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Penetrative convection in a two-layer system in which a layer of fluid overlies and
saturates a porous medium is simulated via internal heating. The motion in the
porous medium is described via Darcy’s law and in the fluid layer by the Navier–
Stokes equations with a Boussinesq approximation. The lower porous surface is held
fixed at a temperature TL, while the upper fluid surface is stress free and held at
TU > TL. Internal heating takes place in both layers and allows the model to describe
penetrative convection. The strength of heating has a dramatic effect on both the
onset of convection and the nature of the ensuing convection cells. It is found that
a heat source/sink Q in the fluid layer has a destabilizing effect on the porous layer
whereas one in the porous medium Qm has a stabilizing influence on the fluid. The
effect of Q and Qm on their respective layers, however, depends strongly upon the
temperature difference TU − TL, and the strength and type of heating in the opposite
layer. When Q and Qm are varied, a range of streamlines are presented that exhibit
novel behaviour. The model is compared with an alternative in which the density is
assumed to have quadratic temperature dependence and there is no internal heating.
When the two models are mathematically adjoint they are shown to yield the same
critical instability threshold but different eigenfunctions. It is also shown that the
initiating cell is not necessarily the strongest one. This curious behaviour is explained
and illustrated with a range of streamlines for variable permeability.

1. Introduction
The purpose of this paper is to provide a model, via internal heating, for penetrative

convection when a fluid overlies and saturates a layer of porous material. Penetrative
convection refers to convective motion which begins in an unstable layer, and
penetrates into an otherwise stable layer or layers. There are several ways to describe
penetrative convection, at least five of which are discussed in detail in Straughan
(1993). One of the most widely employed models is internal heating. An internal
heat source (or sink) can give rise to a situation where one part of a layer is
naturally convecting while the other remains stable; hence penetrative convection
can occur. Many references can be found in which convection via internal heating is
described. One of the most significant contributions, from which great advancement
has been made, is that of Roberts (1967). Roberts (1967) models convection in a
horizontal layer of fluid cooled from above, thermally insulated from below and
heated uniformly by an internal source. Matthews (1988) adapts the work of Roberts
(1967) to formulate a model for the onset of penetrative convection in a single layer
of fluid. Penetrative convection in a single porous layer has similarly been modelled,
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306 M. Carr

see Straughan & Walker (1996). However, there is very little literature on penetrative
convection in the coupled porous-medium–fluid system despite it having numerous
important applications.

For example, ice may be treated as a porous medium if it has sufficiently high
permeability, see Eicken et al. (2002). Hence, if the porous layer takes the form
of ice, and water is the fluid, there is scope to model a wide range of important
geophysical problems. These include sea ice melting in the Arctic (Notz et al. 2003) and
mixing in ice covered lakes (Matthews 1988). In addition, further applications include
penetrative convection in the solidification of alloys (Worster 1992), patterned ground
formation under water (Carr & Straughan 2003), contaminant transport due to flow of
water under the Earth’s surface (Curran & Allen 1990; Allen & Khosravani 1992; El-
Habel, Mendoza & Bagtzogloum 2002), flow of oil in underground reservoirs (Allen
1984; Ewing 1996), bio remediation of contaminated ground (Suchomel, Chen &
Allen 1998a, b), and hydrothermal synthesis in the growth of crystalline materials
(Chen, Prasad & Chatterjee 1999).

In this paper, penetrative convection in the coupled porous-medium–fluid system
is simulated by internal heating in both layers. We believe this is the first time such a
system has been modelled in this way. Standard convection was dealt with primarily
by Nield (1977), with an important extension in Nield (1983). Chen & Chen (1988,
1989) also analysed convection in the superposed porous-medium–fluid problem. They
made the significant discovery that linear instability neutral curves may be bimodal,
i.e. they may possess two local maxima. Chen & Chen (1988, 1989) showed both
analytically and experimentally that the local maxima correspond to a parameter
range in which convection is initiated in either the fluid layer or the porous medium.
Worster (1992) also found two modes when investigating compositional convection in
the solidification of binary alloys. In this paper, numerical findings are presented that
exhibit a similar bimodal behaviour to those of Worster (1992), yet are generated by
a completely different physical process.

Heat sinks in each layer are dealt with primarily, but the effects of having a source
in both layers or a source in one layer and a sink in the other are also considered. A
vast array of steady-state solutions can be found and the more interesting of these are
discussed in detail. In particular, two steady-state solutions are presented in which a
stably stratified layer is bounded above and below by unstable layers and an unstably
stratified layer is bounded by stable ones. It is found that both a heat source and sink
in the fluid layer have a destabilizing effect on the porous medium, whereas heating
in the porous medium has a stabilizing effect on the fluid layer. The effect of a source
or sink on its own layer, however, is a lot more complicated. It depends strongly on
both the strength of the source/sink in the other layer and the difference between TU

and TL. The instability of the two-layer system and the size of the ensuing convection
cells are found to be very sensitive to change in the strength of the internal heating.
A selection of streamlines are presented which exhibit novel behaviour when Q and
Qm are varied.

Carr & Straughan (2003) also considered the porous-medium–fluid system but
they employed a quadratic equation of state as opposed to internal heating to
simulate penetrative convection. It is stressed that from both a mathematical and
physical point of view, the model of Carr & Straughan (2003) is very different to
the one considered here, however. In some instances, however, the linearized forms
of the two models are shown to be mathematically adjoint. When this is the case
it is found that the two models yield the same critical instability threshold but
different eigenfunctions. The physical quantities driving the motion are different
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Figure 1. Schematic diagram of the governing system.

in the two systems and this is reflected in the pattern of the ensuing convection
cells.

An outline of the paper is as follows. In the first two sections the governing system
and corresponding equations are described and the non-dimensionalized perturbation
equations derived. In § 4 the boundary conditions are discussed and a linear instability
analysis is given. A brief description of the numerical method is then provided in § 5.
An analytical and numerical discussion of the effect of including heat sinks in both
layers on the stability of the system is presented in § 6. This is extended to include all
combinations of sources and sinks in § 7. Finally in § 8, a comparison is made between
the model and that given in Carr & Straughan (2003). An array of streamlines is
presented showing that, contrary to intuition, the initiating cell is not necessarily the
strongest one.

2. The governing equations
Consider a fluid occupying the three-dimensional layer {(x, y) ∈ �2} × {z ∈ (0, d)}

saturating an underlying porous medium {(x, y) ∈ �2}×{z ∈ (−dm, 0)}. The interface
between the saturated porous medium and the fluid is at z = 0, see figure 1. Suppose
the density has a linear temperature dependence of the form

ρ = ρ0[1 − ᾱ(T − Tr )], (2.1)

where ρ, T , and ᾱ are density, temperature, and thermal expansion coefficient, and
ρ0 and Tr are constant reference values for the density and temperature respectively.
Then employing the Navier–Stokes equations, with a Boussinesq approximation, the
governing equations for the fluid can be expressed as

∂vi

∂t
+ vj

∂vi

∂xj

= − 1

ρ0

∂p

∂xi

+ ν�vi + ᾱgT ki, (2.2)

∂vi

∂xi

= 0, (2.3)

∂T

∂t
+ vi

∂T

∂xi

=
kf

(ρ0cp)f
�T + 2Q, (2.4)

where (2.3) and (2.4) are the incompressibility condition and balance of energy,
respectively. The Q term in (2.4) is some (constant) internal heat source or sink
and its inclusion allows the model to describe penetrative convection in the fluid
layer (see § 6). Equations (2.2)–(2.4) are assumed to hold for time t > 0, in the
spatial domain {(x, y) ∈ �2, z ∈ (0, d)}. The variables vi, t, xi, p, and T are velocity,
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308 M. Carr

time, displacement, pressure and temperature, and ν, g, kf , cp are kinematic viscosity,
gravity, thermal conductivity and specific heat at constant pressure. Standard indicial
notation and the Einstein summation convention are employed throughout. Subscript
(or superscript) f or m denotes fluid or porous medium, respectively. The symbol �

is the Laplace operator and k = (0, 0, 1).
In the porous medium the motion of the fluid is described by Darcy flow with the

buoyancy force again given by (2.1); therefore on {(x, y) ∈ �2} × {z ∈ (−dm, 0)} ×
{t > 0},

0 = − 1

ρ0

∂pm

∂xi

− ν

K
vm

i + ᾱgTmki, (2.5)

∂vm
i

∂xi

= 0, (2.6)

(ρ0cp)∗

(ρ0cp)f

∂Tm

∂t
+ vm

i

∂Tm

∂xi

=
k∗

(ρ0cp)f
�Tm + 2Qm, (2.7)

where vm
i , pm, Tm are velocity, pressure and temperature in the porous medium. K is

the permeability and Qm is some (constant) internal heat source or sink in the porous
layer. In (2.5) the acceleration term has been omitted since it is believed to be small
and negligible (Nield & Bejan 1999). Starred quantities are defined in terms of fluid
and porous variables as S∗ = φSf + (1 − φ)Sm, where φ is the porosity and S stands
for a physical variable such as thermal conductivity k.

The temperatures on the upper and lower boundaries are held fixed at values TU

and TL(<TU ) respectively. The governing equations (2.2)–(2.7) admit a steady-state
solution in which the velocity field is zero and the unperturbed temperature profile is

T̄ (z) = −Qz2

λ
+

(
TU − T0

d
+

Qd

λ

)
z + T0, (2.8)

T̄ m(z) = −Qmz2

λm

+

(
T0 − TL

dm

− Qmdm

λm

)
z + T0, (2.9)

where λ= kf /(ρ0cp)f , λm = k∗/(ρ0cp)f and T0 is the temperature at the interface.
Continuity of temperature and heat flux at z = 0 yield the relation

T0 = E
(

TU +
Qd2

λ
+

TLd̂

εT

+
Qmd2

md̂

λmεT

)
, (2.10)

where E = εT /(εT + d̂), εT = λ/λm and d̂ = d/dm.

3. Non-dimensional perturbation equations
To study the instability of the steady state, perturbations (ui, θ, π, um

i , θm, πm) are
introduced. Then non-dimensionalizing with fluid and porous-medium scalings of
time, velocity, pressure, and temperature taken as

T =
d2

ν
, U =

ν

d
, P =

ρ0νU

d
, T # =

U

λ

√
−Qνd

gᾱ
,

Tm =
d2

m

ν
, Um =

ν

dm

, P m =
ρ0νUm

dm

, T m# =
Um

λm

√
−Qmνd3

m

gᾱK
,
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yields

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂π

∂xi

+ �ui + Rθki, (3.1)

∂ui

∂xi

= 0, (3.2)

Pr

(
∂θ

∂t
+ ui

∂θ

∂xi

)
= �θ + Rf (z)w, (3.3)

δ2 ∂πm

∂xi

= −um
i + Rmθmki, (3.4)

∂um
i

∂xi

= 0, (3.5)

Prm

(
Gm

∂θm

∂tm
+ um

i

∂θm

∂xi

)
= �θm + Rmf m(z)wm, (3.6)

where f (z) = 1 − 2z + (TU − T0)λ/Qd2, w = u3, Gm = (ρ0cp)∗/(ρ0cp)f , f m(z) = (T0 −
TL)λm/Qmd2

m − 2z−1 and wm = um
3 . The length scales in the fluid and porous domains

are d and dm, respectively. In addition the fluid and porous-medium Rayleigh numbers
Ra and Ram are defined as

Ra = R2 =
−Qgᾱd5

νλ2
, Ram = R2

m =
−QmgᾱKd3

m

νλ2
m

.

The Darcy number δ =
√

K/dm, and the fluid and porous-medium Prandtl numbers
are Pr = ν/λ, Prm = ν/λm.

To ensure that T #, T m# are real we impose Q, Qm < 0, i.e. we deal explicitly with
a heat sink in both layers. It is worth noting that the non-dimensionalization is not
unique. An alternative is to take the negative signs from T #, T m# into the governing
equations, then Q, Qm > 0 can be considered. This is discussed in more detail in § 7.

4. Boundary conditions and linearized instability theory
Equations (3.1)–(3.6) are linearized and solutions sought of the form ui = ui(x)eσ t .

The time scale tm = t/ω is introduced; then (3.1)–(3.6) yield

σui = −π,i + �ui + Rθki, (4.1)

ui,i = 0, (4.2)

σP rθ = �θ + Rf (z)w, (4.3)

δ2πm
,i = −um

i + Rmθmki, (4.4)

um
i,i = 0, (4.5)

σωPrmGmθm = �θm + Rmf m(z)wm. (4.6)

The upper surface is assumed to be open to the atmosphere (tangential stress free)
and the lower boundary held fixed. Then, in non-dimensional form, the boundary
conditions are

on z = 1, θ = w = w,zz = 0 ; (4.7)

on z = −1, θm = wm = 0. (4.8)
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At the interface, z = 0, continuity of the normal components of velocity, temperature
and heat flux, yields

wm =
w

d̂
, θm =

δ

εT

√
Â

d̂
θ,

∂θm

∂z
= δ

√
Â

d̂3

∂θ

∂z
, (4.9)

where Â = Q/Qm. In addition at z = 0, continuity of normal stress is required,

d̂2πm = π − 2w,z, (4.10)

and the Beavers–Joseph boundary condition is employed,

∂uβ

∂z
=

d̂α

δ

(
uβ − d̂uβ

m

)
, β = 1, 2, (4.11)

where α is a coefficient depending on the fluid and porous medium under
consideration. Further details of the last condition and alternatives are given in
Nield & Bejan (1999) and Straughan (2001).

A normal-mode representation is introduced of the form w = W (z)g(x, y),
wm = Wm(z)gm(x, y), where g(x, y) and gm(x, y) are horizontal plan forms satisfying
�∗g = −a2g, �∗gm = −a2

mgm, �∗ is the horizontal Laplacian and the wavenumber
a is a measure of the ‘width’ of the convection cell to the depth, d . The pressures
π and πm are eliminated by taking curlcurl of (4.1) and (4.4), and retaining the
third component. Then regarding A= (D2 − a2)W as an independent variable, where
D2 =d2/dz2, the governing equations yield five coupled second-order equations to
determine the critical growth rate σ , namely,

(D2 − a2)W = A, (4.12)

(D2 − a2)A − Ra2Θ = σA, (4.13)

(D2 − a2)Θ + Rf (z)W = σP rΘ, (4.14)(
D2 − a2

m

)
Wm + Rma2

mΘm = 0, (4.15)(
D2 − a2

m

)
Θm + Rmf m(z)Wm = σωPrmGmΘm, (4.16)

where (4.12)–(4.14) hold on z ∈ (0, 1), while (4.15)–(4.16) hold on z ∈ (−1, 0). Coupling
is through the boundary conditions (4.7)–(4.11), which are reduced to yield

Θ = W = A = 0 on z = 1, (4.17)

Θm = Wm = 0 on z = −1, (4.18)

W = d̂Wm, Θm =
δ

εT

√
Â

d̂
Θ, DΘm = δ

√
Â

d̂3
DΘ,

2a2DW − DA − d̂2

δ2
DWm = −σDW,

a2W + A =
d̂α

δ
(DW − d̂ DWm) on z = 0.




(4.19)

Thus, our goal is to solve (4.12)–(4.16) subject to (4.17)–(4.19).

5. The D2–Chebyshev tau method
To solve the eigenvalue problem (4.12)–(4.19), the D2–Chebyshev tau method was

employed. This method is very accurate and allows as many eigenvalues as needed to
be calculated. The corresponding eigenfunctions can also be easily computed.
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Before implementing the D2–Chebyshev tau method, (4.12)–(4.19) are transformed
to the Chebyshev domain (−1, 1) via ẑ = 2z − 1 and ẑm = −2zm − 1. Then the fluid
surface z = 1 becomes ẑ = 1 and the porous base zm = −1 becomes ẑm =1 while the
interface z = 0 = zm becomes ẑ = −1 = ẑm.

The five quantities W, A, Θ, Wm and Θm are regarded as independent variables
and expanded as Chebyshev series, e.g. W =

∑N+2
n=0 WnTn(z). Equations (4.12)–(4.16),

and the operator D2 are written in matrix form (Dongarra, Straughan & Walker
1996). The boundary conditions (4.17)–(4.19) are imposed by removing the m(N + 2)
and m(N + 3) rows of the resulting matrix, m = 1, . . . , 5, and replacing them with
the discrete forms of the boundary conditions. The boundary conditions are realized
with the aid of the relations Tn(±1) = (±1)n and T ′

n(±1) = (±1)n−1n2. This results in
a generalized 5(N + 3) × 5(N + 3) matrix eigenvalue problem of the form Ax = σBx.
This is solved for the eigenvalues σ (n), n= 1, 2, . . . , and the eigenfunctions x(n) with
the aid of the QZ algorithm which was employed via the NAG routine F02BJF.

6. Discussion of the model and numerical results
Recall from § 2, that the steady state-temperature profiles and the temperature at

the interface are given by

T̄ (z) = −Qz2

λ
+

(
TU − T0

d
+

Qd

λ

)
z + T0, (6.1)

T̄ m(z) = −Qmz2

λm

+

(
T0 − TL

dm

− Qmdm

λm

)
z + T0, (6.2)

T0 = E
(

TU +
Qd2

λ
+

TLd̂

εT

+
Qmd2

md̂

λmεT

)
. (6.3)

Differentiating (6.1) and (6.2), and eliminating T0 yields the turning points for T̄ and
T̄ m,

ztp =
d(1 − E)

2

[
ε̂

(
TU − TL − 1

ε̂m

)
+ 1

]
, (6.4)

zm
tp =

dmE
2

[
ε̂m

(
TU − TL +

1

ε̂

)
− 1

]
, (6.5)

where ε̂ = λ/Qd2 and ε̂m = λm/Qmd2
m. Since Q, Qm < 0 the turning points are both

minimum points (T̄
′′
, T̄

′′

m > 0). To investigate what type of steady-state temperature
profile can be obtained, (6.3)–(6.5) are used to derive the identities

ztp > 0 ⇔ TU − TL < −1

ε̂
+

1

ε̂m

, (6.6)

ztp < 0 ⇔ TU − TL > −1

ε̂
+

1

ε̂m

, (6.7)

zm
tp > −dm ⇔ TU − TL < −1

ε̂
− 1

ε̂m

(
2d̂

εT

+ 1

)
, (6.8)

zm
tp < −dm ⇔ TU − TL > −1

ε̂
− 1

ε̂m

(
2d̂

εT

+ 1

)
, (6.9)
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0

d

z

–dm

T

TL

TU

T0

Figure 2. Steady-state temperature profile, case 1: depth z against temperature T .
ztp < 0, zm

tp < −dm.

Potentially unstable

TT0

z

0

–dm TL

TU
d

Figure 3. Steady-state temperature profile, case 2: depth z against temperature T .
ztp < 0, −dm < zm

tp < 0, T0 > TL.

T0 > TL ⇔ TU − TL > −1

ε̂
− 1

ε̂m

d̂

εT

, (6.10)

T0 < TL ⇔ TU − TL < −1

ε̂
− 1

ε̂m

d̂

εT

. (6.11)

Equations (6.6), (6.5) and (6.11) can be used to derive the relation

ztp > 0 ⇔ zm
tp > 0 ⇒ T0 < TL.

Similarly, (6.7), (6.5) and (6.10) yield

ztp < 0 ⇔ zm
tp < 0 ⇒ T0 > TL.

Hence, only the following four types of steady-state temperature profile are possible.
It is worth noting at this point that the temperature difference between the interface
and base is crucial in determining the stability characteristics. Thus, a distinction is
made between cases when T0 � TL.

Case 1: The whole system is stable. If zm
tp < −dm, then (6.9) implies that T0 >TL and

ztp < 0. Hence, a profile like that displayed in figure 2 is obtained. Recall that density
is a linearly decreasing function of temperature (see (2.1)), i.e. the warmer the fluid
the lighter it is. Thus, for the profile given in figure 2 the system is always stable.

Case 2: There is an unstable region in the porous layer and T0 > TL. The profile given in
figure 3 can be obtained by imposing (6.8) and (6.10) (note (6.7) follows automatically).
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Potentially unstable

T

0

d

z

–dm
TL

TU

T0

Figure 4. Steady-state temperature profile, case 3: depth z against temperature T .
ztp < 0, −dm < zm

tp < 0, T0 < TL.

Potentially unstable

TU

T
0

d

z

–dm

T0

TL

Figure 5. Steady-state temperature profile, case 4: depth z against temperature T .
ztp > 0, zm

tp > 0, T0 < TL.

Fluid at the turning point, zm
tp , is colder and heavier than at the base z = −dm.

Therefore, there is a potentially unstable region between the turning point and the
base of the porous layer.

Case 3: There is an unstable region in the porous layer and T0 <TL. The profile given in
figure 4 can be obtained by imposing (6.7) and (6.11) (note (6.8) follows automatically).
Again, there is a potentially unstable layer between the turning point and the base.

Case 4: There is an unstable region in the fluid and underlying porous layer, and
T0 < TL. If ztp > 0 then (6.6) implies that T0 <TL and zm

tp > 0. Thus, a profile like
that displayed in figure 5 is obtained. There is a potentially unstable layer in the
lower fluid region and underlying porous medium (everywhere beneath the dotted
line).

Further steady-state profiles can be obtained for Q, Qm > 0 or Q and Qm of
alternating signs in an entirely analogous fashion to that presented above. Two
specific cases in which Q and Qm are of opposing signs are considered in § 7. From
the four cases presented above, it is clear that penetrative convection is possible in
cases 2, 3, and 4. Hence it is these cases that are of interest in the following analysis.
It is evident from the steady-state temperature profiles that the position of the turning
point determines the stability characteristics of the system. To investigate what effect
Q and Qm have on the system, we assume that d, dm, λ, λm and εT are all fixed. Then
ε̂ ∝ 1/Q, ε̂m ∝ 1/Qm, and we consider what effect ε̂ and ε̂m have on the turning
points ztp, zm

tp .
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Figure 6. Neutral instability curves, Ram against am. TU = 9 ◦C, d̂ = 1, ε̂m = −0.0728,
ε̂ varies as shown.

6.1. Stability characteristics of Q

Inspection of (6.4) reveals that as ε̂ becomes less negative, ztp increases for fixed ε̂m. In
other words, as the heat sink Q becomes stronger, the system becomes more unstable.
Similarly inspection of (6.5), shows as ε̂ becomes less negative, zm

tp increases for fixed
ε̂m. Once more, as Q becomes stronger, the system becomes more unstable. Thus, Q

is destabilizing in cases 2, 3, and 4, i.e. the stronger the heat sink in the fluid layer
the more unstable the system. Physically this makes sense in all three cases.

Consider case 2: fluid at the interface is warmer and lighter than at the bottom of
the porous medium. The lighter the fluid at the interface, the more stable the system.
If the heat sink in the fluid is made stronger, the temperature at the interface will
decrease and fluid there will become colder. Hence, the heat sink is destabilizing in
this instance. In case 3, fluid at the interface is colder (and therefore heavier) than at
the base of the porous medium. Therefore, if the heat sink in the fluid layer is made
stronger, the temperature at the interface decreases and the difference between the
fluid density at the interface and that at the base of the porous medium increases.
Since the fluid at the interface is heavier than at the base, this is clearly destabilizing.
In case 4, fluid at the interface is heavier than at the top of the fluid layer. Therefore,
the whole of the fluid layer is potentially stable. However, if there is fluid within the
layer that is colder than at the interface then there is a potentially unstable layer
between the interface and the colder fluid. The stronger the heat sink in the fluid, the
more likely this is (for fixed Qm). Therefore, in this instance, a heat sink in the fluid
is also destabilizing.

To be in keeping with Carr & Straughan (2003), suppose the saturating fluid is
water, and unless otherwise stated take TL = 0 ◦C, Pr =6, εT =0.7, Gm = 10, α = 0.1
and δ =0.002. In figure 6 the neutral curves for TU, d̂ and ε̂m fixed at 9 ◦C, 1 and
−0.0728 respectively, with ε̂ varying are presented. The neutral curves represent the
variation of the porous Rayleigh number Ram with the porous wavenumber, am. The
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minimum value of Ram yields the critical value above which instability will commence.
As ε̂ becomes less negative the neutral curves shift down and the system becomes
more unstable. This is expected and in agreement with the analytical work presented
above. Q clearly has a destabilizing influence. Moreover, the neutral curves exhibit a
bimodal nature like that first seen in Chen & Chen (1988). For ε̂ = −0.05, −0.0275 the
minimum of the curve occurs at am ≈ 2, whereas for ε̂ = −0.025, −0.015, am ≈ 12, 8.5,
respectively. Therefore as ε̂ becomes less negative, the shape of the convection cells
switches from wide (smaller am) to narrow (larger am). If the critical wavenumber
is small, the porous medium is said to dominate convection, whereas if it is large,
the fluid layer dominates. The dominant layer refers to the layer in which instability
commences. Thus, as Q becomes stronger convection switches from porous to fluid
initiated.

This is somewhat analogous to the findings of Worster (1992), who showed that
in the solidification of binary alloys the onset of convection was dominated by one
of two modes, mushy layer or boundary layer. The mushy-layer mode is driven by
buoyant residual fluid within the mushy layer and induces a broad cellular motion
in both the mushy layer and overlying fluid. The boundary-layer mode, on the other
hand, is associated with a narrow compositional boundary layer in the melt and
results in fine-scale convection in the boundary layer leaving the fluid in the mushy
layer virtually stagnant. In the next section numerical findings are presented that
exhibit a similar behaviour to those of Worster (1992), and yet are generated by
a completely different physical process. In Worster (1992), the driving force behind
convection is the release of latent heat and solute into the mushy layer, whereas here
it is the removal of heat via sinks. The latent heat, first introduced by Worster (1986),
is similar to the Qm term in the heat equation. Latent heat, however, is positive for
solidification, whereas Qm is negative here. In § 7 the case of Qm > 0 is considered.
Worster (1992) does not report any penetrative effects. In the light of the work that
follows, it is highly likely that for a given parameter range they do exist.

6.2. Variation of the streamlines with Q

In this section streamlines at criticality, corresponding to figure 6 are presented, i.e.
TU , d̂ and ε̂m are fixed at 9 ◦C, 1 and −0.0728 respectively, and ε̂ is varied. Throughout
all figures the porous-medium–fluid interface is at z = 0, and the dashed line marks
the turning point of the steady-state solution. Everywhere below the dashed line is
unstably stratified while everywhere above is stably stratified.

When ε̂ = −0.0275 (figure 7), there is one cell bridging the porous-medium–fluid
interface and a further four cells are seen in the fluid above. The cell bridging the
interface is the initiating cell. It is situated mainly below the unstable dashed line and
thus drives convection. The four cells in the (stably stratified) fluid above are counter
cells, a result of penetrative convection. Note that the centre of the driving cell is
situated above the dashed line. This somewhat curious behaviour is a result of the
resistance to movement the porous medium offers. This is explained in § 8 where an
example is given in which the driving cell is weaker than the counter cell above.

As the strength of Q is increased (figure 8), the width of the cells becomes much
narrower (the bimodal effect, cf. figure 6), and the depth of the unstable layer increases
(Q is destabilizing). In this instance there are seven cells almost completely confined
to the fluid layer with slight movement into the porous medium. An increase in the
strength of Q has clearly resulted in a switch in dominance, with the fluid layer
playing a much stronger role in the convection pattern.
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Figure 7. Streamline plot from the Q model, type 4, TU = 9 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.0275, ε̂m = −0.0728 Ram = 14.112, am = 2.
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Figure 8. Streamline plot from the Q model, type 4, TU = 9 ◦C, d̂ = 1, δ =0.002, ε̂ = −0.025,
ε̂m = −0.0728 Ram = 8.839, am = 12.

6.3. Stability characteristics of Qm

Inspection of (6.4), reveals that as ε̂m becomes less negative, ztp decreases for fixed
ε̂. Therefore, when the turning point is in the fluid layer (case 4), the stronger Qm

the more stable the system. In case 4, there is fluid within the fluid layer which is
heavier than at the interface. Therefore, there is a potentially unstable layer between
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Figure 9. Neutral instability curves: Ram against am. TU = 9 ◦C, d̂ = 1, ε̂ = −0.0357,
ε̂m varies as shown.

the interface and the colder fluid above. The stronger the heat sink in the porous
medium, the colder the fluid at the interface (for fixed Q), and the smaller the density
difference between fluid at the interface and the colder fluid above. Therefore, in this
instance, the heat sink in the porous medium is stabilizing.

To investigate whether Qm is stabilizing or destabilizing when the turning point is
in the porous layer is slightly more complicated. Inspection of (6.5) reveals that the
effect of ε̂m depends on the sign of (TU − TL +1/ε̂). Suppose (TU − TL +1/ε̂) < 0, then
as ε̂m becomes less negative, zm

tp decreases (for fixed ε̂). So in this case Qm is stabilizing.
On the other hand suppose (TU − TL + 1/ε̂) > 0, then as ε̂m becomes less negative, zm

tp

increases. So in this instance Qm is destabilizing. Note that (TU − TL + 1/ε̂) < 0 ⇒
T0 < TL, so Qm can only be stabilizing in case 3 such that TU − TL < −1/ε̂. In all
other instances for which the unstable layer is confined to the porous medium, i.e.
case 2 and case 3 with TU − TL > −1/ε̂, Qm is destabilizing.

To illustrate this curious behaviour more clearly consider figures 9–12. In figure 9,
the neutral curves for TU, d̂ and ε̂ fixed at 9 ◦C, 1 and −0.0357 respectively, with
ε̂m varying are presented. As ε̂m becomes less negative the neutral curves shift up.
Therefore, as Qm becomes stronger the system becomes more stable. This is in
agreement with the analysis presented above since TU < −1/ε̂, (TL =0 ◦C), so we
expect an increase in the strength of Qm to have a stabilizing effect on the system.
In figure 10 the corresponding steady-state temperature profiles are displayed. It is
clear that as ε̂m becomes less negative the turning point moves down. Note that the
steady-state temperature profiles are of type 3 and 4 only. Case 2 cannot be obtained
since TU and TL violate (6.10).

In figure 11, the neutral curves for TU, d̂ and ε̂ fixed at 15 ◦C, 1 and −0.1 respectively,
with ε̂m varying are presented. In this instance, ε̂m has the opposite effect and Qm

is clearly destabilizing. This is in agreement with the analysis presented above since
TU > −1/ε̂. In figure 12 the corresponding steady-state temperature profiles are
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Figure 10. Steady-state temperature profiles: depth z against temperature T . TU = 9 ◦C,

d̂ = 1, ε̂ = −0.0357, ε̂m varies as shown.
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Figure 11. Neutral instability curves: Ram against am. TU = 15 ◦C, d̂ = 1, ε̂ = −0.1,
ε̂m varies as shown.

displayed. Note that they are of types 2 and 3 only. Case 4 cannot be obtained since
TU and TL violate (6.6).

It has been shown analytically and in figures 11 and 12 that in case 2, Qm is
destabilizing. In case 2, there is fluid within the porous layer which is colder than
at the base of the porous medium. This means there is a potentially unstable layer
between the colder fluid and the base. As the heat sink in the porous medium is made
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Figure 12. Steady-state temperature profiles: depth z against temperature T . TU = 15 ◦C,

d̂ = 1, ε̂ = −0.1, ε̂m varies as shown.

stronger the temperature of the fluid within the porous medium decreases, while that
at the base remains fixed. Hence as the heat sink in the porous medium becomes
stronger the unstable layer becomes deeper (for fixed Q), and the heat sink in the
porous medium has a destabilizing effect.

Explaining the effect of the porous heat sink in case 3 is not so straightforward. For
fixed TU and TL, it has been shown that the effect of the porous heat sink depends
strongly upon the strength of the heat sink in the fluid. If the sink in the fluid is
such that ε̂ > −1/(TU − TL), then the sink in the porous medium is stabilizing. On
the other hand, if ε̂ < −1/(TU − TL) (weaker), then the sink in the porous medium is
destabilizing. To clarify this, differentiate (6.5) with respect to ε̂m to yield

dzm
tp

dε̂m

=
Edm

2

(
TU − TL +

1

ε̂

)
.

This implies that if ε̂ < −1/(TU −TL) then zm
tp is an increasing function of ε̂m. So as ε̂m

increases, zm
tp increases and Qm is destabilizing. On the other hand, if ε̂ > −1/(TU −TL)

then zm
tp is a decreasing function of ε̂m and Qm is stabilizing. Clearly ε̂ = −1/(TU −TL)

is a local maximum and the critical point at which Qm switches from one behaviour
to another. The strong interplay between the two heat sinks has a profound effect
on the stability characteristics of Qm and a straightforward physical explanation is
unclear.

In summary, the stability characteristics of Qm depend strongly on the steady-state
temperature profile and the strength of Q. Figures 9 and 11 both show that as Qm

becomes stronger the width of the convection cell changes from narrow (am larger)
to wide (am smaller). Therefore, like Q, Qm has a dramatic effect on both the onset
and nature of instability. This is illustrated more clearly in the next section, where a
selection of streamlines corresponding to figures 9 and 11 at criticality are presented.

It is worth noting that in an entirely analogous analysis the effect of varying d̂ and
TU can also be investigated. Inspection of (6.4) and (6.5) implies that d̂ and TU are
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Figure 13. Streamline plot from the Q model, type 4, TU = 9 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.0357, ε̂m = −0.15 Ram = 5.534, am = 12.

destabilizing and stabilizing parameters respectively. This is in agreement with the
findings of Carr & Straughan (2003).

6.4. Variation of the streamlines with Qm

In figures 13 and 14, TU , d̂ and ε̂ are fixed at 9, 1 and −0.0357 respectively, and
ε̂m is varied (cf. figure 9). When ε̂m = −0.15 (figure 13), there are seven convection
cells almost completely confined to the fluid layer with little movement into the
porous medium. If Qm is made stronger (figure 14) the convection pattern changes
completely. The cells become wider (the bimodal effect cf. figure 9), the depth of
the driving cell decreases (Qm is stabilizing) and the porous medium dominates the
convection pattern.

In figures 15 and 16, we concentrate on the behaviour of the streamlines when Qm is
destabilizing. In this instance TU , d̂ and ε̂ are fixed at 15, 1 and −0.1 respectively, and
ε̂m is varied (cf. figure 11). Note that in figure 15 penetrative convection is seen in the
porous medium. This is the first time such behaviour has been seen in the two-layer
system, and we highlight this novel result. The relatively shallow depth of the unstable
layer explains the occurrence of penetrative convection in the porous medium. The
driving cell in the lower region of the porous medium induces penetrative convection
in the stable porous medium and fluid above. However, the counter cells are very
weak in comparison to the driving cell. Inspection of the eigenfunction reveals that
the strongest counter cell (the one directly above the driving cell) is approximately
200 times weaker than the driving cell. The counter cells above are even weaker again.

In figure 16 Qm is stronger than in figure 15. In this instance the convection pattern
is entirely different to that previously illustrated. The cells are wider, the unstable layer
deeper, the driving cell spans the porous-medium–fluid interface and five counter cells
are observed. Note that there is no switch in dominance between the two mediums
in this case (instability is initiated in the porous medium in both instances), but the
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Figure 14. Streamline plot from the Q model, type 4, TU = 9 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.0357, ε̂m = −0.1 Ram = 15.262, am = 2.
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Figure 15. Streamline plot from the Q model, type 2, TU = 15 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.1, ε̂m = −0.5 Ram = 1352.493, am = 8.5.

width of the cells does change from narrow to broad with an increase in Qm (cf.
figure 11).

7. General stability characteristics and discussion
So far, attention has been restricted to the specific case of Q, Qm < 0. It is worth

noting that Q and Qm can be positive, negative or indeed zero by simple modification
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Figure 16. Streamline plot from the Q model, type 3, TU = 15 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.1, ε̂m = −0.01 Ram = 57.061, am = 2.6.

Q effect Q effect on Qm effect Qm effect on
Q Qm on fluid porous medium on fluid porous medium

Sink Sink D D S D if γ > −1/ε̂
S if γ < −1/ε̂

Source Source S if γ > 1/ε̂m D S S
D if γ < 1/ε̂m

Source Sink S D S D
Sink Source D if γ > 1/ε̂m D S S if γ > −1/ε̂

S if γ < 1/ε̂m D if γ < −1/ε̂

Table 1. Stability characteristics of Q and Qm, D denotes destabilizing and S stabilizing,
γ = TU − TL.

of the non-dimensionalization and governing equations. This leads to a vast array
of possible steady-state profiles and stability characteristics for Q and Qm. Table 1
provides a summary of the stability characteristics for all combinations of sources
and sinks when TU > TL. Curiously, Q has a destabilizing effect on the porous layer,
in all cases, whereas Qm has a stabilizing effect on the fluid layer. On the other
hand, the effect of Q and Qm on their respective layers depends very much on the
combination of sources and sinks under consideration, the strength of the source/sink
in the opposing layer, and the temperature difference TU − TL.

Two very interesting steady states can be computed if Q and Qm are of alternating
sign. For example, figure 17 shows one possible state when Q < 0 and Qm > 0. In this
instance, an unstable layer bridging the interface is bounded above and below by
stably stratified layers. Matthews (1988) considered a similar temperature profile when
modelling the onset of penetrative convection in a layer of fluid. Matthews (1988)
showed that convection in the unstable layer penetrated into the stably stratified
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Figure 17. Steady-state temperature profile: depth z against temperature T . Q < 0, Qm > 0.
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Figure 18. Steady-state temperature profile: depth z against temperature T . Q > 0, Qm < 0.

bounding layers. In the coupled porous-medium–fluid case a similar convection
pattern occurs though there are natural differences. For example, if sources and
sinks of equal strength are used in the two layers, the counter cell in the stably
stratified porous layer is a lot weaker than its counterpart in the upper fluid layer (if
it exists at all).

In figure 18, Q > 0 and Qm < 0; in this case two unstably stratified layers bound
a stable one from above and below. Normand & Azouni (1992) considered a similar
situation for a single layer of water when investigating penetrative convection near the
density maximum. They found that the onset of convection could be via an oscillatory
mode depending on the parameters governing the problem. Hence, resonant effects
could occur in which convection oscillates between the unstable layers. Straughan
(2004) investigated the porous analogue and found that the onset of instability was
never oscillatory. It is not clear what effect coupling the two layers will have. Whether
the coupled system will induce resonances (cf. Proctor & Jones 1988), and how the
coupling will affect the ensuing convection pattern is a very interesting problem but
beyond the scope of the present paper.

8. Comparison with a quadratic density model
In Carr & Straughan (2003) penetrative convection in the porous-medium–fluid

system was modelled via a quadratic density profile. The governing equations here
differ in that Carr & Straughan (2003) do not include internal heating in either layer.
Instead they model penetrative convection via a quadratic density profile (cf. Veronis
1963). Following an analysis similar to the one given in Tracey (1997), the model of
Carr & Straughan (2003), and the system presented in § 4, can be written as AT 2Φ =
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σBΦ and AQΦ = σBΦ respectively, where Φ = (π, u, v, w, θ, πm, um, vm, wm, θm)T

and u, um, v, vm are the i , j -components of u and um respectively. The operators AT 2 ,
AQ and B are defined by

AT 2 =




0 − ∂
∂x

− ∂
∂y

− ∂
∂z

0 . . . . . . . . . . . . 0

− ∂
∂x

� 0 0 0 . . . . . . . . . . . .
.
.
.

− ∂
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.
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.
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0 0 � −2RT 2 (ξ − z) . . . . . . . . . . . .
.
.
.

0 0 0 −RT 2 � . . . . . . . . . . . .
.
.
.

0 . . . . . . . . . . . . 0 δ2 ∂
∂x

δ2 ∂
∂y

δ2 ∂
∂z

0

.

.

. . . . . . . . . . . . . δ2 ∂
∂x

1 0 0 0

.

.

. . . . . . . . . . . . . δ2 ∂
∂y

0 1 0 0

.

.

. . . . . . . . . . . . . δ2 ∂
∂z

0 0 1 2Rm
T 2 (ξm − z)

0 . . . . . . . . . . . . 0 0 0 −Rm
T 2 �




,

AQ =




0 − ∂
∂x

− ∂
∂y

− ∂
∂z

0 . . . . . . . . . . . . 0

− ∂
∂x

� 0 0 0 . . . . . . . . . . . .
...

− ∂
∂y

0 � 0 0 . . . . . . . . . . . .
...

− ∂
∂z

0 0 � −R 0 . . . . . . . . .
...

0 0 0 −Rf (z) � . . . . . . . . . . . .
...

0 . . . . . . . . . . . . 0 δ2 ∂
∂x

δ2 ∂
∂y

δ2 ∂
∂z

0
... . . . . . . . . . . . . δ2 ∂

∂x
1 0 0 0

... . . . . . . . . . . . . δ2 ∂
∂y

0 1 0 0
... . . . . . . . . . . . . δ2 ∂

∂z
0 0 1 −Rm

0 . . . . . . . . . . . . 0 0 0 Rmf m(z) �




,

B =




0 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 1 0 . . . 0

0 0 0 0 Pr . . . 0
...

. . .
...

0 . . . ωPrmGm




,

where

R2
T 2 =

gᾱd3T 2
U (1 − E)2

νλ
, ξ =

4/TU − E
1 − E ,

Rm2
T 2 =

gᾱKPrmdmT 2
U E2

ν2
, ξm =

4/TU − E
E .
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d̂ Ram
T 2 Ram

Q am
T 2 am

Q

0.05 273.311 273.322 5.0 5.0
0.10 225.470 225.631 4.5 4.5
0.50 61.942 62.844 2.5 2.5
1.00 19.902 20.233 2.0 2.0

Table 2. The critical porous-medium Rayleigh number and wavenumber when the two
models are adjoint.

Allowing Φ1 and Φ2 to be independent, it is not difficult to show that 〈AT 2Φ1, Φ2〉 =
〈Φ1, AQΦ2〉 iff

RT 2 = R, f (z) = 2(ξ − z), (8.1)

Rm
T 2 = Rm, f m(z) = 2(ξm − z). (8.2)

Conditions (8.1) and (8.2) are satisfied iff

ε̂ =
−1

T 2
U (1 − E)2

, T0 = TU +
1 − 2ξ

ε̂
, (8.3a, b)

ε̂m =
−1

T 2
U E2

, T0 = TL +
2ξm + 1

ε̂m

. (8.4a, b)

Substituting (8.3a) into (8.3b), (8.4a) into (8.4b) and eliminating T0 we find that

TU (9 − TU ) = TL.

Then, choosing TL = 0 ◦C, TU =9 ◦C and ε̂, ε̂m such that (8.3a), (8.4a), are satisfied, we
have A∗

Q = AT 2 (where A∗
Q is the adjoint of AQ). In this case the two linearized models

give rise to the same instability boundary, and we expect the two models to yield
the same critical eigenvalues. In table 2, a comparison of the critical porous-medium
Rayleigh numbers and wavenumbers obtained from the two models is made. Very
good agreement between the two is seen.

While the eigenvalues are in good agreement, the corresponding eigenfunctions are
not. For example, consider the W eigenfunctions for the two models when d̂ = 1,
TU = 9 ◦C and ε̂, ε̂m satisfy (8.3a), (8.4a), as illustrated in figure 19. Note that in
computing the eigenfunctions both W and Wm have been normalized. The strongest
cell, therefore, is always positive regardless of its true circulation. Hence the true
direction of circulation cannot be determined from the eigenfunction. However, it
can be concluded that wherever a sign change occurs a counter cell exists. Figure 19
clearly shows that the eigenfunctions exhibit different behaviour. The main difference
between the two is the position of the strongest cell. In the Q model it is the first cell
which is the strongest, whereas in the T 2 scenario it is the second. To illustrate this
more clearly consider the corresponding streamlines given in figures 20 and 21.

Figures 20 and 21 clearly show that the T 2 and Q models generate different
streamlines despite being mathematically adjoint and yielding near exact eigenvalues.
This is due to the fact that the physical processes that drive convection in the two
models are very different. In the T 2 model it is that density is a quadratic function
of temperature, whereas in the Q model it is the inclusion of the heat sinks. The two
models represent very different physical systems and this must be understood in their
application and interpretation at the outset.
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Figure 19. W eigenfunctions for the adjoint models, TU = 9 ◦C d̂ = 1.
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Figure 20. Streamline plot from the T 2 model, TU = 9 ◦C, d̂ = 1, δ = 0.002, Ram = 19.902,
am = 2.

Figure 20 is curious in that the cell which initiates penetrative convection (the
lower one confined mostly below the dashed line, where the dashed line marks the
4 ◦C conduction solution) is not as strong as the counter cell above. One explanation
for this is the resistance to movement the porous medium offers. For example, if the
porous medium were more permeable, the fluid within would be freer to move and
we would expect the initiating cell to be stronger, cf. figure 22. Hence, care must be
taken when interpreting data from the neutral instability curves. It is often inferred
from the critical mode what the dominant layer is. As previously mentioned the
dominant layer refers to the layer in which instability commences. However, this may
not necessarily house the strongest convection cell.

The energy equation in both the Q and T 2 models clearly shows that the Prandtl
number, Pr, is a parameter of the governing system. However, when Pr was varied
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Figure 21. Streamline plot from the Q model, type 4, TU = 9 ◦C, d̂ = 1, δ = 0.002,
ε̂ = −0.0357, ε̂m = −0.0728 Ram = 20.233, am = 2.

–1.8 –1.4 –1.0 –0.6 –0.2 0.2 0.6 1.0 1.4 1.8
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

x

z

Figure 22. Streamline plot from the T 2 model, TU = 9 ◦C, d̂ = 1, δ = 0.1, Ram = 18.928,
am = 1.8.

from 0.001 to 1000, no significant difference was seen in the critical eigenvalues
obtained from either model.

9. Concluding remarks
In this paper, penetrative convection for a two-layer system in which fluid overlies

and saturates a porous medium has been modelled via internal heating. It was found
that the instability of the system was very sensitive to change in the strength of the
internal heating. It was shown analytically (and in some cases numerically) that Q
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had a destabilizing effect on the porous layer, whereas Qm had a stabilizing effect on
the fluid layer. The effects of Q and Qm on their respective layers, however, depended
upon the temperature difference TU − TL, and the strength of the heat source/sink in
the opposing layer. An array of streamlines were presented to illustrate the effects of
varying Q and Qm on the pattern of instability.

The model presented was compared to Carr & Straughan (2003). When
mathematically adjoint, the two models were shown to yield the same critical
instability boundaries but different eigenfunctions. Thus, the Q model confirmed
the instability boundaries of Carr & Straughan (2003) and a need for caution and
understanding when interpreting physical results was highlighted. Physically, it should
be stressed that the Q model is very different to the T 2 one.

The linear instability analysis provided valuable information about the nature
and onset of instability. However, it did not preclude the possibility of subcritical
instabilities and a nonlinear analysis is necessary to assess the validity of the linear
work. A fully nonlinear analysis of the system presented here is highly non-trivial. It
is our intent to develop a nonlinear stability analysis of the two-layer problem. It is
hoped that the mathematical properties of the Q model can be utilized in this task,
cf. Straughan & Walker (1996).

This work was supported by a research studentship of the Engineering and Physical
Sciences Research Council. The author would like to thank Professor B. Straughan
for his guidance, constructive criticism and discussion of the work. The author would
also like to thank three anonymous referees for critical comments that have led to
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