Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2010), 24, 3—16.
Copyright © Cambridge University Press, 2010. 0890-0604/10 $25.00
doi:10.1017/S0890060409990138

Integration of knowledge-based and generative systems
for building characterization and prediction

AJLA AKSAMUA,! KUI YUE,2 HYUNJOO KIM,?> FRANCOIS GROBLER,* AnD
RAMESH KRISHNAMURTI®

ITech Lab, Perkins+Will, Chicago, Illinois, USA

2School of Architecture, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

3Depanment of Civil and Environmental Engineering, California State University, Fullerton, California, USA
4US Army Corps of Engineers Construction Engineering Research Laboratory, Champaign, Illinois, USA
5School of Architecture, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

(Recervep October 16, 2008; Acceptep July 3, 2009)

Abstract

This paper discusses the integration of knowledge bases and shape grammars for the generation of building models, covering
interaction, system, and implementation. Knowledge-based and generative systems are combined to construct a method for
characterizing existing buildings, in particular, their interior layouts based on exterior features and certain other parameters
such as location and real dimensions. The knowledge-based model contains information about spatial use, organization,
elements, and contextual information, with the shape grammar principally containing style rules. Buildings are analyzed
and layouts are generated through communication and interaction between these two systems. The benefit of using an in-
teractive system is that the complementary properties of the two schemes are employed to strengthen the overall process.
Ontologies capture knowledge relating to architectural design principles, building anatomy, structure, and systems. Shape
grammar rules embody change through geometric manipulation and transformation. Existing buildings are analyzed using
this approach, and three-dimensional models are automatically generated. Two particular building types, the vernacular
rowhouse and high-rise apartment building, both from Baltimore, Maryland, are presented to illustrate the process and
for comparing the utilized methodologies.

Keywords: Building Information Modeling; Knowledge-Based Model; Ontology; Shape Grammar

1. INTRODUCTION A knowledge-based model represents knowledge about a
subject, describing individuals as basic objects, classes as
collections or types of objects, properties and characteristics,
and relations between objects. In this work, ontology is used
as the knowledge-based model to capture architectural design
principles. It contains information about building designs,
location, use, orientation, and size, but does not give form
to buildings with geometric meaning. A shape grammar is a
rule-based formalism for producing designs or the generation
of geometric shapes (Stiny, 1980, 2006). There are certain
similarities between a shape grammar and a knowledge-based
model, mainly in that both contain design rules, although the
nature of the rule varies. For ontology, rules represent standard
logical mechanisms for extracting new knowledge from as-
serted knowledge. For shape grammars, rules represent compo-
sitional entities, embodying change through geometric manip-
ulation and transformation.

Two kinds of shape grammars have been identified: ana-

The nature of architectural design poses immense challenges
for computing and information processing in automated or
semiautomated systems. Architectural design knowledge,
thinking, and process are crucial components in the overall
course of creating buildings with their computational repre-
sentation of central concern (McCullough et al., 1990; Mitch-
ell, 1990; Gero & Maher, 1993; Kalay, 2004). In particular,
the types of information that architects seek vary depending
on the nature of the design problem; however, the method
by which information is sought is often ambiguous. Compu-
tational analyses of sources of ideas and design require a thor-
ough understanding and comprehension of intentions, as well
as contextual aspects. In the work reported in this paper,
knowledge-based and generative systems are combined to
construct a method for the analysis of building types.

Reprint requests to: Francois Grobler, US Army Corps of Engineers Con-

struction Engineering Research Laboratory, P.O. Box 9005, Champaign,
IL 61826, USA. E-mail: Francois.Grobler @erdc.usace.army.mi

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

Iytical and original (Knight, 1991). Analytical shape gram-
mars were developed to analyze and describe historical styles,

https://doi.org/10.1017/S0890060409990138

4

or designs by specific architects (Stiny & Mitchell, 1978;
Chiou & Krishnamurti, 1995; Cagdas, 1996; Duarte,
2005a). They use a set of existing designs, as a corpus, to de-
velop the design language and infer shape rules. Grammars
are tested by using the rules to generate designs both in the
corpus and new. In contrast, original shape grammars are
based on rules intended to create instances of new (or origi-
nal) designs. These types of grammars are widely considered
as not analytical, owing to the difficulty of “translation of ab-
stract, experimental form into architectural designs that fit
particular design contexts” (Knight, 1991). The shape gram-
mars considered in this paper are analytical.

The combinatory nature of design rules encapsulated by a
shape grammar and ontology offers the possibility that design
knowledge can be explicitly represented, maintained, and pro-
cessed. Architectural design knowledge is captured in the on-
tology and processed by a shape grammar, thus allowing for
generation and analysis. In this sense, rules can be customized
according to context, building size, style, or function.

In many analytical shape grammars, found in the literature,
rule descriptions of the form “if the back or sides are wide
enough, rule 2 can be used . . .” are commonplace, but
such rules are equally inherently countercomputable. Excep-
tions to this, in a limited way, can be found in certain mechan-
ical engineering shape grammars (McCormack & Cagan,
2002; Pugliese & Cagan, 2002; McCormack et al., 2004).
For shape rules to be “computation-friendly,” rules need to
be quantitatively specified so that they translate easily into
pieces of “code” and that there is enough precision in the
specification to disallow generation of ill-dimensioned con-
figurations. A computation-friendly shape grammar inter-
preter could benefit from the assistance of the ontology. In
our attempts to quantify shape rules (Yue & Krishnamurti,
2008), originally specified in the traditional way, we fre-
quently found that the only way to distinguish certain rules
is to employ threshold values statistically derived from a
building sample, for example, the area of a space for a partic-
ular use. The ontology can provide such values dynamically
as new building samples are added.

In the context of this paper, it is important to note that
shape grammars are primarily used both as a knowledge
base for building geometry and as a vehicle for the geometric
derivation of layout generation. Generating novel designs is
not of concern in this particular research.

2. METHODOLOGY: PROCESS AND
COMPONENTS

The starting point of the interaction focuses on requirements,
including building location, dimensions, and functional type.
Figure 1 presents the overall process and interaction. A “light-
weight” parametric building information model (BIM) is
created based on the requirements implied by what is known
about the building; this model contains information about the
building shell, general building anatomy, and components.
This data is also the initial input for the shape grammar

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

A. Aksamija et al.

rules, although additional information about the building,
such as typical spaces and dimensions, are also needed for
the process. The means of providing such information for
use by the shape grammar rules is through communication
with several ontologies, which include specific information
according to building type, location, environment, structural
system, and context. Once the information is received, the
shape grammar system selects rules and configures a spatial

Requirements

Light-Weight BIM

Shell
Function
Features
Building Function >
Design
Rules
Dimensions
Spaces
Elements
Design Heuristics

Design

Interpreter
knowledge terprete

Design Drivers

Generative system

Knowledge XML web-based

communication

Building Function Ontology: Specific context and
exterior features

Design Heuristics Ontology: Dimensions and
information needed by generative system

Design Drivers Ontology: General design
knowledge and contextual factors

Light-Weight BIM: Building shell

Fig. 1. The interaction and communication process between ontologies and
shape grammar.

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction 5

Feature Input

Y

Initial Layout Estimation

Shape Grammar

Exhaustive
application
of shape rules

Y Y
Spatial Relationship oo _r_’ '_":l_" f i Layout Tree
Constraints (Layout space)

Y

Generated Layout

Fig. 2. Approach for layout generation.

organization. During the application of shape rules, the
shape grammar system may query the ontology system for
certain specific information, in particular, data and facts of a
statistical nature. The queried data will be used to decide which
rule to apply among the candidates for the next step. Such quer-
ies are currently designed in a way so that no human interven-
tion is necessary. The end result is a generated layout, outlining
spatial organization. The information populates the parametric
BIM and can be visualized in three dimensions.

3. ONTOLOGY STRUCTURE AND CONTENTS

The process for the analysis of building types and generation
of building models relies on several ontologies that capture
specialized knowledge. In this respect, four ontologies are
used in the overall process: building function, building anat-
omy, design heuristics, and design drivers. Of these, building
function, design heuristics, and design drivers ontologies are
structured and contained within the same environment,
whereas building anatomy is used to construct a lightweight
representation of building features and to display/hide/erase
the element(s) of a model and have an instant view of each

element. The main objective of the building anatomy is to
provide an understanding of the essential concepts of a build-
ing, offering a unique visual approach to the user.

The building function ontology consists of predefined
searches that characterize use, depending on site context and
exterior features. Building shell is displayed through the
building anatomy ontology or lightweight BIM. It is used
to visualize general building structure and elements without
specific information about its interior spatial organization.
The purpose of developing a lightweight BIM is to build a
neutral, semantic, slimmed-down representation of a build-
ing, the objects in that building, and the relationships among
them, thus capturing common building elements and anat-
omy (Kim & Grobler, 2007). Building anatomy is subdivided
into gross building elements such as external features and
general descriptions where each gross building element is fur-
ther divided into detailed elements such as roof, walls, floors,
foundation, doors, and windows.

Design heuristics and design drivers ontologies capture
architectural knowledge and are used in conjunction with
the shape grammar to generate building models (Aksamija
& Grobler, 2007). It is a method for providing constraints

Rbb Rbb
Rbs Rbs
Rbf Rbf
Hm Hm Hm Him |
Rfs Hf| Rfs Hf| Rfs Hf| Rfs
— — — —

®

®

Fig. 3. A sample derivation.

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990138

(=€) a:BuildingTypesCharacteristics

(=€) a:BuildingCharacteristic

#-1€) a:Budget

€) a:Feature
€ a:Footprint
€ a:Orientation
€) a:Space
€ a:SpatialOrganization
€ a:StructuralSystem
€ avwallassembly
] E athasDimensions - (a:Dimension)
=€) a:BuildingCharacteristicRule
€ a:adjacentTo
€ a:alwaysBounds
€ a:alwaysContains
€ a:alwaysFaces
€ a:alwaysLocatedOn
‘€ a:NeverContains
J a:0bject -> (a:BuildingCharacteristic)
a:Subject - > {(a:BuildingCharacteristic)
+-(€) a:BuildingLocation
#-€) a:BuildingStyle
©) a:BuildingType
I €) a:BuildingTypeCommercial
1€ a:BuidingTypelndustrial
14 €) a:BuildingTypelnstitutional
11€) a:BuidingTypeResidential
I a:BuildingCharacteristicRules - > (a:BuildingCharacteristicRule)
+ a:CommonExteriorFeatures - > (a:ExteriorFeature)
| E! a:CommonInteriorFeatures -> (a:InteriorFeature)
& a:CommonLogicalFeatures -> (a:LogicalFeature)
| EE a:CommonSpaces - > {a:Space)
) E a:CommonWallAssemblies - > {a:Wallassembly)
) a a:DerivedFrom - = (a:BuildingType)
} a:hasBudaget - (a:Budget)
} EE a:hasLocation - > (cel:PaliticalBrundary)

(5

o o e

o

S o = - R e v a

@
I+

I+

)

I+

&--E-F

AR AR

Fig. 4. Contents of design heuristics ontology. [A color version of this figure
can be viewed online at journals.cambridge.org/aie]

to the shape grammar rules, which are needed to specialize
solutions. Shape grammars perform transformations of
geometrical objects based on information provided by
ontologies. The design heuristics ontology was specifically
designed to respond to shape grammar questions and struc-
tured to contain information for specific building types. Com-
munication is performed through XML Web services and
queries. The building function and design heuristics ontolo-
gies are integrated through specific examples of buildings.
Generalized information about a building type is contained
in design heuristics, whereas particular building instances
are stored in the function ontology. Moreover, building func-
tions, such as residential, commercial, industrial, and educa-
tional, are incorporated into both ontologies. The design
heuristics ontology contains information about almost 300
different building types and characterizes the typology of
these types by describing features, properties, design rules,
common spaces, and spatial organization. The purpose is to
interact with the shape grammar interpreter in two ways: first,
by using building type to select the appropriate shape gram-

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

A. Aksamija et al.

mar, and second, by providing appropriate values and proper-
ties for use by the shape rules as and when needed.

4. SHAPE GRAMMAR AND LAYOUT
GENERATION

The ability to “predict” the interior layout of a building from
its exterior and surrounding features has a number of practical
applications. For instance, accessing the environmental im-
pact of demolition and salvage of building stock requires
one to estimate the amount of renewable materials (Lund &
Yost, 1997). Automating the process of interior layout predic-
tion would greatly assist in this process.

Although it is not especially hard for a human to roughly
estimate building layouts from familiar features, program-
ming a machine to do so is much more difficult. However,
by using knowledge of building styles this task or a subset
of tasks can be made significantly more tractable. Many build-
ings follow a pattern book; that is, they vary according to well-
defined configurational patterns as well as certain established
sets of regulations and dimensions. Shape grammars (Stiny,
1980) offer the facility of capturing the spatial and topological
aspects of building styles. As such, grammars can be used to
generate building designs. The challenge is to use a base of
general design knowledge about buildings in a given style
coupled with limited specific knowledge about a building
with the purpose of generating its interior layout. Formally,
we seek an algorithm to determine the interior layout of a
building given an input of building features visible exteriorly
and a shape grammar that describes the building style. The
building feature input includes the footprint of each story, as
well as reasonably complete exterior features, for example,
windows, chimneys, and surrounding buildings.

In principle, when applied exhaustively, shape grammars
generate, as a tree, the entire layout space of a style. The
desired layouts are those satisfying the constraints posed by
the feature input. However, such constraints are typically speci-
fied by the feature input implicitly, which is difficult to applys; it
is necessary to process the feature input so that the directly ap-
plicable constraints can be extracted. Figure 2 demonstrates the
approach. As shown in the figure, we employ a step, named
initial layout estimation, that derives a preliminary incom-
plete layout from the feature input. From this estimate, further
spatial and topological constraints are extracted. These con-
straints are then used to prune the layout tree. The layouts
that remain correspond to the desired generations.

5. COMMUNICATION BETWEEN ONTOLOGY
AND SHAPE GRAMMAR

To demonstrate the process and communication between the
knowledge bases and generative systems, two distinct build-
ing types are used as exemplars: the vernacular rowhouse
and high-rise apartment building, both from the city of
Baltimore, Maryland. Although their shape grammars and types
of information that these utilize differ for the two exemplars, the

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction

E ' Persanality :Svf_t_em Default z| : bk B , Search |
|4 BT: How Extericr Features Relate to Inkerior Features Rules ©7 =8
Resource ID: 214222 & Report Update
o S .
. 5] implictly has the specfied pro) &
Connection | glsknpkitlyatyped‘meq)e = ~
_? fiers 2| > B a:Subject
AddFiker(s).. g aExteriorFesturs any of
S Category e
Filker y
>
P sl _———— [Eh INTERsECT
4 Resoun e e implicitly has the specified pro
Fker . |[1@ ikl atype ofthe spe a o B
S |5 = m AT
BT 1d List S B a:0bject Iy uniIon
Graph a ure i
Search D set =2
- E set B
ey [mTERSECT
I3 impicily has the specified pro =
O G
©) is implicitly a type of the sped =)
Subi DI R,
> > » a's":F”‘t [inTERseCT
5 iorFeature Ay Y
l)a.l.nteno« !\f ' set A b= I3 is used as the subject of the f
V.
tB
2 =) > >
—_— B 2:BuidingCharacteristicRules
[implicitly has the specified prof Pwd
is implicitly a type of the
Cis a sped = =Y |
b=y B 3 a:0bject —————————,
= \r ool | BT: Building Type and Derive|
—_—
y. » BuildingTypeNarns B
» BuildingTypelame2
— v

Fig. 5. Queries constructed based on shape grammar questions. [A color version of this figure can be viewed online at journals.cambridge.

org/aie]

process is similar. Ontologies contain descriptions of general
characteristics, organized by specific building types. For ease
of implementation, the types of queries that shape grammar
algorithms pose are predefined, as will be presented in the sub-
sequent examples; pending further research, dynamically gen-
erated queries could also be handled in the same manner. The
responses from ontologies are dynamic and change according
to the specified building type. Communication is achieved
through Web-based XML interaction, where semantic knowl-
edge can be utilized for querying specific questions or design
rules associated with certain building types.

5.1. The Baltimore rowhouse

The Baltimore rowhouse is typically quite narrow, two stories
high, and oriented along a north—south or east—west axis. Liv-
ing rooms typically face the front and are directly accessible
from the street or narrow hallway when there are two bays,
and the kitchen is located in the back (Hayward & Belfoure,
2005). Wood stairs are often a single run and are oriented
along one firewall. The firewalls are primarily constructed
of brick, with a wood framed structure for interior partitions,
floors, and roofs. Roofs typically have nominal slope.

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

The information presented above is captured in the design
heuristics and design drivers ontologies through different
methods. For example, the general building class contains
elements in which case an instantiation of a Baltimore row-
house presents actual elements of this particular building
type. For instance, the firewall is a key element of the row-
house; its spatial organization is always linear and dependent
on this key element. Similarly, building spaces belonging to a
Baltimore rowhouse are captured. The spatial organization,
general rules, and typical sizes are also captured as instances,
where statements such as “living room faces front” are con-
structed from the elements of the ontology. Minimum, max-
imum, and average dimensions are presented for all spaces.
Spatial organization is presented relative to the external and
internal features. Ontology also contains information about
selected existing buildings, such as footprint, material use,
statistics of spatial use, and organization.

The Baltimore rowhouse shape grammar consists of 52
shape rules applied in sequence, where each rule is either re-
quired or optional. The reason for the sequential process is
that rules are grouped into eight phases, and the set of applied
and optional rules determines the design outcome. The phases
are block generation, space generation, stair generation, fire-

https://doi.org/10.1017/S0890060409990138

Function Publisher’s initial request to PILOT with building feature inputs.

Query PILOT?action=generationRequest&building Type=BaltimoreRowh
ouses
PILOT will imitialize and start a generation thread. After dispatch-
ing the thread, PILOT will respond immediately, without waiting
for the generation thread to terminate

Cases Xml response

Succeed in dispatching a <response status="success >

thread <msg>...</msg>

<generationld>12</generationld>
</response>

Fail in dispatching a thread. | <response status="fail">
Return -1 generation ID. <msg>...</msg>

<generationld>-1</generationld>
</response>

Query Publisher?action=featureInputRequest& generationld=123
PILOT queries Publisher for XML feature inputs.

Case Xml response

Similar to the format shown Figure 7.

Function Communication during generation.

Query PILOT queries Publisher for other data. The queries are in the form
of Publisher?action=runSearch&search=commonSpaces
ForABuildingType &building Type=BaltimoreRowHouse

Case Xml response

<results search="commonWallAssemblies">
<characteristics™

<charactenstic type="ExteriorWall"
name="baltRowExteriorWall">
<Width>
<HasMaxFeet>24</HasMaxFeet>
<HasAvgFeet>18</HasAvgFeet>
<HasMinFeet>12</HasMinFeet>
</Width>

</characteristic>

</results>

Function PILOT posts the generated interior lavouts back to Publisher

Query Pulisher?action=generationThread TerminationReport&
generationld=123& terminationStatus=success WithLayouts
PILOT informs Publisher that a particular generation thread termi-
nates as well as its termination status, so that Publisher can initiate
query for the generated results.

Case Xml response

No response really needed.
Query PILOT?action=nextLavoutResultRequest&generationld=123
Publisher queries for the next generated interior layout.
(This procedure follows the enumeration model.)
Cases Xml response
There 1s a next layout <response status="success™>
<msg>...</msg>
<layout found="T" 1d="3">
<!--xml layout here-->
</layout>
</response>

There is no next layout. <response status="success >
<msg>...</msg>
<layout found="F" 1d="-1">
<l--empty-->
</layout>
</response>

Error <response status="fail™>

A. Aksamija et al.

Fig. 6. XML communication protocol. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction

Input
footprint:

the building footprint
pipes:

a list of ventilation pipes
candidateUnits:

a list of parameterized candidate layout units

constraints:

constraints a candidate layout must satisfy(, currently including no
overlapping constraint, inside footprint constraint, as well as window-

sides on footprint constraint)
Output

layoutSolutions:
layout solutions found

Algorithm

find all unit layouts, unitLayouts, which matches a pipe in pipes under

constraints

use unitLayouts to initiate a list of candidate layout solutions,

candidateSolutions
push candidateSolutions into a stack,

while candidateSolutionStack is not empty

pop a candidate solution

candidateSolutionStack

if all pipes of the candidate solution have been covered by apartment units

add it to layoutSolutions
else

find all possible layout units matches a pipe in the uncovered pipes

if none found
continue
else

create new candidate layout solutions and push into stack

return layoutSolutions

Fig. 7. High-rise prediction algorithm.

place generation, space modification, front exterior feature
generation, middle and back exterior feature generation, and
interior feature generation. See Yue and Krishnamurti
(2008) for more details and visual examples of the Baltimore
rowhouse shape grammar and its rules, their parameters, their
coding, and data structures.

The starting point for the interaction between the shape gram-
mar and the ontology is a list of questions that a shape grammar
poses to the knowledge-based system. For example, questions
on a Baltimore rowhouse relate to building orientation, sur-
rounding context, spaces, dimensions, and construction method.
Examples of such queries are the following:

e Which direction is the front?

Which sides of the building face streets?

Which direction is north?

What kinds of exterior features are common to the type?

— Door, window, chimney, porch, dormer

What kinds of interior features are common to the type?

— Fireplace, stair

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

What kinds of spaces are common to the type?
— Hallway, parlor, kitchen, dining room, air lock

What kinds of wall assemblies are common to the type?
Of the various features and spaces common to a type,
which are required?

How do interior spaces relate to building orientation?

— The living room always faces the front side of the
building.

How do exterior features relate to interior spaces?

— A front door is always on the front side of the build-
ing, although a front door does not always enter a
hallway.

How do interior features relate to exterior features?

— The interior fireplace is offset from the chimney on
the exterior.

What are the minimum, maximum, and average/expected
dimensions for features, spaces, and wall assemblies?

https://doi.org/10.1017/S0890060409990138

10

(=1 EB Rowh i (=] E3) |68 Rowh. o (=] EJ

A. Aksamija et al.

Fé |

.f:nﬂin' 1 :

Fig. 8. PILOT system for Baltimore rowhouses and tested layouts. [A color version of this figure can be viewed online at journals.

cambridge.org/aie]

— For fireplace (depth), staircase (slope), staircase (run),
parlor (width), parlor (depth), hallway (width), hall-
way (depth), interior wall (thickness), and so forth

e Do features align with stories?
e [s a group of features symmetric? If so, what is the sym-
metric axis?

As the shape grammar rules start to execute, the system
poses queries to the ontology, such as the required or optional

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

features, required spaces, dimensions, and orientation. This
information is received, processed, and then, according to
the responses, subsequent rules are implemented.

The need for querying the ontology is decided by the par-
ticular nature and/or design of a shape rule. In some cases,
the application of some shape rules relies upon the information
queried from the ontology. In some others, it does not. For in-
stance, the sequence of shape rule application in Figure 3 starts
from a footprint, which comes from the feature input. Step 1

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction 11

B Grande

Tasl

[layouss fawnd = 1

Fig. 9. PILOT system for high-rise apartment building. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

decomposes the footprint into front, middle, and back blocks
based on the shape of the footprint boundary. As a result,
this shape rule does not need to query the ontology. Step 2
needs to cut off a hallway from the front block (Rfs). Whether
this particular shape rule is applicable depends on several fac-
tors, among them, the width and area of the front block. Such
threshold values are better queried from the ontology, rather
than hardcoded in the shape rules. This is particularly neces-
sary when new building samples are added into the ontology
in a progressive manner. Thus, a query is devised here. It is in-
structive to note that the mechanism described here differs
from Duarte (2005b), where the knowledge base is used to in-
fer the description of the interior layout of a building; the shape
grammar is then executed, based on the description obtained.
Here, the communication with the knowledge base is based
on the needs of each shape rule. Moreover, the shape rules
are so designed to be extensible to cater for situations when
new building samples have been added.

Interaction between shape grammar and ontology is ac-
complished through XML communication by Web services.
Thetus Publisher! contains the ontologies discussed in this
paper. Tasks for Thetus Publisher include collecting, storing,
structuring, changing, and searching knowledge bases. Spe-
cific queries can be saved and stored in Thetus, as well as re-

' A knowledge modeling and discovery environment developed by
Thetus, Inc. (http:/www.thetus.com/)

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

used and updated as knowledge is discovered. In the layout
generation process, the queries are performed by the shape
grammar system, where specific questions are asked from
the ontology. The questions are directed to Thetus, which gath-
ers the necessary information and sends replies to the shape
grammar rules. Figure 4 presents the contents of the design
heuristics ontology for a Baltimore rowhouse. A constructed
search for the relationship between exterior and interior features
is shown in Figure 5. Once the information is received, the
generation process initializes. The generated layouts are sent
back to Thetus Publisher as XMLBIMs, where they are stored.

There are technical issues associated with implementing
communication through Web services. The generative system,
named PILOT (Proposing Interior Layout Over building
Types), poses queries to the ontology system. The basic model
of Web services is query and response; that is, one side starts an
HTTP query of the form hitp:/64.xx.xx.xxx/BuildingType
Servlet/?action=runSearch&search=commonSpacesForABuild
ingType&building Type=BaltimoreRowHouse, and the other
side writes an XML response back. Because of the limitations
of the query and response model, certain communications
have to be realized by multiple query and responses. A genera-
tion cycle starts with a generation request from Publisher. PI-
LOT dispatches a separate thread for each generation request
so that multiple generation requests can be handled. Once a
thread is dispatched, PILOT will send back status information
immediately, as it may take the generation thread awhile to

https://doi.org/10.1017/S0890060409990138

12

complete the generation. Each thread is capable of conducting
the standard query-and-response communications with Pub-
lisher individually until it terminates. There are three ways
by which each thread can possibly terminate: with no errors
and layouts generated, with no errors but no layout generated,
and with errors occurring during execution.

To handle possible error situations, responses are distin-
guished as “success” or “fail”” through the use of tags: if suc-
cess, a found tag is used to distinguish layouts generated or
not; if fail, the msg tag contains an error message. Once Pub-
lisher receives a successful termination status, it can start to
retrieve the generation results by querying. It is possible
that multiple layout results can be generated. Therefore, the
procedure of layout results query follows an enumeration
model; Publisher will keep a query until there are no more
layouts to send back. Figure 6 gives a summary of the
XML protocol adopted.

5.2. High-rise apartment building

High-rise apartment buildings are more complex examples
than the Baltimore rowhouse. The apartment building poses
achallenge, namely, it is not feasible or appropriate to capture
the entire layout of a floor by using a single shape grammar.
In contrast, it is not difficult to develop a shape grammar for
apartment units, in a manner similar to that for the Baltimore
rowhouse, so that all possible layouts of apartment units can
be generated. Even assuming that possible apartment units are
available, a different set of features has to be utilized so that
the entire layout can be “assembled” from possible apartment
units. High-rise apartments usually have a uniform facade,
which posits very weak constraints on the interior layouts.
Therefore, it is hard to develop possible interior layouts based
directly on facade features. However, equipment pipes over the
roof can be utilized, as these indirectly reflect the interior
arrangement. Bathroom ventilation pipes can be observed on
the roof, together with other HVAC components. Following
this analysis, using knowledge of different possible unit lay-
outs, the prediction algorithm (Fig. 5) is devised as a search
for reasonable arrangements of different units by aligning
them with pipes with various possibilities and eliminating
any unreasonable solution using the constraints.

To generate possible apartment units from a shape gram-
mar, communication similar to that for the Baltimore row-
house grammar is required. In addition, possible positions
for the pipes in a unit are also queried from the ontology; a
shape grammar typically does not record such information.
To implement the high-rise prediction algorithm, as shown
in Figure 7, it is important to resolve whether an apartment
unit matches a pipe. Other factors also need to be considered,
such as locating the sides for the placement of windows and
fitting the building footprint. Moreover, the determinant fac-
tors may vary from one high-rise building to another.

There are three type constraints used in the implementa-
tion: window-side constraints, no apartment unit overlap con-
straints, and inside the building footprint constraints. All three

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

A. Aksamija et al.

|]

i L

T h M

Fig. 10. Results of interior generation for high-rise apartment building. [A
color version of this figure can be viewed online at journals.cambridge.org/aie]

constraints can be implemented in terms of Boolean opera-
tions. Window-side constraints ensure that apartment units
have enough walls facing the building exterior so that natural
lighting can be provided. This constraint is implemented by
testing whether the bounding boxes for the windows intersect
the polygon representing the building footprint. As the name
implies, the no apartment unit overlap constraints ensure that
two apartment units do not overlap. This is implemented by
testing whether the boundaries of two units intersect. Inside

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction 13

<?xml version="1.0" encoding="UTF-8" ?>

- <building>

<feature id="0" type="footprint" subtype="computation">
<geometry>

= <polyline>

<point x="1.0250" y="338.0659" z="0.0000" />
<point x="1.0250" y="465,1029" z="0.0000" />
<point x="137.6360" y="465.1029" z="0.0000" />
<point x="137.6360" y="365.4787" z="0.0000" />
<point x="211.8517" y="365.4787" z="0.0000" />
<point x="211.8517" y="486.2189" 7="0.0000" />
</polyline>

</geometry>

</feature>

<feature id="1" type="footprint" subtype="display">
<geometry>

<polyline>

<point x="1.0250" y="338.0659" z="0.0000" />
<point x="1.0250" y="465,1029" z="0.0000" />
<point x="137.6360" y="465.1029" z="0.0000" />
<point x="137.6360" y="365.4787" z="0.0000" />
<point x="211.8517" y="365.4787" z="0.0000" />
<point x="-6.0000" y="338.0659" z="0.0000" />
</polyline>

</geometry>

</feature>

el

Fig. 11. XML capturing building layout. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 12. Baltimore rowhouse model. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990138

14

A
/

o af
I Name

= =\ =Y

PETTOD TV TTULDD DN & T | BNS

= =

AT AT IEATIR TR TR WS W TEm R

TIESFFAEEEREAEFE AR

A. Aksamija et al.

43' 2 916"

Depth 22' 11 9n 6"

Fig. 13. High-rise apartment building model. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

the building footprint constraints ensure that no apartment
units fall outside the building footprint. This can be tested
for by counting how many of points on the boundary of an
apartment unit fall outside the building footprint.

6. GENERATION AND VISUALIZATION

The generation process consists of two main steps: the first
is the decomposition of the input footprint into a minimum set
of rectangular blocks, and the second is assigning and orga-
nizing spaces. In the case of the Baltimore rowhouse, the in-
itial layout estimation happens to be identical to the first few
steps in applying the shape rules. This initial layout estimate
can be used as the starting point for further shape rule appli-
cation without requiring tree pruning.

The initial layout estimate is converted into graphlike data
structures for further refinement by the shape rules. The main
manipulations correspond to layout refinement from the in-
itial estimate by incrementally adding internal features, for
example, staircases, fireplaces, and interior doors. This re-
quires certain basic functions such as finding the shared
wall between two rooms. Shape rules are then applied to

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

add more detail such as interior doors, staircases, and open-
ings previously mentioned. Figure 8 shows a screenshot of
the PILOT system, as well as several test results. There are
three windows: the left-most is the generation window, which
is split into two panels, consisting of a tree of shape rule ap-
plication (in the left panel) and a display of the layout (in the
right panel), the middle window depicts the layout truth, and
the right-most window shows the feature inputs.

The shape grammar for high-rise apartment building types
relies on apartment layouts and the position of mechanical
systems, particularly ventilation pipes. Figure 9 shows the PI-
LOT system for a high-rise apartment building. As this build-
ing type is much more complex, it is possible to have more
than one layout for a certain building as shown in Figure 10.

The final step in the process is visualizing the generated
layout as a three-dimensional model. A generated layout is
captured in XML, as shown in Figure 11, and sent to Thetus
Publisher for storing. The modeling system uses an XML file
as input to create a three-dimensional model of the building
using features and parameters. Dimensions and variables
are linked to geometry in such a way that when parameter val-
ues change, the geometry updates accordingly. Based on the
interelement relationships stored in the lightweight model, the

https://doi.org/10.1017/S0890060409990138

Integration of systems for building characterization and prediction 15

visualization modeling system determines how elements need
to be created or updated.

Upon creating the visual representations, the user is able to
examine each part of a three-dimensional model and render-
ing. The prototype application also shows a way of modifying
features and parameters of each building element through
window frames with parametric values as shown in Figures 12
and 13. Currently, a typical single floor layout of a building
model is translated into a three-dimensional (3-D) model,
but a further development is needed to build a 3-D visualiza-
tion model of multiple floors in a building. Thus, the param-
eters of each building element such as heights, widths, and
lengths of building elements can be selected to modify and
deliver a more customized representation of the 3-D building
model. The volume of each space can be measured inside the
parametric model as shown at the left corner of the figure.

7. CONCLUSION

This paper discusses the interaction between knowledge-
based and generative systems, outlining their complementary
nature and a method for communication. Shape grammars
contain rules for transforming geometrical entities, whereas
the knowledge-based model contains information about par-
ticular building types and context. Through exchange of in-
formation and query, contextual aspects are explored and de-
sign knowledge is utilized to create building layouts.
Baltimore rowhouse and high-rise apartment building types
are presented as particular case studies expressing the pro-
cess, knowledge acquisition, processing, characterization,
and visualization.

The methodology discussed in this paper for the interaction
between knowledge-based and generative systems is effec-
tive and produces desired results. The primary advantage of
this method is that interaction is achieved by specifying a
building type so that the overall knowledge can be modular-
ized accordingly. The case studies presented reveal that
knowledge is modularized according to building type, and
this information is distinctly used to generate interior layout.
Currently, communication between the two systems is
achieved by querying predefined searches. Constructing im-
promptu queries from the shape grammar side is not per-
formed. Further research is needed to investigate the method-
ology for dynamically accessing the knowledge base.

REFERENCES

Aksamija, A., & Grobler, F. (2007). Architectural ontology: development of
machine-readable representations for building design drivers. Proc. Int.
Workshop on Computing in Civil Engineering, pp. 168—175. Pittsburgh,
PA: ASCE.

Cagdas, G. (1996). A shape grammar: the language of traditional Turkish houses.
Environment and Planning B: Planning and Design 23(4), 443—464.
Chiou, S.C., & Krishnamurti, R. (1995). The fortunate dimensions of Tai-
wanese traditional architecture. Environment and Planning B: Planning

and Design 22, 547-562.

Duarte, J.P. (2005a). Towards the mass customization of housing: the gram-
mar of Siza’s houses at Malagueira. Environment and Planning B: Plan-
ning and Design 32, 347-380.

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

Duarte, J.P. (2005b). A discursive grammar for customizing mass housing:
the case of Siza’s houses at Malagueira? Automation in construction
14(2), 265-275.

Gero, J.S., & Maher, M.L. (1993). Modeling Creativity and Knowledge-
Based Creative Design. Hillsdale, NJ: Erlbaum.

Hayward, M.E., & Belfoure, C. (2005). The Baltimore Rowhouse. New York:
Princeton Architectural Press.

Kalay, Y. (2004). Architecture’s New Media: Principles, Theories, and
Methods of Computer-Aided Design. Cambridge, MA: MIT Press.

Kim, H., & Grobler, F. (2007). Ontology of a building to support reasoning in
design process. Proc. Int. Workshop on Computing in Civil Engineering,
pp. 151-158. Pittsburgh, PA: ASCE.

Knight, T.W. (1991). Designing with grammars. In Computer-Aided Archi-
tectural Design (Schmitt, G.N., Ed.), pp. 33-48. Wiesbaden: Vieweg.

Lund, E., & Yost, P. (1997). Deconstruction—building disassembly and ma-
terial salvage: the Riverdale case study. Upper Marlboro, MD: NAHB
Research Center, Inc.

McCormack, J.P., & Cagan, J. (2002). Designing inner hood panels through a
shape grammar based framework. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 16, 273-290.

McCormack, J.P., Cagan, J., & Vogel, C.M. (2004). Speaking the Buick
language: capturing, understanding, and exploring brand identity with
shape grammars. Design Studies 25, 1-29.

McCullough, M., Mitchell, W.J., & Purcell, P. (1990). The Electronic Design
Studio: Architectural Knowledge and Media in the Computer Era.
Cambridge, MA: MIT Press.

Mitchell, W.J. (1990). The Logic of Architecture: Design, Computation, and
Cognition. Cambridge, MA: MIT Press.

Pugliese, M.J., & Cagan, J. (2002). Capturing a rebel: modeling the Harley—
Davidson brand through a motorcycle shape grammar. Research in Engi-
neering Design 13, 139-156.

Stiny, G., & Mitchell, W.J. (1978). The Palladian grammar. Environment and
Planning B: Planning and Design 5, 5-18.

Stiny, G. (1980). Introduction to shape and shape grammars. Environment
and Planning B: Planning and Design 7, 343-351.

Stiny, G. (2006). Shape: Talking about Seeing and Doing. Cambridge, MA:
MIT Press.

Yue, K., & Krishnamurti, R. (2008). A technique for implementing a compu-
tation-friendly shape grammar interpreter. In Design Computing and
Cognition ‘08 (Gero, J.S. & Goel, A.K., Eds.), pp. 61-80. New York:
Springer Science + Business Media B.V.

Ajla Aksamija leads a Tech Lab at Perkins+Will as a Building
Technology Researcher. She received a PhD in architecture
from the University of Illinois at Urbana—Champaign, which
focused on technology and the environment. Her professional
experience includes the US Army Corps of Engineers ERDC
Construction Engineering Research Laboratory, City of Cham-
paign, National Institute for Urbanism in Bosnia-Herzegovina,
and Doxat Architecture. Her research interests include compu-
tational design, emerging building technologies, and integrated
design, as well as relationships between the environment and
technology. She has received numerous awards, such as the
Francis J. Plym Doctoral Fellowship in Architecture, the Ed-
ward L. Ryerson Traveling Fellowship, the Frank B. and Jennie
B. Long Award, the White Prize in Architectural Practice, and
first place in the design competition for the Champaign County
Historical Museum Lot Project.

Kui Yue is a PhD candidate at Carnegie Mellon University. He
received a BA in architecture from Tongji University and an
MS in architecture from Mississippi State University. His re-
search is in the field of shape grammars, in particular, their
computational complexity, implementation, and applications
to practice. His professional experience includes being a de-

https://doi.org/10.1017/S0890060409990138

16

signer at DDB International, Ltd., Shanghai, and an internship
at SDET at Microsoft, Redmond, CA. He won the Young
CAADRIAN award in 2007. He has worked on projects using
laser scanning and embedded sensor technologies to identify
defects on construction sites and using shape grammars to
determine building interior layouts from exterior features.

Hyunjoo Kim is an Assistant Professor in the Department of
Civil and Environmental Engineering at California State Uni-
versity. He previously worked at US Army CERL, focusing
on BIM application in the area of CADD design collaboration
and implementing on reasoning process. He received his PhD
in 2002 from the University of Illinois at Urbana—Champaign
with the dissertation “Knowledge Discovery and Machine
Learning in Construction Project Databases.” He was a Pro-
ject Manager for CPM Construction, Inc., in 2002-2004
and a Senior Program Manager in the international construc-
tion project US Military Bases Relocation located in Korea in
2004-2006. His main research areas include the use of infor-
mation technology for project management, BIM, artificial
intelligence, and machine learning.

Francois Grobler is a Civil Engineer and Principal Investi-
gator at the US Army Corps of Engineers ERDC Construction
Engineering Research Laboratory. His professional career
started as a structural designer for a large water utility com-
pany, followed by construction field work on a variety of con-
struction projects, serving as the owner’s representative. After
completing graduate degrees he held teaching positions at the
University of Illinois in the Civil Engineering Department
and Penn State University in the Architectural Engineering
Department. His research has focused on computer modeling

https://doi.org/10.1017/50890060409990138 Published online by Cambridge University Press

A. Aksamija et al.

of the built environment and decision support derived from
such models. Grobler has been developing object-oriented
data representations for construction related information since
1985, and in 1997 he joined the International Alliance for In-
teroperability (IAI) to broaden this effort. He has served as the
Technical Coordinator for the IAI in North America since
1999.

Ramesh Krishnamurti is currently a Professor in the School
of Architecture at Carnegie Mellon University where he directs
the Graduate Program in Computational Design. He has de-
grees in electrical engineering, computer science, and systems
design. He has previously taught and worked in Canada, the
United Kingdom, and Taiwan. Dr. Krishnamurti is a shape
grammarist; his main area of research focuses on the formal, se-
mantic, and algorithmic aspects of generative construction and
the development of design as computation via highly coupled
parallel explorations of form and description. His past research
activities have had a multidisciplinary flavor. He has worked on
laser scanning and embedded sensor technologies within
dynamically changing construction environments; generative
design and sortal representations; object agents in design envi-
ronments; knowledge-based design systems; integration of
natural language and graphics; spatial algorithms; robotic
construction simulation; computer graphics and graphical pro-
gramming environments; and user interfaces for design appli-
cations, computer supported collaborative work, and war game
simulation. He is currently engaged in research on interior lay-
outs of buildings from their external features, design patterns
for parametric modeling, and computational support tools for
the design of sustainable buildings.

https://doi.org/10.1017/S0890060409990138

