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We investigate with a two-fluid model the convections developing in a gas–liquid
two-phase flow, which consists of a horizontal liquid layer subject to the injection of
monodisperse gas bubbles at the bottom. The convections develop in either whole- or
multi-layered modes, once the gas injection flux exceeds a critical value (Nakamura et al.,
Phys. Rev. E, vol. 102, 2020, 053102). We determine the nonlinear evolution of these
modes of flows with varying injection flux and find that the whole- and multi-layered
modes develop through subcritical and supercritical bifurcations, respectively. The
formation of gas plumes is observed in both cases when the nonlinearity is significant.
Examining energy transfer from base to perturbation flows, we show that the lift forces
on bubbles play a key role in the bifurcations. While they impede the convections in both
subcritical and supercritical bifurcations at weak nonlinearity, the lift forces turn to driving
the convections in the subcritical bifurcation as nonlinearity increases.
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1. Introduction

Liquid flows with dispersed gas phases have been investigated in various fields of scientific
research to understand their complex multi-scale flow structures and to develop novel
applications of energy and environmental systems (Lohse 2018). Presence of dispersed
bubbles alters turbulent flow structures and induces large-scale liquid circulations (Risso
2018). This pertains to industrial applications of, for example, bubble column reactors
(Sommerfeld 2004) used as efficient gas–liquid contactors for enhancement of mass and
heat transfer, in which bubbles are injected into a liquid layer from the bottom. The injected
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bubbles rise in liquid due to Archimedean buoyancy forces, exchanging mass and heat at
gas–liquid interfaces (Mudde 2005). The two-phase flows in reactors show a variety of
flow patterns depending on the bubble size, the gas volume fraction, and the geometric
shapes of reactors (Mudde 2005; Risso 2018). When the gas injection flux is small, bubbles
ascend with a uniform distribution (Mudde 2005; Ruzicka 2013). At large gas fluxes, the
bubble distribution becomes heterogeneous and convective motions occur (Mudde 2005).

The generation of convection in two-phase flow systems with a bubble-rich bottom
layer has been modelled as a gravitational instability provoked in an inverse density
stratification (Iga & Kimura 2007). Ruzicka & Thomas (2003) elucidated the analogy
to the Rayleigh–Bénard (RB) convection. The bubble-induced convection is thus often
characterised in the literature by the Rayleigh and Prandtl numbers, Ra and Pr. They
are identical to those used for thermal convections but with the bubble residence time
TR = d/V∞ replacing the thermal diffusion time: Ra = TνTR/T2

B, Pr = TR/Tν , where d
is the height of a system, V∞ is the terminal velocity of a rising bubble, Tν = d2/ν is the
momentum diffusion time with the kinematic viscosity ν of the liquid, and TB = √

d/εg
is the buoyancy time (ε, the gas volume fraction; g, gravitational acceleration). Iga &
Kimura (2007) showed the formation of steady convection rolls at Ra = 2.5 × 105 in
an experiment with bubbles of approximately 10 μm in diameter. A direct numerical
simulation (DNS) based on a point bubble model by Climent & Magnaudet (1999) showed
that steady convection rolls developed for Ra ∼ 2.0 × 105 from an initial two-layer state
where a bubble-rich fluid layer underlies a pure liquid layer. These works both mentioned
that the selection of the horizontal size of convection rolls is not unique and the size
changes depending on randomly determined initial conditions.

Recently, we performed a linear stability analysis of bubble-induced convection
(Nakamura et al. 2020), assuming an inverse density profile formed spontaneously from
the accelerated ascending motion of bubbles (figure 1a). The analysis is based on a
two-fluid model, in which the added-mass, drag, shear-induced lift and buoyancy forces
on bubbles are considered in the momentum exchanges between liquid and gas phases. In
contrast to the RB convection, the predicted marginal stability curves Ra = Ram(k), where
k is the wavenumber of perturbation flows, have two local minima and their relationship
varies as function of Pr. Convection rolls of the height of the fluid layer (whole-layered
mode, see figure 1c-i) are critical for Pr smaller than a threshold Pr∗, while superposed
convection rolls (multi-layered mode, see figure 1c-ii) are critical otherwise (Nakamura
et al. 2020). Although the values of Pr∗ and Ram depend on the radius and the injection
velocity of bubbles and on the model of drag coefficient, the qualitative behaviour of the
marginal curves and the resulting mode selection remain the same.

The present work aims to reveal the nonlinear development of the whole- and
multi-layered modes with a particular focus on their bifurcation behaviour. For this aim,
nonlinear flows close to the critical states are computed to draw bifurcation diagrams. In
thermal convection of non-Newtonian fluids, the bifurcations depend on the fluid rheology:
it can be supercritical as in the RB convection of Newtonian fluids but also subcritical,
when shear-thinning effects are significant (Bouteraa et al. 2015). The presence of a
dispersed solid phase can also alter the type of bifurcation in the RB convection through
the variation of the effective viscosity of suspension resulting from the shear-diffusion of
suspended particles (Kang, Yoshikawa & Mirbod 2021). By the present investigation, we
show that even in the absence of rheological effects the presence of dispersed phase can
affect the bifurcation in two-phase flow systems. The considered flow system is isothermal
and convection develops from an intrinsic gravitational instability of bubbly flows.
Dilute bubbly flows are assumed so that the constitutive law of the continuous
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Figure 1. (a) Geometric configuration of the problem, (b) profiles of bubble rising velocity w̄G(z) and gas
volume fraction ε̄G(z) in the base state for different values of Pr, and (c) eigenvectors at critical conditions
for (i) a whole-layered mode and (ii) a multi-layered mode. The dimensionless bubble injection velocity and
bubble radius are set as wG,0 = 1000 and rb = 0.01, respectively. The perturbation fields of liquid velocity u′
are shown by vectors and streamlines. The perturbation fields of gas volume fraction ε′

G are shown by colours.
Bubble-rich and bubble-poor cells correspond to red and white zones.

phase remains Newtonian. Following the introduction, we present a brief summary
of a mathematical model used in our previous report (Nakamura et al. 2020) and
describe a numerical method for nonlinear flow determination. The properties of the
solution are then explained using bifurcation diagrams showing flow patterns. Finally,
we discuss the roles of different forces on bubbles in the nonlinear development of
convection.

2. Formulation of the problem

2.1. Governing equations
We consider two-dimensional (2-D) bubbly flows in a horizontal fluid layer. Small
spherical bubbles are injected into the liquid layer from the bottom wall (figure 1a).
The injection is assumed uniform in space and constant in time. Injected bubbles rise
in the layer due to buoyancy forces and are ejected from the top free surface. We model
the dynamics of this immiscible two-phase flow system using the Euler–Euler approach,
in which the liquid and gas phases are regarded as two dynamical continua exchanging
momentum and energy with each other. Mass and momentum conservations for the two
phases are modelled as

∂εG

∂t
+ ∇ · (εGuG) = 0, (2.1a)

DuG

Dt
= 3

Du
Dt

− 18
r2

b
(uG − u) − (uG − u) × (∇ × u) + 18

Prr2
b

ez, (2.1b)

∇ · u = 0, (2.1c)

Du
Dt

= −∇p + �u − 9
Prr2

b
ez + εG

Rar2
b

9Pr

(
Du
Dt

+ 9
Prr2

b
ez

)
, (2.1d)
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where εG is gas volume fraction, uG = uGex + wGez and u = uex + wez are the velocity
fields of gas and liquid, and p is the pressure field (see Nakamura et al. 2020, and
references therein for details). The unit vectors in the x and z directions are denoted by
ex and ez. The differential operator D/Dt represents DuG/Dt = ∂tuG + uG · ∇uG and
Du/Dt = ∂tu + u · ∇u. These equations have been non-dimensionalised with scales d of
length, ν/d of velocity and d2/ν of time. The gas volume fraction has been normalised
with a scale JG,0d/ν, where JG,0 is the gas injection flux. We have introduced the following
four dimensionless parameters:

Pr = ν

V∞d
= 9ν2

gR2
bd

, Ra = gd2JG,0

V2∞ν
= 81νd2JG,0

gR4
b

, wG,0 = WG,0 d
ν

, rb = Rb

d
,

(2.2a–d)

where Rb and WG,0 are the radius and the injection velocity of bubbles, respectively.
For bubbles of radius 0.5 mm injected into a water layer of thickness 100 mm at
room temperature with WG,0 = 20 mm s−1 and JG,0 = 1 mm s−1, these parameters
take values of Pr = 7.34 × 10−5, Ra = 330, wG,0 = 1000, rb = 0.01. Throughout the
present work, the dimensionless bubble injection velocity wG,0 and bubble radius rb are
fixed at these values. In the gas momentum equation (2.1b), the hydrodynamic diffusion
has been omitted, assuming dilute bubbly flows. We have also assumed spherical and
non-deformable bubbles in a pure liquid without contamination by surfactants to model
drag and shear-induced lift forces and adopt the drag, added-mass and lift coefficients
CD = 48/Reb (Levich 1962), where Reb = 2Rb‖uG − u‖/ν is the bubble Reynolds
number, and CA = CL = 1/2 (Magnaudet & Eames 2000). This model of CD describes
well bubble motions for Reb ∼ 30–400 (Clift, Grace & Weber 2005), e.g. bubbles of
Rb = 0.5 mm in a steady ascending motion in water at room temperature. In the liquid
mass conservation equation (2.1c) and the liquid momentum equation (2.1d), liquid flows
are considered effectively incompressible, as we have assumed dilute bubbly flows. We
have also restricted our attention to flows at scales larger than the mean distance between
bubbles. The dynamics of the liquid phase is thus affected by bubbles only through the
mesoscale reaction force, εG(Du/Dt − g) (Druzhinin & Elghobashi 1998).

The upper surface of the liquid layer is assumed as flat and shear-free for simplicity.
At the bottom wall, no-slip conditions on the liquid velocity, constant gas velocity and
constant gas flux are imposed:

∂u
∂z

+ ∂w
∂x

= 0, w = 0, at z = 1, (2.3a)

u = 0, wG = wG,0, εG = 1, at z = −1. (2.3b)

2.2. Base state
Two-dimensional flows would respect the translational symmetry of the system along
the x direction when the gas flux JG,0, or the Rayleigh number Ra in the dimensionless
description, is small. We thus assume a steady bubbly flow in the homogeneous regime,
where the flow fields are laterally uniform:

u = 0, uG = w̄G(z) ez, εG = ε̄G(z). (2.4a–c)

For these fields, (2.1a) and (2.1b) read
d
dz

(ε̄Gw̄G) = 0, w̄G
dw̄G

dz
= −18w̄G

r2
b

+ 18
Prr2

b
, (2.5a,b)
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and the boundary conditions (2.3) are reduced to

w̄G = wG,0, ε̄G = 1, at z = −1. (2.6a,b)

Some profiles of velocity w̄G and gas fraction ε̄G calculated from (2.5a,b) and (2.6a,b) are
shown in figure 1(b). The gas velocity increases toward the terminal velocity V∞ in a fluid
sublayer attached to the wall. Inside the sublayer, the fraction ε̄G decreases sharply so that
the stratification in the mean density of the liquid–gas mixture is potentially unstable to
the gravity.

The profiles of w̄G and ε̄G depend on Pr. At small Pr, the density gradient is small
and the unstable sublayer extends over a thick zone of the fluid layer. Our linear stability
analysis (Nakamura et al. 2020) showed that the whole-layered convection rolls develop
when Ra exceeds a critical value (figure 1c-i) for Pr smaller than a threshold Pr∗. For Pr
larger than Pr∗, the unstable sublayer is thin, and the multi-layered mode (figure 1c-ii) is
selected as a critical state. The value of Pr∗ is 3.25 × 10−5 for (rb, wG,0) = (0.01, 1000).
At this Prandtl number, both whole- and multi-layered modes are critical at Ra = 645.
Similar formation of whole- and multi-layered convection rolls sensitive to density profiles
is reported for thermal convections (Ogura & Kondo 1970; Nield 1975).

2.3. Perturbation analysis
We consider perturbations around the base state:

u = u′, uG = w̄Gez + u′
G, εG = ε̄G + ε′

G, (2.7a–c)

where perturbation components are indicated by primes. The velocity fields u′ and u′
G

are assumed 2-D: u′ = u′ex + w′ez, u′
G = u′

Gex + w′
Gez. Substituting (2.7a–c) in (2.1) and

(2.3), we have

∂ε′
G

∂t
+
(

w̄G
∂

∂z
+ dw̄G

dz

)
ε′

G + ε̄G
∂u′

G
∂x

+
(

ε̄G
∂

∂z
+ dε̄G

dz

)
w′

G + ∇ · (ε′
Gu′

G) = 0,

(2.8a)

∂u′
G

∂t
+ w̄G

∂u′
G

∂z
+ dw̄G

dz
w′

Gez + u′
G · ∇u′

G

= 3
(

∂u′

∂t
+ u′ · ∇u′

)
− 18

r2
b
(u′

G − u′) + (w̄G + w′
G − w′)ζ ′ex − (u′

G − u′)ζ ′ez, (2.8b)

∇ · u′ = 0, (2.8c)

∂u′

∂t
+ u′ · ∇u′ = −∇π′ + �u′ + Rar2

b
9Pr

(ε̄G + ε′
G)

(
∂u′

∂t
+ u′ · ∇u′

)
+ ε′

G
Ra
Pr2 ez,

(2.8d)

∂u′

∂z
+ ∂w′

∂x
= w′ = 0, at z = 1, (2.9a)

u′ = w′ = w′
G = ε′

G = 0, at z = −1, (2.9b)

where ζ ′ = ∂zu′ − ∂xw′ is the liquid vorticity perturbation and π′ is the perturbation of a
reduced pressure. To solve the set of (2.8) and (2.9), we assume travelling wave modes and
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expand the perturbations (u′
G, u′, ε′

G) into the Fourier–Chebyshev series:

(
u′

G, u′, ε′
G
) =

∞∑
m=−∞

∞∑
l=0

(̂
uG,m,l, ûm,l, ε̂G,m,l

)
Tl(z) exp(imα(x − ct)), (2.10)

where Tl(z) is the Chebyshev polynomial of degree l, α is the wavenumber of fundamental
mode and c is the phase velocity. The case of c = 0 corresponds to a steady convection.
Substituting (2.10) for perturbation fields in (2.8a)–(2.9b) and truncating the series
at m = ±M and l = L, we obtain a set of coupled nonlinear algebraic equations for
ûG,m,l = (û′

G,m,l, ŵ′
G,m,l), ûm,l = (û′

m,l, ŵ′
m,l), and ε̂G,m,l (m = 0, ±1, ±2, . . . , ±M; l =

0, 1, . . . , L):

Fi = LijXj + N(2)
ijk XjXk + N(3)

ijklXjXkXl + iαc CijXj = 0, (2.11)

where {Xj} = {û′
G,m,l, v̂

′
G,m,l, û′

m,l, ŵ′
m,l, ε̂G,m,l | m = −M, . . . , M; l = 0, 1, . . . , L} and Lij,

N(2)
ijk , N(3)

ijkl , and Cij are coefficients. We solve these equations by the numerical continuation
with varying Ra from the critical value (Dijkstra et al. 2014). To determine the solution at
a given Ra, the Newton–Raphson iterative scheme is invoked with a convergence criterion
Δ = maxj(Δj) < 10−6, where Δj is the relative improvement to (I − 1)th estimate XI−1

j
to Xj by the Ith iteration (Deguchi & Nagata 2011). The improvement Δj is defined as
Δj = |(XI

j − XI−1
j )/XI−1

j | when |XI
j |, |XI−1

j | > 10−6; Δj = 0 otherwise. For the solutions
computed under this criterion, (2.11) are satisfied with a tolerance of O(10−8). The
truncation parameters are fixed at M = 25 and L = 35 for convergence.

3. Nonlinear properties of the flows

3.1. Bifurcation diagram
We compute the flows developing from critical modes with varying Ra for different
values of Pr in the range 0.56 ≤ Pr/Pr∗ ≤ 2.3, which was considered in Nakamura
et al. (2020) for the linear stability analysis. The obtained bifurcation diagrams for
a case of Pr < Pr∗ and another case of Pr > Pr∗ are shown in figure 2, where
the behaviour of the solution is monitored through the variation of max (u′) as a
function of the bifurcation parameter δ = (Ra − Rac)/Rac. Determined flows are all
stationary (c = 0). Flow fields at different points on the bifurcation curves are also
shown. For the whole-layered mode (Pr < Pr∗), the convection develops through a
subcritical bifurcation (figure 2a). The curve revolves once δ goes down to −0.3
and, then, δ starts increasing with max (u′). For the multi-layered mode (Pr >

Pr∗), in contrast, the flow grows through a supercritical bifurcation (figure 2b).
A revolution occurs at approximately δ = 0.02 and, then, max (u′) continues to increase
but with decreasing δ. In both cases, pairs of equally sized convection rolls develop at
weak nonlinearity, i.e. at small max (u′), as shown in figure 2(a1,b1,b2). Sharp ascending
plumes are observed at large max (u′), see figure 2(a2,a3,b3). These plumes are coincident
with bubble-concentrated zones and delimited laterally by bubble-poor zones.

We have examined the effects of the drag force model on bifurcations by determining
bifurcation diagrams with CD = 16/Reb (Hadamard 1911; Rybczynski 1911) and CD =
24/Reb (Stokes 1851). The former and latter models are valid in the low-Reynolds-number
limit for bubbles in a pure liquid and for bubbles in a liquid contaminated by surfactants,
respectively. In all cases, the bifurcations of whole- and multi-layered critical modes are
found to be subcritical and supercritical, respectively.
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Figure 2. Bifurcation diagrams for (a) the whole-layered mode and (b) the multi-layered mode: (a1–a3;
b1–b3) flow patterns at different points in the diagrams: the bifurcation parameter δ is defined by δ =
(Ra − Rac)/Rac with Rac = 337 and 764 for (a) and (b), respectively. The ordinates max u′ are the maximum
horizontal velocity of the liquid phase. In panels (a1–a3) and (b1–b3), the liquid velocity fields u′ are shown
by arrows and streamlines. The gas volume fraction fields ε′

G are shown by colours.

3.2. Energy budget
Nakamura et al. (2020) showed essential differences between the instabilities of thermal
and bubble-induced convections by an energy budget analysis. Both convections result
from heterogeneous distribution of buoyancy sources, i.e. the temperature and the gas
fraction in thermal and bubble-induced convections, respectively. However, the transport
processes of these sources and resulting effects are distinct from each other. In thermal
convection, the advection and diffusion of thermal energy bring about destabilising and
stabilising effects, respectively. In bubble-induced convection, the lift and drag forces on
bubbles tend to homogenise bubble distributions and, as a consequence, to stabilise the
base state, while the inertial effect of liquid brings about destabilising effects.

We perform a similar energy budget analysis to consider the energy transfer from the
base to perturbation flows and to reveal the driving mechanism of convective flows. Since
(2.8b) and (2.8c) governing the liquid phase dynamics are analogous to the corresponding
equations for thermal convection (Drazin & Reid 2010), the energy transfer to liquid
perturbation flows is similar to that in the RB convection: the flows gain and lose energy
due to buoyancy and viscous energy dissipation, respectively. The energy transfer to
perturbation flows of the gas phase is more insightful. Taking the inner product of (2.8b)
with u′

G and averaging the resulting equation over the whole fluid domain, we obtain the
evolution equation of the kinetic energy of the gas phase:

dKG

dt
= WI + WD + WL, (3.1)

where the kinetic energy KG and the powers of the inertia WI , of the drag WD and of the
lift WL are defined by

KG =
〈

u′2
G + w′2

G
2

〉
, WI = 〈wI〉 , WD = 〈wD〉 , WL = 〈wL〉 , (3.2a)
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of the bifurcation parameter δ. These powers are normalised by twice the kinetic energy KG of gas perturbation
flows. In panel (a), the powers WI and WL normalised by |WD| are also shown as inset for δ ∈ [−0.15, 0].

with

wI = −
[

w̄G
∂

∂z
‖u′

G‖2

2
+ dw̄G

dz
w′

G
2 + (u′

G · ∇u′
G) · u′

G

]

+ 3
[
∂u′

∂t
· u′

G + (u′ · ∇u′) · u′
G

]
, (3.2b)

wD = −18
r2

b
(u′

G − u′) · u′
G, wL = w̄Gζ ′u′

G + (u′w′
G − w′u′

G)ζ ′. (3.2c)

The angle brackets denote the following integral operation: 〈 • 〉 = (α/2π)
∫ 1
−1

∫ 2π/α

0 •
dx dz. The integrands wI , wD and wL are local densities of the inertia, drag and lift powers.

For both whole- and multi-layered convective flows, the drag is impeding (WD < 0)
convective flows (figure 3). The roles of the inertia and lift, however, depend on the
mode type and can vary with the flow nonlinearity. In the case of the whole-layered flows
(figure 3a), the inertia and lift forces are, respectively, driving (WI > 0) and impeding
(WL < 0) convections close to the critical state as observed in the linear stability analysis
(Nakamura et al. 2020). However, these effects relative to the drag force, i.e. the effects
measured by WI/|WD| and WL/|WD|, diminish and increase with the flow development, as
shown in the inset of figure 3(a). This implies that the lift plays an important role to drive
convection at Ra smaller than the critical value. In the case of the multi-layered modes, the
powers of inertia and lift forces remain, respectively, positive and negative during the flow
development along the bifurcation curve (figure 3b). Around the revolution of the curve,
however, the effect of the lift relative to the drag decreases and switches finally to a driving
one.

4. Discussion

The sensitivity of nonlinear development of convections to the constitutive law of
fluid is reported in the literature for thermal convections under different conditions:
Parmentier (1978), Solomatov (2012) and Curbelo & Mancho (2014) for Newtonian
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Figure 4. Local power densities, wI of the inertia and wL of the lift, providing energy to perturbation gas
flows in flows shown in figures 2(a1–a3) and 2(b1–b3).

fluids with a temperature-dependent viscosity; Albaalbaki & Khayat (2011), Benouared,
Mamou & Messaoudene (2014) and Bouteraa et al. (2015) for non-Newtonian fluids
with shear-thinning effects; and Kang et al. (2021) for suspensions with an effective
viscosity modelled by Krieger’s law. The results reported in § 3.1 (figure 2a,b) suggest
that the bifurcation can also be altered by the law of transport of dispersed phase. As
we have assumed dilute bubbly flows, the presence of bubbles has no rheological effect
in contrast to the above-mentioned works on convections and affects the liquid dynamics
only through the buoyancy force (2.1d). The essential difference of the considered system
compared with thermal convections arises from the transport equation of bubbles (2.1b).
The energy budget analysis in § 3.2 indicates a significant role of the lift force in sustaining
convective flows. The power provided by the lift force behaves differently in different
bifurcations (figure 3). The details of energy transfer process can be understood from the
local distributions of different powers (figure 4). In the case of subcritical bifurcation,
the complex coupling of the bubble transport law (2.1d) with developed convective flows
intensifies the driving effect of the lift (wL > 0) close to the free surface and weakens
the impeding effect of the lift (wL < 0) in the lower part of convection rolls (figure 4a).
It results in the change of net effect of the lift force from impeding (WL < 0) to driving
(WL > 0) convective flows. The distribution of the power of the inertia (wI) is similar to
wL but with the opposite sign. In the case of supercritical bifurcation, the distribution of
wL behaves differently (figure 4b). Though the development of positive and negative zones
of wL in the first convection layer at the bottom is similar to the subcritical case, negative
zones of wL grow in the second convection layer (figure 4b). The total effect of the lift,
thus, remains impeding even after the revolution of the bifurcation curve.

Dispersed phase can thus change the bifurcation through the variations of different
forces in its transport law. Laminar-turbulent transition in multi-phase flows would be
affected by this mechanism. In experiments on the transition in particle-laden pipe flows,
the transition from the laminar flow was observed to be supercritical at large values of
particle volume fraction φ in contrast to the subcritical bifurcation of the Newtonian
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Hagen–Poiseuille flow (Hogendoorn & Poelma 2018; Agrawal, Choueiri & Hof 2019).
To model this transition, a thorough consideration on particle transport might be required
in addition to a rheological consideration.

In the present study, only 2-D flows are considered, assuming a fluid layer of infinite
horizontal extent. The presence of lateral boundaries can develop three dimensional (3-D)
flow structures even at the first bifurcation point as observed in thermal convection
(Dijkstra et al. 2014). In bubbly flow systems, furthermore, the physics at bubble scales,
such as the path instability and bubble–bubble interactions (Risso 2018), provides 3-D
perturbations to flows and would induce transition to 3-D convections even in laterally
non-confined systems. The bifurcation to 3-D flows is to be examined in a future work.

5. Conclusion

In the present paper, we have investigated the nonlinear development of bubble-induced
convection from the critical states predicted in our previous work (Nakamura et al. 2020).
Bifurcations determined for the whole- and multi-layered modes, which are critical for the
bubble Prandtl number Pr smaller and larger than Pr∗, are subcritical and supercritical,
respectively.

We have analysed the energy transfer from the base to perturbation flows of the
gas phase. The analysis revealed that the bubble transports due to different forces play
important roles in the nonlinear development of convection. In particular, the lift force
changes its role from impeding to driving convective flows when the convection is
intensified with decreasing control parameter. It is responsible for the observed subcritical
behaviour of the convection. Local effects of different transport mechanisms showed that
the variation in the role of the lift arises from the coupling of gas transport with nonlinear
liquid flows.

The observed sensitivity of flow bifurcation to the transport of dispersed phase suggests
that, in addition to the rheological effects, a thorough consideration on the transport would
be required for modelling laminar-turbulent transitions in multi-phase flow systems.
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