is 2ψ :=

2+ψ +2
−

ψ .

In fact, 2ψ is smooth on the larger dense open subset

S̃p(W )† :=
{

x̃ ∈ S̃p(W ) : det(x − 1|W ) 6= 0
}
.

This result is originally due to Maktouf, who gave an elegant formula for 2ψ over S̃p(W )†.

The reader may consult [30, § 4.1] for a summary.

Remark 2.2.1. In the literature, the metaplectic covering is often a central extension of

the form

1→ µ2 → S̃p
(2)
(W )→ Sp(W )→ 1,

and our extension can be described as

S̃p(W ) =
(
µ8× S̃p

(2)
)/

(±ε, x̃) ∼ (ε,±x̃),

that is, the push-forward of central extensions via µ2 ↪→ µ8.

There is no difference between genuine and anti-genuine on S̃p
(2)
(W ). The genuine

representations (resp. anti-genuine functions) on S̃p(W ) and S̃p
(2)
(W ) are in natural

bijection, in view of the push-forward construction above.

Working with µ8 offers more flexibility. Below is a crucial instance.

Definition 2.2.2. There exists a canonical element in p−1(−1), denoted by the same

symbol −1, which satisfies

ω±ψ (−1) = ±id;

consequently, if we write −x̃ = (−1)x̃ then

(2+ψ −2
−

ψ )(−x̃) = (2+ψ +2
−

ψ )(x̃), x̃ ∈ S̃p(W )reg.

This property characterizes −1 ∈ S̃p(W ) as ω±ψ is genuine. It also follows that −1 is of

order two. Such a choice is not always possible inside S̃p
(2)
(W ); see [30, Définition 2.8].

In view of its genuineness, the character 2ψ will often be used to pin down elements

in the fibers of p : S̃p(W )→ Sp(W ), such as in the discussions on splittings (see § 2.3) or

in the proof of Proposition 8.4.2.
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2.3. Splittings and coverings of metaplectic type

Various splittings Let p : G̃ → G(F) be a general covering as in § 2.1. To do harmonic

analysis on G̃, one has to specify splittings of the central extension over various subgroups.

1. Let P = MU be a parabolic subgroup of G. There is a canonical section

s : U (F)→ Ũ

of p (see [37, Appendice 1] or [34, § 2.2]). It is equivariant under P(F)-conjugation.

Hence we may write P̃ = M̃U and define the parabolic induction functor I G̃
P̃
(·) for

coverings.

2. Specialize now to the metaplectic covering G̃ = S̃p(W )
p
−→ Sp(W ) = G(F) (fix ψ).

For a Lagrangian ` ⊂ W , its stabilizer P = StabSp(W )(`) is a parabolic subgroup

of G; such subgroups are called Siegel parabolics. Thanks to our choice of µ8, the

Schrödinger model for the Weil representation furnishes a section

σ` : P(F)→ P̃

of p. It agrees with s on the unipotent radical. Moreover, σ`(−1) sends −1 ∈ GL(`)

to the element −1 ∈ G̃ of Definition 2.2.2. See [30, Proposition 2.7].

Let `′ be another Lagrangian such that W = `⊕ `′, which always exists. Denote

the corresponding stabilizer by P ′. Then

M := P ∩ P ′ ' GL(`) (canonically),

is a common Levi component of P and P ′. It turns out that (σ`)|M(F) is independent

of the choice of `, `′ [30, Remarque 4.8]. More generally, the Levi subgroups of G
arise from data

(`i , `i )i∈I , W [

where

(i) I is a finite set,

(ii) for each i ∈ I , (`i
⊕ `i , 〈·|·〉) is a symplectic F-vector space for which `i , `i are

Lagrangians,

(iii) (W [, 〈·|·〉) is a symplectic F-vector space,

(iv) we require that W =
⊕

i∈I (`
i
⊕ `i )⊕W [ as symplectic F-vector spaces

(orthogonal direct sum).

The Levi subgroup is then given by M =
∏

i∈I GL(`i )×Sp(W [) ↪→ G. We often

forget the Lagrangians and write

M =
∏
i∈I

GL(ni )×Sp(W [)

whenever I is a given set of indexes and

dimF W [
+ 2

∑
i∈I

ni = 2n.
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The conjugacy classes of Levi subgroups of Sp(W ) are in bijection with equivalence

classes of data (I, (ni )i∈I ,W [) subject to the conditions above.

Now comes the covering. There exists a canonical isomorphism∏
i∈I

GL(`i )× S̃p(W [)
∼
→ M̃

making the following diagram commutes∏
i∈I GL(`i )× S̃p(W [) M̃ G̃

∏
i∈I GL(`i )×Sp(W [) G

∼

(id,p) p p ;

see [30, § 5.4]. These sections are all characterized using the character 2ψ of the

Weil representation.

3. Since we invoke global arguments, the unramified setting is also needed. Assume F
is non-archimedean of residual characteristic p > 2, ψ |oF ≡ 1 but ψ |p−1

F
6≡ 1, and

that (W, 〈·|·〉) admits an oF -model with ‘good reduction’; we refer to [30, § 2.3] for

precise definitions. Set L := W (oF ), a lattice in W = W (F), then

K := StabSp(W )(L)

is a hyperspecial subgroup of Sp(W ) – it is exactly the group of oF -points of Sp(W )

with respect to the relevant integral model. Moreover, the lattice model for the

Weil representation furnishes a section sL : K → K̃ of p. We record the following

useful fact.

Lemma 2.3.1. The element sL(−1) equals the −1 ∈ S̃p(W ) in Definition 2.2.2.

Proof. This results either from [30, Proposition 2.13], or from the comparison

between the character formulas [30, Corollaire 4.6] and [30, Proposition 4.21] under

the hypothesis p > 2.

In general, let G be a reductive F-group. Then G(F) possesses hyperspecial

subgroups if and only if G is quasisplit and splits over an unramified extension

of F (i.e. G is unramified); in this case, the hyperspecial subgroups are conjugate

under GAD(F). Thus it makes sense to define the unramified Haar measure on G(F)
by requiring that any hyperspecial subgroup has mass 1. We shall use unramified

measures in Theorem 3.4.3.

In all cases, it is safe to omit the symbols s, σ`, sL . Unless otherwise specified, the

subgroups U (F), K will thus be regarded as subgroups of S̃p(W ); the inverse image M̃
of a Levi subgroup of Sp(W ) will be identified with

∏
i∈I GL(ni )× S̃p(W [).

Coverings of metaplectic type We need a very mild generalization of Weil’s

metaplectic coverings. Such a class of coverings should contain all S̃p(W ) and is stable

under passage to Levi subgroups.
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Definition 2.3.2 (cf. [32, Définition 3.1.1]). Coverings of the form

(id,p) :
∏
i∈I

GL(ni , F)× S̃p(W )→
∏
i∈I

GL(ni , F)×Sp(W )

are called the coverings of metaplectic type.

Modulo the knowledge of GL(ni ), the harmonic analysis on coverings of metaplectic

type reduces immediately to that of S̃p(W ). We record a crucial property for Weil’s

metaplectic coverings.

Theorem 2.3.3. Let p : M̃ � M(F) be a covering of metaplectic type. Two elements x̃, ỹ ∈
M̃ commute if and only if their images x, y ∈ M(F) commute.

Proof. As said before, it suffices to prove this for S̃p(W )� Sp(W ). This is well known,

see eg. [37, Chapitre 2] for the non-archimedean case.

2.4. The global case

Assume that F is a number field. Fix a non-trivial additive character ψ =
∏
v ψv :

AF/F → S1.

Let (W, 〈·|·〉) be a symplectic F-vector space equipped with an oF -model. Denote

by Sp(W,AF ) :=
∏
′

vSp(Wv) the locally compact group of AF -points of Sp(W ), where

Wv := W ⊗F Fv. One may still define Weil’s metaplectic covering in the adélic setup: it

is an eightfold central extension

1→ µ8 → S̃p(W,AF )
p
−→ Sp(W,AF )→ 1

of locally compact groups. Moreover,

(i) one may identify S̃p(W,AF ) with the quotient
∏
′

vS̃p(Wv)/N, where

•
∏
′

vS̃p(Wv) is the restricted product of the local metaplectic groups with respect

to the hyperspecial subgroups Kv = Sp(W (ov)) ↪→ S̃p(Wv) alluded to above, for

almost all v -∞, and

• we take

N := ker

(⊕
v

µ8
product
−−−−−→ µ8

)
;

(ii) S̃p(W,AF ) still carries the Weil representation ωψ , which is identified with the

tensor product
⊗

v ωψv of its local avatars;

(iii) there exists a unique section i : Sp(W, F) ↪→ S̃p(W,AF ) of p, by which we regard

Sp(W, F) as a discrete subgroup of S̃p(W,AF ) of finite covolume.

See [47, § 2] or [30, § 2.5] for a detailed construction using the Stone–von Neumann

theorem. The upshot is that (i) one can develop the theory of automorphic

forms and automorphic representations on the covering p : S̃p(W,AF )→ Sp(W,AF ),

(ii) and it satisfies all the requirements for the invariant trace formula à la Arthur;

see [35, § 3.4, IV].
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3. Review of endoscopy

In this section, F always denotes a local field of characteristic zero.

3.1. Orbital integrals

Let M be an arbitrary connected reductive F-group. We fix a Haar measure on M(F).
The notations here come from Arthur [6].

Let δ ∈ M(F)ss be semisimple. The Weyl discriminant of δ is defined as

DM (δ) := det(1−Ad(δ)|m/mδ) ∈ F×.

Assume henceforth that δ ∈ Mreg(F), so that Mδ is an F-torus. Fix a Haar measure

on Mδ(F). The normalized orbital integral of f ∈ C∞c (M(F)) along the conjugacy class

of δ is

fM (δ) := |DM (δ)|1/2
∫

Mδ(F)\M(F)
f (x−1δx) dx

where the quotient measure on Mδ(F)\M(F) is used.

Throughout this article, we assume that these centralizers Mδ(F) carry prescribed Haar

measures that respect conjugacy: for every x ∈ M(F), the isomorphism Ad(x) transports

the measure on Mδ(F) to Mxδx−1(F). Therefore, for a given f , one may regard fM as a

function 0reg(M)→ C.

When M is quasisplit, we have defined the set 1reg(M) of strongly regular semisimple

stable conjugacy classes in M(F). There is an obvious map from 0reg(M)� 1reg(M);
it will be written in the form δ 7→ σ . Furthermore, we assume that the Haar measures

on the centralizers Mδ(F) respects stable conjugacy. Define the normalized stable orbital

integral along the stable class σ as

f M (σ ) :=
∑
δ 7→σ

fM (δ).

Again, one may regard f M as a function 1reg(M)→ C.

The same definitions can be easily adapted to the Lie algebra m, which will be used in

our proofs later. Define the Weyl discriminant of X ∈ mreg(F) as

DM (X) := det(ad(X)|m/mX ) ∈ F×.

Keep the same conventions on Haar measures. The normalized orbital integral of

f ∈ C∞c (m(F)) is now defined as

fM (X) := |DM (X)|1/2
∫

Mδ(F)\M(F)
f (x−1 X x) dx .

When M is quasisplit, the stable version f M (Y ) =
∑

X 7→Y fM (X) is defined analogously:

simply use the notion of stable conjugacy on the level of Lie algebras.

Now consider a covering

1→ µm → M̃
p
−→ M(F)→ 1
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that is of metaplectic type, or more generally a covering satisfying the assertion in

Theorem 2.3.3. For δ̃ ∈ M̃reg and f ∈ C∞c, (M̃), we may still define the normalized orbital

integral

fM̃ (δ̃) := |D
M (δ)|1/2

∫
Mδ(F)\M(F)

f (x−1δ̃x) dx .

with the same convention of Haar measures (on M). Note that f 7→ fM̃ (δ̃) can be

regarded as a genuine distribution on M̃ . Moreover, fM̃ (εδ̃) = ε
−1 fM̃ (δ̃) for every

ε ∈ ker(p) ⊂ C×.

A comprehensive treatment of the orbital integrals on coverings can be found in

[31, § 4].

3.2. Spaces of orbital integrals

The spaces I(G) Let G be a connected reductive F-group. The Haar measures are

prescribed in a coherent manner as in § 3.1. For f ∈ C∞c (G(F)) and δ ∈ Greg(F), we

have defined the normalized orbital integral fG(δ). Define the C-vector space of orbital

integrals on G as

I(G) :=
{

fG : 0reg(G)→ C : f ∈ C∞c (G(F))
}
.

It is endowed with the linear surjection C∞c (G(F))� I(G) given by f 7→ fG . The

elements therein are characterized in terms of

(i) local expansion in Shalika germs around each semisimple element, when F is

non-archimedean [45];

(ii) Harish-Chandra’s jump relations, when F is archimedean [14].

Remark 3.2.1. Note that I(G) is topologized in the archimedean case. It is actually a

strict inductive limit of Fréchet spaces, also known as LF spaces; see [14, pp. 580–581].

The map C∞c (G(F))� I(G) is then an open surjection by the remarks in [14, p. 581].

We also have a natural isomorphism

I(G1×G2) '

 I(G1)⊗̂I(G2), F archimedean,

I(G1)⊗ I(G2), otherwise

parallel to

C∞c (G1(F)×G2(F)) '

C∞c (G1(F))⊗̂C∞c (G2(F)), F archimedean,

C∞c (G1(F))⊗C∞c (G2(F)), otherwise

The non-archimedean case is quite trivial, whereas in the archimedean case ⊗̂ denotes

the topological tensor product and the isomorphism is in the category of LF spaces.

Any satisfactory description of ⊗̂ would require the notion of nuclear spaces [44, § 50]

introduced by Grothendieck. The space I(G) is indeed nuclear since it is a quotient

of C∞c (G(F)), which is nuclear (cf. the Corollary to [44, Theorem 51.5]). Regarding
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the isomorphism between I(G1×G2) and I(G1)⊗̂I(G2), we refer to the arguments

in [44, Theorem 51.6].

The references [14, 45] actually included the case of coverings as well. In particular,

we may define the spaces I (G̃) of anti-genuine orbital integrals for a covering p : G̃ →
G(F). It is regarded as a space of anti-genuine functions 0reg(G̃)→ C, equipped with

the surjection C∞c, (G̃)� I (G̃) and an appropriate topology in the archimedean case.

When G is quasisplit, we may also define the space SI(G) of stable orbital integrals,

together with the linear surjection

C∞c (G(F)) −→ SI(G)

f 7−→

[
σ 7→ f G(σ ) =

∑
δ 7→σ

fG(δ)

]
;

in brief, the diagram

C∞c (G(F))

I(G) SI(G)

f

fG f G

commutes. In the archimedean case, the characterization and topology of SI(G) are

discussed in [14, § 6].

Elements in the dual spaces I(G)∨ (resp. I (G̃)∨, SI(G)∨) are called invariant

distributions (resp. invariant genuine distributions, stable distributions) on G or G̃. In

each case, an element in I(G), I(G̃) or SI(G) is determined by its restriction to any

open dense subset of Greg(F) or G̃reg, by the continuity of orbital integrals.

All these constructions readily generalize to Lie algebras, the relevant definitions will

be recalled in § 5.3.

Parabolic descent and induction Let P = MU be a parabolic subgroup of G. Choose

an appropriate maximal compact subgroup K of G(F) in good position relative to M
(see [34, Définition 2.4.1]) so that the Iwasawa decomposition G(F) = P(F)K holds. The

Haar measures are normalized so that mes(K ) = 1 and∫
G(F)

f (x) dx =
∫∫∫

U (F)×M(F)×K
δP (m)−1 f (umk) du dm dk.

For f ∈ C∞c (G(F)), define

fP : x 7−→ δP (x)1/2
∫∫

K×U (F)
f (k−1xuk) du dk, x ∈ M(F).

Then fP ∈ C∞c (M(F)). The linear map f 7→ fP induces the parabolic descent maps

I(G) −→ I(M)W
G (M),

fG 7−→ fM
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and its stable version for quasisplit G

SI(G) −→ SI(M)W
G (M)

f G
7−→ f M .

where W G(M) has a well-defined action on I(M) and SI(M) by conjugation.

For the next result, we recall briefly a well-known comparison between stable conjugacy

and ordinary conjugacy. Let H be any connected reductive F-group and S be an

F-subgroup of H . Define the pointed set

D(S, H ; F) := ker
[
H1(F, S)→ H1(F, H)

]
. (8)

Let σ ∈ Hreg(F) and take S = Hσ . We claim that the conjugacy classes in the stable class

of σ is parametrized by D(Hσ , H ; F). Indeed, consider a 1-cocycle c : 0F 3 τ 7→ c(τ ) in

Hσ with trivial image in H1(F, H), we have c(τ ) = x−1τ(x) ∈ Hσ (F̄) for some x ∈ H(F̄)
independent of τ ; the corresponding conjugacy class is then represented by σ ′ := xσ x−1.

Therefore, we may define the ‘relative position’ or the invariant as

inv(σ ′, σ ) := [c] ∈ D(Hσ , H ; F) (9)

for any σ ′ stably conjugate to σ .

Proposition 3.2.2. For δ ∈ (M ∩Greg)(F), we have

fG(δ) = fM (δ)

for any f ∈ C∞c (G(F)). When G is quasisplit, for any σ ∈ MG−reg(F) we have

f G(σ ) = f M (σ ).

Note that these equalities do not extend to Mreg(F)rGreg(F), in view of the germ

expansions.

Proof. The first equality is standard. For the second, observe that for a chosen σ ∈

MG-reg(F) we have Mσ = Gσ . It is well known that H1(F,M) ↪→ H1(F,G), hence the

natural map D(Mσ ,M; F)→ D(Gσ ,G; F) is a bijection. Unwinding definitions, we see

that f G(σ ) equals ∑
δ 7→ σ︸ ︷︷ ︸

in G

fG(δ) =
∑
δ 7→ σ︸ ︷︷ ︸

in M

fG(δ) =
∑
δ 7→ σ︸ ︷︷ ︸

in M

fM (δ) = f M (σ )

by the first assertion.

Corollary 3.2.3. If M ⊂ L are Levi subgroups of G, then

( fL)M = fM , f ∈ C∞c (G(F))

and, when G is quasisplit:

( f L)M
= f M .
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The orbital integrals are dense in the space of invariant distributions relative to the

topology induced by I(G). Hence I(G)→ I(M)W G (M) depends only on M , not on the

choice of P and K . The same reasoning works for the stable orbital integrals.

Dualization gives parabolic induction maps for distributions

IP : I(M)∨/W G(M) −→ I(G)∨,
SI(M)∨/W G(M) −→ SI(G)∨, G quasisplit.

The naming is justified since for every π ∈ 5(M) we have the well-known identity

〈IP (2π ), f 〉 := 〈2π , fP 〉 = 〈2IP (π), f 〉, f ∈ C∞c (G(F)). (10)

In exactly the same manner, the parabolic descent I (G̃)→ I (M̃)W
G (M) and its dual

are defined for covering groups p : G̃ → G(F).

3.3. Endoscopy

Fix a symplectic F-vector space (W, 〈·|·〉) of dimension 2n. Write G := Sp(W ) and p :
G̃ := S̃p(W )� G(F) be the metaplectic covering with ker(p) = µ8.

Elliptic endoscopic data

Definition 3.3.1. An elliptic endoscopic datum for G̃ is a pair (n′, n′′) ∈ Z2
>0 verifying

n′+ n′′ = n. The corresponding endoscopic group is

G ! := SO(2n′+ 1)×SO(2n′′+ 1).

The set of elliptic endoscopic data of G̃ is denoted by Eell(G̃).

Remark 3.3.2. The definition is similar to that of SO(2n+ 1) in some aspects. However,

• there is no symmetry n′ ↔ n′′,

• there is no ‘outer automorphisms’ acting on G !.

The latter point will be made clear in the proofs of our main theorems. By a standard

abuse of notations, we often write G ! to mean the endoscopic datum (n′, n′′) together

with the endoscopic group. However, we reiterate that due to the lack of symmetry, the

endoscopic data cannot be identified with the corresponding G !. For example, the group

SO(2n+ 1) appears twice in elliptic endoscopy for G̃, with different rôles.

Definition 3.3.3. Fix (n′, n′′) ∈ Eell(G̃). There is a correspondence between the semisimple

stable conjugacy classes of G(F) and that of G !(F) in terms of eigenvalues. More precisely,

we say that two semisimple elements δ ∈ G(F) and γ = (γ ′, γ ′′) ∈ G !(F) correspond, if

the eigenvalues of γ ′, γ ′′ and δ (as elements in GL(2n′+ 1), GL(2n′′+ 1) and GL(2n))
can be arranged into the form

a′n′ , . . . , a′1, 1, (a′1)
−1 . . . (a′n′)

−1,

a′′n′′ , . . . , a′′1 , 1, (a′′1 )
−1 . . . (a′′n′′)

−1, and

a′n′ , . . . , a′1, (a
′

1)
−1 . . . (a′n′)

−1,−a′′n′′ , . . . ,−a′′1 ,−(a
′′

1 )
−1 . . .− (a′′n′′)

−1

respectively. In this case we write γ ↔ δ.
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This is similar to the endoscopy for SO(2n+ 1), but there is a crucial difference: the

eigenvalues of δ coming from SO(2n′′+ 1) are twisted by −1.

We note that for a given γ , the conjugacy classes in G(F) corresponding to γ form a

single stable conjugacy class. In fact, this correspondence induces a map between stable

semisimple classes

µ : 1ss(G !) −→ 1ss(G) (11)

with finite fibers. An element of 1ss(G !) is called G-regular if its image under µ is regular.

The notion of G-regularity is geometric: such elements form the F-points of a Zariski open

dense subset G !G-reg of G !. Note that G-regular implies strongly regular in G !.
In [30], it is shown that G !γ ' Gδ for regular classes γ ↔ δ, by describing their

centralizers directly. Here we do it in another way which is closer to the spirit of endoscopy.

As in [30, § 5.1], fix Borel pairs defined over F

(B, Ts), (B!, T !s )

for G and G !, respectively. Obviously we have

• an isomorphism T !s
∼
→ Ts between split F-tori that preserves eigenvalues (we neglect

the eigenvalues 1 in G !, cf. the definition of the correspondence of classes),

• a homomorphism W (G !, T !s )→ W (G, Ts), making T !s → Ts equivariant.

Fix such homomorphisms. For γ ↔ δ as before, set T := Gδ and T ! := G !γ . There is a

commutative diagram

TF̄ (Ts)F̄

T !
F̄

(T !s )F̄

Ad(x)

Ad(y)

θ defined over F (12)

for some x ∈ G(F̄) and y ∈ G !(F̄); each arrow is invertible.

In view of the definition of γ ↔ δ, we have θ(γ ) ∈ W (G F̄ , TF̄ ) · δ. Upon modifying x ,

it can even be arranged that

δ = θ(γ ). (13)

Lemma 3.3.4 (cf. [1, Lemma 5.1]). In the setup of (12), one can choose x, y so that θ is

defined over F. The F-isomorphism θ so obtained is unique up W (G, T )(F)-action.

In particular, γ ↔ δ implies G !γ ' Gδ.

In [1], Adams called such θ a standard isomorphism.

Proof. Let us prove the uniqueness first. Suppose that the F-isomorphisms θ , θ ′ arise

from the pairs (x, y) and (x ′, y′), respectively. We need to show that θ equals θ ′

up to W (G, T )(F). Take w ∈ W (G !
F̄
, T !

F̄
) such that Ad(y′) = Ad(w)Ad(y). Using the

equivariance of T !s → Ts with respect to W (G !, T !s )→ W (G, Ts), we choose x ′′ so that

Ad(w)Ad(x ′′) = Ad(x ′). Then θ ′ equals the F-isomorphism arising from (x ′′, y).
Observe that Ad((x ′′)−1x) : TF̄

∼
→ TF̄ is defined over F . Hence (x ′′)−1x modulo T (F̄)

is in W (G, T )(F), that is, θ and θ ′ differ by an element of W (G, T )(F).
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To show the existence of a θ defined over F , we begin by choosing x, y satisfying (13).

For any τ ∈ 0F , the commutative diagrams

TF̄ (Ts)F̄

T !
F̄

(T !s )F̄

Ad(x)−1

Ad(y)

θ

TF̄ (Ts)F̄

T !
F̄

(T !s )F̄

Ad(τ (x))−1

Ad(τ (y))

τ θ

both send γ ∈ T !(F) to δ ∈ T (F). By the same reasoning as before, but without worry

about rationality, we see that θ and τ θ differ by some element in W (G F̄ , TF̄ ). The

regularity of δ forces θ = τ θ , thereby proving the rationality of θ .

Next, consider a covering of metaplectic type

(id,p) : M̃ =
∏
i∈I

GL(ni , F)× S̃p(W [)�
∏
i∈I

GL(ni , F)×Sp(W [) = M(F);

see Definition 2.3.2.

Definition 3.3.5. Let M̃ � M(F) be a covering of metaplectic type described above.

Define the set Eell(M̃) of elliptic endoscopic data of M̃ to be Eell(S̃p(W [)). In other

words, an elliptic endoscopic datum is a pair (m′,m′′) ∈ Z2
>0 with m′+m′′ = 1

2 dimF W [;

the corresponding endoscopic group is

M ! :=
∏
i∈I

GL(ni )×SO(2m′+ 1)×SO(2m′′+ 1).

Let δ = (δGL, δ
[) and γ = (γGL, γ

[) be semisimple elements in M(F) and M !(F),
respectively, where the components in

∏
i GL(ni ) carry the subscript GL. We say that δ

corresponds to γ , denoted by δ ↔ γ , if

• δGL and γGL are conjugate,

• δ[ ↔ γ [.

As before, we obtain a map µ : 1ss(M !)→ 1ss(M) on semisimple conjugacy classes,

of the form (id, µ[). The notions of M-regularity, etc., are defined in the obvious way.

Simply put, elliptic endoscopy for M̃ does not affect the components in
∏

i∈I GL(ni ).

Stable conjugacy Recall the notion of stable conjugacy in G̃ of regular semisimple

elements in [30, § 5.2]. Firstly, recall that (2+ψ −2
−

ψ )(·) can be evaluated on G̃reg.

Definition 3.3.6 (Adams [1, § 3]). Two regular semisimple elements δ̃, δ̃′ ∈ G̃ are called

stably conjugate whenever

(i) their images δ, δ′ in G(F) are stably conjugate in the ordinary sense, and

(ii) 2+ψ −2
−

ψ takes the same value at δ̃ and δ̃′.
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Lemma 3.3.7. Assume that δ0, δ1 ∈ Greg(F) are stably conjugate, and let δ̃0 ∈ p−1(δ0).

There exists a unique δ̃1 ∈ p−1(δ1) such that δ̃1 is stably conjugate to δ̃0.

Proof. This is essentially [30, Lemme 5.7].

The notion of stable conjugacy is extended to all semisimple classes in [36,

Définition 4.1.1].

Naturally, stable conjugacy can also be defined for coverings of metaplectic type

M̃ =
∏

i∈I GL(ni )× S̃p(W [). Recall that conjugacy and stably conjugacy are the same

on the general linear groups GL(ni ).

Definition 3.3.8. Two elements ((δi )i∈I , δ̃) and ((δi,1)i∈I , δ̃1) are called stable conjugate

when

(i) δi and δi,1 are conjugate for each i ∈ I , and

(ii) δ̃ and δ̃1 are stably conjugate in S̃p(W [).

Passage to Levi subgroups We are ready to define the general endoscopic data for G̃.

Definition 3.3.9. The set of endoscopic data of G̃ is defined as

E(G̃) :=
⊔

M/conj

Eell(M̃)

where M runs over the Levi subgroups of G modulo conjugation; the right-hand side is

well defined since W G(M) leaves Eell(M̃) intact.

To each endoscopic datum in Eell(M̃) we attach the endoscopic group M !. The

correspondence of semisimple conjugacy classes is given by the composition of

1ss(M !) −→ 1ss(M) −→ 1ss(G)

where the rightmost arrow is induced by the inclusion of Levi subgroup M ↪→ G, well

defined up to W G(M).

Remark 3.3.10. We note that

(a) the same definition works when F is a number field;

(b) our definition of endoscopic data is slightly different from that in [32], cf. [32,

Proposition 3.1.8];

(c) there is an explication in terms of the dual group of G̃, defined as Sp(2n,C) with

trivial Galois action, see [32, § 3] for details;

(d) we use diagrams of the form

G̃

M ! M̃ell.

endo.

Levi (14)

to recapitulate the fact that M ! ∈ Eell(M̃) ⊂ E(G̃).
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Here the inclusions of Levi subgroup are always taken up to conjugacy.

We wish to complete a given diagram (14) into

G[s] G̃

M ! M̃

ell.

endo.

ell.

endo.

Levi Levi (15)

in all possible ways, where s is some parameter to be described. Such a recipe is given in

[32, § 3.3] which we review below. Write

M =
∏
i∈I

GL(ni )×Sp(W [),

M ! =
∏
i∈I

GL(ni )×SO(2m′+ 1)×SO(2m′′+ 1),

the latter is attached to (m′,m′′) ∈ Eell(M̃). For an endoscopic datum (n′, n′′) ∈ Eell(G̃)
giving rise to G[s], the embedding M ! ↪→ G[s] is determined by a decomposition I =
I ′ t I ′′ up to conjugacy: set

G[s] := SO(2n′+ 1)×SO(2n′′+ 1),∏
i∈I ′

GL(ni )×SO(2m′+ 1) ↪→ SO(2n′+ 1),

∏
i∈I ′′

GL(ni )×SO(2m′′+ 1) ↪→ SO(2n′′+ 1).

where n′ = m′+ |I ′| and n′′ = m′′+ |I ′′| and the embeddings are the usual ones for Levi

subgroups in odd SO. It follows that the data in (15) are all encoded in the decomposition

I = I ′ t I ′′, which we take to be the parameter s. We are led to the following.

Definition 3.3.11. Given a diagram (14), we set EM !(G̃) to be the set of all (ordered) pairs

(I ′, I ′′) such that I = I ′ t I ′′. To each s = (I ′, I ′′) ∈ EM !(G̃) we attach

(n′, n′′) := (m′+ |I ′|,m′′+ |I ′′|) ∈ Eell(G̃),

and obtain the completed diagram (15) by the recipe above.

Remark 3.3.12. In general, different elements in EM !(G̃) can give rise to the same elliptic

endoscopic datum of G̃. If s, t ∈ EM !(G̃) give rise to the same endoscopic datum, the

embeddings of M ! will differ by some element in W G(M) = S(I ).

In the diagram (15), there are two ways to relate stable semisimple classes between M !

and G:

(i) going in the direction M !  G[s] G furnishes a map

µ1 : 1ss(M !)→ 1ss(G); (16)
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(ii) going in the direction M !  M  G furnishes a similar map

µ2 : 1ss(M !)→ 1ss(G). (17)

In contrast with the endoscopy for linear reductive groups, the maps µ1, µ2 can be

different.

Lemma 3.3.13 [32, Proposition 3.3.4]. Let z[s] := ((zi )i∈I , 1) ∈ M !(F) be the element of

order two defined by

zi =

 1, i ∈ I ′,

−1, i ∈ I ′′.

Then we have

µ1(t) = µ2(z[s] · t), t ∈ 1ss(M !).

Since z[s] is central, its translation action on conjugacy classes in M !(F) is well defined.

On the other hand, we may also start from some (n′, n′′) ∈ Eell(G̃) with endoscopic

group G !, together with a Levi subgroup M ! of G !, and try to embed it into a diagram

G ! G̃

M ! M̃

ell.

endo.

ell.

endo.

Levi Levi (18)

and identify G ! with some G[s] as endoscopic data. This situation turns out to be much

simpler: write

M ! =

(∏
i∈I ′

GL(ni )× SO(2m′+ 1)

)
×

(∏
i∈I ′′

GL(ni )×SO(2m′′+ 1)

)

embedded as a Levi subgroup into G ! = SO(2n′+ 1)×SO(2n′′+ 1), according to the

parentheses.

Lemma 3.3.14. Given a Levi subgroup M ! of G ! as above, there exist

• M: a Levi subgroup of G,

• (m′,m′′) ∈ Eell(M̃) such that the M ! can be realized as the endoscopic group,

• s ∈ EM !(M̃)

such that G ! = G[s] (see (15)) as elliptic endoscopic data of G̃. Moreover, the triple(
M/conj, (m′,m′′), s

)
is unique.

Proof. We have already written (m′,m′′) down. The remaining choices are clear: set I :=
I ′ t I ′′, M :=

∏
i∈I GL(ni )×Sp(W [) with dimF W [

= 2(m′+m′′), and s = (I ′, I ′′).
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3.4. Geometric transfer and the fundamental lemma

Geometric transfer factors The transfer factors are defined in [30]. In this article

it is more appropriate to call them geometric transfer factors. We begin by reviewing

the case of an elliptic endoscopic datum (n′, n′′) for G̃ = S̃p(W ). Let G ! = SO(2n′+ 1)×
SO(2n′′+ 1) be the endoscopic group. For δ ∈ Greg(F), δ̃ ∈ p−1(δ) and γ = (γ ′, γ ′′) ∈

G !reg(F) such that δ ↔ γ , we obtain an orthogonal decomposition

W = W ′⊕W ′′

δ = (δ′, δ′′)

by separating the eigenvalues from γ ′ and γ ′′; see [30, § 5.3] for details. The factor 1(γ, δ̃)

is of the form

1(γ, δ̃) = 10(δ
′, δ′′)1′(δ̃′)1′′(δ̃′′) ∈ µ8,

where

δ̃ = j (δ̃′, δ̃′′),

1′(δ̃′) :=
2+ψ −2

+

−

|2+ψ −2
+

−|
(δ̃′) defined relative to W ′,

1′′(δ̃′′) :=
2+ψ +2

+

−

|2+ψ +2
+

−|
(δ̃′′) defined relative to W ′′,

and10(δ
′, δ′′) is a factor which has nothing to do with the coverings or ψ ; it is unnecessary

to recall the precise definition here. Note that 1′(δ̃′)1′′(δ̃′′) does not depend on the choice

of (δ̃′, δ̃′′).

The notations 1G!,G̃ or 1(n′,n′′) will also be used whenever appropriate. Some basic

properties are recorded below.

1. Invariance. The factor 1 depends only on the conjugacy class of δ̃ and the stable

conjugacy class of γ .

2. Genuineness. For every ε ∈ µ8 we have 1(γ, εδ̃) = ε1(γ, δ̃).

3. Symmetry. Write 1n′,n′′(· · · ) to indicate the endoscopic datum in question. Then

1(n′,n′′)((γ
′, γ ′′), δ̃) = 1n′′,n′((γ

′′, γ ′),−δ̃)

where −δ̃ := (−1) · δ̃ using the −1 ∈ G̃ of Definition 2.2.2. It is implicit assumed

that (γ ′′, γ ′)↔ −δ relative to (n′′, n′) ∈ Eell(G̃), which is clear from the definition

of the correspondence of classes.

4. Cocycle condition. Let δ ↔ γ as before, so that Gδ is a maximal F-torus in G. If δ̃

is stably conjugate to δ̃1, one can attach a cohomological invariant

inv(δ̃, δ̃1) = inv(δ, δ1) ∈ H1(F,Gδ)

by the recipe (9). Here H1(F,Gδ) equals the pointed set D(Gδ,G; F) of (8) since

H1(F,G) is trivial, thus equals the abelianized version E(Gδ,G; F) used in the
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stabilization of trace formula [36, § 3.1]. It is actually a finite commutative group

of exponent 2.

On the other hand, for these data we have the endoscopic character

κ : H1(F,Gδ)→ µ2.

Below is a sketch of its definition in [30, § 5.3]. Decompose T := Gδ into T ′× T ′′

by separating the eigenvalues from γ ′ and γ ′′, then H1(F, T ′′)
∼
→ (µ2)

I ′′ for some

finite set I ′′ and κ is simply the composition of H1(F, T )� H1(F, T ′′) with the

product map (µ2)
I ′′
→ µ2, (λi )i 7→

∏
i λi . All in all, the cocycle condition asserts

that

1(γ, δ̃1) = 〈κ, inv(δ, δ1)〉 ·1(γ, δ̃).

5. Parabolic descent. Consider the diagram (15) and keep the notations thereof.

An element γ ∈ M ! ∩G !reg(F) is expressed in the form γ = ((γi )i∈I , γ
[) where

γ [ ∈ SO(2m′+ 1)×SO(2m′′+ 1); similarly we write δ̃ = ((δi )i∈I , δ̃
[) ∈ M̃ ∩Greg(F)

where δ̃[ ∈ S̃p(W [). If γ ↔ δ, parabolic descent asserts

1(γ, δ̃) = 1(γ [, δ̃[), (19)

the right-hand side being defined relative to (m′,m′′) ∈ Eell(S̃p(W [)). This is the

content of [30, Proposition 5.18].

Transfer of orbital integrals Now we can state the geometric transfer and the

fundamental lemma. Fix an elliptic endoscopic datum (n′, n′′) for G̃. For γ ↔ δ as above,

we define the notion of compatible Haar measures on G !γ (F) and Gδ(F) via the G !γ ' Gδ

furnished by Lemma 3.3.4; the choice of the isomorphism is immaterial. In what follows,

the Haar measures on G(F) and G !(F) are fixed, and we use compatible Haar measures

on G !γ (F) and Gδ(F) whenever γ ↔ δ.

Theorem 3.4.1 (Geometric transfer [30, Théorème 5.20]). Let f ∈ C∞c, (G̃). There exists

f ! ∈ C∞c (G
!(F)) such that for any γ ∈ 1G−reg(G !), we have∑

δ↔γ

1(γ, δ̃) fG̃(δ̃) = ( f !)G
!

(γ ),

where δ ranges over 0reg(G) and δ̃ ∈ p−1(δ) is arbitrary.

Due to the genuineness of 1, the term 1(γ, δ̃) fG̃(δ̃) is independent of the choice of δ̃.

Call f ! a transfer of f .

Remark 3.4.2. The transfer f ! as a function on G !(F) is not unique, but it induces a

canonical linear map

T(n′,n′′) : I (G̃)→ SI(G !)

between the spaces of normalized orbital integrals. When F is archimedean, T(n′,n′′) is

even continuous; see § 7.1.
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Theorem 3.4.3 (Fundamental lemma for the unit [30, Théorème 5.23]). In the unramified

setup summarized in § 2.3, take the hyperspecial subgroup K := StabSp(W )(L) of G(F),
regarded as a subgroup of G̃, and define fK ∈ C∞c, (G̃) by

fK (x̃) =

 ε−1, if x̃ ∈ εK , ε ∈ µ8,

0, otherwise.

Choose the unramified Haar measures on G(F) and G !(F). Let K ! be any hyperspecial

subgroup of G !(F), then we may take

f ! = 1K !

in Theorem 3.4.1 as a transfer of f .

More generally, consider a covering p : M̃ � M(F) of metaplectic type and let M !

be the endoscopic group associated to some (m′,m′′) ∈ Eell(M̃) (Definition 3.3.5). For

regular semisimple elements γ ↔ δ and δ̃ ∈ p−1(δ), one can still define the transfer factor

1(γ, δ̃) as follows. Following [32, Définition 3.2.3], for γ ∈ M !reg(F) and δ̃ ∈ M̃reg, write

M̃ =
∏

i∈I GL(ni , F)× S̃p(W [) and

γ = ((γi )i∈I , γ
[), δ̃ = ((δi )i∈I , δ̃

[)

as before. If γ ↔ δ, we set

1M !,M̃ (γ, δ̃) := 1(γ
[, δ̃[). (20)

The aforementioned properties of genuineness, symmetry, etc. of 1 still hold for 1M !,M̃ :

the GL-components do not interfere at all.

Theorem 3.4.4. The assertions in Theorems 3.4.1 and 3.4.3 continue to hold for an

endoscopic datum (m′,m′′) ∈ Eell(M̃), with respect to the transfer factor (20).

Proof. It suffices to consider the transfer of f = f I ⊗ f [ ∈ C∞c, (G̃), where f I ∈

C∞c
(∏

i∈I GL(ni , F)
)

and f [ ∈ C∞c, (S̃p(W [)). Then for γ = ((γi )i∈I , γ
[) as above,

∑
δ↔γ

1M !,M̃ (γ, δ̃) fM̃ (δ̃) = f I ((γi )i∈I ) ·

 ∑
δ[↔γ [

1(γ [, δ̃[) f [
S̃p(W [)

(δ̃[)


since the correspondence of classes is tautological on the GL-components. Hence we are

reduced to the corresponding assertions for S̃p(W [).

For the next results, the maps f 7→ fM̃ ∈ I(M̃) and f ! 7→ ( f !)M !
∈ SI(M !) in § 3.2 will

be used. In fact, we need an s-twisted version thereof.

Definition 3.4.5. Let M be a Levi subgroup of G = Sp(W ), and let M ! be an endoscopic

group associated to (m′,m′′) ∈ Eell(M̃). Consider the diagram (15) determined by some

s ∈ EM !(G̃). Write G ! = G[s]. For every f ! ∈ C∞c (G
!(F)) we define

( f !)s,M
!

: γ 7−→ ( f !)M !(z[s]γ )

where z[s] is as in Lemma 3.3.13; this is an element in SI(M !) and depends only on the

image of ( f !) in SI(G !). We shall call this the s-twisted parabolic descent.
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Theorem 3.4.6. Let G, M, M ! and s ∈ EM !(G̃) be as in the previous definition. For every

f ∈ C∞c, (G̃) let f ! be a transfer of f to G ! := G[s]. Then

( fM̃ )
!
= ( f !)s,M

!

as elements in SI(M !). In particular, ( f !)s,M
!

is independent of s. Denote it by f M ! .

Here ( fM̃ )
!
∈ SI(M !) stands for the transfer of fM̃ ∈ I (M̃).

Proof. It suffices to check this for γ ∈ M !reg(F) such that γ correspond to elements in

Greg(F) via both the maps µ1 and µ2 in (16), (17). Denote this Zariski open subset by

M !G-reg. By Proposition 3.2.2 for coverings,

( fM̃ )
!(γ ) =

∑
γ↔δ

1M !,M̃ (γ, δ̃) fM̃ (δ̃)

=

∑
γ↔δ

1M !,M̃ (γ, δ̃) fG̃(δ̃), δ̃ ∈ p−1(δ) is arbitrary.

The sum is taken over 4M
:= {δ ∈ 0reg(M) : γ ↔ δ}. By the definition of the

correspondence of classes, 4M is the set of conjugacy classes in some stable class in

MG-reg(F). Pick σ ∈ 4M . It is a standard fact that M ↪→ G identifies 4M with the set 4G

of conjugacy classes in the stable class of σ in Greg(F); see the proof of the second part of

Proposition 3.2.2. From Lemma 3.3.13, we conclude 4G
= {δ ∈ 0reg(G) : γ [s] ↔ δ} with

respect to the elliptic endoscopic datum attached to s.

The parabolic descent for transfer factors (19) implies

1M !,M̃ (γ, δ̃) = 1(γ
[, δ̃[) = 1G[s],G̃(γ [s], δ̃),

for the γ , δ̃ in the sum. Hence

( fM̃ )
!(γ ) =

∑
γ [s]↔δ

1G[s],G̃(γ [s], δ̃) fG̃(δ̃).

The right-hand side is just ( f !)(γ [s]), which equals ( f !)M !(γ [s]) by Proposition 3.2.2.

All in all, given (n′, n′′) ∈ Eell(G̃), our goal is to understand the dual

T ∨(n′,n′′) : SI(G !)∨→ I (G̃)

of the geometric transfer T(n′,n′′), in spectral terms. In other words, we aim to settle the

spectral transfer.

4. Results for the odd orthogonal groups

In this section, F always denotes a local field of characteristic zero. The materials below

are largely based upon Arthur’s monumental work [10].
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4.1. L-parameters

Generalities Let G be a connected reductive F-group; we assume G quasisplit for

simplicity. Its dual group Ĝ is endowed with a 0F -action which factors through

a finite quotient. The precise construction of Ĝ involves choosing an F-pinning

(T, B, (Eα)α∈1(B,T )) and taking the dual based root datum. Then Ĝ is endowed with

a dual pinning (T̂ , B̂, · · · ) that is 0F -stable. We refer to [12] for details. The L-group of

G is LG = Ĝ oWF .

An L-parameter for G is a homomorphism

φ :WDF −→
LG

such that

• the composition of φ with the projection LG →WF equals WDF → WF ;

• φ is continuous;

• the projection of Im(φ|WF ) to Ĝ consists of semisimple elements.

Call two L-parameters φ1, φ2 equivalent, written as φ1 ∼ φ2, if they are conjugate by

Ĝ. We say that φ is bounded if the projection of Im(φ) to Ĝ is relatively compact. Given

φ, define the S-group as

Sφ := ZĜ(Im(φ)).

Its identity connected component S0
φ is a connected reductive subgroup of Ĝ. Also define

Sφ,ad := Sφ/Z0F

Ĝ
,

Sφ,ad := π0(Sφ,ad), defined using the base point 1.

The same symbol φ will be used to denote the L-parameter and its equivalence class, if

there is no ambiguity to worry about.

One consequence is a correspondence between conjugacy classes of Levi subgroups

M ⊂ G and their dual avatars LM ↪→ LG, the inclusion respects the projections

onto WF .

By [12, Proposition 3.6] and its proof, we obtain the following properties:

(i) the Levi subgroups LM ⊂ LG [12, § 3.4] which contain Im(φ) minimally are

conjugate by S0
φ ;

(ii) let LM be such a Levi subgroup, then Z0F ,0
M̂

is a maximal torus of S0
φ .

For every equivalence class of L-parameters φ, we pick such a Levi subgroup LMφ and

denote by Mφ the corresponding Levi subgroup of G. Define

8(G) := {φ :WDF →
LG, φ L-parameter}/ ∼,

8bdd(G) := {φ ∈ 8(G) : φ is bounded},

82(G) := {φ ∈ 8(G) : Mφ = G},

82,bdd(G) := 82(G)∩8bdd(G).
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Let M be a Levi subgroup of G. There is a natural map 8(M)→ 8(G) induced by
LM ↪→ LG. It restricts to a map 8bdd(M)→ 8bdd(G). There is an action of a∗M,C on

8(M), written as φ 7→ φλ. In fact,

a∗M,C = X∗(M)⊗ZC,

Z0F ,0
M̂
= X∗(M)⊗ZC×,

thus it makes sense to define |w|λ ∈ Z0F ,0
M̂

for all w ∈WF , λ ∈ a∗M,C; the twist is

just φλ = | · |
λ
·φ. Then 8bdd(M) and 82,bdd(M) are stable under ia∗M . The ia∗M -orbit

decomposition makes 82,bdd(M) into a disjoint union of compact tori. We have

8bdd(G) =
⊔

M∈L(M0)/W G
0

82,bdd(M)/W G(M). (21)

Remark 4.1.1. For general G, one must choose a quasisplit inner twist G F̄
∼
→ G∗

F̄
together

with an F-splitting for G∗ to define LG. Moreover, a relevance condition has to be

imposed on φ. Roughly speaking, this means that the Levi subgroup M∗φ ⊂ G∗ (up to

conjugacy) attached to φ should come from G. We will not encounter non-quasisplit

groups in this article.

In the next subsection, we attach a tempered L-packet5φ = 5
G
φ to every φ ∈ 8bdd(G);

the archimedean case is largely a paraphrase of Harish-Chandra’s theory. Since some

aspects will be needed in § 7, we shall give a very sketchy review below. Details can be

found in [12, § 11] and [41, (4.3)].

The case F = C In this case WC = C×. It is customary to identify the complex groups

with their C-points. Consider the toric case G = T first. By the Langlands correspondence

for T , or local class field theory over C, the continuous homomorphisms T → C× are in

natural bijection with L-parameters φ : C×→ T̂ = X∗(T )⊗C×. Write zλ := λ⊗ z for

each λ ∈ X∗(T ) and z ∈ C×. The parameter φ can be uniquely expressed as

φ : C× −→ T̂

z 7−→ zλ z̄µ =
(

z
|z|

)λ−µ
|z|λ+µ

with λ,µ ∈ X∗(T )⊗C satisfying λ−µ ∈ X∗(T ); it is bounded if and only if Re(λ+µ) =

0.

In general, choose a maximal torus T ⊂ G. The natural map 8bdd(T )→ 8bdd(G)
induces a bijection

8bdd(G) ' 8bdd(T )/W (G, T ).

Note that the maximal tori of G are all conjugate. The description of 8bdd(G) is

parallel to the following representation-theoretical fact.

Theorem 4.1.2 (See eg. [18]). Let G be a connected reductive C-group.
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1. Choose a Borel pair (B, T ) for G. For each unitary, continuous character χ of

T , the induced representation IB(χ) is irreducible; IB(χ1) ' IB(χ2) if and only if

wχ1 = χ2 for some w ∈ W (G, T ).

2. The representations IB(χ) so obtained exhaust the tempered spectrum of G.

The admissible dual of G can be explicitly determined in terms of Langlands quotients;

see [18, I.4]. For us the tempered dual suffices.

The case F = R: discrete series and their limits In this case

WR = C× · 〈τ 〉, τ 2
= −1, ∀z ∈ C×, τ zτ−1

= z̄,

and WR � 〈τ 〉/{±1} = 0R. Choose the 0F -stable Borel pair (B̂, T̂ ) for Ĝ which is part

of the dual group datum. Let φ be an L-parameter for G. Upon conjugation, we may

assume φ(C×) ⊂ T̂ . We begin with the case φ ∈ 82,bdd(G) which will yield the L-packets

of discrete series.

Indeed, we may attach to φ|C× a pair (λ, µ) as in the complex toric case. It turns out

that the subgroup of LG generated by T̂ and φ(WR) is isomorphic to LT in the category

of L-groups, where T is a maximal R-torus of G such that T/ZG is anisotropic — do not

confuse it with the earlier symbol T in the Borel pair. Also choose a maximal compact

subgroup K containing (T ∩Gder)(R).
View λ, µ as elements of X∗(TC)⊗ZC; there is an ambiguity by W (GC, TC), which is

harmless. By [12, § 10.5], λ is regular in the sense that

∀α ∈ Σ(G, T )C, 〈λ, α∨〉 6= 0. (22)

In what follows, we make the usual identification

X∗(TC)⊗ZC ∼
→ t∗C. (23)

Choose a Borel subgroup BC ⊃ TC for which λ is dominant, and let ρ = ρBC be the

half-sum of positive roots. It turns out that λ ∈ ρBC + X∗(TC). Define a Harish-Chandra

parameter to be a pair Eλ = (λ, BC) where λ ∈ t∗C is BC-dominant, regular and λ ∈ ρBC +

X∗(TC); note that BC is uniquely determined by λ. To Eλ one may attach a representation

π(Eλ) ∈ 52,temp(G) with infinitesimal character λ modulo W (GC, TC).
There is an obvious W (GC, TC)-action on Harish-Chandra parameters. Recall that for

any Eλ1, Eλ2, [
π(Eλ1) ' π(Eλ2)

]
⇐⇒

[
∃w ∈ W (G, T ), wEλ1 = Eλ2

]
.

The L-packet in question is simply

5φ = 5λ :=
{
π(wEλ) : w ∈ W (G, T )\W (GC, TC)

}
.

Equivalently, it is the set of π ∈ 52,temp(G) such that

• π has infinitesimal character λ mod W (GC, TC),

• the central character of π equals the restriction of λ− ρ to ZG(R).
The last property no longer holds in the metaplectic setting; see (48).
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Keep the assumption that T/ZG is anisotropic. In the definition of Harish-Chandra

parameters Eλ = (λ, BC), if we allow the BC-dominant weight λ ∈ ρBC + X∗(TC) to be

singular, i.e. without assuming (22), one can still associate a representation π(Eλ) of G(R):
it is either

• zero, or

• tempered irreducible.

By [23, Theorem 1.1b], the first case happens if and only if 〈λ, α∨〉 = 0 for some compact

BC-simple root α (see [22, p. 249]). In the latter case π(Eλ) has infinitesimal character λ

modulo W (GC, TC) and central character (λ− ρ)|ZG (R), called the limit of discrete series

parametrized by Eλ.

As in the case of discrete series, the parameter Eλ for such a representation is unique

up to W (G, T ). Given a possibly singular infinitesimal character, we may choose a

representative λ which is dominant relative to a fixed BC. Define the corresponding

packet to be

5λ =
{
π(wEλ) : nonzero, w ∈ W (G, T )\W (GC, TC)

}
.

Thus being a limit of discrete series is a property of L-packets. An overview on limits

of discrete series can be found in [23]. The standard construction of these representations

is via coherent continuation or Zuckerman’s translation functor ψλλ1
[22, Chapter VII],

whose effect is to ‘shift the infinitesimal character’ from λ1 to λ. As for their L-parameters,

we refer to [41, (4.3.4)]. These constructions also work for covering of metaplectic type

over R; see Lemma 7.3.3.

4.2. Stable tempered characters

Let G = SO(2n+ 1), so that Ĝ = Sp(2n,C) endowed with trivial 0F -action. We shall

review the basic local results in [10] for G, in the tempered case at least. The first one is

the tempered local Langlands correspondence for G.

Fix a maximal compact subgroup K ⊂ G(F). Assume that K corresponds to a special

vertex in the Bruhat–Tits building if F is non-archimedean. In the unramified case we

assume K hyperspecial.

Theorem 4.2.1 [10, Theorem 1.5.1]. There is a decomposition

5temp(G) =
⊔

φ∈8bdd(G)

5φ,

where

• each 5φ is a finite set of tempered irreducible representations of G;

• there is a canonical injection

5φ −→ 5(Sφ,ad),

π 7−→ 〈·, π〉;

• the map above is bijective in the non-archimedean case;

• in the unramified case, 〈·, π〉 = 1 whenever π is unramified with respect to K .
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Moreover, the decomposition restricts to

52,temp(G) =
⊔

φ∈82,bdd(G)

5φ .

The finite subset 5φ is called the tempered L-packet associated to φ.

The construction of the L-packets of discrete series or their limits in the archimedean

case has been reviewed in § 4.1; further results, such as the stability of packets, will require

deeper techniques from Shelstad et al. For general F , Arthur’s approach of constructing

5φ is based on realizing G as a simple endoscopic group of the twisted group G̃L(2n);
we cannot delve into the details here.

Definition 4.2.2. For every φ ∈ 8bdd(G), define the map

S2φ :C∞c (G(F)) −→ C

f 7−→ f G(φ) :=
∑
π∈5φ

tr(π( f )).

Call it the stable character associated to φ. We write 5G
φ , S2G

φ to emphasize the

ambient group if need be.

The second fundamental result is the stability of packets.

Theorem 4.2.3 [10, Theorem 2.2.1]. The map S2φ factors through I(G)� SI(G). In

other words, f 7→ f G(φ) is a stable distribution on G.

Let M =
∏

i∈I GL(ni )×G[ be a Levi subgroup of G, where G[ is of the form SO(2n[+
1). Note that W G(M) acts on M by permuting I , up to inner automorphisms of M(F).
The aforementioned result extends to M . Naturally, they must be compatible with the

local Langlands correspondence for the factors GL(ni ) (see [20], for example), as well as

the correspondence for the smaller orthogonal group G[. All these are implicitly done

in [10].

Theorem 4.2.4. Let M =
∏

i∈I GL(ni )×G[ be a Levi subgroup of G, and choose P ∈
P(M) arbitrarily. Suppose that φM ∈ 82,bdd(M) has image φ in 8bdd(G), then

5G
φ =

⊔
σ∈5M

φM

{the irreducible constituents of IP (σ )} . (24)

Moreover, by decomposing φM as (�i∈Iφi )�φ[, we have

5M
φM
=

{
(�i∈Iσi )� σ

[
: σ [ ∈ 5G[

φ[

}
(25)

where σi ∈ 52(GL(ni )) is associated to φi ∈ 82,bdd(GL(ni )) by the local Langlands

correspondence, for each i ∈ I .

Proof. Discussed in the proof of [10, Lemma 2.23]. Notice that the disjointness of the

union (24) follows from Langlands’ disjointness theorem: indeed, if σ1, σ2 ∈ 5
M
φM

and

IP (σ1) intertwines with IP (σ2), then there exists w ∈ W G(M) such that wσ1 ' σ2. In

view of (25) and the action of W G(M), this would imply σ1 ' σ2.
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Finally, the representations σ ∈ 5temp(M) can be twisted by λ ∈ ia∗M :

σ 7→ σλ := e〈λ,HM (·)〉⊗ σ.

It preserves 52,temp(M) and is compatible with the similar twist on L-packets, namely

5M
φM,λ
= {σλ : σ ∈ 5

M
φM
} where φM ∈ 8bdd(M).

5. Geometric transfer and its adjoint

Throughout this section, F denotes a local field of characteristic zero; in § 5.3 we assume

F to be non-archimedean. Fix a non-trivial additive character ψ : F → S1.

5.1. Collective geometric transfer

Fix a symplectic F-vector space W of dimension 2n, and define the metaplectic covering

p : G̃ → G(F) accordingly. Also fix a minimal Levi subgroup M0 of G.

The unstable side In § 3.2 we have defined the space I (G̃) of normalized anti-genuine

orbital integrals, realized as a space of anti-genuine functions 0reg(G̃)→ C. Note that

0reg(G̃)→ 0reg(G) is a µ8-torsor by Theorem 2.3.3. Same for 0reg, ell(G̃), etc. For

non-archimedean F , the following definitions are essentially from [6]; for discussions about

the real case as well as some updates, see [8, § 1].

Definition 5.1.1. For each M ∈ L(M0), define FM (I (G̃)) to be the subspace of fG̃ ∈

I (G̃) such that f L̃ = 0 for every Levi subgroup L that does not contain a conjugate of

M . By Corollary 3.2.3, M ⊂ L implies F L(I (G̃)) ⊂ FM (I (G̃)). Therefore, we get a

filtration on I (G̃) indexed by the partially ordered set L(M0). It is thus natural to set

I
cusp

(G̃) := FG(I (G̃)),

grMI (G̃) := FMI (G̃)
/ ∑

L)M

F LI (G̃),

Igr(G̃) :=
⊕

M∈L(M0)/W G
0

grMI (G̃).

The same definitions also apply to the Levi subgroups of G̃, that is, coverings of

metaplectic type. A function whose image lies in I
cusp

(G̃) will be called cuspidal.

Note that for each M ∈ L(M0), the group W G(M) operates on I
cusp

(M̃) by conjugation.

By Corollary 3.2.3, the map fG̃ 7→ fM̃ induces an isomorphism

grMI (G̃)
∼
→ I

cusp
(M̃)W

G (M).

Hence

Igr(G̃)
∼
→

⊕
M∈L(M0)/W G

0

I
cusp

(M̃)W
G (M).
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In a parallel manner, the natural maps 0G-reg(M)→ 0reg(G) induce

0reg(G) =
⊔

M∈L(M0)/W G
0

0G-reg, ell(M)
/

W G(M),

0reg(G̃) =
⊔

M∈L(M0)/W G
0

0G-reg, ell(M̃)
/

W G(M).

We equip 0reg(G) with a Radon measure as follows.

1. For each M ∈ L(M0), endow 0reg, ell(M) with the Radon measure such that∫
0reg, ell(M)

α =
∑

T :ell./conj.

|W (M, T )|−1
∫

T (F)
α

for every Cc test function α. Here T ranges over the elliptic maximal tori of M
modulo conjugacy.

2. It is required that∫
0reg(G)

α =
∑

M∈L(M0)/W G
0

|W G(M)|−1
∫
0reg, ell(M)

α

for every Cc test function α.

This is exactly the definition in [6, § 1]; coverings do not intervene here. For α = fG ∈ I(G)
it reduces to Weyl’s integration formula for f .

Definition 5.1.2. For aG̃ , bG̃ ∈ I (G̃), define the hermitian pairing

(aG̃ |bG̃) :=

∫
0reg(G)

aG̃bG̃ .

By the usual bounds for normalized orbital integrals [31, Théorème 4.1.4], the pairing is

well defined.

The stable side Let (n′, n′′) ∈ Eell(G̃) and denote the corresponding endoscopic group

by G ! as usual. The preceding constructions have stable variants for G ! (see [6, § 1]),

which we review below.

Fix a minimal Levi subgroup M !0 of G !. The parabolic descent f G!
7→ f M ! for various

M ! ∈ L(M !0) allows us to define the filtration FM (SI(G !)) as before. Similarly, using

Corollary 3.2.3 we define

SIcusp(G !) := FG!(SI(G !)),

grM ! SI(G !) := FM ! SI(G !)
/ ∑

L !)M !

F L ! SI(G !)

∼
→ SIcusp(M !)W

G! (M !),
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SIgr(G !) :=
⊕

M !∈L(M !0)/W G!
0

grM ! SI(G !)

∼
→

⊕
M !∈L(M !0)/W G!

0

SIcusp(M !)W
G! (M !).

In this stable situation, a function whose image lies in SIcusp(G !) will be called cuspidal.

The space of stable strongly regular semisimple classes decomposes as

1reg(G !) =
⊔

M !∈L(M !0)/W G!
0

1G-reg(M !)/W G!(M !).

Prescribe a Radon measure on 1reg(G !) as follows.

1. For each M ! ∈ L(M !0), endow 1reg, ell(M !) with the Radon measure such that∫
1reg, ell(M !)

α =
∑

T !:ell./st. conj.

|W (M !, T !)(F)|−1
∫

T !(F)
α

for every Cc test function α. Here T ! ranges over the elliptic maximal F-tori of M !

modulo stable conjugacy.

2. We require that∫
1reg(G!)

α =
∑

M !∈L(M !0)/W G!
0

|W G!(M !)|−1
∫
1reg, ell(M !)

α

for every Cc test function α.

To define the hermitian pairing of stable orbital integrals, we must incorporate the

abelian group

E(G !σ ,G !; F) := ker
[

H1(F,G !σ )→ H1
ab(F,G !)

]
(26)

for every σ ∈ 1reg(G !); here H1
ab(F,−) stands for the functor of abelianized Galois

cohomology, as recalled in [36, §3.1] (see also Borovoi [13] or Labesse [29, I]). There is

a functorial abelianization map ab1
: H1(F,−)→ H1

ab(F,−) between pointed sets; it is

bijective for tori or for non-archimedean F . In particular, D(G !σ ,G !; F)
∼
→ E(G !σ ,G !; F)

in the non-archimedean setting.

The hermitian pairing is defined as

(a!|b!) :=
∫
σ∈1reg(G!)

|E(G !σ ,G !; F)|−1a!(σ )b!(σ )

for every a!, b! ∈ SI(G !). As in the case for G̃, the convergence is guaranteed by the

standard bounds for normalized stable orbital integrals. For archimedean F , the number

|E(G !σ ,G !; F)| is best explained by enlarging G ! to a K -group [7, § 4]: it then equals the

number of conjugacy classes (in the sense of K -group) in the stable class of σ . See [51,

§ 4.17] for further discussions.
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Remark 5.1.3. The measure on 1reg(G !) satisfies∫
σ∈1reg(G!)

∑
γ∈0reg(G!)
γ 7→σ

α(γ ) =

∫
γ∈0reg(G!)

α

for every α ∈ Cc(0reg(G !)). This is a direct consequence of our definition of measures:

for non-archimedean F it is actually [6, (1.3)], whereas for F = R, one may argue by

Shelstad’s description of stable conjugacy via W (G, T )\W (G, T )(F) reviewed in § 7.2.

Remark 5.1.4. Both Igr(G̃) and SI(G !) carry natural L(M0)-filtrations coming from the

gradings. In § 6.2 we exhibit filtration-preserving isomorphisms I (G̃)
∼
→ Igr(G̃) and

SI(G !) ∼→ SIgr(G !) by means of the trace Paley–Wiener theorems.

Collective transfer The geometric transfers to various G ! can now be woven into a

‘collective’ transfer. We shall follow [6] closely.

Definition 5.1.5. Set

0E
reg,ell(G̃) :=

⊔
G!∈Eell(G̃)

1G-reg,ell(G
!)

where, by a standard abuse of notations, we use G ! to denote an endoscopic datum.

An element in 0E
reg,ell(G̃) will be written in the form (G !, σ ) where σ ∈ 1G-reg,ell(G !),

or simply as σ according to the context. The same construction applies to any covering

of metaplectic type M̃ =
∏

i∈I GL(ni , F)× S̃p(2n[) and its elliptic endoscopic data: the

factors GL(ni ) will not interfere.

Next, note that W G(M) has a well-defined action on 0E
G-reg,ell(M̃) for each M ∈ L(M0),

namely by permuting the indexing set I of its GL-components. Thus it makes sense to

define

0E
reg(G̃) :=

⊔
M∈L(M0)/W G

0

0E
G-reg,ell(M̃)

/
W G(M).

Equip each 0E
reg,ell(M̃)

/
W G(M) with the quotient measure, and equip 0E

reg(G̃) with

the measure of disjoint union. Elements in 0E
reg(G̃) are written as (M !, σ ) where σ ∈

1G-reg,ell(M !)/W G(M), or more succinctly as σ whenever appropriate.

Remark 5.1.6. In [6], there are two ways to define the set 0E
reg(· · · ) for reductive groups,

say by looking at either (i) elliptic endoscopic data of Levi, or (ii) Levi of elliptic

endoscopic data. We have seen in Lemma 3.3.13 that some subtleties arise in the

metaplectic case. In this article we follow the previous viewpoint, as in [6, (2.6) and

(2.9)].

Definition 5.1.7. Define a subspace IE (G̃) of
⊕

G!∈Eell(G̃) SI(G !) (always abusing

notations...) as follows. Its elements are of the form f E = ( f G!
∈ SI(G !))G! such that
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• for every M ∈ L(M0) with M ! ∈ Eell(G̃), the function(
f G[s]

)s,M !
∈ SI(M !), s ∈ EM !(G̃)

in Definition 3.4.5 is independent of s;

• denote the function above by f M ! , we require that f M !
∈ SI(M !)W G (M), where W G(M)

acts by permuting the indexing set I .

Also, define the cuspidal subspace

IEcusp(G̃) :=
⊕

G!∈Eell(G̃)

SIcusp(G !) ⊂ IE (G̃).

The definition of IE (G̃) is best explained by the proof of the following result.

Proposition 5.1.8. The transfer maps fG̃ 7→ f G! assemble into the ‘collective transfer’

T E
: I (G̃) −→ IE (G̃)

fG̃ 7−→ f E :=
(

f G!
)

G!∈Eell(G̃)
.

Its restriction to I
cusp

(G̃) gives I
cusp

(G̃)→ IEcusp(G̃).

Proof. Let f ∈ I (G̃). For every (M !, σ ) ∈ 0E
reg(G̃) and s1, s2 ∈ EM !(G̃), we have(

f G[s1]
)s1,M !

= ( fM̃ )
!
=

(
f G[s2]

)s2,M !

by Theorem 3.4.6. The required independence of s and W G(M)-invariance for the first

assertion follow at once.

Now assume f ∈ I
cusp

(G̃). Given G ! and its Levi subgroup M !, by Lemma 3.3.14 we

produce a Levi subgroup M of G as well an s ∈ EM !(G̃), such that G ! = G[s] as endoscopic

data and we have a diagram as (15). Elements in general position of 1reg(M !) can be

expressed as z[s]σ for some σ ∈ 1G-reg(M !). Theorem 3.4.6 then implies

( f G!)M !(z[s]σ) = f G!(z[s]σ) =
(

fM̃

)!
(σ ) = 0.

Hence f E ∈ IEcusp(G̃), as asserted.

Definition 5.1.9. The correspondence of conjugacy classes and the transfer factors admit

collective versions as follows. If (M !, σ ) ∈ 0E
reg(G̃) and δ ∈ 0reg(G) corresponds to σ via

the diagram (14), then δ ∈ 0G-reg,ell(M)/W G(M); we write σ ↔ δ for such (σ, δ). For

every δ̃ ∈ p−1(δ) we set

1(σ, δ̃) :=
∑

w∈W G (M)

1M !,M̃ (wσw
−1, δ̃). (27)

Note that by G-regularity, there is at most one nonzero term in the sum. It is customary

to set 1(σ, δ̃) = 0 if σ 6↔ δ.
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In view of the previous definitions, the space IE (G̃) may be embedded into the space

of functions 0E
reg(G̃)→ C: an element f E = ( f G!)G!∈Eell(G̃) corresponds to the function

(M !, σ ) 7−→ f M !(σ ) :=
(

f G[s]
)s,M !

(σ ) (28)

for any choice of s ∈ EM !(G̃). Moreover, IEcusp(G̃) is precisely the subspace of functions

supported in 0E
reg,ell(G̃). Now the geometric transfer can be rephrased in the collective

terminology.

Proposition 5.1.10. For every fG̃ ∈ I (G̃), we have

f E = T E ( fG̃) : σ 7→
∑
σ↔δ

1(σ, δ̃) fG̃(δ̃)

as a function on 0E
reg(G̃).

Proof. Let (M !, σ ) ∈ 0E
reg(G̃). By Theorem 3.4.6, f E (σ ) equals(

f G[s]
)s,M !

(σ ) = ( fM̃ )
!(σ ).

On the other hand, the G-regularity of σ entails

( fM̃ )
!(σ ) =

∑
δ∈0G-reg,ell(M)

σ↔
M
δ

1M !,M̃ (σ, δ̃) fM̃ (δ̃)

=

∑
δ∈0G-reg,ell(M)/W G (M)

(M !,σ )↔δ

∑
w∈W G (M)

1M !,M̃ (wσw
−1, δ̃) fM̃ (δ̃)

=

∑
δ∈0reg(G)
σ↔δ

1(σ, δ̃) fG̃(δ̃),

in which the last 1 is the collective geometric transfer factor.

The next result will serve as a change of variables in certain integrations over 0reg,ell(G̃).

Lemma 5.1.11 (Cf. [6, Lemma 2.3]). For all α ∈ Cc(0reg(G̃)) and β ∈ Cc(0
E
reg(G̃)) such

that α is genuine, we have∫
δ∈0reg,ell(G)

∑
σ∈0E

reg,ell(G̃)
σ↔δ

β(σ)1(σ, δ̃)α(δ̃) dδ

=

∫
σ∈0E

reg,ell(G̃)

∑
δ∈0reg,ell(G)

σ↔δ

β(σ)1(σ, δ̃)α(δ̃) dσ

where δ̃ ∈ p−1(δ) is arbitrarily chosen.
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Proof. In view of Remark 5.1.3, the left-hand side of the assertion equals∫
θ∈1reg,ell(G)

∑
σ∈0E

reg,ell(G̃)
σ↔θ

∑
δ 7→θ

β(σ)1(σ, δ̃)α(δ̃). (29)

Writing σ ↔ θ is legitimate, since the correspondence of classes depends only on the

stable conjugacy classes.

On the other hand, the second projection

pr2 :
{
(θ, σ ) ∈ 1reg,ell(G)×0

E
reg,ell(G̃) : σ ↔ θ

}
−→ 0E

reg,ell(G̃)

is a bijective: its inverse is given by the maps (11). To do integration, note that 0E
reg,ell(G̃)

can be described as the set of pairs (T !, σ ) where T ! ⊂ G ! is an elliptic maximal F-torus

(taken up to stable conjugacy), and σ ∈ T !reg(F)/W (G !, T !)(F). When (T !, σ ) varies, the

inverse image by pr2 runs over the triples (T, θ, σ ) where

• T : elliptic maximal torus of G, taken up to stable conjugacy;

• θ ∈ Treg(F)/W (G, T )(F);

• σ ∈ 0E
ell,reg(G̃) satisfying σ ↔ θ .

Moreover, to such data we pick a standard isomorphism T !
∼
→ T sending σ to θ . Notice

that each elliptic maximal torus T ⊂ G occurs in some (T, θ, σ ): this is contained in [36,

Lemme 5.2.1].

In view of the definition of the measure on 0E
reg,ell(G̃), the right-hand side of the

assertion can be transformed into∑
T⊂G

elliptic
/st. conj.

∫
θ∈Treg(F)/W (G,T )(F)

∑
σ∈0E

reg,ell(G̃)
σ↔θ

∑
δ 7→θ

β(σ)1(σ, δ̃)α(δ̃).

By the definition of the measure on 1reg,ell(G), this equals (29).

5.2. Adjoint transfer

Hereafter we make systematic use of collective transfer factors and correspondences.

Definition 5.2.1. For σ ∈ 0E
reg,ell(G̃) and δ ∈ 0reg,ell(G) such that σ ↔ δ, define the

adjoint transfer factor as

1(δ̃, σ ) := |D(Gδ,G; F)|−11(σ, δ̃),

where δ̃ ∈ p−1(δ) as usual. The same definition carries over to coverings of metaplectic

type and the elliptic conjugacy classes therein.

More generally, let σ ∈ 0E
reg(G̃) and δ ∈ 0reg(G) such that σ ↔ δ. By Definition

5.1.9, there exists a unique M ∈ L(M0)/W G
0 such that σ ∈ 0E

G-reg,ell(M̃)/W G(M), δ ∈

0G-reg,ell(M)/W G(M). Set

1(δ̃, σ ) :=
∑

w∈W G (M)

1M̃ (δ̃, wσw
−1)

https://doi.org/10.1017/S1474748016000384 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000384


Spectral transfer for metaplectic groups. I. Local character relations 67

where 1M̃ (· · · ) denotes the adjoint transfer factor for M̃ ; it also equals∑
w1M̃ (wδ̃w

−1, σ ). It is customary to set 1(δ̃, σ ) = 0 if δ 6↔ σ .

Recall that when σ ↔ δ, the usual transfer factor satisfies a similar equation (see (27))

1(σ, δ̃) =
∑

w∈W G (M)

1M̃ (wσw
−1, δ̃) =

∑
w∈W G (M)

1M̃ (σ,wδ̃w
−1).

In all cases, the sum over W G(M) contains at most one nonzero term. Also note that

1(δ̃, σ ) is anti-genuine in δ̃. Hence products of the form 1(σ, δ̃)1(δ̃, σ1) only depend on

(σ, δ, σ1).

For δ̃, δ̃1 ∈ 0reg(G̃), put

δδ̃,δ̃1
:=

 ε, if δ̃1 = εδ̃, ε ∈ µ8,

0, otherwise,

whereas for σ, σ1 ∈ 0
E
reg(G̃), we denote by δσ,σ1 ∈ {0, 1} the usual Kronecker’s delta. The

following lemma for reductive linear groups can be found in [6, Lemma 2.2, (2.10) and

(2.11)].

Lemma 5.2.2. For all δ̃, δ̃1 ∈ 0reg(G̃),∑
σ∈0E

reg(G̃)

1(δ̃, σ )1(σ, δ̃1) = δδ̃,δ̃1
.

For all σ, σ1 ∈ 0
E
reg(G̃), ∑

δ∈0reg(G)

1(σ, δ̃)1(δ̃, σ1) = δσ,σ1

where δ̃ ∈ p−1(δ) is arbitrary.

Proof. We begin with the case δ̃, δ̃1 ∈ 0reg,ell(G̃) for the first assertion. The elements

σ with 1(δ̃, σ )1(σ, δ̃1) 6= 0 are necessarily elliptic. We may assume that δ := p(δ̃) and

δ1 := p(δ̃1) are stably conjugate, otherwise both sides of the first assertion are zero. Then

1(δ̃, σ )1(σ, δ̃1) = |D(Gδ,G; F)|−11(σ, δ̃)1(σ, δ̃1).

Furthermore, by the genuineness of 1(σ, ·) and Lemma 3.3.7, we may assume that δ̃ and

δ̃1 are stably conjugate, so that δδ̃,δ̃1
= δδ,δ1 .

By a local variant of [36, Lemme 5.2.1] (same proof), there is a natural bijection

(δ, κ)
1:1
←→ σ ∈ 0E

ell,reg(G̃),

where δ ∈ 1reg,ell(G) and κ belongs to the Pontryagin dual R(Gδ,G; F) of H1(F,Gδ);

it is characterized by (i) σ ↔ δ, and (ii) κ is the endoscopic character associated to δ
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and σ (recall § 3.3). This applies to those σ and δ
st.
∼ δ1 satisfying 1(σ, δ̃)1(σ, δ̃1) 6= 0: it

follows from the cocycle property for 1(σ, ·) that

1(σ, δ̃)1(σ, δ̃1) = 〈κ, inv(δ, δ1)〉

for the κ so obtained. Note that D(Gδ,G; F) = H1(F,Gδ) since H1(F,G) = {1}. Hence∑
σ∈0E

reg(G̃)

1(σ, δ̃)1(σ, δ̃1) =
∑
κ

〈κ, inv(δ, δ1)〉 = |D(Gδ,G; F)|δδ,δ1

by Fourier inversion on H1(F,Gδ).

As for the second assertion in the elliptic case, assume σ, σ1 ∈ 0
E
reg,ell(G̃). As before, the

classes δ having nonzero contribution must lie in a single elliptic stable conjugacy class.

Enumerate these classes as δ1, . . . , δm . Choose δ̃i
∈ p−1(δi ) for i = 1, . . . ,m so that all

the δ̃i are stably conjugate; this can always be done in view of Lemma 3.3.7. On the other

hand, the set
{
σ ∈ 0E

ell,reg(G̃) : σ ↔ δ
}

also has cardinality m, and we may enumerate its

elements as σ 1, . . . , σm . Indeed, this follows from the aforementioned bijection (δ, κ)
1:1
←→

σ , and we have m = |H1(F,Gδ)|. Form the matrices

A :=
(
1(δ̃i , σ j )

)
16i, j6m

, B :=
(
1(σ i , δ̃ j )

)
16i, j6m

.

The first assertion amounts to AB = 1 while the second amounts to B A = 1. This

concludes the elliptic case. It is routine to extend this to coverings of metaplectic type.

Finally, the general, non-elliptic case follow from Definition 5.2.1. Take the

first assertion for example. As before, we reduce to the case in which δ, δ1 ∈

0G-reg,ell(M)/W G(M), and the sum may be taken over σ ∈ 0E
G-reg,ell(M̃)/W G(M), where

M ∈ L(M0). Upon a W G(M)-action we may assume δ
st
∼ δ1 in M . Then∑

σ∈0E
G-reg,ell(M̃)/W G (M)

1(δ̃, σ )1(σ, δ̃1)

=

∑
σ∈0E

G-reg,ell(M̃)/W G (M)

u,v∈W G (M)

1M̃ (uδ̃u
−1, σ )1M̃ (vσv

−1, δ̃1).

And this reduces immediately to the elliptic case for M̃ .

Definition 5.2.3. The adjoint transfer factor yields an adjoint transfer map

TE : {functions 0E
reg(G̃)→ C} −→ {anti-genuine functions 0reg(G̃)→ C}

b 7−→

δ̃ 7→ ∑
σ∈0E

reg(G̃)

1(δ̃, σ )b(σ )

 .
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Likewise, one may also regard T E as a linear map

T E
: {anti-genuine functions 0reg(G̃)→ C} −→ {functions 0E

reg(G̃)→ C}

a 7−→

[
σ 7→

∑
σ↔δ

1(σ, δ̃)a(δ̃)

]
.

Proposition 5.2.4. Extend the definition of T E as above. Then TE and T E are mutually

inverse. In particular, TE ◦ T E
= id : I (G̃)→ I (G̃); consequently the transfer map

T E
: I (G̃)→ IE (G̃) is injective.

Proof. Let a ∈ I (G̃), then its image under TE sends δ̃ ∈ 0reg(G̃) to

∑
σ

1(δ̃, σ )

∑
δ1

1(σ, δ̃1)a(δ̃1)

 =∑
δ1

(∑
σ

1(δ̃, σ )1(σ, δ̃1)

)
a(δ̃1)

=

∑
δ1

δδ̃,δ̃1
a(δ̃1) = a(δ̃)

by Lemma 5.2.2; note that each sum is finite, and the last equality follows from the

definition of δδ̃,δ̃1
together with the anti-genuineness of a. This shows that TET E

= id.

The proof for the other side is similar.

Define a hermitian pairing on IEcusp(G̃) as follows

(aE
∣∣bE ) := ∑

G!∈Eell(G̃)

ι(G̃,G !)(a!|b!) (30)

where

• aE = (a!)G!∈Eell(G̃) and bE = (b!)G!∈Eell(G̃) are in IEcusp(G̃);

• the hermitian pairing (a!|b!) is defined relative to G !;

• for G ! arising from (n′, n′′) ∈ Eell(G̃), we define

ι(G̃,G !) =
∣∣∣ZĜ!

∣∣∣−1
=


1
4 , n′, n′′ > 1,
1
2 , n > 0, n′ = 0 or n′′ = 0,

1, n = 0;

this is the same as the global coefficient used in the stabilization of trace formula [36,

Définition 5.2.5].

Corollary 5.2.5. The map T E is an isometry from I
cusp

(G̃) onto its image inside

IEcusp(G̃).

Proof. In view of Proposition 5.2.4, it suffices to show that

(T E (a)
∣∣bE ) = (a∣∣TE (bE )), a ∈ I

cusp
(G̃), bE ∈ IEcusp(G̃).
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From the definition, (T E (a)|bE ) equals∑
G!∈Eell(G̃)

ι(G̃,G !)
∫
σ∈1G-reg,ell(G!)

∑
δ∈0reg,ell(G)

σ↔δ

|E(G !σ ,G !; F)|−1b!(σ )1(σ, δ̃)a(δ̃).

Recall the definition (26) for E(G !σ ,G !; F). We contend that for σ ↔ δ as above,

ι(G̃,G !)|E(Gδ,G; F)|−1
= |D(G !σ ,G !; F)|−1. (31)

Indeed, write T = Gδ and identify T with T ! := G !σ . We have H1(F,G) = {1}, thus

D(T,G; F) = H1(F, T ) and

D(T,G; F)/E(T,G !; F) ' Im[H1(F, T )→ H1
ab(F,G !)]

= Im[H1(F,G !)→ H1
ab(F,G !)] (apply [26, 10.2 Lemma])

= H1
ab(F,G !) (apply [29, Proposition 1.6.7]).

The last term is canonically isomorphic to the Pontryagin dual of ZĜ! : this follows from

the [13, Propositions 1.10, 2.8 and § 4]. Since ι(G̃,G !) =
∣∣∣ZĜ!

∣∣∣−1
, this establishes (31).

Now we may write (T E (a)|bE ) as∫
σ∈0E

reg,ell(G̃)

∑
δ∈0reg,ell(G)

σ↔δ

b(σ )|D(Gδ,G; F)|−11(σ, δ̃)a(δ̃).

Apply Lemma 5.1.11 to transform it into∫
δ∈0reg,ell(G)

∑
σ∈0E

reg,ell(G̃)
σ↔δ

b(σ )|D(Gδ,G; F)|−11(σ, δ̃)a(δ̃).

By Definition 5.2.1, this equals (a
∣∣TE (bE )).

5.3. Image of non-archimedean cuspidal transfer

Assume F non-archimedean in this subsection.

Desiderata We have defined the collective transfer map

T E
: I (G̃) −→ IE (G̃)

I
cusp

(G̃) −→ IEcusp(G̃) =
⊕
G!

SIcusp(G !).

Our aim is to show that T E is an isomorphism. The general case will be done in Corollary

6.3.3. Here we consider the cuspidal part only; the injectivity follows from Proposition

5.2.4, and the isomorphy is implied by the following result.

Theorem 5.3.1. We have T E (I
cusp

(G̃)) = IEcusp(G̃).
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Corollary 5.3.2. The inverse of T E
: I

cusp
(G̃)→ IEcusp(G̃) is the adjoint transfer TE .

Proof. Apply Proposition 5.2.4.

The proof of Theorem 5.3.1 occupies the rest of this section. Firstly, we have to review

the geometric transfer on the level of Lie algebras.

Standard endoscopy on Lie algebras A succinct introduction to the endoscopy on

Lie algebras can be found in [15]; for a comprehensive treatment, see [49].

In the following discussions, G denotes an arbitrary connected reductive F-group. Let

(G !,G!, s, ξ̂ ) be an elliptic endoscopic datum for G, where G ! is the endoscopic group (see

[49, § 1.3]); in particular G ! is quasisplit.

Denote by 1G!,G(·, ·) a geometric transfer factor on Lie algebras, deprived of the factor

1IV of Langlands–Shelstad; it is canonical only up to a multiplicative constant of absolute

value 1. In this setting we still have:

• the normalized orbital integrals X 7→ f [G(X) for X ∈ 0reg(g), f [ ∈ C∞c (g(F)), as well

as the stable version Y 7→ ( f [)G(Y ) when G is quasisplit;

• the spaces I(g), its stable variant SI(g!), as well as their cuspidal subspaces Icusp(g),

SIcusp(g
!) since the parabolic descent (see Proposition 3.2.2) can also be defined on

Lie algebras;

• the correspondence of conjugacy classes on Lie algebras, written as Y ↔ X ;

• the geometric transfer with respect to 1G!,G(· · · ): for each a ∈ I(g) we set

T (a) : Y 7−→
∑

X∈0reg(g)
Y↔X

1G!,G(Y, X)a(X), Y ∈ 1G-reg(g
!).

The Main Theorem of the endoscopy for Lie algebras, due primarily to B. C. Ngô

and Waldspurger, asserts that T induces a linear map I(g)→ SI(g!). It restricts to

Icusp(g)→ SIcusp(g
!).

We remark that for the Lie algebras, there is no need to introduce the z-pairs as in [28,

§ 2.2].

There is a finite group OutG(G !) of outer F-automorphisms of G !; see [9]. Thus it

acts on 1reg(g
!), the space of stable regular semisimple classes in g!(F). Note that if

1G!,G is a transfer factor, then so is 1G!,G(τ
−1(·), ·). For non-quasisplit G, this notion of

outer automorphisms of an endoscopic datum can be quite subtle, as illustrated by the

following result.

Theorem 5.3.3 (Arthur, Hiraga–Saito). There exists a canonical homomorphism

χ : OutG(G !)→ C×, which is trivial for quasisplit G, such that for every choice of 1G!,G ,

1G!,G(τ
−1(Y ), X) = χ(τ)1G!,G(Y, X), τ ∈ OutG(G !),

for all conjugacy classes X (resp. stable conjugacy classes Y ) in greg(F) (resp. in g!reg(F))
in correspondence.

Proof. See [9, (3.1)] or [21, § 6].
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We will not need the precise description of χ . Implicit in the assertion above is the fact

(Y ↔ X) ⇐⇒ (τ−1(Y )↔ X). As an immediate consequence, the image of transfer lies

in the subspace

SI(g!,G) :=
{

b ∈ SI(g!) : ∀τ ∈ OutG(G !), b(τ−1(·)) = χ(τ)b(·)
}
.

Define SIcusp(g
!,G) := SI(g!,G)∩ SIcusp(g

!). We are actually interested in the germs

around 0 of cuspidal normalized orbital integrals. To be precise, we shall consider the

spaces

Gcusp(g) := lim
−→
U

Icusp(U),

SGcusp(g
!,G) := lim

−→
V

SIcusp(V,G),

where U (resp. V) ranges over the invariant open subsets of g(F) (resp. stably

invariant and OutG(G ′)-invariant open subsets of g!(F)) containing 0, and Icusp(U) (resp.

SIcusp(V,G)) is defined as above except that we consider solely the orbital integrals along

the classes inside U (resp. V). All in all, the transfer map induces a transfer of cuspidal

germs:

GT : Gcusp(g)→ SGcusp(g
!,G)

for our chosen 1G!,G .

As in § 5.2, the adjoint transfer factor can also be defined on Lie algebras, namely

1G,G!(X, Y ) := |D(G X ,G; F)|−11G!,G(Y, X) (32)

for Y ↔ X . We use it to invert the transfer.

Theorem 5.3.4 (Arthur). The map GT is surjective. In fact, if b ∈ SGcusp(g
!,G) then the

function

a : X 7−→
∑

Y∈1reg,ell(g
!)

Y↔X

1G!,G(X, Y )b(Y )

on 0reg,ell(g) belongs to Gcusp(g), and satisfies GT (a) = b.

Proof. See the first part of the proof of [6, Lemma 3.4]. Note that Arthur implicitly

assumed in his proof that χ ≡ 1, so he worked with the space SI(g!)OutG (G ′) instead of

SI(g!,G). It is straightforward to adapt the cited arguments to the general case.

Non-standard endoscopy on Lie algebras The non-standard endoscopy for Lie

algebras is developed in [49, § 1.8]. We give a sketch here. A non-standard endoscopic

datum is a triple (G1,G2, j∗) where G1, G2 are quasisplit simply connected semisimple

groups; choose a Borel pair (Bi , Ti ) for Gi (i = 1, 2), the crucial datum j∗ is an

isomorphism j∗ : X∗(T1,F̄ )Q
∼
→ X∗(T2,F̄ )Q of Q-vector spaces, such that there exist

bijections

τ̌ : Σ(G1, T1)
∨

F̄ → Σ(G2, T2)
∨

F̄ ,

τ : Σ(G2, T2)F̄ → Σ(G1, T1)F̄ ,
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satisfying

(i) τ and τ̌ are mutually inverse up to α ↔ α∨;

(ii) for roots αi for Ti,F̄ (i = 1, 2), the elements j∗(α∨1 ) and τ̌ (α∨1 ) (resp. j∗(α2) and

τ(α2)) are proportional by a factor in Q>0, where j∗ denotes the dual of j∗;

(iii) the maps j∗, j∗ are 0F -equivariant.

In short, the root systems of G1, G2 become proportional under j∗. As ti (F̄) =
X∗(Ti )Q⊗Q F̄ , from j∗ we may construct an isomorphism t1/W1

∼
→ t2/W2 between

F-varieties, where Wi := NGi (Ti )/Ti . This gives a bijection between1reg(g1) and1reg(g2)

which preserves ellipticity. Write the bijection in the familiar way X1 ↔ X2. The

non-standard transfer can now be enunciated.

Theorem 5.3.5 (B. C. Ngô, Waldspurger). There is a linear map T1,2 : SI(g1)→

SI(g2), written as f G1 7→ f G2 , which is characterized by f G1(X1) = f G2(X2) whenever

X1 ↔ X2.

Remark 5.3.6. Note the following properties.

1. As in the standard case, one readily shows that T1,2 preserves cuspidality.

2. Since (G1,G2, j∗) is a non-standard endoscopic datum if and only if (G2,G1, j−1
∗ )

is, and the characterization of non-standard transfer is clearly symmetric, we have

T2,1T1,2 = id, T1,2T2,1 = id.

In particular, non-standard transfer is an isomorphism. On the level of germs at 0,

it induces

GT 1,2 : SGcusp(g1)
∼
→ SGcusp(g2)

3. The simply connectedness condition can be dropped. More precisely, let Gi → Gi
(i = 1, 2) be isogenies. They do not affect the correspondence of stable conjugacy

classes on Lie algebras and the non-standard transfer f G1(X1) = f G2(X2) (for

X1 ↔ X2) still holds in this context. This mechanism is explicated in detail in

[30, Lemme 8.4].

What we will need is just the non-standard triplet (Sp(2n),Spin(2n+ 1), j∗), where j∗
is described in [49, p. 15] (see also [30, § 8.2]). If we replace Spin(2n+ 1) by its quotient

SO(2n+ 1), as justified in the preceding remark, the correspondence of classes is given

by matching eigenvalues. Namely, X1 ∈ so(2n)reg corresponds to X2 ∈ so(2n+ 1)reg if and

only if

X1 has eigenvalues a1, . . . , an,−an, . . . ,−a1

and

X2 has eigenvalues a1, . . . , an, 0,−an, . . . ,−a1

for suitable a1, . . . , an ∈ F̄ . This may be compared with the correspondence for the

endoscopic datum (n, 0) of S̃p(2n).
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Semisimple Descent Return to the metaplectic setup. Let p : G̃ = S̃p(W )→ Sp(W )

be the metaplectic covering with dimF W = 2n. Fix an endoscopic datum (n′, n′′) ∈ Eell(G̃)
with endoscopic group G !. By Proposition 5.1.8, we have the transfer map T(n′,n′′) :
I

cusp
(G̃)→ SIcusp(G !).

We need the semisimple descent for normalized orbital integrals. This is elementary as

it is based solely on harmonic analysis. See [36, § 4.4.1] or [31, § 4.2]; some notions below

are borrowed from [14].

Let δ ∈ G(F)ss and choose δ̃ ∈ p−1(δ). We consider certain invariant open subsets of G
(called completely invariant in [14, § 2.1]) of the form

Ũ =
{

x−1 exp(X)δ̃x : X ∈ U [, x ∈ G(F)
}
·µ8

where U [ 3 0 is a Gδ(F)-invariant open subset of gδ(F); we assume U [ to be G-admissible

in the sense of loc. cit., sufficiently small so that exp is a well-defined homeomorphism onto

its image in G̃. Once the Haar measures on G(F) and Gδ(F) are chosen, the semisimple

descent around δ̃ is given by a map

I (Ũ) −→ I(U [)G
δ(F)

fG̃ 7−→ f [Gδ
,

where I (Ũ) is the space of anti-genuine normalized orbital integrals along classes inside

Ũ ⊂ G̃; similarly for I(U [) on the Lie algebra gδ, upon which Gδ(F) acts. The semisimple

descent satisfies

fG̃(exp(X)δ̃) = f [Gδ
(X), X ∈ U [reg.

Moreover, when δ is elliptic, the descent induces I
cusp

(Ũ)→ Icusp(U [)G
δ(F). Also note

that for X ∈ U [reg, we have Gexp(X)δ = (Gδ)X .

We also need the semisimple descent for stable orbital integrals for G ! in [51, § 4.8]. It

is much deeper as it requires the transfer between inner forms. Let γ ∈ G !(F)ss such that

G !γ is quasisplit. Choose Haar measures as before. This time we fix a completely stably

invariant (see [14, § 6.1]) open subset V 3 γ , which arises from an open subset V[ 3 0 of

g!γ (F) via the exponential map. Fix a system of representatives γ1, . . . , γk of conjugacy

classes in G !(F) stably conjugate to γ . Define the finite F-group scheme 4γ := (G !)γ /G !γ .

The semisimple descent around γ is a map

SI(V) −→ SI(V[)4γ (F)

f G!
7−→ f G!δ,[

with the same conventions as before. It preserves the subspaces SIcusp(· · · ) and satisfies

f G!(exp(Y )γ ) = f G!δ,[(Y ), Y ∈ V[reg.

Proof of Theorem 5.3.1. In view of the definition of IEcusp(G̃), it suffices to show that

when aE ∈ IEcusp(G̃) lies in the image of

SIcusp(G !) ↪→ IEcusp(G̃),
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i.e. when the components of aE vanish except for the component a! ∈ SIcusp(G !) indexed

by (n′, n′′), there exists a ∈ I
cusp

(G̃) such that T E (a) = aE .

Take the adjoint transfer a := TE (aE ). It is an anti-genuine function on 0reg(G̃). In

fact, a is supported on 0reg,ell(G̃), since the correspondence σ ↔ δ preserves ellipticity.

Claim: there exists agen ∈ I
cusp

(G̃) such that a = agen for elements in general position.

Indeed, if this holds then T E (agen) = T E (a) = aE for elements in general position (recall

Proposition 5.2.4). Hence T E (agen) = aE everywhere by the continuity of stable orbital

integrals, thereby establishing our theorem.

Choose a complete set of representatives γ1, . . . , γk ∈ G !(F)ss of the stable semisimple

conjugacy classes in G !(F) corresponding to δ. By [25, Lemma 3.3], we may arrange

that G !i := G !γi
is quasisplit for i = 1, . . . , k. Define G !i as follows: G !i admits a canonical

decomposition R×
∏

a SO(2a+ 1), where R contains no factor of the type of odd split

SO; we put G !i := R×
∏

a Sp(2a). By [30, Théorèmes 7.10, 7.23], the situation can be

summarized below

endoscopic data : G !i G !i Gδ

Lie algebra level : Yi Yi X

group level : exp(Yi )γi exp(X)δ,

non-standard

endoscopy

elliptic

endoscopy

via eigenvalues

via (n′,n′′)∈Eell(G̃)

1(exp(Yi )γi , exp(X)δ̃) = 1
G!i ,Gδ

(Yi , X), X, Yi close to 0, (33)

where 1
G!i ,Gδ

is some transfer factor for the endoscopic datum (G !i , . . .) for Gδ. The

non-standard endoscopy here is understood in an extended sense so that the pairs

(Sp(2a),SO(2a+ 1)) are allowed; see Remark 5.3.6.

Now pass to the adjoint transfer factors: recall that 1
Gδ,G!i

is defined by (32). Then

(33) implies

1(exp(X)δ̃, exp(Yi )γi ) = 1Gδ,G!i
(X, Yi ) ·

|D((Gδ)X ,Gδ; F)|
|D(Gexp(X)δ,G; F)|

= 1
Gδ,G!i

(X, Yi ) · |H1(F,Gδ)|
−1

for X ↔ Yi close to 0. The first equality is just definition whereas the second stems from

the following fact: for every connected reductive F-group H and any elliptic maximal

F-torus S ⊂ H , we have |D(S, H ; F)| = |H1(F, S)| · |H1(F, H)|−1. Indeed, these H1 are

abelian groups and H1(F, S)→ H1(F, H) is surjective by [26, 10.2 Lemma].

Set 4i := 4γi . Observe that for X ∈ gδ,reg(F) sufficiently close to 0,

{
σ ∈ 1G-reg(G !) : σ ↔ exp(X)δ

}
=

k⊔
i=1

{
exp(Yi )γi : Yi ∈ 1reg(g

!

i ), Yi ↔ X
}/

4i (F)
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where each Yi is also assumed to be close to 0. To show this, just copy the arguments of

[30, p. 583]; note that the rôles of σ and exp(X)δ are reversed there.

Summing up, for X ∈ gδ,reg(F) sufficiently close to 0 and in general position, we have

a(exp(X)δ̃) =
∑
σ↔δ

1(exp(X)δ̃, σ )a!(σ )

=

k∑
i=1

∑
Yi↔Yi↔X

1
Gδ,G!i

(X, Yi )a!i (Yi )

=

k∑
i=1

∑
Yi↔X

1
Gδ,G!i

(X, Yi )b!i (Yi )

for suitable a!i ∈ SIcusp(g
!

i )
4i (F). Here b!i ∈ SIcusp(g

!

i ) is the non-standard transfer of a!i
(Theorem 5.3.5) characterized by

b!i (Yi ) = a!i (Yi ).

By ‘in general position’ we require that each stable class Yi (resp. Yi ) corresponding

to X as above has trivial stabilizer under 4i (F) (resp. OutGδ (G
!

i )). Moreover, by the

OutGδ (G
!

i )-equivariance property of 1
G!i ,Gδ

in Theorem 5.3.3 (whence the opposite

equivariance of the adjoint transfer factor 1
Gδ,G!i

), we may modify a!i so that b!i ∈

SIcusp(g
!

i ,Gδ).

To conclude the proof, apply Theorem 5.3.4 to the germs

ai
gen,δ̃

(X) :=
∑

Yi↔X

1
Gδ,G!i

(X, Yi )b!i (Yi ), i = 1, . . . , k

to obtain agen,δ̃ :=
∑k

i=1 ai
gen,δ̃

∈ Gcusp(gδ). We have a(exp(·)δ̃) = agen,δ̃ for elements in

general position, hence agen,δ̃ is Gδ(F)-invariant by the continuity of orbital integrals.

The local characterization [45] of I (G̃) asserts that these agen,δ̃ patch together into

agen ∈ I
cusp

(G̃) such that a = agen for elements in general position: indeed, this results

from the corresponding property for a(exp(·)δ̃) (for various δ̃ ∈ G̃ss) by the continuity of

orbital integrals. This establishes our earlier claim.

6. Spectral transfer in the non-archimedean case

Keep the assumptions in § 5. In particular, we consider a fixed local metaplectic covering

p : G̃ → G(F), where G̃ = S̃p(W ), dimF W = 2n. We also fix a minimal Levi subgroup

M0 of G. Although the main concern of this section is the non-archimedean case, some

definitions are also useful for archimedean F ; this will be mentioned explicitly in what

follows.
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6.1. Paley–Wiener spaces

The exposition below for G̃ will be sketchy; details can be found in [31, § 5.4] or

[4, 6]. A large portion of our discussions also makes sense for archimedean F , but

one has to be careful about the choice of test functions (e.g. K̃ -finite functions,

Schwartz–Harish-Chandra functions) We will try to indicate the necessary adaptations.

The unstable side For each L ∈ L(M0) and π ∈ 52,−(L̃), the Knapp–Stein theory of

intertwining operators furnishes a central extension

1→ S1
→ R̃π → Rπ → 1. (34)

The finite group Rπ is the R-group attached to π , here viewed as a quotient of Wπ :=

StabW G (M)(π) by some normal subgroup W ◦π described in terms of Harish-Chandra’s

µ-functions. For P ∈ P(L), there is a homomorphism from R̃π to AutG(F)(IP (π)):

r 7−→ R P̃ (r, π) : unitary operator,

under which S1
3 z 7→ z−1

· id. Here R P̃ (r, π) is the normalized intertwining operator, it

depends on the choice of normalizing factors for the standard intertwining operators,

whose existence for covering groups is established in [31, § 3]. Note that in loc. cit., (34)

is reduced to an extension by some finite subgroup of S1.

Define T̃−(G̃) to be the set of triples (L , π, r) as above such that zr is conjugate to r
if and only if z = 1; such triples are called essential in loc. cit. Set T̃ell,−(G̃) to be the

subset defined by requiring det(1− r |aG
L ) 6= 0. For τ = (L , π, r) ∈ T̃ell,−(G̃) we set

d(τ ) := det(1− r |aG
L ) ∈ F. (35)

These definitions generalized to the Levi subgroups of G̃ as well, which are coverings

of metaplectic type. There is a canonical map T̃−(M̃)→ T̃−(G̃) giving rise to the

decomposition

T̃−(G̃) =
⊔

M∈L(M0)

T̃ell,−(M̃).

Note that ia∗M acts on T̃ell,−(M̃) by sending τ = (L , π, r) to τλ := (L , πλ, r). By

decomposition into ia∗M -orbits, each T̃ell,−(M̃)/S1 becomes a disjoint union of compact

tori (resp. Euclidean spaces in the archimedean case), thus so is T̃−(G̃)/S1. On the

other hand, we have a W G
0 -action on T̃−(G̃) by transport of structure, written as

(L , π, r) 7→ (wLw−1, wπ,wrw−1), that commutes with S1. Set

Tell,−(G̃) := T̃ell,−(G̃)/W G
0 ,

T−(G̃) := T̃−(G̃)/W G
0

=

⊔
M∈L(M0)/conj

Tell,−(M̃)/W G(M),

and so on; they still have natural structures of analytic R-varieties. Also note that

T̃−(G̃)� T̃−(G̃)/S1 and each T̃ell,−(M̃)� T̃ell,−(M̃)/S1 are S1-torsors.
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Remark 6.1.1. The S1-torsor T̃ell,−(M̃) over T̃ell,−(M̃)/S1 is actually split, albeit

non-canonically. Indeed, consider a connected component C of T̃ell,−(M̃) and fix some

(L , π, r) ∈ C. Write r 7→ r ∈ Rπ . Then a trivialization of C � C/S1 is given by

(L , πλ, r) 7−→ (L , πλ, r), λ ∈ ia∗M .

Such trivializations of C are in bijection with {r ∈ R̃π : r 7→ r}.

Let us complexify this construction. By allowing π ∈ 5−(L̃) to be only essentially

square-integrable modulo center (i.e. πλ ∈ 52,−(L̃) for some λ ∈ a∗L ,C), and letting a∗M,C
act on the triples (L , π, r) ∈ T̃ell,−(M̃)C so obtained, we obtain T̃−(G̃)C and T−(G̃)C :=
T̃−(G̃)/W G

0 . They are complex varieties. Moreover, the intertwining operators R P̃ (r, π)
extend meromorphically to the complexified setup.

For τ = (L , π, r) ∈ T̃−(G̃), we have the representation RP̃ := R P̃ (·, π)I P̃ (π, ·) of R̃π × G̃
on the underlying vector space of I P̃ (π). Let 5−(R̃π ) be the subset of 5(R̃π ) consisting of

representations on which S1 acts by z 7→ z · id. The upshot is the existence of a bijection

ρ 7→ ξρ ∈ 5temp,−(G̃) between 5−(R̃π ) and the set of irreducible constituents of I P̃ (π),

characterized by

RP̃ '
⊕

ρ∈5−(R̃π )

ρ∨� ξρ .

Define the genuine invariant distributions

2τ = 2
G̃
τ := trRP̃ (r, ·) = tr

(
R P̃ (r, π)I P̃ (π, ·)

)
=

∑
ρ∈5−(R̃π )

tr
(
ρ∨(r)

)
2ξρ ,

IG̃(τ, ·) := |D
G(·)|1/22τ .

They can be shown to be independent of the choice of P ∈ P(L). Moreover, 2τ depends

only on the image of τ in T−(G̃). In this manner, T−(G̃) furnishes a basis of the space

of virtual genuine tempered characters of G̃, up to dilation by S1. The distributions 2τ
and IG̃(τ, ·) also admit meromorphic continuation to T−(G̃)C. They satisfy

I P̃

(
2M̃
τ

)
= 2G̃

τ (36)

for any M ∈ L(M0), P ∈ P(M) and τ ∈ T̃ell,−(M̃)C ↪→ T̃−(G̃)C; see [31, Définition 3.1.1

(R5)].

For fG̃ ∈ I (G̃), define

fG̃(τ ) :=

∫
0reg(G)

IG̃(τ, δ̃) fG̃(δ̃) dδ

= 2τ ( fG̃) (37)

for every τ ∈ T−(G̃); the second equality follows from Weyl’s integration formula. Denote

the resulting function on T−(G̃) as fG̃,gr.

Lemma 6.1.2. The map fG̃ 7→ fG̃,gr is a linear injection into the space of functions

T−(G̃)→ C.
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Proof. The injectivity stems from [31, Théorème 5.8.10]. The archimedean case is

contained in [14, Corollaire 3.3.2].

Denote the image of I (G̃) as PW (G̃). For non-archimedean F , it consists of

functions α : T̃−(G̃)→ C satisfying

(i) α factors through T−(G̃);

(ii) α(z·) = z−1α(·) for every z ∈ S1;

(iii) α is supported on finitely many connected components of T̃−(G̃);

(iv) the restriction of α to each connected component C, viewed as a function on C/S1

by choosing any trivialization as in Remark 6.1.1, is a Paley–Wiener function.

This characterization of PW (G̃) is nothing but the trace Paley–Wiener theorem; its

justification for coverings is given in [31, § 2] and [35, § 3.4]. For archimedean versions,

see [14, 16]. Consequently there is a notion of pseudo-coefficients for every τ ∈ Tell,−(G̃).
The same spaces may be defined for any M̃ , where M ∈ L(M0). There is then a natural

action of W G(M) on PW (M̃).

Proposition 6.1.3. For each M ∈ L(M0), the inverse image of

PW (G̃)M :=
{
α ∈ PW (G̃) : Supp(α) ⊂ W G

0 · T̃ell,−(M̃)
}

' PW (M̃)W
G (M)

M (by restriction to T̃−(M̃))

is contained in FMI (G̃). Composition with

FMI (G̃) grMI (G̃) I
cusp

(M̃)W
G (M)

fG̃ fM̃

∼

yields PW (G̃)M
∼
→ I

cusp
(M̃)W

G (M).

Proof. It suffices to note that for every L ∈ L(M0), the diagram

I (G̃) PW (G̃)

I (L̃)W
G (L) PW (L̃)W

G (L)

fG̃ 7→ f L̃

∼

restriction to T̃−(L̃)

∼

commutes by (36).

In view of the definition of PW (G̃), there is an evident decomposition

PW (G̃) =
⊕

M∈L(M0)/W G
0

PW (G̃)M

∼
→

⊕
M∈L(M0)/W G

0

I
cusp

(M̃)W
G (M). (38)
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Corollary 6.1.4. Composing fG̃ 7→ fG̃,gr with the decomposition (38) induces a filtration-

preserving isomorphism

I (G̃)
∼
→ Igr(G̃)

as claimed in Remark 5.1.4.

Summing up, elements of I (G̃) may be viewed either (i) as functions on 0reg(G̃)
(geometrically), or (ii) as functions on T̃−(G̃), via fG̃ 7→ fG̃,gr (spectrally). Parallel to

§ 5.1, we set out to define a Radon measure on T−(G̃)/S1. For M ∈ L(M0), τ ∈ T̃ell,−(M̃),
set

a∨M,τ := Stabia∗M
(τ ),

ia∗M,τ := ia∗M/a
∨

M,τ .

The measures are defined by∫
Tell,−(M̃)/S1

α =
∑

τ∈S1
\Tell,−(M̃)/ ia∗M
τ=(L ,π,r)

|Z Rπ (r)|
−1
∫

ia∗M,τ

α(τλ) dλ,

∫
T−(G̃)/S1

α =
∑

M∈L(M0)/W G
0

|W G(M)|−1
∫

Tell,−(M̃)/S1
α

for suitable test functions α, where Z Rπ (r) := StabRπ (r) for r ∈ R̃π ; also observe that

Z R̃π
(r)/S1

= Z Rπ (r) by our definition of essential triples.

Denote the quotient map T−(G̃)→ T−(G̃)/S1 by π, we may deduce a Radon measure

on T−(G̃) by requiring

mes(π−1(E)) = mes(E)

for every measurable E ⊂ T−(G̃)/S1. This is redundant somehow, since we only integrate

over T−(G̃)/S1 in this article. Nevertheless, the same recipe defines an analogous measure

in [31, p. 834] on a bundle over T−(G̃)/S1, the only difference being that ker(R̃π � Rπ ) is

taken to be a finite cyclic group in loc. cit. Thus these two formalisms can be reconciled.

Define an hermitian pairing

(a1|a2)ell :=

∫
Tell,−(G̃)/S1

|d(τ )|−1a1,gr(τ )a2,gr(τ ) dτ, a1, a2 ∈ I
cusp

(G̃),

with the d(τ ) in (35).

Lemma 6.1.5. For all a1, a2 ∈ I
cusp

(G̃), the hermitian pairing (a1|a2)ell is convergent and

equals the (a1|a2) in Definition 5.1.2.

Proof. In view of the compatibility of measures alluded to above, this is a special case

of [31, Théorème 5.8.7]; cf. [4, Corollary 3.2].
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The stable side All the results below are contained in [6, § 5], in view of the

construction of local L-packets in [10, Chapter 6]. We shall be brief here.

Let G ! be an elliptic endoscopic group of G̃. We fix a minimal Levi subgroup M !0 ⊂ G !.
In § 4.2, we have defined the stable tempered character S2φ for φ ∈ 8bdd(G !). They are

stable distributions by Theorem 4.2.3 and have normalized version

SG!(φ, ·) := |DG!(·)|1/2S2φ,

viewed as a smooth function on G !reg(F). The same definition works for any M ! ∈ L(M !0)
in place of G !. For every λ ∈ ia∗M ! we have SM !(φλ, ·) = e〈λ,HM (·)〉SM !(φ, ·).

As in (37), given φ ∈ 8bdd(G !) and a ∈ SI(G !) we set

a(φ) :=
∫
1reg(G!)

SG!(φ, σ )a(σ ) dσ

= S2φ(a). (39)

Remark 6.1.6. As on the unstable side,

• the map a 7→ [φ 7→ a(φ)] identifies SI(G !) as a space of functions 8bdd(G !)→ C;

• the image of SI(G !) under the identification above has a characterization à la

Paley–Wiener, cf. Proposition 6.1.3 and [50];

• consequently, we deduce a filtration-preserving isomorphism SI(G !) ∼→ SIgr(G !) as

claimed in Remark 5.1.4.

The precise formulation is completely analogous to the unstable side.

Recall the decomposition (21) by which 8bdd(G !) and the various 82,bdd(M !) acquire

R-analytic structures. It makes sense to define a Radon measure on 8bdd(G !) by

stipulating ∫
82,bdd(M)

α =
∑

φ∈82,bdd(M !)/ ia∗
M !

∫
ia∗

M !,φ

α(φλ) dλ,

∫
8bdd(G)

α =
∑

M !∈L(M !0)/W G!
0

|W G!(M !)|−1
∫
82,bdd(M)

α

for suitable test functions α, where

ia∗M !,φ := ia∗M !/a
∨

M !,φ,

a∨M !,φ := Stabia∗
M !
(φ).

Lemma 6.1.7. Assume F non-archimedean. For every a1, a2 ∈ SIcusp(G !), we have

(a1|a2) =

∫
8bdd,2(G!)

|Sφ,ad|
−1a1(φ)a2(φ) dφ

where the S -groups Sφ,ad := π0(Sφ,ad) are defined in § 4.1.
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Proof. See [6, p. 542].

Parallel to (39), we have the following inversion formula due to Arthur. The proof is

based on the inversion formulas in [5] which are valid for archimedean F as well.

Lemma 6.1.8 [6, Lemma 6.3]. There is a smooth function SG!(σ, φ) of (σ, φ) ∈ 1reg(G !)×
8bdd(G !), such that

a(σ ) =
∫
8bdd(G!)

SG!(σ, φ)a(φ) dφ

for any a ∈ SI(G !).

6.2. Spectral transfer factors

In this subsection, F can be any local field of characteristic zero except in the second

part where we introduce the spectral transfer factors. We set

T E
ell(G̃) :=

⊔
G!∈Eell(G̃)

82,bdd(G
!).

By the foregoing constructions, it has the structure of an analytic R-variety and comes

equipped with a Radon measure. As usual, this can be extended to Levi subgroups and

we set

T E (G̃) :=
⊔

M∈L(M0)/W G
0

T E
ell(M̃)/W G(M).

Here, by writing M =
∏

i∈I GL(ni )×Sp(W [), the action of W G(M) = S(I ) is

permutation of the indexing set I of the GL-factors of each M ! ∈ Eell(M̃). As in § 6.1, one

also can define their complexified versions T E (G̃)C, etc.

Next, define

IEgr(G̃) :=
⊕

M∈L(M0)/W G
0

IEcusp(M̃)
W G (M).

We shall regard each IEcusp(M̃)
W G (M) on the right-hand side as a space of functions

T E (M̃)/W G(M)→ C, using Remark 6.1.6.

Lemma 6.2.1. The linear map

IE (G̃) −→ IEgr(G̃)

f E =
(

f G!
)

G!∈Eell(G̃)
7−→

(
f M !
ell

)
M∈L(M0)/W G

0
M !∈Eell(M̃)

is an isomorphism. Here f M !
ell denotes the restriction of f M !

:=
(

f G[s])s,M !
∈ SI(M !)

to 82,bdd(M !), with arbitrary s ∈ EM !(G̃) (recall Theorem 3.4.6); each family(
f M !
ell

)
M !∈Eell(M̃)

is regarded as a function T E
ell(M̃)/W G(M)→ C.
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Proof. The map is well defined: f M !
ell is independent of s and invariant under W G(M) by

Definition 5.1.7. By interpreting IE (G̃) and IEgr(G̃) in terms of stable Paley–Wiener spaces

for various M !, the isomorphy follows immediately from the definition of IE (G̃).

Definition 6.2.2. Given φ ∈ T E (G̃) coming from φM ! ∈ 82,bdd(M !) (up to W G(M)), we

set

f E (φ) := f M !
ell (φM !), f E ∈ IE (G̃),

in the previous notations; see (39) for the meaning of evaluation at φM ! .

Remark 6.2.3. To decipher f E (φ), we choose s ∈ EM !(G̃) to obtain a diagram as (15).

For s = (I ′, I ′′), the corresponding endoscopic group G[s] of G̃ is

G ! = G[s] SO(2n′+ 1) × SO(2n′′+ 1)

M !
∏

i∈I ′ GL(ni )×SO(2m′+ 1) ×
∏

i∈I ′′ GL(ni )×SO(2m′′+ 1)

and we let φ! ∈ 8bdd(G !) be the image of φM ! . The representations in the L-packet 5M !
φM !

share a common
∏

i∈I ′′ GL(ni )-component; denote its central character by ω′′. Then we

deduce that

f E (φ) =
(

f G!
)s,M !

(φM !)

= ω′′(−1)
(

f G!
)M !

(φM !)

= ω′′(−1)( f G!)(φ!)

from Theorem 4.2.4 and the definition of z[s].

Assume hereafter that F is non-archimedean.

Definition 6.2.4 (Spectral transfer factors and their adjoint). For every (φ, τ ) ∈ T E
ell(G̃)×

Tell,−(G̃), define 1(φ, τ) by requiring that

T E ( fG̃)(φ) =
∑

τ∈Tell,−(G̃)/S1

1(φ, τ) fG̃(τ ),

1(φ, zτ) = z1(φ, τ), z ∈ S1
;

where fG̃ ∈ I (G̃) and T E ( fG̃) ∈ IEcusp(G̃) is its collective transfer (Proposition 5.1.8).

Its adjoint is defined by

1(τ, φ) := ι(G̃,G !)|Sφ,ad|
−1
|d(τ )|1(φ, τ)

whenever φ ∈ 82,bdd(G !). These definitions generalizes to any M ∈ L(M0) in place of

G, the corresponding factors are denoted by 1M̃ (· · · ). Keep in mind that 1M̃ (φM , τM )
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and 1M̃ (τM , φM ) vanish unless the GL-components of φM and τM match under local

Langlands correspondence.

More generally, let (φ, τ ) ∈ T E (G̃)× T−(G̃). There exists a unique M ∈ L(M0)/W G
0

such that φ (resp. τ ) comes from φM ∈ T E
ell(M̃) (resp. τM ∈ Tell,−(M̃)); both are unique

up to W G(M). If φ and τ come from the same M modulo W G
0 , set

1(φ, τ) :=
∑

τ
†
M∈W G (M)τM

1M̃ (φM , τ
†
M ),

1(τ, φ) :=
∑

φ
†
M∈W G (M)φM

1M̃ (τM , φ
†
M );

otherwise set 1(φ, τ) = 0. Note that there is at most one nonzero term in each sum

above, namely the τ †
M (resp. φ†

M) whose GL-components match those of φM (resp. τM)

under the local Langlands correspondence.

Lemma 6.2.5. For τ fixed, 1(·, τ ) and 1(τ, ·) are functions of finite support. So are

1(·, φ) and 1(φ, ·) for φ fixed.

Proof. One reduces immediately to the elliptic case. In the case of fixed τ , take fG̃ ∈

I
cusp

(G̃) to be the pseudo-coefficient of τ in the definition of 1(·, τ ) and apply the

Paley–Wiener theorems to IEcusp(G̃) =
⊕

G! SIcusp(G !). As to the case of fixed φ, we may

reverse the rôles of I
cusp

(G̃) and IEcusp(G̃) by using Theorem 5.3.1.

For φ, φ1 ∈ T E (G̃), denote by δφ,φ1 the usual Kronecker’s delta. For τ, τ1 ∈ T−(G̃), we

set

δτ,τ1 =

 z, if τ1 = zτ, z ∈ S1,

0, otherwise.

Lemma 6.2.6. We have ∑
φ∈TE (G̃)

1(τ, φ)1(φ, τ1) = δτ,τ1 ,

∑
τ∈T−(G̃)/S1

1(φ, τ)1(τ, φ1) = δφ,φ1 .

Proof. To begin with, suppose that (φ, τ ) ∈ T E
ell(G̃)× Tell,−(G̃). Recall that T E

:

I
cusp

(G̃)
∼
→ IEcusp(G̃) is an isometry by Corollary 5.2.5. The relevant hermitian pairings

can be interpreted via the Lemmas 6.1.5 and 6.1.7. Choose for each τ ∈ Tell,−(G̃)/S1 a

representative in Tell,−(G̃). By the description of Paley–Wiener spaces, Tell,−(G̃)/S1 and

T E
ell(G̃) provide orthogonal bases for the two sides, and (1(φ, τ))φ,τ is the matrix of T E .

The elliptic case then follows from linear algebra. We derive the non-elliptic cases in the

standard fashion; cf. the proof of Lemma 5.2.2.
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Lemma 6.2.7. For all α ∈ Cc(Tell,−(G̃)) and β ∈ Cc(T E
ell(G̃)) such that α(z·) = z−1α(·) for

all z ∈ S1, we have∫
Tell,−(G̃)/S1

∑
φ∈TE

ell(G̃)

β(φ)1(φ, τ)α(τ) dτ =
∫

TE
ell(G̃)

∑
τ∈Tell,−(G̃)/S1

β(φ)1(φ, τ)α(τ) dφ,

where we pick an arbitrary representative in Tell,−(G̃) for every τ ∈ Tell,−(G̃)/S1. Note

that the inner sums are finite by Lemma 6.2.5.

Proof. The argument is similar to that of Lemma 5.1.11 but much easier, since the

integrals are actually sums in ours case. It suffices to re-index those sums.

Finally, we note that the spectral transfer factor 1 has a natural extension to

T E (G̃)C× T−(G̃)C: extend each 1M̃ by requiring that (i) 1M̃ (φM , τM ) = 0 unless the

GL-components of φM and τM match, and (ii) 1M̃ (φM,λ, τM,λ) = 1M̃ (φM , τM ) for all

λ ∈ a∗M,C. Same for the adjoint transfer factor.

6.3. Statement of the character relations

Retain the previous notations and assume F to be non-archimedean. The main result of

this section may be stated in an abstract form as follows.

Theorem 6.3.1. Define the isomorphism Igr(G̃)
∼
→ IEgr(G̃) as the direct sum over M ∈

L(M0)/W G
0 of the cuspidal transfer maps (see Theorem 5.3.1)

T E
M̃
: I

cusp
(M̃)W

G (M) ∼
→ IEcusp(M̃)

W G (M).

Then the diagram

I (G̃) IE (G̃)

Igr(G̃) IEgr(G̃)

'Corollary 6.1.4

T E

' Lemma 6.2.1

'

(40)

commutes.

The vertical isomorphisms interpret a test function as an element in the relevant

Paley–Wiener space, i.e. as a function of spectral parameters. Thus the commutative

diagram may be seen as an identification between the geometric and spectral transfers.

Remark 6.3.2. For fG̃ ∈ I (G̃) we define

f Egr : φ 7−→
∑

τ∈T−(G̃)/S1

1(φ, τ) fG̃(τ )

as a function on T E (G̃). Here we pick an arbitrary representative in T−(G̃) for each

τ ∈ T−(G̃)/S1. Take f E := T E ( fG̃). We contend that Theorem 6.3.1 is equivalent to the

assertion that

f E (φ) = f Egr(φ) (41)
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for all fG̃ ∈ I (G̃) and φ ∈ T E (G̃), where f E (φ) is as in Definition 6.2.2. In view of

Remark 6.2.3, this is exactly [6, Theorem 6.2] except for the twist by ω′′(−1), which is a

metaplectic feature.

Let us show the equivalence. In the commutative diagram of Theorem 6.3.1, going in

the direction maps fG̃ first to the function τ 7→ fG̃(τ ) on T−(G̃) (say via fG̃ 7→ fG̃,gr),

then to the function φ 7→
∑
τ 1(φ, τ) fG̃(τ ) on T E (G̃). We arrive at f Egr(φ).

On the other hand, by Lemma 6.2.1 and the notations therein, going in the direction

maps fG̃ to the function on T E (G̃) that sends φM ! ∈ 82,bdd(M !) to f M !(φM !), which

is exactly f E (φ). This concludes the equivalence since every φ ∈ T E (G̃) arises from some

φM ! .

The proof of Theorem 6.3.1, or its equivalent form (41) will occupy § 8. The upshot

will be proving (41) for φ elliptic and fG̃ non-cuspidal. We record several consequences

thereof.

Corollary 6.3.3. The collective transfer map T E
: I (G̃)→ IE (G̃) is an isomorphism.

We also need the space I1 (G̃) defined as follows. Its elements are functions on 0reg(G̃)
of the form f G̃

: δ̃ 7→
∑
δ̃1

fG̃(δ̃1), where fG̃ ∈ I (G̃) and δ̃1 ∈ 0reg(G̃) ranges over the

classes stably conjugate to δ̃ (see Definition 3.3.6). Thus we have a surjection I (G̃)�
I1 (G̃).

For archimedean F , the space I1 (G̃) can be made into a nuclear LF space; see [38,

§ 5].

7. The archimedean case

Throughout this section, we assume F = R except in § 7.6 where F = C. Fix a non-trivial

additive character ψ : F → S1.

7.1. Renard’s formalism

Let (W, 〈·|·〉) be a symplectic R-vector space of dimension 2n. Let G := Sp(W ). The

metaplectic covering p : G̃ = S̃p(W )� G(R) with ker(p) = µ8 is defined with respect

to ψ .

Let (n′, n′′) ∈ Eell(G̃). Following Renard [39], we introduce the groups

G� := Sp(W ′)×Sp(W ′′),

G̃� := S̃p(W ′)× S̃p(W ′′),

where W ′, W ′′ are symplectic F-vector spaces such that

dimF W ′ = 2n′, dimF W ′′ = 2n′′,

and W = W ′⊕W ′′. Thus G̃� comes equipped with a homomorphism j : G̃�→ G̃ with

ker( j) = {(z, z−1) : z ∈ µ8}. Note that G̃� is not a covering group in our sense (the kernel

of G̃�→ G�(R) is not cyclic), but the relevant properties carry over by working with
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each component separately. Renard actually considered the group G̃�/ker( j) instead; cf.

[30, § 4.6].

In Definition 2.2.2, for any m ∈ Z>0 we have defined a canonical element −1 ∈ S̃p(2m)
above −1 ∈ Sp(2m) satisfying (−1)2 = 1. Write −x̃ = (−1) · x̃ for any x̃ ∈ S̃p(2m). Define

the involution

τ : G̃� −→ G̃�,

(x̃ ′, x̃ ′′) 7−→ (x̃ ′,−x̃ ′′).

Definition 7.1.1. A distribution or function on G̃� is called genuine if it is genuine for both

components S̃p(2n′) and S̃p(2n′′). The same for anti-genuine distributions or functions.

Thus we shall continue to use the usual notations C∞c, (G̃�), 5−(G̃�), etc.

The normalized stable orbital integral of f ∈ C∞c, (G̃) along δ̃ ∈ G̃reg is defined at the

end of § 6.3. For the group G̃�, the normalized orbital integral fG̃�(δ̃) and its stable version

f G̃�(δ̃) are still defined: it suffices to work component-wise. Following Harish-Chandra,

Shelstad and Bouaziz, Renard defined in [39, § 3] the space I1 (G̃�) of stable anti-genuine

orbital integrals on G̃�. It is an LF space, viewed as a space of anti-genuine functions

G̃�reg→ C. As in § 3.2, there is a continuous linear surjection

C∞c, (G̃�) −→ I1 (G̃�)

f 7−→
[
δ̃ 7→ f G̃�(δ̃)

]
.

Define now

Iκ (G̃�) :=
{
φ� : G̃�reg→ C, such that τ ∗φ� := φ� ◦ τ ∈ I1 (G̃�)

}
.

The superscript κ might suggest the endoscopic character of § 3.4, although the latter

object only makes sense after fixing a maximal torus; see the discussion in [39, p. 1220].

The geometric transfer over R is decomposed into several stages.

1. The factor 10(δ
′, δ′′) in § 3.4 defines the transfer map à la Renard

TR : I (G̃) −→ Iκ (G̃�)

φ 7−→

φ� : (δ̃′, δ̃′′) 7→ 10(δ
′, δ′′)

∑
δ̃1

〈κ, inv(δ, δ1)〉φ(δ̃)


where

• δ̃ := j (δ̃′, δ̃′′) is assumed to lie in G̃reg,

• δ̃1 ranges over the elements in 0reg(G̃) stably conjugate to δ̃, which have

representatives in G̃� by the previous assumption,

• κ = κGδ : H1(R,Gδ)→ µ2 is the endoscopic character attached to (n′, n′′) and

Gδ.
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This transfer is established in [39, Theorem 4.7] and rephrased in [30, Théorème

6.3]. When n′ = n it is merely the surjection I (G̃)� I1 (G̃).

2. There is a transfer map of Adams–Renard

T(n,0) : I (G̃) −→ SI(SO(2n+ 1))

φ 7−→
[
γ 7→ 1(n,0)(γ, δ̃)φ(δ̃)

]
where δ ↔ γ and δ̃ ∈ p−1(δ) is arbitrary; the 1(n,0) means the transfer factor for the

endoscopic datum (n, 0) for G̃. It factors through I (G̃)� I1 (G̃). This transfer

T(n,0) is originally conjectured in [1] and proved in [38].

3. The transfer defined in § 3.4 is

T(n′,n′′) : I (G̃) −→ SI(G !).

The ambiguity of f ! (Remark 3.4.2) disappeared since we work with the spaces

I (G̃), I1(G !) of orbital integrals. When n′ = 0 or n′′ = 0, we are reduced to the

previous two cases.

Lemma 7.1.2. The following commutative diagram commutes.

I (G̃) Iκ (G̃�)

I1 (G̃�) I1 (S̃p(2n′))⊗̂I1 (S̃p(2n′′))

SI(G !) SI(SO(2n′+ 1))⊗̂SI(SO(2n′′+ 1))

TR

T(n′,n′′)

τ∗'

T(n′,0)⊗̂T(n′′,0)

Proof. This is done in the proof of [30, Théorème 6.8]. For the horizontal equalities and

the meaning of ⊗̂, see Remark 3.2.1.

Dualization yields the commutative diagram below.

I (G̃)∨ Iκ (G̃�)∨

I1 (G̃�)∨

SI(G !)∨

T ∨R

τ∗'

T ∨
(n′,0)⊗̂T

∨

(n′′,0)

T ∨
(n′,n′′)

(42)

The same constructions also apply to any covering of metaplectic type p : M̃ → M(R)
and its elliptic endoscopic data: the common GL factors of M̃ and M ! are unaffected.
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7.2. Stable Weyl groups

Our basic references for stable conjugacy are [1, 40]. As before, consider G̃ = S̃p(W ) and

fix a maximal R-torus T of G. Let A be the split component of T and set M := ZG(A).
The stable Weyl group of T is defined to be

Wst(G, T ) := W (G, T )W (MC, TC) (43)

as a subgroup of the absolute Weyl group W (GC, TC). It fits into a natural short exact

sequence

1→ W (M, T )→ W (MC, TC)o W (G, T )→ Wst(G, T )→ 1.

Lemma 7.2.1. The subgroups Wst(G, T ) and W (G, T )(R) of W (GC, TC) coincide.

Proof. It follows from [40, Theorem 2.1] that

Wst(G, T ) =
{
w ∈ W (GC, TC) : Ad(w)|TC is defined over R

}
. (44)

This is exactly the characterization of W (G, T )(R) in (3).

As a matter of notations, we prefer Wst(G, T ) over W (G, T )(R) in order to adhere

to [1, 38]. The group Wst(G, T ) acts on T (R) by the adjoint action. The elements

in Treg(R)/W (G, T ) can be viewed as conjugacy classes in Greg(R) intersecting T (R).
Moreover, two elements δ, δ1 ∈ Treg(R) are stably conjugate in G if and only if δ1 = wδw

−1

for some w ∈ Wst(G, T ). This is how Shelstad defined stable conjugacy for real groups.

The same construction applies to every connected reductive R-group; for GL(n) we have

Wst(GL(n), TGL) = W (GL(n), TGL) for any maximal torus TGL.

Note that any T ⊂ G takes the form

T ' (C×)m × (S1)r × (R×)s

as R-tori, for a unique triple (m, r, s) satisfying 2m+ r + s = n.

Lemma 7.2.2. We have canonical identifications

W (G, T )\Wst(G, T ) = µr
2 = H1(R, T ).

Under this bijection, an element (t1, . . . , tr ) ∈ µr
2 corresponds to the coset containing the

w ∈ Wst(G, T ) which acts on Sr as (zi )
r
i=1 7→ (zti

i )
r
i=1, and w acts trivially on (C×)m and

(R×)s .

Proof. This is well known and we reproduce the arguments below. Identify a given w ∈

Wst(G, T ) with some representative in G(C), and let w̄ be its complex conjugate. By

Lemma 7.2.1 we have w−1w̄ ∈ T (C). This defines an element in Z1(R, T ). Compare the

descriptions of stable vs. ordinary conjugacy in Treg(R) in two ways:

(i) via the action of stable Weyl groups as discussed above, and

(ii) via the pointed set D(T,G; F) discussed in (8).

We deduce a bijection of pointed sets

W (G, T )\Wst(G, T )
1:1
−→ H1(R, T ).
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A standard argument (see [30, § 5.3]) gives H1(R, T ) = µr
2; this can also be done on

the Weyl group side as done in [39, p. 1218], together with the precise description as

asserted.

For stably conjugate classes δ, δ1 ∈ Treg(F)/W (G, T ), their ‘relative position’ can be

defined as the element in W (G, T )\Wst(G, T ) with a representative w satisfying δ1 =

wδw−1. This is compatible with our general recipe (9) using the cohomological invariant

inv(δ1, δ) ∈ H1(R, T ): modulo the identification of Lemma 7.2.2,

inv(wδw−1, δ) = w ∈ H1(R, T ).

Unwinding matters, this equality reduces to the definition of inv(wδ, δ).

Theorem 7.2.3 (Adams [1, Lemma 3.3]). The action of Wst(G, T ) on t(R) lifts to an

action on T̃ extending the adjoint action of W (G, T ). Two elements δ̃, δ̃1 ∈ T̃reg are stably

conjugate if and only if δ̃1 = wδ̃w
−1 for some w ∈ Wst(G, T ).

Note that Adams considered the twofold covering S̃p
(2)
(W ) instead.

As the element −1 in Definition 2.2.2 is central of order two, one obtains the map

κT,0 : W (G, T )\Wst(G, T ) = H1(R, T ) −→ µ2 (45)

characterized by κT,0(w)(−1) = w(−1)w−1
∈ T̃ .

Lemma 7.2.4. The map κT,0 is given by

H1(R, T ) = µr
2 −→ µ2,

(ti )ri=1 7−→

r∏
i=1

ti

modulo the identifications in Lemma 7.2.2.

Proof. Write

T = (C×)m × (R×)s︸ ︷︷ ︸
:=T0

× (S1)r︸ ︷︷ ︸
:=T1

and set n0 := s+ 2m, n1 := r . We may choose a compatible orthogonal decomposition

W = W0⊕W1 (cf. the parametrization of maximal tori in [30, § 3]) so that the
homomorphism

T̃0× T̃1 ↪→ S̃p(W0)× S̃p(W1)
j
−→ G̃

reviewed in § 2.1 sends (−1,−1) to −1 ∈ G̃ (sorry for overloading the symbol −1...). One

way to see this is to combine Proposition 4.25 and Corollaire 4.6 in [30].

In view of Lemma 7.2.2, the inclusion maps induce bijections

W (G, T )\Wst(G, T ) W (Sp(W1), T1)
∖

Wst(Sp(W1), T1)

H1(R, T ) H1(R, T1)

∼

∼
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Under this identification we have

w(−1)w−1︸ ︷︷ ︸
∈G̃

= j (−1, w(−1)w−1︸ ︷︷ ︸
∈S̃p(W1)

), w ∈ Wst(Sp(W1), T1).

By construction, j satisfies j (ε0 x̃0, ε1 x̃1) = ε0ε1 · j (x̃0, x̃1) for any ε0, ε1 ∈ µ8. The

problem reduces immediately to the elliptic case T = T1.

Suppose w corresponds to (ti )ri=1 ∈ µ
r
2, then the transfer factor 1(0,n) satisfies

1(0,n)(γ,wδ̃w
−1) =

r∏
i=1

ti ·1(0,n)(γ, δ̃)

whenever γ ↔ δ are regular semisimple: indeed, this is just the cocycle condition in § 3.4.

On the other hand, for sufficiently regular δ̃, there exists a unique corresponding stable

class γ in SO(2n+ 1); the descent of transfer factors [30, § 7.10] implies that 1(0,n)(γ, δ̃)

is constant for δ̃ = (−1) exp(X), where X ∈ greg(R) is close to 0. The assertion follows

from the genuineness of 1(0,n) by taking X ∈ treg(R), X → 0.

Fix an endoscopic datum (n′, n′′) ∈ Eell(G̃), construct the corresponding objects G̃�, G !

and set

ỹ := j (1,−1) ∈ G̃. (46)

This is slightly different from the choice of ỹ in [39].

Let T ⊂ G be a maximal torus containing y := p(ỹ), so that T ⊂ ZG(y) = G�.
Therefore there is a canonical decomposition T = T ′× T ′′ with T ′ ⊂ Sp(W ′), T ′′ ⊂
Sp(W ′′). In [39, p. 1220], Renard defines the map

κT : W (G, T )\Wst(G, T ) −→ µ2

characterized by

w ỹw−1
= κT (w)ỹ, w ∈ Wst(G, T ).

When n′′ = n, we revert to the map κT,0 defined in (45) since ỹ = −1. The next task is

to reconcile Renard’s character with our endoscopic character. Denote by pr′′ : T → T ′′

the natural projection.

Lemma 7.2.5. The map κT equals the composition

W (G, T )\Wst(G, T )
∼
→ H1(R, T )

pr′′∗
−−→ H1(R, T ′′)

κT,0
−−→ µ2,

via Lemma 7.2.2. In particular, κT equals the endoscopic character in § 3.4 denoted by

the same symbol.

Proof. Write G ′ := Sp(W ′), G ′′ := Sp(W ′′). Under the identifications in Lemma 7.2.2 we

have

W (G, T )\Wst(G, T ) = H1(R, T ) = H1(R, T ′)× H1(R, T ′′)

=
(
W (G ′, T ′)\Wst(G ′, T ′)

)
×
(
W (G ′′, T ′′)\Wst(G ′′, T ′′)

)
.

The homomorphism j : G̃ ′× G̃ ′′ = G̃�→ G̃ in § 2.1 is clearly equivariant with respect

to the decomposition above. The first component of ỹ does not matter at all (it is 1),

hence we are reduced to the case n′′ = n, ỹ = −1 treated in Lemma 7.2.4.
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7.3. Spectral transfer for G-regular parameters

Preparations Fix a maximal compact subgroup K of G(R) and an anisotropic maximal

torus T ⊂ G such that T (R) ⊂ K . We have

W (G, T ) = W (K , T ) = W (KC, TC) (standard fact, see [22, Lemma 4.43]),

W (GC, TC) = Wst(G, T ) (because M = G in (43)).

By choosing some δ ∈ Treg(R), γ ∈ G !reg(R) with γ ↔ δ, we obtain a standard

isomorphism

θ : T !
∼
→ T

by Lemma 3.3.4, where T ! := G !γ ; it is unique up to Wst(G, T ) = W (G, T )(R). The

pull-back of θ−1 induces a canonical surjection

(t!)∗C/W (G !C, T !C)� t∗C/W (GC, TC) (47)

with finite fibers, which is an isomorphism when n′ = n or n′′ = n. Hence we deduce a

correspondence between infinitesimal characters of representations of G and G !. Write

λ! ↔ λ

if λ! 7→ λ under (47). A precise description of θ is worked out in [1, § 7].

Proposition 7.3.1. Consider the canonical map

Z(g) ' (Sym tC)W (GC,TC) (Sym t!C)
W (G!C,T

!

C) ' Z(g!)

z z!
dual to (47)

between centers of universal enveloping algebras. We have T(n′,n′′)(z fG̃) = z!T(n′,n′′)( fG̃)

for all fG̃ ∈ I (G̃). Consequently, if 3! is an invariant eigendistribution on G !(R) with

eigencharacter λ! ∈ t∗C/W (G !, T !), λ! 7→ λ, then so is its transfer 3 with eigencharacter λ.

Proof. This is based on the differential equations satisfied by orbital integrals, due to

Harish-Chandra. A proof can be found in [51, 2.8 Corollaire] in a much more complicated

setting.

The case (n, 0) In what follows we assume n′ = n. Recall that we have chosen a Borel

pair (B, Ts) for G in § 3.3.

Definition 7.3.2. For every a1, . . . , an ∈ C, set

[a1, . . . , an] ∈ X∗(TC)⊗C = t∗C

to be the image of (a1, . . . , an) ∈ X∗(Ts)⊗C under TC
∼
← (Ts)C, where (23) is used. The

same notation pertains to T !.
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The notations are tailored so that θ sends [a1, . . . , an] to [a1, . . . , an]. Since T (R) is

the maximal compact subgroup of T (C) ∼→ Ts(C) = (C×)n , we may identify X∗(TC) with

Homcont(T (R),S1) by Weyl’s unitarian trick. The same holds for T ! as well.

Once the Borel subgroups B ⊃ T , B! ⊃ T ! are chosen, one defines the half-sums of

positive roots ρ, ρ! respectively, and transport them to t∗C, (t
!)∗C via the recipe above.

The discussion in § 4.1 for the discrete series and their limits also applies to G̃.

Lemma 7.3.3. For appropriately chosen Borel pairs (B, Ts) and (B!, T !s ), we have

(i) ρ = [n, n− 1, . . . , 1];

(ii) ρ! =
[
n− 1

2 , . . . ,
1
2

]
;

(iii) the Weil representation ωψ admits an infinitesimal character, whose representative

in t∗C can be taken to be λ0 :=
[
n− 1

2 , . . . ,
1
2

]
;

(iv) an irreducible discrete series representation or their limits π of G̃ with infinitesimal

character λ is genuine only if λ ∈ λ0+ X∗(TC), it factors through p : G̃ → G(R) only

if λ ∈ ρ+ X∗(TC); the direction ‘if ’ holds when one works with the twofold covering

S̃p
(2)
(2n).

Proof. The first two assertions are standard calculations in Ts, T !s . The infinitesimal

character of λ0 is recorded in [1, pp. 151–152], hence the third assertion. The final

assertion follows since S̃p
(2)
(2n) is connected as a Lie group.

Let ρ, ρ! and λ0 ∈ t∗C be as in Lemma 7.3.3. Following Adams, we define the L-packet

5G̃
λ of genuine discrete series of G̃ with infinitesimal character λ ∈ λ0+ X∗(TC) modulo

W (GC, TC) as

5G̃
λ :=

{
π(wEλ) : w ∈ W (G, T )\W (GC, TC)

}
. (48)

Here the Harish-Chandra parameter Eλ = (λ, BC) is defined by choosing the BC for which

λ is dominant. Similarly, by allowing certain singularities of λ, the L-packet5G̃
λ of genuine

limits of discrete series of G̃ is defined by the same recipe. The stable character attached

to those 5G̃
λ is

S2G̃
λ :=

∑
π∈5G̃

λ

2G̃
π . (49)

The counterparts 5G!
λ!

and S2G!
λ!

for the endoscopic side have been reviewed in § 4.1

and § 4.2.

Theorem 7.3.4 (Adams [1, Proposition 11.3]). If λ! ↔ λ, then the map T ∨(n,0) sends S2G!
λ!

to S2G̃
λ . In particular, S2G̃

λ ∈ I1 (G̃)∨.

Remark 7.3.5. The convention in [1, 39] is slightly different. Adams multiplied S2G̃
λ (resp.

S2G!
λ!

) by (−1)q(G) (resp. (−1)q(G
!)). Here, for every semisimple R-group H admitting an
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anisotropic maximal torus, we set

q(H) := 1
2 dim H(R)/K H ∈ Z,

where K H is any maximal compact subgroup. This is harmless since

q(Sp(2n)) = q(SO(2n+ 1)) =
(

n+ 1
2

)
.

At present we do not need to consider all the inner forms of SO(2n+ 1) at once as in [1,

(11.1)].

The case (n′, n′′) Consider an arbitrary elliptic endoscopic datum (n′, n′′) ∈ Eell(G̃), and

introduce the groups G̃�, G !, etc. We have

• a chosen maximal compact subgroup K � = K ′× K ′′ of G�(R),
• a chosen Borel pair (B�, T �) := (B ′s × B ′′s , T ′s × T ′′s ) of G�,

• the half-sum of positive roots ρ� = (ρ′, ρ′′),

• an anisotropic maximal torus T � = T ′× T ′′ of G� contained in K �.

Let T := j (T �) ⊂ G be the isomorphic image of T �, which is a maximal torus of G; we

may also assume B� ⊂ B. To save notations we shall identify t and t�. In view of Lemma

7.2.2, we get the corresponding endoscopic character

κT : W (G, T )\W (GC, TC) = H1(R, T )→ µ2.

Introduce an anisotropic maximal torus T ! ⊂ G !, etc., so that there is some standard

isomorphism θ : T !→ T furnished by Lemma 3.3.4. Recall that θ induces a map between

infinitesimal characters of G̃ and G !(R).

Definition 7.3.6. Let λ! be the infinitesimal character of a discrete series representation

of G ! (i.e. λ! is regular). We say λ! is G-regular if λ! 7→ λ for some regular infinitesimal

character λ of G̃.

For λ as above, λ− ρ lifts to a genuine character eλ−ρ of T̃ ; note that T̃ is not connected,

so λ− ρ is actually exponentiated to the twofold connected covering, then extended to T̃
by genuineness. Same for λ− ρ�. Consider π ∈ 5G̃

λ with infinitesimal character λ, λ! 7→ λ.

We may choose a Harish-Chandra parameter for π (the Borel subgroup datum omitted)

of the form [
λ′1, . . . , λ

′

n′ , λ
′′

1, . . . .λ
′′

n′′
]
∈ t∗C,

λ′1 > · · · > λ
′

n′ , λ′′1 > · · · > λ
′′

n′′ ,

∀i, j, λ′i , λ
′′

j ∈ Z+ 1
2

(50)

such that the orbits of [λ′1, . . . , λ
′

n′ ] and [λ′′1, . . . , λ
′′

n′′ ] under Wst(G ′, T ′) and Wst(G ′′, T ′′)
correspond to the two components of λ!, respectively. This is done by modifying a given

parameter for π by using W (G, T ) ' Sn , and such a choice is unique. In this manner
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we deduce from π the genuine representation of G̃� with Harish-Chandra parameter

([λ′1, . . .], [λ
′′

1, . . .]), which we shall denote by π�. Its central character is denoted by ωπ� ,

which can be evaluated at ỹ. Note that the same construction generalizes to the case

where π is a limit of genuine discrete series.

Theorem 7.3.7 (Renard [39]). Let λ! be a G-regular infinitesimal character of a discrete

series representation of G ! and assume λ! 7→ λ. Then

T ∨(n′,n′′)
(

S2G!
λ!

)
=

∑
π∈5G̃

λ

ωπ�(ỹ)2G̃
π

where ỹ is as in (46). Furthermore, ωπ(wEλ)�(ỹ) = ωπ(Eλ)�(ỹ)κT (w) for any w ∈ W (GC, TC)

and π(Eλ) ∈ 5G̃
λ .

Proof. Let PG denote the system of BC-positive roots for (GC, TC). One defines PG�

similarly. Choose a Harish-Chandra parameter Eλ as in (50) so that π(Eλ) ∈ 5G̃
λ . In [39,

(6.5)], Renard proved that T ∨R ◦ τ
∗

(
S2G̃�

λ

)
equals

(−1)|PG |−|PG� |eλ−ρ
�

(ỹ)
∑

w∈W (G,T )\W (GC,TC)

κT (w)2
G̃
π(wEλ)

.

Here we can let w range over W (G�, T �)\W (G�C, T �C ); cf. the proof of Lemma 7.2.2.

By Theorem 7.3.4 plus the commutative diagram (42), the assertion on T ∨
(n′,n′′) amounts

to the equality between the above sum and
∑
w ωπ(wEλ)�(ỹ)2

G̃
π(wEλ)

.

Since |PG | = n2 and |PG� | = (n′)2+ (n′′)2,

|PG | ≡ n ≡ n′+ n′′ ≡ |PG� | mod 2.

Hence (−1)|PG |−|PG� | = 1. On the other hand, the character eλ−ρ
�

restricts to ωπ(Eλ)�
on ZG̃� (see § 4.1). Thus the terms indexed by w = 1 match. To deal with the other

terms, observe that ωπ(wEλ)� equals the restriction of ew(λ−ρ
�) to ZG̃� , thus ωπ(wEλ)�(ỹ) =

ωπ(Eλ)�(ỹ)κT (w) for all w ∈ W (G�, T �)\W (G�C, T �C ).

Note that when n′′ = n, the factor ωπ�(ỹ) = ωπ (−1) generalizes Waldspurger’s central

signs in the case n = 1.

7.4. Spectral transfer in general

We reformulate and generalize the prior results in the language of § 6.3. To begin with,

fix (n′, n′′) ∈ Eell(G̃) and let φ be the L-parameter for the discrete series L-packet of G !

with infinitesimal character λ!; we do not assume λ! to be G-regular. Note that λ! may

be put in the normal form ([b1, · · · , bn′ ], [c1, . . . , cn′′ ]) ∈ (t
!)∗C where bi , c j are strictly

decreasing sequences of positive half-integers; cf. Lemma 7.3.3.

Any infinitesimal character λ of a genuine limit of discrete series has a similar normal

form [a1, . . . , an] ∈ t∗C with a1 > · · · > an > 0: just take the BC-dominant representative.

Each equality sign in this list entails a singularity. Those λ obtained from λ! by the recipe
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above, for various (G !, φ) ∈ T E
ell(G̃), are characterized by

λ = [a1, . . . , an], a1 > . . . > an > 0, ai ∈ Z+ 1
2 ,

with allowed singularities of the form . . . > ai = ai+1 > . . . .
(51)

Indeed, λ is obtained by merging two lists b1 > · · · > bn′ > 0, c1 > · · · > cn′′ > 0 of

half-integers; no a• in the merged list can occur more than twice. We shall show in

Remark 7.5.1 that λ is the infinitesimal character of some limit of discrete series.

Definition 7.4.1. Denote by 52↑,−(G̃) the subset of 5temp,−(G̃) consisting of limits of

discrete series whose infinitesimal characters satisfy (51).

Since 52↑,−(G̃) is defined in terms of infinitesimal characters, it is a union of L-packets

of genuine limits of discrete series. For π ∈ 52↑,−(G̃), the recipe π 7→ π� ∈ 52,−(G̃�) in

Theorem 7.3.7 is still applicable, and we define the sign factor ωπ�(ỹ) as before.

The following result is stated in [39, p. 1241].

Theorem 7.4.2. Fix φ and λ! 7→ λ as above. For π ∈ 5temp,−(G̃), set 1(φ, π) = ωπ�(ỹ)
if π ∈ 52↑,−(G̃) has infinitesimal character λ, otherwise set 1(φ, π) = 0. We have

f G!(φ) =
∑

π∈5temp,−(G̃)

1(φ, π) fG̃(π)

for any fG̃ ∈ I (G̃) with f G!
:= T(n′,n′′)( fG̃). Furthermore, 1(φ, π(wEλ)) = κT (w)1(φ,

π(Eλ)) for any w ∈ W (GC, TC).

Sketch of proof. For G-regular λ! this is just Theorem 7.3.7. To extend it to the present

case, we resort to coherent continuation as in [41, 43]: fix a representative of λ! (resp. λ)

dominant in some Weyl chamber C! (resp. C), then take µ! ∈ X∗(T �) deep enough in C!
so that λ!+µ! is G-regular, say λ!+µ! ↔ λ+µ ∈ C. The idea is to apply the translation

functor ψλλ+µ to both sides of the assertion with G-regular input φλ!+µ! , with λ!+µ! ↔

λ+µ. Recall that ψλλ+µ produces limits π(Eλ) from the genuine discrete series π(
−−−→
λ+µ);

similarly for the G ! side and for the Weyl translates. By the diagram (42), the spectral

transfer breaks into three stages.

(i) Adams’ transfer T ∨(n,0) commutes with translation functors by [1, Corollary 14.7].
Recall that the coefficients appearing in T ∨(n,0) are all 1.

(ii) Renard’s transfer T ∨R also commutes with translation functors: this is briefly

mentioned in [39, (6.5)] which refers to [41, Lemma 4.4.8]; cf. [43, p. 38]. Loosely

speaking, it means that a character relation for φλ!+µ! still holds after shifting to

φ = φλ! , with the same coefficients.

(iii) The operation τ∗ does not commute with ψλλ+µ: we get an extra factor eµ(ỹ).

Accordingly, the coefficients in f G!(φ) are obtained from f G!(φλ!+µ!) by shifting from

ω
π(
−−→
λ+µ)�

(ỹ) to ωπ(Eλ)�(ỹ) as required (cf. the proof of Theorem 7.3.7). The assertion on

1(φ, π(wEλ)) can be proved in the same manner as in Theorem 7.3.7.
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Generalization to coverings of metaplectic types is straightforward. Now we introduce

the collective geometric transfer fG̃ 7→ f E and regard f E as a function T E (G̃)→ C by

the recipe of Lemma 6.2.1. Let φ ∈ T E (G̃), say coming from φM ! ∈ 82,bdd(M !), where

M !, M̃ =
∏

i∈I GL(ni )× S̃p(W [) and G̃ sit in a diagram (14). Pick any s ∈ EM !(G̃) and

P ∈ P(M). By Theorems 7.4.2, 3.4.6 and the very definition of f E (φ), we get

f E (φ) =
(

f G[s]
)s,M !

(φM !) =
∑

πM̃∈52↑,−(M̃)

1M̃ (φM ! , πM̃ ) fM̃ (πM̃ )

=

∑
πM̃∈52↑,−(M̃)

1M̃ (φM ! , πM̃ ) fG̃

(
I P̃ (πM̃ )

)
(52)

for any fG̃ ∈ I (G̃), where 1M̃ denotes the spectral transfer factor for M̃ . Note that

1M̃ (φM ! , πM̃ ) 6= 0 only if for each i ∈ I , the GL(ni )-components of φM ! and πM̃ match by

local Langlands correspondence. From this we deduce the general statement of spectral

transfer as follows.

Theorem 7.4.3. There exists a function 1 : T E (G̃)×5temp,−(G̃)→ µ2 such that 1(φ, ·)

(resp. 1(·, π)) is of finite support for any given φ (resp. π), and is characterized by

f E (φ) =
∑

π∈5temp,−(G̃)

1(φ, π) fG̃(π)

for all φ ∈ T E (G̃). Suppose that φ comes from φM ! ∈ 82,bdd(G !) and P ∈ P(M) is

arbitrary, then

1(φ, π) =
∑

πM̃∈52↑,−(M̃)

1M̃ (φM ! , πM̃ )mult(I P̃ (πM̃ ) : π).

Remark 7.4.4. In the formula for 1(φ, π), the sum is actually taken over a packet 5M̃
λ ⊂

52↑,−(M̃) determined by φM ! . We contend that mult(I P̃ (πM̃ ) : π) 6 1, with equality for

at most one πM̃ . Indeed, as in the reductive case [41, p. 408], 5M̃
λ turns out to be the set

of irreducible constituents in the normalized parabolic induction of some genuine discrete

series L-packet 5
L̃

ν for some L ⊂ M . By Langlands’ disjointness theorem and the theory

minimal K̃ -types [46, Theorem 1.1], which works for coverings of metaplectic type by [35,

§ 3.4], the parabolic induction to G̃ of
⊕

σ∈5L̃
ν
σ is multiplicity-free. Our claim follows

immediately.

Theorem 7.4.5 (K -finite transfer, cf. [16, Appendice]). Let K̃ (resp. K !) be a maximal

compact subgroup of G̃ (resp. of G !(R)). For any f ∈ C∞c, (G̃) which is K̃ × K̃ -finite

under bilateral translation, its transfer f ! ∈ C∞c (G
!(R)) can be taken to be K !× K !-finite

as well.
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Proof. The elements of SI(G !) arising from K !× K !-finite C∞c functions have a

characterization à la Paley–Wiener; see [16, Théorème A.1] or [50, § 2.9]. Upon some

contemplation on Definition 6.2.2, it suffices to show that the function φ 7→ f E (φ) is

supported on finitely many connected components of T E (G̃).
As remarked in [35, § 3.4], the K̃ -finite trace Paley–Wiener theorem of [16] holds for G̃.

Also, by [16, Lemme A.5] there are only finitely many genuine limits of discrete series of

G̃ containing a given K̃ -type. The required finiteness condition follows readily from the

Theorems 7.4.2 and 7.4.3.

7.5. Adjoint spectral transfer factors

To offer a partial justification of our theory, we shall establish inversion formulas à la [42,

Corollary 7.7] for π ∈ 52↑,−(G̃) which are parallel to Lemma 6.2.6. We adopt the previous

conventions for Borel subgroups, etc., unless otherwise stated. Let λ be an infinitesimal

character on the G̃ side in its normal form (51). Divide the entries of λ into

• the ‘pairs’ of the form (ai , ai+1 = ai ), and

• the remaining ‘singletons’.

The compact roots in question are of the form e j − ek , where e j stands for the j-th
coordinate; the BC-simple ones are {ek − ek+1 : 1 6 k < n}. To avoid singularities with

respect to compact roots, we flip ai+1 into −ai+1 in each repetition, by applying some

v ∈ W (GC, TC).

Remark 7.5.1. The representation π(vEλ) is a genuine limit of discrete series of G̃.

Furthermore, it is non-degenerate in the sense of Knapp–Zuckerman [24, § 12]: Eλ is

non-singular with respect to compact roots. See [43, § 14] for discussions in the case

of reductive groups as well as a description for the corresponding L-parameters.

Let Wλ := {w ∈ W (GC, TC) : π(wvEλ) 6= 0}. We have to identify

E := W (G, T )\Wλ/Stab(vEλ).

View µn
2 = W (G, T )\W (GC, TC) as a subgroup of W (GC, TC) so that (ti )ni=1 ∈ µ

n
2 acts via

[x1, . . . , xn] 7→ [t1x1, . . . , tn xn].

Let t = (ti )ni=1 ∈ µ
n
2 . When do we have t ∈Wλ? Singularities can only occur within the

pairs. Consider a pair in vEy, say (a,−a) together with its accompanying Weyl chamber.

Its orbit under (µ2)
2 consists of (a,−a) itself and

• (a, a), (−a,−a): singular with respect to a simple compact root (see below);

• (−a, a): parametrizes a non-degenerate limit of discrete series. It is obtained by

applying (−1,−1) ∈ (µ2)
2.

We must include the Weyl chambers in these parameters on which W (GC, TC) acts; thus

(−a, a) with its accompanying chamber cannot be obtained from that of (a,−a) via

W (G, T ). The reader is invited to visualize the case n = 2: we use the usual simple roots

e1− e2, 2e2 for BC; the thick line below depicts the singular locus with respect to the

compact roots ±(e1− e2).
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BC

(a, a)

vBCv−1

(a,−a)

(−a,−a)

(−a, a)

Hence E = µ
|singletons|+|pairs|
2 . Therefore we obtain an embedding

E
id×diag
−−−−−→ µ

|singletons|
2 × (µ2×µ2)

|pairs|
= H1(R, T ).

It also follows that |5G̃
λ | = 2|singletons|+|pairs| as expected. Denote by R = Rλ the

Pontryagin dual of E. We deduce a surjection R(T,G;R)� R.

Lemma 7.5.2. Let λ ∈ t∗C/W (GC, TC) be an infinitesimal character with a representative

of the form (51). There is a canonical bijection φ 7→ κ from{
φ ∈ T E (G̃) : transfers to a parameter with inf. char. λ

}
onto Rλ. It satisfies

1(φ, π1) = 1(φ, π)κ(w̄)

for all π = π(vEλ), π1 = π(wvEλ) as discussed above, where w̄ ∈ E.

Proof. Decompose φ into (φGL, φ
′, φ′′) and note that φGL contributes only to the pairs.

To define κ = (si )i :singletons× (s j ) j :pairs, we set si = 0 (resp. si = 1) if the singleton comes

from φ′ (resp. from φ′′). If a pair j comes by ‘merging’ singletons from φ′ and φ′′, we have

s j = 1. When the endoscopic datum coming with φ is elliptic, i.e.without GL-component,

all pairs arise in this way; it is readily seen that κ equals the restriction of κT . In this

case the relation between spectral transfer factors follows from Theorem 7.4.2.

If a pair j does not arise from merging singletons, it must come from φGL since φ′,

φ′′ are both discrete series parameters. We set s j = 0 in this case. Note that the Levi

subgroup M̃ coming with φ ∈ T E (G̃) takes the form
∏

j :s j=0 GL(2)× S̃p(2n[). The relation

between spectral transfer factors follows by their description in Remark 7.4.4.
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Define the inverse κ 7→ φ = (φGL, φ
′, φ′′) by breaking the singletons into two different

piles according to the values of si . If a pair j in λ satisfies s j = 1, we divide it equally into

φ′ and φ′′; if s j = 0, it falls into the φGL. It is routine to check that they are mutually

inverse.

Theorem 7.5.3 (Cf. [42, § 7]). For all (φ, π) ∈ T E (G̃)×52↑,−(G̃), define 1(π, φ) :=

|5G̃
λ |
−11(φ, π) when 1(φ, π) 6= 0, otherwise 1(π, φ) := 0. Then we have∑

φ∈TE (G̃)

1(π, φ)1(φ, π1) = δπ,π1 ,

∑
π∈5temp,−(G̃)

1(φ, π)1(π, φ1) = δφ,φ1

for φ, φ1 ∈ T E (G̃) and π, π1 ∈ 52↑,−(G̃), respectively.

Proof. Consider the first assertion. We readily reduce to the case that π , π1 belong to

the same packet 5G̃
λ with λ as in (51). Suppose π = π(vEλ) and π1 = π(wvEλ) for a unique

w̄ ∈ E. For each φ, the recipe in Lemma 7.5.2 leads to

1(π, φ)1(φ, π1) = |5
G̃
λ |
−1κ(w̄).

Furthermore, summing over φ amounts to summing over κ ∈ R = Rλ. We conclude by

Fourier inversion on E. As for the second assertion, the sum is taken over some packet

5G̃
λ . In view of the bijection from Lemma 7.5.2 together with |5λ(G̃)| = |E| = |R|, we

are reduced to the previous case by linear algebra, as in the proof of Lemma 5.2.2.

Corollary 7.5.4 (Cf. [42, Corollary 7.7]). Let fG̃ ∈ I (G̃) with f E = T E ( fG̃). Then

fG̃(π) =
∑

φ∈TE (G̃)

1(π, φ) f E (φ)

for every π ∈ 52↑,−(G̃).

7.6. The case F = C
Let F = C. Hereafter, the C-groups are identified with their groups of C-points. Note the

following facts.

• The covering p : G̃ → G splits canonically: G̃ = µ8×G. Henceforth we view G as

{1}×G ⊂ G̃.

• The element −1 ∈ G̃ in Definition 2.2.2 equals −1 ∈ G. Indeed, this can be seen by

combining [30, Remarque 4.3] with [30, Corollaire 4.6].

In particular, the genuine representation theory of G̃ is no different from G. Theorem

4.1.2 will be applied to G and G !. Choose Borel pairs (B, T ) and (B!, T !) as above.

Choose any standard isomorphism θ : T !
∼
→ T constructed in Lemma 3.3.4. In view of

the recollections in § 4.1, the set T E (G̃) may be identified with the set of W (G, T )-orbits
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of continuous unitary characters of T , whose elements we represent as [χ ]. The bijection

T E (G̃) −→ 5temp(G) = 5temp,−(G̃)

φ = [χ ] 7−→ IB(χ)
(53)

is independent of the choice of θ .

Theorem 7.6.1. For every fG̃ ∈ I (G̃) with f E = T E ( fG̃) and φ ∈ T E (G̃), we have

f E (φ) =
∑

π∈5temp,−(G̃)

1(φ, π) fG̃(π),

where 1(φ, π) = 1 when φ 7→ π via (53), otherwise 1(φ, π) = 0. Moreover, by setting

1(π, φ) := 1(φ, π) we have the inversion formula

fG̃(π) =
∑

φ∈TE (G̃)

1(π, φ) f E (φ).

Proof. To prove the first assertion, we argue as in Theorem 7.4.3. In the complex setting

we reduce to the case M = T . Obviously 1T̃ (·, ·) reduces to Kronecker’s delta. It remains

to recall from Theorem 4.1.2 the irreducibility of IB(χ). The inversion formula follows

immediately.

Obvious analogues of Proposition 7.3.1 and Theorem 7.4.5 hold in the complex case.

We omit the details.

8. Proof of the non-archimedean character relations

The arguments are largely based on [6]. However, some non-trivial fine tunings are needed.

8.1. A stable simple trace formula

In this subsection, F̊ will denote a number field. Write A = AF̊ for its ring of adèles

and fix a non-trivial additive character ψ̊ =
∏
v ψv : A/F̊ → S1. We consider an adélic

metaplectic covering

p : ˜̊G � G̊(A), G̊ = Sp(W̊ )

attached to a symplectic F̊-vector space (W̊ , 〈·|·〉) of dimension 2n and ψ̊ .

Simple trace formula We shall formulate the Arthur–Selberg trace formula for ˜̊G;

the basic reference is [35]. Following the prescription of loc. cit., we use the Tamagawa

measures on the adélic groups and their quotients.

Fix a large set V of places of F̊ such that

V ⊃ Vram ) V∞ := {v : v|∞},

where Vram is the set of places over which p : ˜̊G � G̊(A) ‘ramifies’ in the sense of [34,

§ 3]. Here we may simply choose V and endow (W̊ , 〈·|·〉) with a model over oV , the ring
of V -integers in F̊ , so that every v /∈ V satisfies
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• v is non-archimedean of residual characteristic 6= 2;

• the oV -model of (W̊ , 〈·|·〉) has good reduction at v; in particular, Wv := W̊ ⊗F̊ F̊v admits

the self-dual lattice W̊ (ov) with respect to 〈·|·〉;

• ψv|ov ≡ 1 but ψv|p−1
v
6≡ 1;

• the lattice model for the Weil representation ωψv furnishes a splitting of p over Kv :=
Sp(Wv, ov).

As in [34], we write G̃V := p−1(G(F̊V )); similarly for G̃V . Set K V
:=
∏
v /∈V Kv so that

K V ↪→ G̃V is a continuous splitting. Hence we may define the spherical Hecke algebra

H(G̃V � K V ) outside V : its unit is the genuine function fK V :=
∏
v /∈V fKv on G̃V . Also fix

a maximal compact subgroup KV =
∏
v∈V Kv of G(FV ). In the foregoing construction,

we may even arrange that each Kv is in good position relative to some chosen minimal

Levi subgroup M̊0 of G̊. Put K :=
∏
v Kv, K∞ :=

∏
v∈V∞ Kv.

For any finite subset 0 of 5(K̃∞), define H (G̃V )0 to be the subspace functions in

C∞c, (G̃V ) which generate a space isomorphic to a sum of representations from 0×0

under bilateral translation by K̃∞. Define H (G̃V ) :=
⋃
0H (G̃V )0.

Definition 8.1.1. Define the space of simple test functions Hsimp(G̃V ) for ˜̊G to be the

subspace of H (G̃V ) generated by fV =
∏
v∈V fv satisfying the local conditions

(i) there exists v1, v2 ∈ V r V∞, v1 6= v2, at which f is cuspidal (Definition 5.1.1);

(ii) there exists w ∈ V r V∞ such that fw is supported on the semisimple, strongly

regular elliptic locus of G̃w.

Define the subspace Hsimp,adm(G̃V ) by imposing the following admissibility condition

(cf. [35, (20)] and [34, § 5.6]):

fV ∈ Hadm, (G̃V ).

For 0 as above, define Hsimp(G̃V )0 to be Hsimp(G̃V )∩H (G̃V )0.

Theorem 8.1.2 (Simple trace formula [35, Théorème 6.7]). The distribution

I : H (G̃V )→ C

in the invariant trace formula takes the following form when applied to fV ∈ Hsimp(G̃V ).

Put f̊ := fV f K V
, then

I ( fV ) =
∑

γ∈G(F̊)ell,ss/conj

a ˜̊G(γ )I
˜̊G(γ, f̊ ),

=

∑
t>0

It ( f ),

called the geometric and spectral expansions of I , respectively, with

It ( fV ) :=
∑

π̊∈5disc,t,−(
˜̊G)

a ˜̊G(π̊)I
˜̊G(π̊, f̊ ).
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Here

• I
˜̊G(γ, ·) is the orbital integral along the orbit of γ ;

• I
˜̊G(π̊, ·) is the character of the representation π̊ ;

• a ˜̊G(γ ) = mes(Gγ (F̊)\Gγ (A)), the Tamagawa number of Gγ ;

• 5disc,t,−(
˜̊G) is a set of irreducible genuine representations of ˜̊G whose archimedean

infinitesimal character ν has height ‖Im(ν)‖ = t; it contains the representations in the

genuine discrete spectrum of G(F̊)\ ˜̊G, together with certain ‘phantoms’.

We refer to [33, § 7] for the precise definition for the spectral objects.

Note that by Theorem 2.3.3, all elements in ˜̊G are good in the sense of [34, Définition

2.6.1], thereby simplifying the trace formula for coverings.

Remark 8.1.3. In [35] it is required that fV ∈ Hsimp,adm(G̃V ) in deducing the simplified

geometric expansion of I ( fV ). The admissibility of fV is a global property depending on

Supp( fV ), but also a harmless one. In fact, given fV ∈ Hsimp(G̃V ), we may always enlarge

V to some S ⊃ V , replacing fV by fS := fV fK V
S

(here K V
S :=

∏
v∈SrV Kv) simultaneously,

so that fS ∈ Hsimp,adm(G̃S). Since f̊ remains unaltered, none of the expansions above

are affected by this procedure.

Fix a finite set 0 of K̃∞-types and assume fV ∈ Hsimp(G̃V )0. In Arthur’s original works,

the spectral expansion I ( fV ) =
∑

t>0
∑
π̊∈5disc,t,−(

˜̊G)
· · · is considered as a convergent

iterated sum. The individual sums It ( fV ) are actually finite sums by [33, Lemme 7.2]. It

may be further refined as another convergent iterated sum

I ( fV ) =
∑
ν

Iν( fV ),

where

Iν( fV ) :=
∑

π̊∈5disc,−(
˜̊G)

inf. char.=ν

a ˜̊G(π̊)I ˜̊G(π̊, f̊ ).

Moreover, the sum I =
∑
ν Iν satisfies the multiplier convergence estimate in [7, (3.3)].

The results by Finis–Lapid–Müller [19], once generalized to the metaplectic covering
˜̊G, will solve all these convergence issues in our simple trace formula; cf. [33, Remarque

7.5]. As in [6], we opt to use the version I =
∑
ν Iν in this article.

Stabilization In [30, 35] we have defined the set Eell(
˜̊G) of elliptic endoscopic data for ˜̊G:

its members are always given by pairs (n′, n′′) ∈ Z2
>0 satisfying n′+ n′′ = n;consequently
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we can pass to local elliptic endoscopic data of ˜̊Gv at each place v of F . Theorems 3.4.1

and 3.4.3 together give adélic transfer of test functions

fV 7−→ f !V ∈ C∞c (G
!(F̊V )),

f̊ = fV fK V 7−→ f̊ ! = f !V 1K V,! ∈ C∞c (G
!(A)),

where G ! := SO(2n′+ 1)×SO(2n′′+ 1) is the endoscopic group corresponding to (n′, n′′),
and K V,!

⊂ G !(F V ) is any product of hyperspecial subgroups off V . In what follows

we take fV ∈ Hsimp(
˜̊G). Its transfer to G ! may be taken to be K !∞× K !∞-finite by

Theorem 7.4.5 and its complex analogue, where K !∞ is any maximal compact subgroup

of
∏
v|∞ G !(Fv).

To the quasisplit F̊-group G !, Arthur defined the stable distribution S! in his stable

trace formula [7, § 10]. The transfer f !V turns out to be a simple test function in the sense

of [6, p. 556]. Indeed:

(i) f !V is cuspidal at two distinct places v1, v2 ∈ V r V∞ since the transfer is compatible

with parabolic descent by Theorem 3.4.6;

(ii) f !w is supported in the elliptic G-regular semisimple locus of G ! at the place w ∈

V r V∞, by the very definition of geometric transfer (Theorem 3.4.1);

Under this circumstance, S!( f !V ) = S!( f̊ !) is a sum of stable orbital integrals. More

precisely, when applied to simple test functions, S! coincides with the regular part of the

distribution ST G!
équi,ell in [36, Définition 5.2.3], which equals

S!G-reg,ell( f̊ !) := τ(G !)
∑

σ∈G!(F̊)reg,ell/st.conj.

SG!(σ, f̊ !)

where

• τ(G !) is the Tamagawa number of G !,

• SG!(σ, f̊ !) is the stable orbital integral of f̊ ! along σ , defined relative to Tamagawa

measures.

On the other hand, S!( f̊ !) also admits a spectral description
∑

t S!t ( f̊ !), each S!t being

an infinite sum of adélic stable characters. Its precise form is contained in Arthur’s stable

multiplicity formula [10, Theorem 4.1.2], applied to the discrete parts SSO(2n′+1)
disc and

SSO(2n′′+1)
disc separately.

For the G ! ∈ Eell(
˜̊G) (abusing notations...) above, we set

ι(
˜̊G,G !) :=


1
4 , n′, n′′ > 1,
1
2 , n > 1, n′ = 0 or n′′ = 0,

1, n = 0.
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Theorem 8.1.4 [36, Théorème 5.2.6]. For f ∈ Hsimp(G̃V ), we have

I ( fV ) = IE ( fV ) :=
∑

G!∈Eell( ˜̊G)

ι(
˜̊G,G !)S!( f̊ !).

Parallel to the unstable side, each distribution S! has an expansion

S! =
∑
t>0

S!t =
∑

ν!:inf. char.

S!
ν!

which also satisfies the multiplier convergence estimate by [7, Proposition 10.5 (b)]. In

§ 7.4 we have defined a canonical finite-to-one map ν! 7→ ν of infinitesimal characters,

for every G !. Therefore, we can consider S! =
∑
ν S!ν with S!ν :=

∑
ν! 7→ν S!

ν!
as well. With

the help of multiplier convergence estimates, in [6, § 7] Arthur derived a version of stable

trace formula that would yield the result below in the metaplectic setup.

Corollary 8.1.5. For any chosen archimedean infinitesimal character ν of ˜̊G, we have

Iν( fV ) = IEν ( fV ) :=
∑
G!

ι(
˜̊G,G !)S!ν( f̊ !).

Sketch of the proof. Arthur’s arguments in op. cit. can be easily adapted to our case as

follows.

(i) Modify the test function fV by suitable multipliers α̂ (certain functions of ν) in

order to obtain fV,α ∈ Hsimp(G̃V ) with

∀ν, Iν( f̊α) = α̂(ν)Iν( f̊ ).

The theory of multipliers for coverings is recapitulated in [33, Théorème 4.4].

(ii) Similar constructions apply to the stable side: ∀ν!, S!
ν′
( f̊ !β) = β̂(ν

′)S!
ν′
( f̊ !).

(iii) Plug fV,α into Theorem 8.1.4, for various α.

(iv) Set α̂(ν′) = α̂(ν) if ν′ 7→ ν. Use the preservation of infinitesimal characters under

archimedean transfer (Proposition 7.3.1 and its complex analogue) to see ( fV,α)
!
=

( f !V )α.

By varying the multipliers, this trick will isolate the ν-parts in the equality of Theorem

8.1.4; the analytic subtleties are taken care of by the multiplier convergence estimates.

8.2. Compression of coefficients

Keep the previous notations. Fix a non-archimedean place u ∈ V and write G̃ := G̃u ,

F := F̊u , ψ := ψu . Fix a finite set of K̃∞-types 0. As before, the test functions are of the

form fV =
∏
v∈V fv ∈ H (G̃V )0. Write f := fu ∈ C∞c, (G̃), so that fV = fu f u

V .

Assumption: f u
V satisfies all the conditions defining of Hsimp(G̃V )0. Therefore fV ∈

Hsimp(G̃V )0 for any choice of f .

We set out to isolate the u-components in the simple stable trace formula (Theorem

8.1.4) and encapsulate the contribution from the remaining places. This compression

procedure is similar to [35, §§ 5.2, 5.5], in principle.
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Unstable geometric side For the geometric side only, we impose the extra condition

that

fV ∈ Hsimp,adm(G̃V ). (54)

It is largely a harmless assumption according to Remark 8.1.3. The coefficients a
˜̊G

ell(·) in

[35, (23)] will be used.

Definition 8.2.1. Assume (54). For any γ ∈ 0reg(G) and γ̃ ∈ p−1(γ ), set

I ( f u
V , γ̃ ) := 8

∑
γ̃ u

a
˜̊G

ell(γ̃
u γ̃ )( f u

V )G̃u
V
(γ̃ u),

where ( f u
V )G̃u

V
(γ̃ u) is a product of normalized orbital integrals over V r {u}, and γ̃ u ranges

over the regular semisimple classes in G̃u
V . The sum is finite for given Supp( fV ).

By [35, Lemme 5.4], I ( f u
V , εγ̃ ) = εI ( f u

V , γ̃ ) for every ε ∈ µ8.

Lemma 8.2.2. Assume (54). We have

I ( fV ) =
∑

γ∈0ell,reg(G)

I ( f u
V , γ̃ ) fG̃(γ̃ )

where γ̃ ∈ p−1(γ ) is arbitrary.

Proof. Recall that in the proof of part 4 of [35, Théorème 6.5], it is shown that the

geometric expansion of I ( fV ) reduces to the Iell( fV ) defined by [35, (22)]; the latter has

an expansion

Iell( fV ) =
∑
γ̃V

a
˜̊G

ell(γ̃V )( fV )G̃V
(γ̃V )

where γ̃V = γ̃u γ̃
u ranges over the regular semisimple classes in G̃V . Collecting terms

according to γ̃u yields the result.

Unstable spectral side Fix ν. First, recall the objects

• 5disc,−,ν(
˜̊G, V ): a set of unitary genuine irreducible representations of G̃V , whose

archimedean infinitesimal character is ν;

• CV
disc,−(

˜̊G): a set of characters of H(G̃V � K V ), i.e. Satake parameters outside V ;

• a
˜̊G

disc(π̊): the discrete spectral coefficient of a genuine representation π̊ of ˜̊G in the

Arthur–Selberg trace formula,

which are defined in [35, § 5.5] and [33, § 7]. The only difference is that we pin down the

infinitesimal character ν here.
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Definition 8.2.3. For any π ∈ 5−(G̃), set

Iν( f u
V , π) :=

∑
πu

V∈5−(G̃
u)

πV :=π
u
V�π∈5disc,−,ν (

˜̊G,V )

∑
c∈CV

disc,−(
˜̊G)

a
˜̊G

disc(πV � c) · ( f u
V )G̃u

V
(πu

V ),

where ( f u
V )G̃u

V
(πu

V ) is a product of characters.

Lemma 8.2.4. We have

Iν( fV ) =
∑
π

Iν( f u
V , π) fG̃(π).

Proof. In the proof of part 1 of [35, Théorème 6.5], we derived an expansion

I ( fV ) =
∑
π̊

a
˜̊G

disc(π̊)I
˜̊G(π̊, f̊ ).

It remains to (i) isolate the ν-parts, (ii) collect terms according to π̊u , and (iii) unfold

the definitions of 5disc,−(
˜̊G, V ) and CV

disc,−(
˜̊G).

By the Langlands classification for G̃, the character of π can be expressed in terms

of the character of genuine standard modules. Therefore we may rewrite the sum over

π as a sum over T−(G̃)C/S1: each element τ therein (take a representative in T−(G̃)C)

defines a character f 7→ fG̃(τ ) satisfying fG̃(zτ) = z−1 fG̃(τ ), for z ∈ S1. We recapitulate

the discussion as follows.

Lemma 8.2.5. We may define distributions f u
V 7→ Iν( f u

V , τ ) for τ ∈ T−(G̃)C, such that

• each Iν(·, τ ) is a finite linear combination of the Iν(·, π), and vice versa;

• Iν(·, zτ) = z Iν(·, τ ) for each z ∈ S1;

• we have

Iν( fV ) =
∑

τ∈T−(G̃)C/S1

Iν( f u
V , τ ) fG̃(τ )

for all fV satisfying our assumptions.

Stable spectral side Always fix the archimedean infinitesimal character ν for ˜̊G. Let

G ! be an elliptic endoscopic group of ˜̊G. Write f !V =
∏
v f !v ∈ C∞c (G

!(FV )), we have the

corresponding global test function f̊ ! := f !V 1K V,! as usual. Set f ! := f !u ∈ C∞c (G
!(F)) so

that

f !V = ( f !)uV f !u .

Moreover, ( f !)uV is assumed to be a simple test function [6, p. 556].

Denote the distribution in the stable trace formula for G ! as S! = SG! . We actually

work with S!ν =
∑
ν! 7→ν S!

ν!
. In this case, the compression of coefficients has been done in

[6, (8.6)]; we summarize as follows.
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Lemma 8.2.6. For every place v, denote by 8bdd(G !v)C the space of bounded L-parameters

of G !×F̊ F̊v. Abbreviate

8bdd(G
!)C := 8bdd(G

!
u)C.

One can define distributions ( f !)uV 7→ S!ν(( f !)uV , φ
!) for every φ! ∈ 8bdd(G !)C, such that

• each S!ν(·, φ
!) is a linear combination of stable characters coming from∏

v∈V
v 6=u

8bdd(G !v)C;

• for every f !V as above, we have

S!ν( f !V ) =
∑

φ!∈8bdd(G!)C

S!ν(( f !)uV , φ
!)( f !)G

!

(φ!).

Plug this into the expression IEν ( fV ) =
∑

G!∈Eell( ˜̊G)
ι(
˜̊G,G !)S!ν( f̊ !) of Corollary 8.1.5.

Take fV ∈ Hsimp(G̃V )0 as in the beginning of this subsection. We shall use the map

φ 7→ f E (φ) of Definition 6.2.2 in what follows.

Lemma 8.2.7. One can define distributions f u
V 7→ S!ν( f u

V , φ) for every φ ∈ T E (G̃)C such

that for every fV as above, we have

IEν ( fV ) =
∑

φ∈TE (G̃)C

IEν ( f u
V , φ) f E (φ).

Proof. By Lemma 8.2.6,

IEν ( fV ) =
∑
G!

ι(
˜̊G,G !)S!ν( f̊ !)

=

∑
(G!,φ!)

ι(
˜̊G,G !)S!ν(( f !)uV , φ

!)( f !)G
!

(φ!),

where f ! is a transfer of f , for each G ! ∈ Eell(
˜̊G).

For every pair (G !, φ!) above, there exists a unique M ! ∈ L(M !0)/W G!(M !0) and φM ! ∈

82,bdd(M !)C/W G!(M !) such that φM ! 7→ φ!. By Lemma 3.3.14, there exists a unique pair

(M, s) such that we may complete (G !,M !) into a diagram

as endoscopic data︷ ︸︸ ︷
G ! = G[s] G̃

M ! M̃

ell.

endo.

ell.

endo.

Levi Levi

Therefore φM ! determines an element φM ∈ T E
ell(M̃)C, which in turn maps to φ ∈ T E (G̃)C.

On the other hand, to (G !, φ!) is associated the sign factor ω′′(−1) by Remark 6.2.3,

satisfying

( f !)(φ!) = ω′′(−1) · f E (φ)︸ ︷︷ ︸
independent of G!

.
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This is originally established for φ ∈ T E (G̃), but extends easily to the present case by

meromorphic continuation. Collecting terms according to φ ∈ T E (G̃)C, we see that IE ( fV )

equals

∑
φ

 ∑
s

G!:=G[s]

ι(
˜̊G,G !)S!ν(( f !)uV , φ

!)ω′′(−1)

 f E (φ),

the φ! and ω′′ in the inner sum are both determined by (φ, s) by the foregoing discussion.

Now set IEν ( f u
V , φ) to be the inner sum.

8.3. Proof of the main theorem: preparations

Now we can undertake the proof of Theorem 6.3.1. Let us begin with the local setup in

§ 6.

• Fix fG̃ . By the meromorphic extension of stable tempered characters of each G !, the

function φ 7→ f E (φ) has obvious meromorphic extension to T E (G̃)C. In a similar vein,

φ 7→ f Egr(φ) extends to T E (G̃)C as well: this time we use the meromorphic extensions

of τ 7→ fG̃(τ ) and of the spectral transfer factors (cf. the discussion at the end of § 6.2).

• All the definitions in § 6.3 extend to coverings of metaplectic type, say L̃ =∏
i∈I GL(ni )× S̃p(W [), by treating the GL-factors and S̃p(W [) separately; the former

case is covered by [6]. For instance, I (L̃)→ IE (L̃) is simply the ⊗-product of the

identity map on the GL-factors with I (S̃p(W [))→ IE (S̃p(W [)).

This allows an inductive structure in our proof of Theorem 6.3.1. The following

hypothesis will be in force throughout this section.

Hypothesis 8.3.1. We assume the validity of Theorem 6.3.1 for all S̃p(W [) with

dimF W [ < dimF W = 2n.

Thus Theorem 6.3.1 also holds for coverings of metaplectic type of the form L̃ =∏
i∈I GL(ni , F)× S̃p(W [). Note that the case W [

= {0} is trivially true. Our global

arguments will be based on the two simple facts below.

Lemma 8.3.2. If fG̃ ∈ I
cusp

(G̃), then (41) holds for all φ. Same for L̃ in place of G̃,

where L ∈ L(M0).

Proof. It amounts to show the commutativity of (40), in which all I···(· · · ) are replaced

by their cuspidal avatars so that the subscripts gr become superfluous. We are reduced

to tautology.

Lemma 8.3.3. If φ ∈ T E (G̃)Cr T E
ell(G̃)C, then (41) holds for φ and all fG̃ .

Proof. Let L ∈ L(M0), L 6= G and assume φ comes from φL ∈ T E
ell(L̃)C. As L is of the

form
∏

i∈I GL(ni )× S̃p(W [), the diagram
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I (L̃) IE (L̃)

Igr(L̃) IEgr(L̃)

commutes by assumption; moreover, every arrow is a W G(L)-equivariant isomorphism.

Now consider the diagram

I (G̃) IE (G̃)

Igr(G̃) IEgr(G̃)

I (L̃)W
G (L) IE (L̃)W G (L)

Igr(L̃)W
G (L) IEgr(L̃)

W G (L)

in which:

• Igr(G̃)→ Igr(L̃)W
G (L) and IEgr(G̃)→ IEgr(L̃)

W G (L): restriction maps,

• I (G̃)→ I (L̃)W
G (L): parabolic descent of test functions,

• IE (G̃)→ IE (L̃)W G (L): for any L ! ∈ Eell(L̃), the L !-component of f E is f L !
∈

SI(L !)W G (L) in the notation of Definition 5.1.7.

The bottom layer of the diagram is commutative. We claim that all the four walls are

commutative. Indeed:

(a) for the two walls of shape , use the compatibility between parabolic descent

and geometric transfer (Theorem 3.4.6);

(b) for the leftmost wall , use the compatibility between parabolic descent and

induction (see (10));

(c) the rightmost wall may be treated in a similar fashion, by carefully unwinding

the z[s]-twists in IE (G̃)→ IE (L̃)W G (L)
→ IEgr(L̃)

W G (L) and IE (G̃)→ IEgr(G̃).

Now recall the arguments in Remark 6.3.2. Establishing (41) for all T E (L̃) 3 φL 7→

φ and all fG̃ is equivalent to showing the commutativity of the top layer upon

composition with IEgr(G̃)→ IEgr(L̃)
W G (L), or more concretely with the restriction map

to T E
ell(L̃)/W G(L). A straightforward diagram chasing suffices.
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Therefore we are reduced to showing (41) for φ ∈ T E
ell(G̃). For fG̃ ∈ I (G̃) and f E =

T E ( fG̃), define

f gr

G̃
(τ ) :=

∑
φ∈TE (G̃)

1(τ, φ) f E (φ), τ ∈ T−(G̃). (55)

It admits meromorphic continuation to T−(G̃)C. By Lemma 6.2.6 we have f E (φ) =∑
τ 1(φ, τ) f gr

G̃
(τ ), and (41) is equivalent to the assertion

f gr

G̃
(τ ) = fG̃(τ ). (56)

By the definition of 1, showing (41) for elliptic φ amounts to showing (56) for τ ∈

Tell,−(G̃). This is what we actually prove.

Write

Tpara,−(G̃) := T−(G̃)r Tell,−(G̃),

a union of connected components. Define Tpara,−(G̃)C, T̃para,−(G̃) and T̃para,−(G̃)C in

a similar fashion. By the foregoing discussion, we already have f gr

G̃
(τ ) = fG̃(τ ) for τ ∈

Tpara,−(G̃)C. Now switch to the global setup.

Assumption. Henceforth we suppose that p : G̃ → G(F) is isomorphic to the

localization at u of the adélic covering p : ˜̊G → G̊(A) (as coverings), with the notations

in §§ 8.1-8.2: here u ∈ V is a distinguished place of the number field F̊ . We also keep

the conventions on the test function fV = f f u
V ∈ Hsimp(G̃V ) in § 8.2. The choice of

f ∈ C∞c, (G̃) is free.

Fix an archimedean infinitesimal character ν for ˜̊G. From Corollary 8.1.5 we have

Iν( fV ) = IEν ( fV ). By Lemma 8.2.7 and the inversion formula, IEν ( fV ) equals∑
φ∈TE (G̃)C

IEν ( f u
V , φ) f E (φ) =

∑
φ,τ

IEν ( f u
V , φ)1(φ, τ) f gr

G̃
(τ )

=

∑
τ∈T−(G̃)C/S1

IEν ( f u
V , τ ) f gr

G̃
(τ ),

where we put

IEν ( f u
V , τ ) :=

∑
φ∈TE (G̃)C

IEν ( f u
V , φ)1(φ, τ).

for every τ ∈ T−(G̃)C.

Lemma 8.3.4. For any fV as above, we have

IEν ( f u
V , τ ) = Iν( f u

V , τ ), τ ∈ Tell,−(G̃),

and ∑
τ∈Tell,−(G̃)/S1

Iν( f u
V , τ )

(
f gr

G̃
(τ )− fG̃(τ )

)
=

∑
τ∈Tpara,−(G̃)C/S1

(
Iν( f u

V , τ )− IEν ( f u
V , τ )

)
fG̃(τ )

for every ν.
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Proof. From Lemma 8.2.5 and Iν( fV ) = IEν ( fV ), we obtain∑
τ∈T−(G̃)C/S1

(
IEν ( f u

V , τ ) f gr

G̃
(τ )− Iν( f u

V , τ ) fG̃(τ )
)
= 0.

No need to worry about Tell,−(G̃)Cr Tell,−(G̃) in the sum. Given τ ∈ Tell,−(G̃), choose

fG̃ ∈ I
cusp

(G̃) to be a pseudo-coefficient at τ . Note that (56) holds for this fG̃ by Lemma

8.3.2. The first assertion follows. Now resume the setting of an arbitrary fG̃ , we have∑
τ∈Tell,−(G̃)/S1

Iν( f u
V , τ )

(
f gr

G̃
(τ )− fG̃(τ )

)
=

∑
τ∈Tpara,−(G̃)C/S1

(
Iν( f u

V , τ ) fG̃(τ )− IEν ( f u
V , τ ) f gr

G̃
(τ )
)
.

We have verified (56) for τ ∈ Tpara,−(G̃)C. Plugging this into the previous displayed

equation yields the second assertion.

Observe that the function

hG̃ : τ 7−→ f gr

G̃
(τ )− fG̃(τ ), τ ∈ T−(G̃) (57)

has been shown to be supported on Tell,−(G̃). It satisfies the other conditions

(S1-equivariance and finite support, cf. Lemma 6.2.5) characterizing the Paley–Wiener

space PW (G̃), hence comes from an element of I
cusp

(G̃) which we still denote by hG̃ .

Proposition 8.3.5 [6, Lemma 9.3]. We have IEν ( f u
V , τ ) = Iν( f u

V , τ ) for every τ ∈

Tpara,−(G̃)C and every infinitesimal character ν.

Proof. Let � be a connected component of Tpara,−(G̃). Set

PW (�) :=
{

a ∈ PW (G̃) : Supp(a) ⊂ �
}
.

For ω ∈ PW (�), let fω ∈ C∞c, (G̃) be such that ∀τ, f
ω,G̃(τ ) = ω(τ). As the first step,

let us prove that for every linear functional I : I
cusp

(G̃)→ C, there exists F ∈ C∞(�)

such that F(zτ) = zF(τ ) for all z ∈ S1, τ ∈ �, and

I
(

f gr

ω,G̃
− f

ω,G̃

)
=

∫
�/S1

Fω, ∀ ω ∈ PW (�). (58)

Via T E
: I

cusp
(G̃)

∼
→ IEcusp(G̃), we transport I to a linear functional J : IEcusp(G̃)→ C.

Let f ∈ C∞c, (G̃). Lemma 8.3.2 applied to (57) implies that T E (hG̃) sends any φ ∈ T E
ell(G̃)

to ∑
τ

1(φ, τ)hG̃(τ ) =
∑
τ

1(φ, τ)
(

f gr

G̃
(τ )− fG̃(τ )

)
= f E (φ)− f Egr(φ). (59)
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As a by product, we conclude that f E − f Egr comes from some element hE ∈ IEcusp(G̃).
Specialize to the case f = fω. Claim: the function

ω 7→ I
(

f gr

ω,G̃
− f

ω,G̃

)
︸ ︷︷ ︸

=:h
ω,G̃

= J
(

f Eω − f Eω,gr

)
︸ ︷︷ ︸

=:hEω

is a finite linear combination of functions of the form

ω 7→ hEω(σ ), σ ∈ 0E
reg,ell(G̃).

Indeed, the normalized stable orbital integrals a 7→ a(σ ) are (weakly) dense in SI(G !)∨
for each G !; since hEω ∈ IEcusp(G̃) =

⊕
G!∈Eell(G̃) SI(G !), Howe’s conjecture on finiteness

[11] applied to each endoscopic group G ! implies our claim.

It remains to fix σ and show that hEω(σ ) =
∫
�/S1 F(σ, τ )ω(τ) dτ for some smooth

function F that is independent of ω and verifies ∀z ∈ S1, F(σ, zτ) = zF(σ, τ ). We apply

Lemma 6.1.8 together with (59) to obtain

hEω(σ ) =
∫
φ∈TE

ell(G̃)
S(σ, φ)hEω(φ) dφ

=

∫
φ∈TE

ell(G̃)

∑
τ∈Tell,−(G̃)/S1

S(σ, φ)1(φ, τ)h
ω,G̃(τ ) dφ

where S(·, ·) is the ‘collective’ version of the smooth functions SG!(·, ·) restricted to the

elliptic parameters (σ, φ). Changing variables using Lemma 6.2.7, we arrive at∫
Tell,−(G̃)/S1

∑
φ∈TE

ell(G̃)

S(σ, φ)1(φ, τ)h
ω,G̃(τ ) dτ.

The function F(σ, τ ) :=
∑
φ S(σ, φ)1(φ, τ) is smooth in σ and τ (use the smoothness of

1), it also has the right S1-equivariance so that the integral makes sense. Hence (58) is

established.

We are now ready prove the Proposition for τ ∈ �; the case τ ∈ �C will follow by
analytic continuation. Consider the genuine invariant distribution I : k 7→ Iν( f u

V k), where

f u
V is fixed and k ∈ C∞c, (G̃). Recall that

Iν
(

f gr

G̃
− fG̃

)
=

∑
τ∈Tell,−(G̃)/S1

Iν( f u
V , τ )

(
f gr

G̃
(τ )− fG̃(τ )

)
.

Take f = fω for ω ∈ PW (�) as before. Using Lemma 8.3.4,

Iν(hω,G̃) =
∑

τ∈�C/S1

(
Iν( f u

V , τ )− IEν ( f u
V , τ )

)
ω(τ).
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By fixing f u
V and �, the possible K̃ -types of the automorphic representations in the

spectral expansion of Iν( fV ) are pinned down. By of [33, Proposition 7.4], only finitely

many automorphic representations contribute to Iν( fV ), and that is why we opt to fix ν;

in particular the sum over τ is actually finite. On the other hand, Iν(hω,G̃) also equals∫
�/S1 F(τ )ω(τ) dτ for some F ∈ C∞(�) with ∀z ∈ S1, F(zτ) = zF(τ ), by (58).

Write � = �M/W (�) where M ∈ L(M0), �M is a connected component of Tell,−(M̃)
and W (�) := StabW G (M)(�M ); let �̃M be the inverse image of �M in T̃ell,−(M̃). Then

F may be viewed as a W (�)-invariant smooth function on �̃M , so do (IEν ( f u
V , ·)−

IEν ( f u
V , ·))|�. The symmetry constraints on ω can thus be removed so that∫

�̃M/S1
F(τ )ω(τ) dτ =

∑
τ∈�̃M,C/S1

finite sum

(
Iν( f u

V , τ )− IEν ( f u
V , τ )

)
ω(τ)

holds for every Paley–Wiener function ω on the compact torus �̃M/S1; here we got rid

of S1-equivariance by trivializing the torsors as in Remark 6.1.1.

Via Fourier transform we obtain an equality between distributions on the Pontryagin

dual of �̃M/S1, which is a lattice. The left-hand side gives a rapidly decreasing

function, whereas the right-hand side gives a finite sum of C×-valued characters. The

only possibility is that F = Iν( f u
V , ·)− IEν ( f u

V , ·) = 0; this is elementary, see [50, § 2.7,

Lemme].

Corollary 8.3.6. Let hG̃ ∈ I
cusp

(G̃) be attached to f gr

G̃
− fG̃ as in (57). Pick any h ∈

C∞c, (G̃) mapping to hG̃ , we have

Iν( f u
V h) =

∑
τ∈Tell,−(G̃)/S1

Iν( f u
V , τ )hG̃(τ ) = 0

for every f u
V and every infinitesimal character ν. Consequently, I ( f u

V h) = 0.

Proof. Apply Lemma 8.2.5 plus the second equality of Lemma 8.3.4, and recall that

I =
∑
ν Iν .

8.4. Proof of the main theorem: local–global argument

The local–global loop is now to be closed. We revert to the given local covering p : G̃ →
G(F) attached to (W, 〈·|·〉) and try to embed it into an adélic one, by suitably choosing
F̊ , etc.

We globalize the data of linear algebra by which G̃ and 1 are defined; the additive

character ψ will be globalized only up to F×2.

Proposition 8.4.1. Let T be an elliptic maximal F-torus of G. For every r > 1, there exist

• a number field F̊,

• a non-trivial additive character ψ̊ =
∏
v ψv : A/F̊ → S1,

• a symplectic F̊-vector space (W̊ , 〈·|·〉F̊ ),
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• u0, . . . , ur : distinct non-archimedean places of F̊,

• a maximal F̊-torus T̊ of G̊,

such that the following properties are satisfied for the adélic metaplectic covering p : ˜̊G →
G̊(A) attached to (W̊ , ψ̊ ◦ 〈·|·〉F̊ ).

1. For i = 0, . . . , r , we have F̊ui
∼
→ F, under which (W̊ , 〈·|·〉F̊ )⊗F̊ F̊ui

∼
→ (W, 〈·|·〉); fix

such identifications.

2. The natural homomorphism H1(F̊v, T̊v)→ H1(A/F̊, T̊ ) (see [36, § 3.1.2]) is an

isomorphism at v = u0, . . . , ur .

3. There exists ai ∈ F× such that

∀t ∈ F, ψui (t) = ψ(a
2
i t).

4. As coverings, G̃ui → G̊(F̊ui ) is isomorphic to G̃ → G(F). Moreover, the geometric

transfer factors 1(n′,n′′) on G̃ui and G̃ agree under this isomorphism.

5. Under the identifications above, the localization of T̊ at each ui is conjugate to T ;

in particular, T̊ is F̊-elliptic.

6. The localization map T̊ (F̊)→ T (F) at any ui has dense image.

Proof. The parametrization of conjugacy classes of T can be deduced from that of regular

semisimple elements [30, §3.1]. They are in bijection with equivalence classes of data

(L , τ, c), where

• L is a finite-dimensional étale F-algebra,

• τ : L → L is an F-involution, whose fixed subalgebra we denote by L],

• c ∈ L×/NL/L](L
×) satisfies τ(c) = −c, equivalently trL/L](c) = 0.

Here NL/L](x) = xτ(x), trL/L](x) = x + τ(x), and there is an evident notion of equivalence

between these triples. The condition is that the F-vector space L together with the

bilinear form (a, b) 7→ trL/F (aτ(b)c) is isomorphic to (W, 〈·|·〉) as symplectic F-vector

spaces. The torus T so obtained is isomorphic to kerNL/L] . Call (L , τ, c) or (L , τ ) split

if L ' (F × F)n , where τ : (x, y) 7→ (y, x) on each factor F × F ; split triples correspond

to split maximal F-tori.

The same parametrization works for any field of characteristic 6= 2; the base change

relative to any field extension E/F is straightforward — simply apply −⊗F E to étale

F-algebras with involution. We proceed to globalize (L , τ, c).
The data (L , τ, c) parametrizing T can be described via Galois descent, say by

comparison with the split one. We shall treat the pair (L , τ ) first. Let E/F be a Galois

extension splitting (L , τ ). Take a number field E̊ ′ with a place w′ such that there is an

isomorphism E̊ ′
w′
∼
→ E , which we fix. Therefore Gal(E/F) acts on E̊ ′; denote its fixed

field by F̊ ′. Then Gal(E/F) = Gal(E̊ ′/F̊ ′).
Let u′ be the place of F̊ ′ such that w′|u′, then E̊ ′

w′
∼
→ E restricts to F̊ ′u′

∼
→ F . In fact,

w′ is the unique place of F̊ ′ above u′. Fix an algebraic closure of E̊ ′ and pick a Galois

extension F̊/F̊ ′ therein, of degree > r over which u′ splits completely. Therefore we obtain
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distinct places u0, . . . , ur with F̊ui
∼
→ F for all i . Consider

E̊ := E̊ ′ F̊

w′ E̊ ′

F̊ ui

u′ F̊ ′

For each i , take place wi in E̊ such that wi |ui . By the foregoing discussion, it satisfies

the identification

Gal(E̊wi /F̊ui ) = Gal(E̊ ′w′/F̊u′) = Gal(E/F), (60)

and E̊ui ' E̊wi is a field.

Plugging these into the machine of Galois descent, we produce a global pair (L̊, τ̊ ) over

F̊ that splits over E̊ and localizes to (L , τ ) at each ui . Let us globalize the remaining

piece c. We claim that the simultaneous localization map{
c̊ ∈ L̊× : tr(c̊) = 0

}/
N (L̊×) −→

r∏
i=0

{
c ∈ L× = L̊×ui

: tr(c) = 0
}/

N (L×),

is surjective, where N (resp. tr) denotes the relevant norm (resp. trace) map. Since N (L×)
is open in L]×, it suffices to show the density of {c̊ : τ̊ (c̊) = −c̊} in

∏r
i=1{c : τ(c) = −c}.

Indeed, weak approximation holds for the rational variety defined by tr = 0 for any finite

set of places S; here we take S = {u0, . . . , ur }.

Therefore c can also be globalized to c̊. Consequently we get (W̊ , 〈·|·〉F̊ ) which localizes

to (W, 〈·|·〉) at each ui , together with the maximal torus T̊ of G̊ parametrized by (L̊, τ̊ , c̊)
that localizes to T modulo conjugacy. Moreover, T̊ splits over E̊ .

The proof of H1(F̊ui , T̊ui )
∼
→ H1(A/F̊, T̊ ) is based on (60). One can either (a) invoke

Tate–Nakayama duality as in [2, p. 528] to describe these H1, or (b) use the explicit

description of these groups in [36, § 3.1.3] together with the Galois descent construction.

Next, let us globalize ψ : F → S1. Fix ψ̊0 : A/F̊ → S1. For each i , there exists bi ∈ F×

such that ∀t, ψ(t) = ψ̊0,ui (bi t). Since F×2
⊂ F× is open, weak approximation for the

rational F̊-variety Ga (take S = {u0, . . . , ur }) yields b̊ ∈ F̊× and a0, . . . , ar ∈ F× such

that

b̊/bi = a2
i , i = 0, . . . , r.

The additive character t 7→ ψ̊(t) := ψ̊0(b̊t) satisfies our requirements. From the

description of metaplectic coverings in terms of Maslov cocycle [30, §2.4], the covering

G̃ → G(F) is determined by ψ ◦
(
〈·|·〉 mod F×2); indeed, this just reflects the properties

of Weil index γψ (· · · ). Hence the requirements on the localization of coverings are also

satisfied. The coincidence of transfer factors follows by the same reason: see the formulas

in [30, § 4 and § 5.3].

It remains to show that the localization map T̊ (F̊)→ T (F), say at the place u0, has

dense image. To this end, we apply the weak approximation in [27, Lemma 1(b)] to T̊
with K = E̊ , w = u1 and S = {u0}, noting that E̊ui is a field.
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Fix the local data (T, · · · ) and their globalization obtained thus far, with r = 2. Set

u := u0. The next step is to apply simple trace formula with

• a large finite set V ⊃ Vram t {u1, u2, u} of places,

• the distinguished place u,

• a suitable test function fV = f u
V h

under the formalism of § 8.3; here h ∈ C∞c, (G̃).
In what follows, we fix γ̊ ∈ T̊reg(F̊) and denote by γ ∈ Treg(F) its localization at u.

Recall that the data (W̊ , · · · ) carry an oV -model for large enough V .

Proposition 8.4.2. Given h ∈ C∞c, (G̃). We may choose a sufficiently large finite set of

places V ⊃ Vram t {u1, u2, u} and choose f u
V =

∏
v∈V
v 6=u

fv, satisfying

(i) γ̊ has regular reduction outside V relative to the oV -model which is a part of our

adélic covering.;

(ii) for every v ∈ V , v 6= u, f
v,
˜̊Gv

is sufficiently close to an anti-genuine Dirac measure

concentrated at the image of γ̊ in G̊(F̊v);

(iii) for v = u1, u2, we assume in addition that f
v,G̃v
∈ I

cusp
(
˜̊Gv)

such that

f u
V h ∈ Hsimp,adm(G̃V ),

I ( f u
V h) = I ( f u

V , γ̃ )hG̃(γ̃ ),

I ( f u
V , γ̃ ) 6= 0.

Proof. The admissibility of f u
V h depends only on its support. Thus upon enlarging V

(cf. Remark 8.1.3), one may assume that fV = f u
V h ∈ Hsimp,adm(G̃V ) is chosen so that

Supp( f̊ ) 3 γ̊ , and that (i) is satisfied. Lemma 8.2.2 gives

I ( fV ) =
∑

δ∈0ell,reg(G)

depending only on δ︷ ︸︸ ︷
I ( f u

V , δ̃)hG̃(δ̃) (61)

=

∑
δ̊∈G̊(F̊)ell,ss/conj

a
˜̊G(δ̊)I

˜̊G(δ̊, f̊ ). (62)

Recall the recipe in [35, § 5.2] for passing from (62) to (61). Any regular semisimple

class δ̊ with I
˜̊G(δ̊, f̊ ) 6= 0 must admit a representative (called an admissible representative

in loc. cit.) with image in G̊(A) of the form δV δ
V , such that δv ∈ Kv has regular reduction

for all v /∈ V . Indeed, this is just a paraphrase of the notion of V -admissibility in [34,

Définition 5.6.1]. We extract the components in V of δ̊ in the following manner: using

the splittings G̊(F̊) ↪→ ˜̊G and K V ↪→
˜̊G

V
, one can pick any appropriate representative

of δ̊ as above, and write
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δ̊ = δ̃V δ
V
∈
˜̊G,

δ̃V = δ̃
u
V δ̃u ∈ G̃V , δV

∈ K V
;

Denote this procedure as

δ̊  δ̃V .

Attention: this is not necessarily a map from global conjugacy classes into 0reg(G̃V ), but

only a correspondence.

Let (δ̃v)v∈V ∈
∏
v∈V G̃v be such that (δ̃v)v∈V 7→ δ̃V . Our assumptions outside V imply

I
˜̊G(δ̊, f̊ ) = I G̃V (δ̃V , fV ) =

∏
v∈V f

v,G̃v
(δ̃v). Set δ̃ := δ̃u . By collecting the contributions

from all such δ̊ and averaging over µ8, we get the summand in (61) indexed by δ.

Claim 1 : we can choose f u
V in the foregoing construction so that every δ̊ with I

˜̊G(δ̊, f̊ ) 6= 0
must be conjugate to γ̊ in G̊(F̊v) at every place v 6= u. Indeed, the adjoint quotient of G̊ is

an affine F̊-variety. Thus by taking fv sufficiently close to an anti-genuine Dirac measure

concentrated at the image of γ in G(Fv), for each v ∈ V r {u}, the condition I
˜̊G(δ̊, f̊ ) 6= 0

will force δ̊ to be stably conjugate to γ̊ at every place. Since both classes intersect Kv for

v /∈ V , this implies ordinary conjugacy outside V by a result of Kottwitz [34, Proposition

5.6.2]. As to the places v ∈ V r {u}, we take fv so close to an anti-genuine Dirac measure

to force ordinary conjugacy.

Property (ii) is thus inherent in our construction. Moreover, (iii) is also satisfied since

T is elliptic. Shrinking the support does not destroy admissibility, therefore our choice

of f u
V is accomplished.

Claim 2 : δ̊ and γ̊ are also conjugate in G̊(F̊u). By [36, § 3.1.2], there is a exact sequence

H1(
◦

F,
◦

T )
⊕

v H1(
◦

Fv,
◦

Tv) H1(A/
◦

F,
◦

T )

(λv)v
∑
v (image of λv)

in which the first term measures global conjugacy classes in a stable class intersecting

T̊ , and the second measures the local situation. Apply this to γ̊ and δ̊ and notice that

H1(F̊u, T̊u) ↪→ H1(A/F̊, T̊ ) to get Claim 2. Hence I ( fV ) = I ( f u
V , γ̃ )hG̃(γ̃ ).

It remains to prove I ( f u
V , γ̃ ) 6= 0. At this stage we may vary h and it suffices to show

I ( fV ) 6= 0. The rational classes δ̊ contributing to I ( fV ) become conjugate in G̊(A). If

they are also conjugate in ˜̊G, the non-vanishing will follow at once by taking hG̃(γ̃ ) 6= 0,

since a
˜̊G(δ̊) > 0. To show this, suppose that δ̊i (i = 1, 2) are elliptic, semisimple regular

elements such that

• I
˜̊G(δ̊i , f̊ ) 6= 0 for i = 1, 2,

• δ̊i  δ̃V,i for i = 1, 2,

• δ̃V,1 = εδ̃V,2 as conjugacy classes in G̃V , where ε ∈ µ8.

It remains to show ε = 1. For each place v, set

1(n,0),v :=
2+ψv −2

−

ψv

|2+ψv −2
−

ψv
|
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with the notations in § 2.2. This is a locally constant function on G̃v,reg; it is essentially

the transfer factor for (n, 0) ∈ Eell(
˜̊Gv). Let x̃ ∈ ˜̊G with an inverse image (x̃v)v ∈

∏
′

vG̃v.

Suppose that p(x̃) ∈ G̊(A) is locally stably conjugate to an element of G̊reg(F̊), we define

1(n,0)(x̃) :=
∏
v

1(n,0),v(x̃v)

with the following properties.

(a) The infinite product
∏
v 1(n,0),v(x̃v) is well defined: almost all terms are 1. It

depends only on the conjugacy class of x̃ .

(b) If x̃ ∈ G̊(F̊), then 1(n,0)(x̃) = 1.

(c) If v /∈ V and δv ∈ Kv has regular reduction, then 1(n,0),v(δv) = 1.

(d) 1(n,0),v(εx̃v) = ε1(n,0),v(x̃v) for all ε ∈ µ8 and x̃v ∈ G̃v.

Since (2+ψ,v −2
−

ψ,v)(x̃) = 2ψv (−x̃) for all place v and regular semisimple x̃ ∈ G̃v

(Definition 2.2.2), these properties are consequences of [30, Théorème 4.28, Proposition

4.21] and the genuineness of the Weil representations, in that order.

Apply this to δ̊1, δ̊2, we see

1 = 1(n,0)(δ̊i ) =

(∏
v∈V

1(n,0),v

)
(δ̃V,i ), i = 1, 2.

A comparison using (d) gives ε = 1, as asserted

Proof of Theorem 6.3.1. Let f ∈ C∞c, (G̃). From f we deduce the function hG̃ ∈

I
cusp

(G̃) by (57). In view of the reduction steps in § 8.3, it remains to show that hG̃ = 0.

This amounts to hG̃(γ̃ ) = 0 for all γ ∈ Treg(F) and any γ̃ ∈ p−1(γ ), where T is any given

elliptic maximal F-torus of G. Globalize the data (T, G̃ → G(F), · · · ) by Proposition

8.4.1 with r = 2. Choose the f u
V from Proposition 8.4.2 for any given γ̊ ∈ T̊reg(F̊). Choose

h ∈ C∞c, (G̃) mapping to hG̃ , then Corollary 8.3.6 asserts

I ( f u
V h) = 0.

Meanwhile, Proposition 8.4.2 says

I ( f u
V h) = I ( f u

V , γ̃ )︸ ︷︷ ︸
6=0

hG̃(γ̃ ),

where γ̃ is any inverse image of the u-component of γ̊ . Hence hG̃(γ̃ ) = 0. Since T̊ (F̊)→
T (F) has dense image, we conclude that hG̃ = 0 by the continuity of orbital integrals.
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multiplier convergence estimate, 103

simple trace formula

stabilization, 105
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standard isomorphism, 46

transfer factor

cocycle condition, 52

parabolic descent, 52

translation functor, 58
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38. D. Renard, Transfert d’intégrales orbitales entre Mp(2n,R) et SO(n+ 1, n), Duke Math.
J. 95(2) (1998), 425–450.

39. D. Renard, Endoscopy for Mp(2n,R), Amer. J. Math. 121(6) (1999), 1215–1243.
40. D. Shelstad, Characters and inner forms of a quasi-split group over R, Compos. Math.

39(1) (1979), 11–45.
41. D. Shelstad, L-indistinguishability for real groups, Math. Ann. 259(3) (1982), 385–430.
42. D. Shelstad, Tempered endoscopy for real groups. III. Inversion of transfer and L-packet

structure, Represent. Theory 12 (2008), 369–402.

https://doi.org/10.1017/S1474748016000384 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000384


Spectral transfer for metaplectic groups. I. Local character relations 123

43. D. Shelstad, Tempered endoscopy for real groups. II. Spectral transfer factors, in
Automorphic Forms and the Langlands Program, Advanced Lectures in Mathematics
(ALM), Volume 9, pp. 236–276 (International Press, Somerville, MA, 2010).

44. F. Trèves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New
York, 1967).
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