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Visual Cognition: Where Cognition and
Culture Meet

David C. Gooding†‡

Case studies of diverse scientific fields show how scientists use a range of resources to
generate new interpretative models and to establish their plausibility as explanations
of a domain. They accomplish this by manipulating imagistic representations in par-
ticular ways. I show that scientists in different domains use the same basic transfor-
mations. Common features of these transformations indicate that general cognitive
strategies of interpretation, simplification, elaboration, and argumentation are at work.
Social and historical studies of science emphasize the diversity of local contexts of
practice. However, the existence of common strategies shows that this diversity masks
an important repertoire of cognitive strategies. Scientists use this repertoire to adapt
their representations to meet the cognitive demands of different contexts of practice.
This paper considers the implications of this finding for the notion of scientists as
cognitive agents in distributed knowledge-producing systems.

1. Introduction. Much has been written about the nature of scientific in-
ference and its bearing on innovation and discovery. It is often concluded
by philosophers and scientists alike that creative, original thinking cannot
be analyzed. It is prelogical (though not necessarily illogical) and often
involves nonverbal representations and procedures. Recent studies have
moved away from formal models of inference to focus instead on the
models that scientists themselves construct. However, no general features
emerge that could support a philosophical account of modeling. As Mor-
gan and Morrison remark:

When we look for accounts of how to construct models in scientific
texts we find very little on offer. There appear to be no general rules
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for model construction in the way that we can find detailed guidance
on principles of experimental design or on methods of measurement.
(1999, 12)

At the high level of abstraction that formal models of theory construction
require, this observation is surely true. However, textbooks give misleading
accounts of scientific practice. As Kuhn observed many years ago, they
are the wrong place to look (Kuhn 1961, 33–37). Model construction is
a cognitive skill acquired as a scientist becomes an accomplished partic-
ipant in the methods that define a particular specialism. Modeling skills
are learned by example—by seeing how models are constructed, used,
and evaluated (Alac and Hutchins 2004). This sort of knowledge is col-
lective: it involves methods and evaluative criteria that are defined, used,
and refined by a group. These methods and values are learned by par-
ticipating in the practices of the group. Nevertheless, this knowledge is
also personal. It must be acquired and mastered by individuals so that
they can contribute to the knowledge-producing activity of the group.

Case studies provide important clues about inference making. Everyday
human reasoning combines visual, auditory, and other sensory experience
with nonsensory information and with verbal and symbolic modes of
expression. Scientific reasoning is no different. Scientists use a wide range
of images including photographs, visualizations of phenomena (e.g.,
sketches, diagrams, plots, and graphs), visual representations of theories
about phenomena (such as block diagrams), and models that display
structure and connectivity (such as physical models, stacks of plots, and
virtual ‘stacks’ of images). In this variety a number of general features
can be discerned. The general features point to common strategies that
scientists use to define and solve problems. This in turn suggests that these
practices invoke underlying human cognitive capacities. These include
pattern recognition and the ability to move between two-dimensional,
three-dimensional, and four-dimensional representations. Whereas the
former are automatic, the latter are often intentional strategies that vary
the cognitive demands of making image-based inferences. In this paper I
provide an account of how visual models mediate between the interpre-
tation of source data and the explanation of such data. I then consider
how this relates to the distributed cognitive systems model of knowledge
production.

2. Visualization and Cognition: Six Generalizations. The visual represen-
tations that scientists use display the following features:

1. Representations are usually hybrid, combining one or more of visual,
verbal, numerical, or symbolic modes of representation. Examples include
block diagrams in geology, camera lucida diagrams of fossil imprints, and
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Figure 1. Left, W. L. Bragg’s photograph of the x-ray diffraction pattern produced by
a simple crystal. Bragg’s sketch of the experimental setup (Bragg 1913a, Figure 3).
Center, The set of labeled points made by pricking through the photograph onto paper
(Royal Institution, Bragg MS WLB86, courtesy of the Royal Institution of Great
Britain, http://www.ri.ac.uk). Right, The projection diagram generated from these points
(Bragg 1913b, Figure 4).

Figure 2. Photo of an imprint for the arthropod Sidneyia inexpectans and corresponding
camera lucida diagram, from Bruton (1981, Figures 29, 31); used by permission of the
Royal Society (http://www.royalsoc.ac.uk).

maps. When a visual representation is not hybrid, it does not display an
interpretation. Examples (shown in Figures 1 and 2) include x-ray dif-
fraction photographs (Gooding 2004b) and images of fossil imprints
(Gooding 2004a).

2. Representations are often multimodal, combining information de-
rived from different sources that invoke different sensory modalities (Zi-
man 1968, p. 48; Gooding 1990; Tversky 1998). This is why scientists
design surrogate sensors and computational systems to present infor-
mation in a form that lends itself to human interpretation. Where knowl-
edge representations cannot be integrated in this way, communication
between research groups may be hindered, as in high-energy physics prior
to the development of powerful data-driven process-visualization tech-
nologies (Galison 1997).
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3. Representations are plastic; that is, they are easy to vary. Variation
is often exploratory, playful, and opportunistic. This is an important
source of new insights and possibilities. Fine-grained studies are a rich
source of examples here (Tweney 1992; Nersessian 2005). Variations arise
both from mental operations by individuals and during communicative
exchanges between individuals and groups (Galison 1997; Henderson
1999).

4. Variation of representations often takes the form of transformations
between 2-D forms (patterns and diagrams), 3-D forms (structures), and
4-D temporal or process representations. A diagrammatic abstraction
from a photograph of a fossil or an x-ray, or of bubble chamber tracks,
moves the eye and the mind from a barely interpreted visual source to a
meaningful word image construct. Such ‘moves’ are motivated by the
desire to understand and communicate that understanding. These moti-
vations are a property of individuals, not of systems.

5. Representational plasticity is constrained as scientists develop share-
able methods and technologies that govern the manipulation of mental
images and drawn sketches, and as they bring theory to bear on the
interpretation of the transformed images.

Plasticity is reduced by transformation rules. These may be articulated
verbally or they may be embodied in techniques and technologies. For
example, in order to interpret 2-D x-ray diffraction images, W. L. Bragg
devised geometrical methods for developing a 3-D model from diagrams
of the 2-D images. These stereographic projections could locate the planes
of a crystal lattice in which the atoms diffracting the rays lie (see Figure
1). Together with analogies between optical and x-ray diffraction, these
3-D models provided an explanation in terms of crystal structure, of the
distribution and sizes of the spots and smudges found in early x-ray
diffraction images. Similarly in paleobiology, 3-D structures are con-
structed as interpretations of 2-D diagrams of photographs of fossil im-
prints (Figure 2). At first 3-D construction is done informally and men-
tally. It is enabled and disciplined by procedures such as optical projection
techniques (Briggs and Williams 1981). These make 2-D sectional shadows
of 3-D models for comparison to the diagrams of the source imprints
(Figure 3). Finally, computational methods are devised to make trans-
formations between 2-D and 3-D fossil representations (Doveton 1979).
When a structural model (Figure 3) generates 2-D projections that match
features of the diagram (Figure 2), it forms the basis for an explanation
of the source imprints (Bruton and Whittington 1983).

6. Examples such as these help clarify what it means to say that rep-
resentations are distributed.
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Figure 3. Left, Graphical reconstruction. Drawing of 3-D sectional model of Sidneyia.
Right, Physical reconstruction. View of physical model of Sidneyia, from Bruton (1981,
Figures 107, 101); used by permission of the Royal Society (http://www.royalsoc.ac.uk).

3. Distributed Representations. There are three ways in which a knowl-
edge-bearing representation is distributed:

1. Its construction and use by people involve devices or machines, so
it is distributed between minds and machines. Examples include visual
computer displays of large numerical data sets such as functional magnetic
resonance imaging scan images (Beaulieu 2001), field-intensity plots in
geophysics (Heirtzler 1968; Vine 1968), and computer-generated physical
replicas of bones in osteoarchaeology (Lynnerup et al. 1997).

2. It is a hybrid, mental-material object used to enable visual-tactile
thinking (Baird 2004) or to guide some procedure, as in performing a
mathematical operation. Examples abound: the image-projection proce-
dures used by paleobiologists (see above) and, in virology, the manipu-
lation of x-ray images of viral particles and models of particles in various
orientations to create 2-D images of 3-D viral structures (Lauffer and
Stevens 1968). Other well-known examples of object-based thinking are
the physical mnemonics devised by Faraday to fix and communicate his
interpretation of electromagnetic phenomena (Gooding 1990).

3. It represents knowledge that is produced and held in many different
ways (e.g., by people, machines, and organizations) and at different levels
of relationship—from human-object and human-machine dyads (Giere
2004) to systems for directing and organizing research (Knorr-Cetina
1999). Such knowledge production also relies on control systems to ensure
that existing resources are available where needed and that new knowledge
is passed to those able to evaluate and use it (Hutchins 1995). The knowl-
edge represented does not reside in any one of the contributing sources
or elements of the system.

Established, public knowledge is distributed in all three ways. It relies
on stable, shared representational practices and demands confidence both
in the expertise and competence of other practitioners and in the reliability
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Figure 4. Visual inference. The diagram shows typical transformations involved in
pattern recognition (AB), generating a structural interpretation of a pattern (BC), using
the structure to infer a process (CD), and validating the structure as a partial expla-
nation of the pattern (DB).

of machine-based procedures. The visualization examples show the im-
portance both of variety in representation and of moving between different
kinds of representation (internal and external). This shows that these
features are interdependent. Scientists are well aware that a single rep-
resentation is rarely ever adequate to the task of describing the phenom-
enology even of a tightly confined domain. Varied representations that
capture different aspects of the phenomenon are vital to the creation of
new ideas. According to the psychologist Howard Gruber, altering the
modality of a representation is a means of discovering invariant properties.
By moving “from visual imagery, to sketches, to words and equations
explaining (i.e., conveying the same meaning as) the thinker is pleased to
discover that certain structures remain invariant under these transfor-
mations: these are his ideas” (Gruber 1994, 410–411). Although visual
thinking is not the only approach to modeling, most modeling involves
a visual element (de Chadarevian and Hopwood 2004). So the study of
visualization has much to tell us about modeling in science

The key aims of most sciences are to capture process and the invariant
features of change, and to use the latter to explain the former. Scientists
constantly attempt to escape the limitations of static, printed represen-
tations such as plots, state descriptions, and images by producing ones
that can convey process as well as structure. This helps explain the ubiq-
uitous role of visualizations. Although printed images are static, they can
convey information in a form that humans can manipulate by mental
transformation. This conjecture is supported by studies showing that sci-
entists frequently vary the information content or capacity of their rep-
resentations (Gooding 2003). This complex of transformations is sum-
marized diagrammatically in Figure 4.

https://doi.org/10.1086/518523 Published online by Cambridge University Press

https://doi.org/10.1086/518523


694 DAVID C. GOODING

The transformation of images can run both ways, depending on whether
there is a need to reduce or increase the complexity and content of a
representation. Moves from pattern to structure (arc ) and fromB r C
structure to process (arc ) generate visual models having greaterC r D
information content than their sources. Moves from unresolved phenom-
ena to a set of features or relationships (a pattern or diagram), from
process to structure, or from structure to pattern (arcs , ,A r B C r B

, and ) generate new visualizations that usually have lessD r C D r B
information content but greater explanatory power than their sources.

4. Distributed Cognitive Systems. The distributed character of visuali-
zations makes a point of contact between studies of visualization and the
study of cognitive systems. Such systems emerged through the application
of science to industrial production in the nineteenth and twentieth cen-
turies. This required the application of industrial methods and systems
to scientific research during World War II. To develop new technologies,
wartime projects also developed new approaches to the integration of
humans and machines in large-scale knowledge-production systems (Pick-
ering 1995). The knowledge produced by them is distributed in each of
the three ways defined in Section 3. Such systems combine different kinds
of objects and entities—mental, verbal, visual, numerical, and symbolic
representations; material technologies, designs, plans, and institutions—
to manage production and regulate output (Goodwin 1995; Hutchins
1995).

Studies of visual thinking bear on our understanding of science as a
distributed system in three ways:

1. They provide information about how people use techniques and
technologies to manipulate images and to communicate with and about
them. The generation and use of visual images in the examples (Figures
1–3) undermine the distinction between ‘internal’ and ‘external’ represen-
tations. In a truly hybrid cognitive system there is no dualism of subjective
and collective knowledge (pace Knorr-Cetina 1999, 25). Consider the Hub-
ble telescope as a knowledge-producing system in which teams of scientists
interpret computer-generated images. Although the most important rep-
resentations appear to be the external representations on the computer
screens (Giere 2004), these technology-based images are no more impor-
tant than visual mental images. The end process involves evaluating the
implications of each Hubble image for knowledge claims about galaxies
that are 13 billion years old. Such evaluation cannot be made without
engaging mental processes. The fact that image manipulation is accom-
plished by mental as well as object-based methods does not prevent it
from being a collective process. Generally, mental representations do be-
come less important as scientists develop the external representations
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(sketches, doodles, diagrams, on-screen images) and shared practices that
enable communication and collective reasoning, but this reasoning is
about possibilities that emerge from mental transformations effected by
individuals as well as machines. Finally, science is open to the possibility
that new information will force a reevaluation of what external represen-
tations are supposed to represent. How could such representations be
evaluated without recourse to mental processes? Interpretative and eval-
uative judgments require a type of expertise that we have failed to exter-
nalize in machines (Collins and Kusch 1998).

2. Studies of visual thinking show that representations are neither cog-
nitively nor socially neutral. My interpretation of the different types of
manipulation of visual representations is that scientists vary the com-
plexity of representations to suit different cognitive capacities. Consider,
for example, an arithmetic calculation done by mental arithmetic, with
an abacus, with pencil and paper, and by a pocket calculator. Each com-
bination of representation and procedure invokes a different set of cog-
nitive capacities. The image transformations indicated in Figure 4 cor-
respond to changes in the degree of complexity that is needed at different
points in the discovery process. At some points in the process, pattern
recognition is all-important, while at others more complex processes come
to the fore, such as making structural and process models to interpret
patterns. At other times, techniques are devised to discipline and nor-
malize the transformations involved in generating visual models. Finally,
theoretical considerations are invoked to evaluate and validate these mod-
els. Besides engaging different cognitive capacities, modifying a represen-
tation and changing the mode of representation also open up new ways
of solving a problem. Some of these are more compatible with exemplary
methods or with socially preferred traditions (e.g., of iconography) than
others.

3. These points turn Latour’s argument for the irrelevance of cognitive
processes on its head. Latour argued that human cognition must be ir-
relevant to a theory of science (1986, 1) because while science has changed
rapidly since it emerged over four centuries ago, no new form of rational
human cognition has appeared. Studies of visualization demonstrate the
recurrence of certain cognitive strategies across scientific domains and
through time, notwithstanding the enormous changes in the power and
sophistication of the technologies and organization of science.

5. Personal Knowledge and Distributed Knowledge. What has changed is
the extent to which cognition is mediated and enabled by technology.
Science involves devising technologies to assist thinking that is both cre-
ative and systematic. The fact that vast data sets can be visualized does
of course make some kinds of research easier and has made many new
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kinds of science possible. These technologies extend analog modes of
reasoning into new domains and enable scientists to apply them to more
complex problems than was previously possible. Nevertheless, scientists
still study images and manipulate 3-D simulation models, for example,
in order to locate drug receptor sites (Catlow 1996). That these images
are generated and manipulated in computers rather than in human minds
does not diminish the importance of mind-based representations. Like the
imaging technologies that preceded them, these tools re-present data in
a form that individual humans can interpret and understand. Scientists
have always devised such tools to aid, discipline, and communicate their
thinking. While computing power supports larger and more complex cog-
nitive systems, it has not diminished the importance of mind-based think-
ing with analog representations.

This does not relocate cognition ‘inside’ the head. Many cases of cog-
nition in science depend crucially on being embodied and networked and
so involve physical and social processes ‘outside’ the brain and body. What
any individual scientist imagines, thinks, or believes that she knows has
importance and is interesting only insofar as it draws on and contributes
to a larger, collective enterprise. The common currency of that enterprise—
discourse, images, arguments, articles, software, technologies, mathemat-
ical procedures—is external and is distributed. However, there is no case
for assimilating all cognition to the material, technical, and cultural as-
pects of systems. The sociological assimilation of all knowledge to social
relations and cultural traditions makes it difficult to explain how the larger,
distributed system can deal with change or produce innovations. Although
it is possible to devise systems that manage innovation as, for example,
Thomas Edison did (Carlson and Gorman 1990), the objectives of such
systems exist in the minds of those who commission, design, organize,
and manage their operation.
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