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DEGREES OF CATEGORICITY ON A CONE VIA �-SYSTEMS

BARBARA F. CSIMA ANDMATTHEWHARRISON-TRAINOR

Abstract. We investigate the complexity of isomorphisms of computable structures on cones in the
Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree
of categoricity is Δ0α -complete for some α. To prove this, we extend Montalbán’s �-system framework to
deal with limit ordinals in a more general way. We also show that, for any fixed computable structure,
there is an ordinal α and a cone in the Turing degrees such that the exact complexity of computing an
isomorphism between the given structure and another copy B in the cone is a c.e. degree in Δ0α(B). In each
of our theorems the cone in question is clearly described in the beginning of the proof, so it is easy to see
how the theorems can be viewed as general theorems with certain effectiveness conditions.

§1. Introduction. In this paper, we will consider the complexity of computing
isomorphisms between computable copies of a structure after relativizing to a cone.
By relativizing to a cone, we are able to consider natural structures, that is, those
structures which one might expect to encounter in normal mathematical practice.
The main result of this paper is a complete classification of the natural degrees of
categoricity: the degrees of categoricity of natural computable structures. Unless
otherwise stated, all notation and conventions will be as in the book by Ash and
Knight [6]. We consider countable structures over at most countable languages.
Recall that a computable structure is said to be computably categorical if any
two computable copies of the structure are computably isomorphic. As an example,
consider the rationals as a linear order; the standard back-and-forth argument
shows that the rationals are computably categorical. It is easy to see, however, that
not all computable structures are computably categorical. The natural numbers as
a linear order is one example.
There has been much work in computable structure theory dedicated to charac-
terizing computable categoricity for various classes of structures (e.g., a linear order
is computably categorical if and only if it has at most finitely many successivities
[15,26]). For those structures that are not computably categorical, what can we say
about the isomorphisms between computable copies, or more generally, about the
complexities of the isomorphisms relative to that of the structure?
We can extend the definition of computable categoricity as follows:
Definition 1.1. A computable structure A is d-computably categorical if for all
computable B ∼= A there exists a d-computable isomorphism between A and B.
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It is easy to see, for example, that the natural numbers as a linear order, N , is
0′-computably categorical. Indeed, it is also easy to construct a computable copyA
of N such that every isomorphism between A and N computes 0′. Thus 0′ is the
least degree d such thatN is d-computably categorical. This motivates the following
definitions.

Definition 1.2. We say a computable structure A has degree of categoricity d if
(1) A is d-computably categorical.
(2) If A is c-computably categorical, then c ≥ d.
Definition 1.3. We say that a Turing degree d is a degree of categoricity if there
exists a computable structureA with degree of categoricity d.
The notion of a degree of categoricity was first introduced by Fokina, Kalimullin,
and R. Miller [12]. They showed that if d is d.c.e. (difference of c.e.) in and above
0(n), then d is a degree of categoricity. They also showed that 0(�) is a degree of
categoricity. For the degrees c.e. in and above 0(n), they exhibited rigid structures
capturing the degrees of categoricity. In fact, all their examples had the following,
stronger property.

Definition 1.4. A degree of categoricity d is a strong degree of categoricity if
there is a structure A with computable copies A0 and A1 such that d is the degree
of categoricity forA, and every isomorphism f : A0 → A1 satisfies deg(f) ≥ d.
In [8], Csima, Franklin, and Shore showed that for every computable ordinal α,
0(α) is a strong degree of categoricity. They also showed that if α is a computable
successor ordinal and d is d.c.e. in and above 0(α), then d is a strong degree of
categoricity.
In [12] it was shown that all strong degrees of categoricity are hyperarithmetical,
and in [8] it was shown that all degrees of categoricity are hyperarithmetical. There
are currently no examples of degrees of categoricity that are not strong degrees of
categoricity. Indeed, we do not even have an example of a structure that has a degree
of categoricity but not strongly.
All known degrees of categoricity satisfy 0(α) ≤ d ≤ 0(α+1) for some computable
ordinal α. So in particular, all known noncomputable degrees of categoricity are
hyperimmune. In [1], Anderson and Csima showed that no noncomputable hyper-
immunefree degree is a degree of categoricity. They also showed that there is a Σ02
degree that is not a degree of categoricity, and that if G is 2-generic (relative to a
perfect tree), then deg(G) is not a degree of categoricity. The question of whether
there exist Δ02 degrees that are not degrees of categoricity remains open.
Turning to look at the question of degree of categoricity for a given structure,
R. Miller showed that there exists a field that does not have a degree of categoricity
[23], and Fokina, Frolov, and Kalimullin [11] showed that there exists a rigid
structure with no degree of categoricity.
In this paper, we claim that the only natural degrees of categoricity are the Δ0α-
complete degrees for some computable ordinalα. By a natural degree of categoricity,
we mean the degree of categoricity of a natural structure.
What do we mean by natural? By a natural structure, we mean one which might
show up in the normal course of mathematics; we will not include a structure which
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has been constructed, say via diagonalization, to have some computability-theoretic
property as a natural structure. So, for example, we will not consider a structure
which is computably categorical but not relatively computably categorical to be
a natural structure. On the other hand, the infinite-dimensional vector space is a
natural structure. Of course, this is not a rigorous definition. Instead, we note that
arguments involving natural structures tend to relativize, and so a natural structure
will have property P if and only if it has property P on a cone (i.e., there is a Turing
degree d such that for all c ≥ d, P holds relative to c). Thus by considering arbitrary
structures on a cone, we can prove results about natural structures.
The second author previously considered degree spectra of relations on a cone
[18]. McCoy [22] has also shown that on a cone, every structure has computable
dimension 1 or �. Here, we give an analysis of degrees of categoricity along sim-
ilar lines.
Our main theorem is:

Theorem 1.5. Let A be a countable structure. Then, on a cone: A has a strong
degree of categoricity, and this degree of categoricity is Δ0α-complete.

There are three important parts to this theorem: first, that every natural structure
has a degree of categoricity; second, that this degree of categoricity is a strong
degree of categoricity; and third, that the degree of categoricity is Δ0α-complete. The
ordinal α is the least ordinal α such that A is Δ0α categorical on a cone. This is
related to the Scott rank of A under an appropriate definition of Scott rank [25]:
α is the least ordinal α such that A has a Σinfα+2 Scott sentence if α. (While α may
not be computable, every ordinal is computable on some cone. The reader may be
uncomfortable with talking about Δ0α-complete degrees on a cone when α is not
computable; precisely what we mean will be clarified in Section 2.)
The construction of a structure with degree of categoricity some d.c.e. (but not
c.e.) degree uses a computable approximation to the d.c.e. degree; this requires the
choice of a particular index for the approximation, and hence the argument that the
resulting structure has degree of categoricity d.c.e. but not c.e. does not relativize.
By our theorem, there is no possible construction which does relativize. Moreover,
our theorem says something about what kinds of constructions would be required
to solve the open problems about degrees of categoricity, for example whether
there is a 3-c.e. but not d.c.e. degree of categoricity, or whether there is a degree
of categoricity which is not a strong degree of categoricity—the proof must be by
constructing a structure which is not natural, using a construction which does not
relativize.
The proof of Theorem 1.5 also gives an effectiveness condition which, if it holds
of some computable structure, means that the conclusion of the theorem is true
of that structure without relativizing to a cone. See, for example, the definition of
the degree e in Theorem 6.2. If A is a computable structure, α is a computable
ordinal and is least such thatA is Δ0α categorical, and one can take e = 0 (which, in
particular, means that it is effectively witnessed that α is the least ordinal such that
A is Δ0α categorical), then A has strong degree of categoricity Δ0α .
Corollary 1.6. The degrees of categoricity on a cone are theΔ0α-complete degrees
for some α.
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Indeed, each Δ0α-complete degree is a degree of categoricity on a cone. To see this,
examine the proof of Theorem 3.1 of [8] showing that each Δ0α-complete degree is a
degree of categoricity, and note that the proof relativizes.
In 2012, Csima, Kach, Kalimullin, and Montalbán worked out a proof of
Theorem 1.5 in the case where A is Δ02 categorical on a cone. That is, they showed
that ifA is Δ02 categorical on a cone, but not computably categorical on a cone, then
Ahas Δ02-complete strong degree of categoricity on a cone. They also conjectured the
general result at that time. The work was not written up. The result was later inde-
pendently suggested by the second author. The proof of the general result requires
not only the machinery of α-systems but also some new ideas. The proof of the spe-
cial case is quite similar to a result of Harizanov [17, Theorem 2.5], who answered an
analogous question for degree spectra of relations; the corresponding general case
for degree spectra of relations is still open (though some more general results are
proved in [18]). On the other hand, our proof of the general result for categoricity
uses, in an integral way, certain facts about automorphisms (which were not used
in the case of a Δ02 categorical structure), and so our proof does not work for degree
spectra. We discuss in Section 6 the new difficulties which arise in the general case.
The second result of this paper concerns the difficulty of computing isomorphisms
between two given copies A and B of a structure. We show that, on a cone, there is
an isomorphism of least degree between A and B, and that it is of c.e. degree.
Theorem 1.7. LetA be a countable structure.Letα be such thatA isΔ0α categorical
on a cone. Then, on a cone: for every copy B of A, there is a degree d that is Σ0α−1 in
B if α is a successor, or Δ0α in B if α is a limit, such that d computes an isomorphism
between A and B and such that all isomorphisms between A and B compute d.
The degree d is the least degree of an isomorphism between A and B.
We begin in Section 2 by giving the technical definitions for what we mean by
“on a cone.” In Section 3 we prove Theorem 1.7. In Section 4 we prove a stronger
version of Theorem 1.5 in the restricted case of structures which are Δ02 categorical
on a cone; it will follow that the only possible degrees of categoricity on a cone for
such structures are Δ01-complete or Δ

0
2-complete. In order to prove the general case

of Theorem 1.5, we need to use the method of α-systems. These were introduced
by Ash, see [6]. Montalbán [24] introduced �-systems, which are similar to Ash’s
α-systems but give more control. They also deal with limit ordinals in a different
way. We need the extra control of Montalbán’s �-systems, but we need to deal
with limit ordinals as in Ash’s α-systems. So in Section 5 we introduce a modified
version of Montalbán’s �-systems. We conclude in Section 6 with a complete proof
of Theorem 1.5.

§2. Relativizing to a cone. A cone of Turing degrees is a set Cd = {c : c ≥ d}.
Martin [20] showed that under set-theoretic assumptions of determinacy, every set
of Turing degrees either contains a cone or is disjoint from a cone. Noting that
every countable intersection of cones contains a cone, we see that we can form a
{0, 1}-valued measure on sets of degrees by assigning measure one to those sets
which contain a cone. In this paper, all of the sets of degrees which we will consider
arise from Borel sets, and by Borel determinacy [21], such sets either contain or are
disjoint from a cone.
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IfP is a statement which relativizes to any degree, we say thatP holds on a cone if
there is a degree d (the base of the cone) such that for all c ≥ d, P holds relative to c.
Thus a statement holds on a cone if and only if it holds almost everywhere relative
to the Martin measure. In the rest of this section, we will relativize the definitions
we are interested in.

Definition 2.1. The structure A is computably categorical on the cone above d
if for all c ≥ d, whenever B and C are c-computable copies of A, there exists a
c-computable isomorphism between B and C. More generally, a structure is Δ0α
categorical on the cone above d if for all c ≥ d whenever B and C are c-computable
copies of A, there exists a Δ0α(c)-computable isomorphism between B and C.
Note that even if α is not computable, there is a cone on which α is computable,
and for c on this cone, Δ0α(c) makes sense. In a similar way,we do not have to assume
that the structureA is computable. IfA is Δ0α-categorical on a cone, there is a degree
d which computes A and α, and A is Δ0α-categorical on the cone above d.
Recall that a computable structureA is relatively Δ0α categorical if for all B ∼= A,
some isomorphism fromA onto B is Δ0α(B), and that there exist structures that are
Δ0α categorical but not relatively so [10, 14, 16]. If we were to modify the definition
of relatively Δ0α categorical to be on a cone, it would be equivalent to Definition 2.1.
That is, there is no difference between relatively Δ0α categorical on a cone and Δ

0
α

categorical on a cone.
The notion of relatively Δ0α categoricity is intimately related to that of a Scott
family.

Notation 2.2. All formulas in this paper will be infinitary formulas, that is, for-
mulas in L�1� . See Chapter 6 of [6] for background on infinitary formulas and
computable infinitary formulas. We will denote by Σinfα the infinitary Σα formulas
and by Σcα the computable Σα formulas.

Definition 2.3. A Scott family for a structure A is a countable family Φ of
formulas over a finite parameter such that

• for each ā ∈ A, there exists ϕ ∈ Φ such thatA |= ϕ(ā),
• if ϕ ∈ Φ, A |= ϕ(ā), and A |= ϕ(b̄), then there is an automorphism of A
taking ā to b̄.

It follows from work of Scott [27] (see [6]) that every countable structure has a
Scott family consisting of Σinfα formulas for some countable ordinal α.

Theorem 2.4 (Ash-Knight-Manasse-Slaman [7] and Chisholm [9]). A com-
putable structure A is relatively Δ0α categorical if and only if it has a Scott family
which is a c.e. set of Σcα formulas.

Now we can see the power of working on a cone.

Remark 2.5. LetAbe a countable structure.ThenAhas a Scott family consisting
of Σinfα formulas for some countable ordinal α. Let d be such that A and α are
d-computable, and such that the Scott family forA is c.e. and consists of Σcα formulas
relative to d. Then A is Δ0α categorical on the cone above d. That is, every countable
structure is Δ0α categorical on a cone for some α.

There is also an analogue of Theorem 2.4 for (nonrelative) Δ0α categoricity. His-
torically, this came first; the α = 1 case is due to Goncharov [13] and the general
case is due to Ash [4].
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We now recall some definitions from [6].

Definition 2.6 (Back-and-forth relations). For a structureA tuples ā, b̄ ∈ A of
the same length

• ā ≤0 b̄ if and only if for every quantifier-free formula ϕ(x̄) with Gödel number
less than length(ā), if A |= ϕ(ā) then B |= ϕ(b̄),

• for α > 0, ā ≤α b̄ if and only if, for each d̄ in A and each 0 ≤ � < α, there
exists c̄ in A such that b̄, d̄ ≤� ā, c̄.
Definition 2.7 (p. 269 Ash-Knight [6]). For tuples c̄ and ā in A, we say that
ā is α-free over c̄ if for any ā1 and for any � < α, there exist ā′ and ā′1 such that
c̄, ā, ā1 ≤� c̄, ā′, ā′1 and c̄, ā′ �α c̄, ā.
Definition 2.8 (p. 241 Ash-Knight [6]). A structureA is α-friendly if for � < α,
the standard back-and-forth relations ≤� are c.e. uniformly in � .
There is a version of Theorem 2.4 for the nonrelative notion of categoricity.
It comes in two parts:

Proposition 2.9 (Proposition 17.6 from [6]). Let A be a computable structure.
SupposeA is α-friendly, with computable existential diagram. Suppose that there is a
tuple c̄ in A over which no tuple ā is α-free. Then A has a formally Σ0α Scott family,
with parameters c̄.

Theorem 2.10 (Theorem 17.7 from [6]). Let A be α-friendly. Suppose that for
each tuple c̄ in A, we can find a tuple ā that is α-free over c̄. Finally, suppose that the
relation �α is c.e. Then there is a computable B ∼= A with no Δ0α isomorphism from
A to B.
Corollary 2.11. Suppose thatA is not Δ0α categorical on any cone. Then for any
c̄ in A, there is some ā ∈ A that is α-free over c̄.
We now give the definitions needed to discuss degrees of categoricity on a cone.

Definition 2.12. The structure A has degree of categoricity d relative to c if
d can compute an isomorphism between any two c-computable copies of A, and
moreover d ≥ c is the least degree with this property. If in addition to this there exist
two c-computable copies of A such that for every isomorphism f between them,
f ⊕ c ≥T d, then we say A has strong degree of categoricity d relative to c.
Definition 2.13. We say that a structure A has a (strong) degree of categoricity
on a cone, if there is some d such that for every c ≥ d, A has a (strong) degree of
categoricity relative to c.

Definition 2.14. We say that a structure A has Δ0α-complete (strong) degree of
categoricity on a cone, if there is some d such that for every c ≥ d,A has Δ0α-complete
(strong) degree of categoricity relative to c.

§3. Isomorphism of c.e. degree. Theorem 1.7 follows from the following more
technical statement.

Theorem 3.1. Let A be a structure. Suppose that A is Δ0α categorical on a cone.
Then there is a degree c such that for every copy B of A, there is a degree d that is
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Σ0α−1 in and above B ⊕ c if α is a successor ordinal, or Δ0α in and above B ⊕ c if α is a
limit ordinal, such that

(1) d computes some isomorphism between A and B and
(2) for every isomorphism f between A and B, f ⊕ c ≥T d.
Before giving the proof, we consider two motivating examples.

Example 3.2. LetN be the standardpresentation of (�,<). IfA is any other pre-
sentation, let Succ(A) be the successor relation inA. Then the unique isomorphism
betweenN andA has the same Turing degree as Succ(A). Note that Succ(A) is Π01.
Example 3.3. LetV be an infinite-dimensionalQ-vector spacewith a computable
basis. IfW is any other presentation ofV , let Indep(W) be the independence relation
in W , as a subset of W<� . Then any isomorphism between V and W computes
Indep(W), and Indep(W) computes a basis for W and hence an isomorphism
between V andW . Note that Indep(W) is Π01.
Theorem 1.7 says that this is the general situation for natural structures.

Proof of Theorem 3.1. Let c be a degree such that A is c-computable and Δ0α-
categorical on the cone above c. By increasing c to absorb the effectiveness conditions
of Proposition 2.9 and Theorem 2.10, A has a c.e. Scott family S consisting of Σcα
formulas relative to c. Increasing c, we may assume that S consists of formulas of
the form (∃x̄)ϕ where ϕ is Πc

� relative to c for some � < α. Further increasing c,
we may assume that c can decide whether two formulas from S are satisfied by the
same elements. Then we can replace S by a Scott family in which every tuple from
A satisfies a unique formula from S. Finally, by replacing c with a higher degree,
we may assume that c can compute, for an element of A, the unique formula of S
which it satisfies, and can decide, for each tuple of the appropriate arity, whether or
not it is a witness to the existential quantifier in that formula. This is the degree c
from the statement of the theorem.
Let B be a copy of A. Consider the set

S(B) = {(b̄, ϕ) : B |= ϕ(b̄), ϕ ∈ S}.
Let d be the degree of S(B)⊕ B ⊕ c. First, note that the set

S(A) = {(ā, ϕ) : A |= ϕ(ā), ϕ ∈ S}
is c-computable. If f is an isomorphism between A and B, then f ⊕ c computes
S(A). Then using f and S(A), we can compute S(B). Thus

f ⊕ c ≥T S(B)⊕ B ⊕ c ≡T d
for every isomorphism f between A and B.
On the other hand, c computes S(A). Using S(B) and S(A) we can compute an
isomorphism between A and B. So there is an isomorphism f between A and B
such that

f ⊕ c ≡T S(B)⊕ B ⊕ c ≡T d.
We now introduce a related set T (B). We will show that T (B) ⊕ B ⊕ c ≡T d. If
α is a successor ordinal, then T (B) will be Π0α−1 in B⊕ c, and if α is a limit ordinal
then T (B) will be Δ0α in B ⊕ c. Thus d will be a degree of the appropriate type.
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We may consider the elements of B to be ordered, and hence order tuples from B
via the lexicographic order. Let T (B) be the set of tuples (ā, b̄, ϕ) where:
(1) ϕ(x̄, ȳ) is a c-computable Π0� formula, for some � < α,
(2) (∃ȳ)ϕ(x̄, ȳ) is in S, and
(3) B |= ϕ(ā, c̄), for some c̄ ≤ b̄ in the lexicographical ordering of tuples fromB.
It is easy to see that if α is a successor ordinal, then T (B) is Π0α−1 in B ⊕ c,
and if α is a limit ordinal then T (B) is Δ0α in B ⊕ c. Now we will argue that
T (B)⊕ B ⊕ c ≡T S(B)⊕ B ⊕ c.
Suppose we want to check whether (ā, b̄, ϕ) ∈ T (B) using S(B)⊕ B ⊕ c. Using
c, we first compute whether (1) and (2) hold for ϕ. Then using S(B) ⊕ B ⊕ c we
can compute an isomorphism f : B → A. Now for each c̄ ≤ b̄ in B, B |= ϕ(ā, c̄)
if and only if A |= ϕ(f(ā), f(c̄)). In A, using c we can decide whether A |=
ϕ(f(ā), f(c̄)).
On the other hand, to see whether (ā, (∃ȳ)ϕ(x̄, ȳ)) is in S(B) using T (B), look
for b̄ and � such that (ā, b̄, �) ∈ T (B). Some such � and witness b̄ must exist,
since ā satisfies some formula from S. Then (ā, (∃ȳ)ϕ(x̄, ȳ)) ∈ S(B) if and only if
ϕ = � (recall that we assumed that each element of A satisfied a unique formula
from the Scott family). 


§4. Not computably categorical on any cone. This section is devoted to the proof
of Theorem 1.5 for structures which are Δ02 categorical on a cone. The general
case of the theorem will require the �-systems developed in Section 5, and will be
significantly more complicated, so the proof of this simpler case should be helpful
in following the proof in the general case, and in fact, we have a slightly stronger
theorem in this case.

Theorem 4.1. Let A be a countable structure. If A is not computably categorical
on any cone, then there exists an e such that for all d ≥ e, if c is c.e. in and above d,
then there exists a d-computable copy B of A such that
(1) there is a c-computable isomorphism between A and B and
(2) for every isomorphism f between A and B, f ⊕ d computes c.
Proof. Suppose A is not computably categorical on any cone. Before we begin,
note that since A is not computably categorical on any cone, for any tuple c̄ in A,
there exist a tuple ā in A that is 1-free over c̄. Let e be such that:
(1) A is e-computable,
(2) e computes a Scott family for A where each tuple satisfies a unique formula,
and e can compute which which formula a tuple of A satisfies,

(3) A is 1-friendly relative to e, and
(4) given c̄, e can compute the least tuple ā that is 1-free over c̄.

Let d ≥ e, and let c be c.e. in and above d. Let C ∈ c be such that we have a
d-computable approximation toC where at most one number is enumerated at each
stage, and there are infinitely many stages when nothing is enumerated.
We will build B with domain � by a d-computable construction. We will build a
bijection f : � → A and B will be the pullback, along f, of A. At each stage s , we
will have a finite approximation fs to f, and B[s] a finite part of the diagram of
B so that fs is a partial isomorphism between B[s] and A. Once we put something
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into the diagram of B, we will not remove it, and so B will be d-computable. While
the approximation fs will be d-computable, f will be C -computable.
We will have distinguished tuples ā0 ∈ A and b̄0 ∈ B, such that for any isomor-
phism g : B → A, we will have 0 /∈ C if and only if g(b̄0) is automorphic to ā0 in
A. For n > 0 the strategy for coding whether n ∈ C will be the same, but our ān
and b̄n will be re-defined each time some m < n is enumerated into C . When n is
enumerated into C , we will be able to redefine f on b̄n and on all greater values.
At each stage s , we have current approximations ān[s] and b̄n[s] to these values.
The tuple b̄n[s] will be a series of consecutive elements of �; by B �� b̄ we mean the
elements of B up to, and including, those of b̄, and by B � b̄ we mean those up to,
but not including, b̄.
At each stage, if n /∈ C , for those ān and b̄n which are defined at that stage we
will have f(b̄n) is 1-free over f(B � b̄n); otherwise, we will have f(B � b̄n)f(b̄n) �
f(B � b̄n)ān.
Construction.

Stage 0: Let ā0[0] be the least tuple ofA that is 1-free, and let b̄0[0] be the first |ā0|-
many elements of�.Definef0 to be themap b̄0[0] �→ ā0[0]. LetB[0] be the pullback,
along f0, of A, using only the first |ā0[0]|-many symbols from the language.
Stage s + 1: Suppose n enters C at stage s + 1. Let b̄ = B[s] � b̄n[s]. Let b̄′ be
those elements of B[s] which are not in b̄ or b̄n[s]. Then, since ān[s] is 1-free over
f(b̄), there are ā, ā′ ∈ A such that

f(b̄), ān[s], f(b̄′) ≤0 f(b̄), ā, ā′, but f(b̄), ā �∼= f(b̄), ān[s].
Define fs+1 to map b̄, b̄n[s], b̄′ to f(b̄), ā, ā′. For m ≤ n, let ām[s +1] = ām[s] and
b̄m[s + 1] = b̄m[s]. For m > n, ām[s + 1] and b̄m[s + 1] are undefined.
If nothing enters C at stage s + 1, let n be least such that ān[s] is undefined. For
m < n, let ām[s +1] = ām[s] and b̄m[s +1] = b̄m[s]. Let ān[s +1] be the least tuple
that is 1-free over ran(fs). Extend fs to fs+1 with range A �� ān[s + 1] by first
mapping new elements b̄n[s+1] of� to ān[s+1], and then mapping more elements
to the rest of A �� ān[s + 1]. If n ∈ C , we must modify fs+1 as described above in
the case n entered C .
In all cases, letB[s+1] be the pullback, alongfs+1, ofA.We haveB[s] ⊆ B[s+1].
End of construction.

Since ān and b̄n are only re-defined when there is an enumeration of some m ≤ n
intoC , it is easy to see that for each n, ān, and b̄n eventually reach a limit. Moreover,
since the ān and b̄n form infinite sequences in A and B, respectively, and since f is
not re-defined onB �� b̄n unless there is an enumeration ofm ≤ n intoC , we see that
f is an isomorphism between B and A. Moreover, C can compute a stage when ān
and b̄n have reached their limit, and hence f is c-computable.
Now suppose g : B → A is an isomorphism. To compute C from g ⊕ d, proceed
as follows. Compute g(b̄0). Ask d whether (A, g(b̄0)) ∼= (A, ā0). If yes, then 0 /∈ C .
We also know that b̄1 = b̄1[0] and that ā1 = ā1[0]. If (A, g(b̄0)) � (A, ā0), then
0 ∈ C . Compute s such that 0 ∈ C [s]. Then b̄1 = b̄1[s] and ā1 = ā1[s]. Continuing
in this way, given b̄n and ān, we ask dwhether (A, g(b̄n)) ∼= (A, ān), using the answer
to decide whether n ∈ C and to compute b̄n+1 and ān+1. 
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Using Knight’s theorem on the upwards closure of degree spectra [19], we get a
slight strengthening of the above theorem.

Corollary 4.2. LetA be a countable structure. IfA is not computably categorical
on any cone, then there exists an e such that for all d ≥ e, if c is c.e. in and above d,
then there exists a d-computable copy B of A such that every isomorphism between
A and B computes c, and such that there exists a c-computable isomorphism between
A and B.
Proof. Take e as guaranteed by the theorem, with e computingA, and fix d ≥ e,
and let c be c.e. in d. Let C be as guaranteed by the theorem. Since C is d-computable,
by the proof of Knight’s upward closure theorem [19] (and noting that a “trivial”
structure is computably categorical on a cone), there exists B such that deg(B) = d
and such that there exists a d-computable isomorphism h : B ∼= C. Now since A is
e-computable and deg(B) = d, any isomorphism g : A ∼= B computes d. Since d
computes h, g computes the isomorphism g ◦ h : C ∼= A and hence it computes c.
On the other hand, since c computes d and hence h, and since c computes an
isomorphism between A and C, we have that c computes an isomorphism between
A and B. 

Corollary 4.3. On a cone, a structure cannot have degree of categoricity which is
Δ02 but not Δ

0
1 or Δ

0
2-complete. That is, ifA is not computably categorical on any cone,

and if A has a degree of categoricity on a cone, then there is some e such that for all
d ≥ e, the degree of categoricity of A relative to d is at least d′.
Corollary 4.4. If A is Δ02 categorical on a cone then A has Δ01-complete or
Δ02-complete degree of categoricity on a cone.

§5. A version of Ash’s metatheorem. The goal of the remainder of the paper is
to prove Theorem 1.5. Our main tool will be a version of Ash’s metatheorem for
priority constructions which was first introduced in [2,3,5]. Ash and Knight’s book
[6] is a good reference. Montalbán [24] has recently developed a variant of Ash’s
metatheorem using computable approximations. Montalbán’s formulation of the
metatheorem also provides more control over the construction; for the proof of
Theorem 1.5, we will require this extra control. However, Montalbán’s version of
themetatheorem, aswritten, only covers 0(�)-priority constructions for � a successor
ordinal. In this section, we will introduce the metatheorem and expand it to include
the case of limit ordinals.
Fix a computable ordinal � for which we will define �-systems and the metathe-
orem for constructions guessing at a Δ0�-complete function. Here our notation
differs from Montalbán’s but corresponds to Ash’s original notation. What we call
an �-system corresponds to what Ash would have called an �-system, but what
Montalbán calls an �-system we will call an � + 1-system. This will allow us to
consider, for limit ordinals �, what Montalbán might have called a < �-system.

5.1. Some Δ0�-complete functions, their approximations, and true stages. Before
defining an �-system and stating the metatheorem, we discuss some Δ0�-complete
functions and their approximations as introduced by Montalbán [24]. We will
introduce orderings on � to keep track of our beliefs on the correctness of the
approximations.
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For each computable ordinal � ≤ �, Montalbán defines a Δ0�-complete function
∇� ∈ �� , and for each stage s ∈ � a computable approximation∇�s to∇� .∇�s is a
finite string which guesses at an initial segment of ∇� . The approximations are all
uniformly computable in both s and �. Montalbán shows that the approximation
has the following properties (see Lemmas 7.3, 7.4, and 7.5 of [24]):

(N1) For every �, the sequence of stages t0 < t1 < t2 < · · · for which ∇�t is
correct is an infinite sequence with ∇�t0 ⊆ ∇�t1 ⊆ · · · and⋃i∈� ∇�ti = ∇� .

(N2) For each stage s , there are only finitely many � with ∇�s �= 〈〉, and these �s
can be computed uniformly in s .

(N3) If 	 ≤ �, s ≤ t, and 〈〉 �= ∇�s ⊆ ∇�t , then∇	s ⊆ ∇	t .
We say that s is a true stage or �-true stage if ∇�s ⊆ ∇�.
Montalbán defines relations (≤�)�<� on �, to be thought of as a relation on
stages in an approximation. We will define relations (≤�)�<� which are almost, but
not exactly, the same as Montalbán’s (we leave the definition of these relations, and
the proofs of their properties, to Lemma 5.3). An instance s ≤� t of the relation
should be interpreted as saying that, from the point of view of t, s is a �-true
stage. A relation s ≤� t is almost, but not exactly, equivalent to saying that for all
	 ≤ � + 1,∇	s ⊆ ∇	t . The problem is that we require the property (B4) below.
Definition 5.1. Let s � t if and only if, for all � < �,∇�+1s ⊆ ∇�+1t .
We can interpret s � t as saying that s appears to be a true stage (or �-true stage)
from stage t. This relation is computable by (N2) above.
We will see that the relations ≤� satisfy the following properties:
(B0) ≤0 is the standard ordering on �.
(B1) The relations ≤� are uniformly computable.
(B2) Each ≤� is a preordering (i.e., reflexive and transitive).
(B3) The sequence of relations is nested (i.e., if 	 ≤ � and s ≤� t, then s ≤	 t).
(B4) The sequence of relations is continuous (i.e., if 
 is a limit ordinal, then

≤
=
⋂
�<
 ≤�).

(B5) For every s < t in �, if s ≤� t then∇�+1s ⊆ ∇�+1t .
(B6) The sequence t0 < t1 < · · · of true stages satisfies t0 � t1 � · · · and⋃

i∈� ∇�ti = ∇�. We call the sequence of true stages the true path.
(B7) For s ∈ �, we can compute H (s) = max{� < � | ∇�s �= 〈〉}. H (s) has the

property that if t > s and s � t, then s �H (s) t.We callH (s) the height of s .
(B8) For every � with � < �, and r < s < t, if r ≤� t and s ≤� t, then r ≤� s .

Moreover, if � is a successor ordinal, then it suffices to assume that s ≤�−1 t.
(B9) s � t if and only if for all � < �, s ≤� t.
(B10) If t is a true stage and s � t, then s is also a true stage.
Properties (B0)–(B5) are as in Montalbán [24]. Our (B6) is a modification of
Montalbán’s (B6). (B7), (B9) and (B10) are new properties. (B8) is Montalbán’s
(♣) together with his Observation 2.1.
We will define, for convenience, the relations �� for � < �.
Definition 5.2. Let s �� t if for all 	 ≤ � + 1,∇	s ⊆ ∇	t .
These relations are uniformly computable because by (N2), we only need to check
whether ∇	s ⊆ ∇	t for finitely many 	.

https://doi.org/10.1017/jsl.2016.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.43


336 BARBARA F. CSIMA ANDMATTHEWHARRISON-TRAINOR

Following Montalbán, we will construct the desired relations (≤�)�<� .
Proposition 5.3. There is a sequence (≤�)�<� satisfying (B0)–(B10).
In order to prove this proposition, we will use a number of lemmas from [24], as
well as properties (N1)–(N3).

Lemma 5.4 (Lemma 7.3 of [24]). For each �, there is a subsequence {ti : i ∈ �}
such that

⋃
i∈� ∇�ti = ∇� .

Lemma 5.5 (Lemma 7.6 of [24]). Let 
 ≤ � be a limit ordinal, and s < t ∈ �.
Suppose that∇
s �= 〈〉. Then ∇
s ⊆ ∇
t if and only if (∀� < 
)∇�s ⊆ ∇�t .
Lemma 5.6 (Lemma 7.7 of [24]). (��)�≤� is a nested computable sequence of
pre-orderings satisfying:

(♣) For every � < �, and every r < s < t, if r ��+1 t and s �� t, then r ��+1 s .
Lemma 5.7. We have:

(♥) For every limit ordinal � ≤ �, and every r < s < t, if ∇�r ⊆ ∇�t and∇�s ⊆ ∇�t ,
then∇�r ⊆ ∇�s .

Proof. Fix � ≤ � and r < s < t such that ∇�r ⊆ ∇�t and ∇�s ⊆ ∇�t . For each
	 < �, r �	+1 t and s �	 t, so that by (♣) we have r �	+1 s . Then, by Lemma 5.5,
∇�r �� ∇�s . 

In verifying that the relations (≤�)�<� have the desired properties,wewill also need
to use several facts which Montalbán uses without proof (and without explicitly
isolating them as, say, a lemma). We will isolate these in the following lemma, and
prove them. Unfortunately, the proofs require notation that is introduced in [24]
which we have not introduced here (and which would require repeating most of [24]
in order to introduce). We suggest that the reader either take these statements for
granted, or if the reader is interested in the proofs of these statements, we suggest
that they consult [24] for the required background and definitions.

Lemma 5.8.

(i) ∇1s is the string of s 0’s.
(ii) Fix s < t and � < �. If ∇�s = ∇�t , then∇�+1s = ∇�+1t .
(iii) Fix s < t, r and � < �. If ∇�s ⊆ ∇�t ⊆ ∇�r , and ∇�+1s ⊆ ∇�+1r , then ∇�+1s ⊆

∇�+1t .
(iv) Let � be a limit ordinal. There is an increasing sequence 	1, 	2, 	3, . . . with limit
� such that for all s ,

∇�s = 〈∇	1s (0),∇	2s (0), . . . ,∇	nss (0)〉
where ns is the greatest such that∇	ns (0) �= ∅.

(v) Given s < t, if ∇	nss (0) = ∇	nst (0), then∇�s ⊆ ∇�t .
Proof. All of the notation in this proof is as in [24].

(i) This is just Definition 7.2 of [24].
(ii) Since � + 1 is a successor ordinal, if we unwrap Definitions 6.15 and 7.2 of
[24], we find that ∇�+1s = J (∇�s ) and ∇�+1t = J (∇�t ).1 If ∇�s = ∇�t , then
∇�+1s = ∇�+1t .

1This requires some effort to check.
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(iii) Once again we have that∇�+1s = J (∇�s ),∇�+1t = J (∇�t ), and∇�+1r = J (∇�r ).
Then Lemma 6.4 of [24] gives the desired conclusion.

(iv) Let � = 1 + �〈n0, . . . , nk〉. Then, if nk > 0,
∇�s = J�

�

〈n0,...,nk〉(∇1s ) = J�
�[n0]...[nk ] ◦ J��〈n0,...,nk−1〉(∇1s ).

Now

J�
�[n0]...[nk ] (�) = 〈J��[n0]...[nk ]1 (�)(0), J�

�[n0]...[nk ]

2 (�)(0), . . . , J�
�[n0]...[nk ]

j (�)(0)〉,
where j is greatest such that J�

�[n0]...[nk ]

j (�) �= 〈〉. Recall that

J�
�[n0]...[nk ]

n = J�
�[n0]...[nk ][n−1] ◦ J��[n0]...[nk ][n−2] ◦ · · · ◦ J��[n0]...[nk ][0] .

Thus ∇�s (n) is
J�

�[n0]...[nk ][n−1] ◦ J��[n0]...[nk ][n−2] ◦ · · · ◦ J��[n0]...[nk ][0] ◦ J��〈n0,...,nk−1〉(∇1s )(0),
which is just

J�
�

〈n0,...,nk ,n−1〉(∇1s )(0) = ∇1+�〈n0,...,nk ,n−1〉s (0).

If nk = 0, then

∇�s = J�
�

〈n0,...,nk〉(∇1s ) = J�
�[n0]...[nk ] ◦ J��〈n0,...,nk−1〉(∇1s ).

In this case, we get that∇�s (n) is
J�

�[n0]...[nk ][n−1] ◦ J��[n0]...[nk ][n−2] ◦ · · · ◦ J��[n0]...[nk ][0] ◦ J��〈n0,...,nk−1〉(∇1s )(0),
which is again just

J�
�

〈n0,...,nk ,n−1〉(∇1s )(0) = ∇1+�〈n0,...,nk ,n−1〉s (0).

(v) Let � = 1 + �〈n0, . . . , nk〉. In (iv), we showed that for each s ,
∇�s = 〈∇1+�〈n0,...,nk ,0〉s (0), . . . ,∇1+�〈n0,...,nk ,j−1〉s (0)〉,

where j is the greatest such that∇1+�〈n0,...,nk ,j−1〉s (0) �= 〈〉. So given s < t, we have
∇�t = 〈∇1+�〈n0 ,...,nk ,0〉t (0), . . . ,∇1+�〈n0,...,nk ,�−1〉t (0)〉.

If s �1+�〈n0,...,nk ,j−1〉 t, then

∇1+�〈n0,...,nk ,i〉s (0) = ∇1+�〈n0,...,nk ,i〉t (0)

for 0 ≤ i < j. So∇�s ⊆ ∇�t . 

Now we will show how to construct the order (≤�)�<� and prove Proposition 5.3.
Proof of Proposition 5.3. The proof of this proposition is very similar to the
proof of Lemma 7.8 of [24]. The definition of our relations ≤� is the same as
Montalbán’s, except for one small change. Let C be the set of tuples (
, u, v) where

 < � is a limit ordinal, ∇
u � ∇
v , ∇
+1u � ∇
+1v , and if there is r with ∇
u �
∇
r ⊆ ∇
v then ∇
+1u ⊆ ∇
+1r . (The only change here is that we require that 
 < �.)
Let 	
,v be such that the last entry of ∇
v is ∇	
,vv (0) (Some such 	
,v exists by
Lemma 5.8(iv)).
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For � < �, define

s ≤� t ⇔ s �� t and ¬∃(
, u, v) ∈ C (	
,v < � and u ≤ s < v �	
,v t).
Except for the difference in the definition of C , this is the same as Montalbán’s
definition.
We must now verify that ≤� satisfies (B0)–(B10). For many of the properties
the verification is very similar to, or exactly the same as, Montalbán’s, but we will
reproduce them here for completeness.
(B0) We can see that �0=≤ as ∇1s is the sequence of s zeros (Lemma 5.8(i)).
(B1) The relations ≤� are uniformly computable as the relations �� are, 	
,v is
computable in 
 and v by (N2), and the existential quantifier is bounded, as u, v ≤ t
and by (N2), there are only finitely many 
’s with ∇
+1v �= 〈〉.
(B2) Fix � and s . Then note that s �� s , and there is no v with s < v �	
,v s .
Hence s ≤� s .
Now for transitivity, suppose that s ≤� t ≤� r, but that s �� r. Since �� is
transitive, s �� r, and so it must be that there is (
, u, v) ∈ C such that 	
,v < �
and u ≤ s < v �	
,v r. If t < v, then u ≤ t < v �	
,v r and so (
, u, v) witnesses that
t �� r, a contradiction. So it must be that v ≤ t. Now v �	
,v r, so by Lemma 5.8
(v),∇
v ⊆ ∇
r . By (N3), v �	
,v+1 r. Also, t �� r. Since � is greater than 	
,v , by (♣),
v �	
,v t. Then u ≤ s < v �	
,v t and so (
, u, v) witnesses that s �� t. This is again
a contradiction. So ≤� is transitive.
(B3) Suppose that 	 ≤ � and s ≤� t. We claim that s ≤	 t. Since s ≤� t, s �� t,
and so s �	 t as � is nested. We must show that there is no (
, u, v) ∈ C with
	
,v < 	 and u ≤ s < v �	
,v t. If there was, then since 	 < �, (
, u, v) witnesses that
s �� t. Since in fact s ≤� t, s ≤	 t.
(B4) Suppose to the contrary that for some limit ordinal α < �, s �α t, but that
for all � < α, s ≤� t. If s �α t due to the existence of some (
, u, v) ∈ C with
	
,v < α and u ≤ s < v �	
,v t, then (
, u, v) also witnesses that s �	
,v+1 t, and
	
,v + 1 < α, contrary to our initial assumption. So it must be that s �α t because
s �α t. Now, for all � < α, s �� t, and so by Lemma 5.5 it must be that∇αs ⊆ ∇αt ,
but ∇α+1s � ∇α+1t . Let v be the least such that∇αs � ∇αv ⊆ ∇αt and∇α+1s � ∇α+1v .
Some such v exists because, by Lemma 5.8 (ii), if ∇αs = ∇αt , then ∇α+1s = ∇α+1t .
Then (α, s, v) ∈ C . And v �	α,v t by Lemma 5.5 because 〈〉 �= ∇αv ⊆ ∇αt . So
s �	α,v+1 t contradicting our assumptions.
(B5) Fix s, t ∈ � with s ≤� t. Then s �� t, and so ∇�+1s ⊆ ∇�+1t by definition.
(B6) Let t0 < t1 < · · · be the true stages. Then, for each �, this is a subsequence
of the sequence from (N1), and so ∇�t0 ⊆ ∇�t1 ⊆ · · · and ⋃

i∈� ∇�ti = ∇� . Thus
t0 � t1 � t2 � · · · . Also, by Lemma 5.4, we get that ∇�t0 ⊆ ∇�t1 ⊆ · · · . So t0, t1, . . .
is a subsequence of the sequence from (N1) for � = �, and so

⋃
i∈� ∇�ti = ∇� .

(B7) Fix s . By (N2) there are only finitely many � with ∇�s �= 〈〉, and we can
compute H (s) = {� < � | ∇�+1s �= 〈〉}. Suppose that t > s and s ��� t. Then,
for some � < �, ∇�+1s � ∇�+1t . Since we must have ∇�+1s �= 〈〉, � ≤ H (s). Thus
s �H (s) t.
(B8) First, we will prove the successor case. Suppose that r < s < t, r ≤�+1 t,
and s ≤� t. Suppose towards a contradiction that r ��+1 s . By (♣), we get that
r ��+1 s . So itmust be that there is some (
, u, v) ∈ C whichwitnesses that r ��+1 s .
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So v �	
,v s �� t, and so since � + 1 > 	
,v , v �	
,v t. Thus (
, u, v) witnesses that
r ��+1 t.
Now we will show the limit case. This is the content of Observation 2.1 of [24].
Suppose that r < s < t, r ≤� t, and s ≤� t. If � is a successor, then we just use
the previous case and the fact that s ≤�−1 t. For the limit case, for every 	 < �, we
have r ≤	+1 t and s ≤	 t and so by the previous case we have r ≤	+1 s . But then,
by (B4), we get r ≤� s .
(B9) If, for all � < �, s ≤� t, then for all � < �, ∇�+1s ⊆ ∇�+1t , and so s � t.
On the other hand, suppose that s � t. Fix � < �. Then s �� t, so to show
that s ≤� t, it suffices to show that there is no (
, u, v) ∈ C with 	
,v < � and
u ≤ s < v �	
,v t. Suppose to the contrary that there was such a (
, u, v). Since
v �	
,v t,∇	
,vv (0) = ∇	
,vt (0), and since∇	
,vv (0) is the last entry of∇
v , by Lemma 5.8
(v) we have ∇
v ⊆ ∇
t . Since s � t, ∇
s ⊆ ∇
t . Since (
, u, v) ∈ C , ∇
u ⊆ ∇
v . Since

 is a limit ordinal, applying Lemma 5.5 and using (♥) we get that ∇
u ⊆ ∇
s and
∇
s ⊆ ∇
v . So ∇
u ⊆ ∇
s ⊆ ∇
v ⊆ ∇
t . By the minimality of v, we get ∇
+1u ⊆ ∇
+1s ,
and so since ∇
+1u � ∇
+1v , ∇
+1s � ∇
+1v . Since ∇
s ⊆ ∇
v ⊆ ∇
t and ∇
+1s � ∇
+1v ,
by Lemma 5.8 (ii) ∇
+1s � ∇
+1t . This is a contradiction (as s � t), and so s ≤� t.
(B10) Suppose that t is a true stage, and s � t. If � is a successor ordinal, say
� = � + 1, then∇�s ⊆ ∇�t . If � is a limit ordinal, then by Lemma 5.5,∇�s ⊆ ∇�t . 

5.2. �-systems and the metatheorem. We are now ready to define an �-system.
The definition is essentially the same as forMontalbán, except that whatMontalbán
would have called an �-system, we call an � + 1-system.

Definition 5.9. An �-system is a tuple (L,P, (≤L� )�<�, E) where:
(1) L is a c.e. subset of � called the set of states.
(2) P is a c.e. subset of L<� called the action tree.
(3) (≤L� )�<� is a nested sequence of c.e. pre-orders on L called the restraint
relations.

(4) � �L � ′ is c.e., where we define � �L � ′ if and only if � ≤L� � ′ for all � < �.
(5) E ⊆ L× � is a c.e. set called the enumeration function, and is interpreted as
E(l) = {k ∈ � : (l, k) ∈ E}. We require that for �0, �1 ∈ L with �0 ≤L0 �1,
E(�0) ⊆ E(�1).

Definition 5.10. A 0-run for (L,P, (≤L� )�<�, E) is a finite or infinite sequence
 = (�0, �1, . . .) which is in P if it is a finite sequence, or is a path through P if it is
an infinite sequence, such that for all s, t < || and � < �,

s ≤� t ⇒ �s ≤L� �t.
If  is a 0-run, let E() =

⋃
s<|| E(�i).

Given an infinite 0-run �0, �1, . . . of an �-system (L,P, (≤L� )�<�, E), let t0 � t1 �
t2 � · · · be the true stages. Then by the properties of E above,E() = ⋃

i∈� E(�ti ).
So E() is c.e., but it is determined by the true stages.
Montalbán defines an extendability condition and aweak extendability condition.
For our extendability condition, we weaken Montalbán’s extendability condition
even further (as well as modifying it slightly to allow limit ordinals). In order to
define our extendability condition, we need the following definition.
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Definition 5.11. To any stage s > 0, we effectively associate a sequence of stages
and ordinals as follows.
Choose t∗ < s greatest such that t∗ � s . Some such t∗ exists as 0 � s . Now for
each � < �0, let t� < s be the largest such that t� ≤� s . Note that t∗ ≤ t� for each �
as by (B9) t∗ ≤� s .
There may be infinitely many � < �, but there are only finitely many possible
values of t� since they are bounded by s . Since the≤� are nested (B3), if 	 ≤ � < �,
then t� ≤ t	 . Now we will effectively define stages t∗ = sk < · · · < s0 = s−1 so that
{s0, . . . , sk} = {t� : � < �} as sets. Let s0 = t0 = s−1. Suppose thatwe have defined
si . If si � s , then k = i and we are done. Otherwise, let �i < � be the greatest such
that si = t�i . By definition of si , it is of the form t� for some �. We can find the
greatest such by computably searching for �i such that si ≤�i s but si �≤�i+1 s ; some
such �i exists since the relations are continuous and nested. Let si+1 = t�i+1. Since
si ��i+1 s , si+1 < si . This completes the definition of sk < · · · < s0 = s − 1 and
�0 < · · · < �k−1 < �.
By (B8), for i < k, since si+1 ≤�i+1 s and si ≤�i s , si+1 ≤�i+1 si .

Definition 5.12. We say that an �-system (L,P, (≤L� )�≤�, E) satisfies the extend-
ability condition if: whenever we have a finite 0-run  = 〈�0, . . . , �s−1〉 such that
for all i < k, �si+1 ≤L�i+1 �si , where sk < sk−1 < · · · < s0 = s − 1 and
�0 < �1 < · · · < �k−1 < � are the associated sequences of stages and ordinals
to s as in Definition 5.11, then there exists an � ∈ L such that ̂ � ∈ P, �sk �L � ,
and for all i < k, �si ≤L�i � .

Now we are ready for the metatheorem.

Theorem 5.13. For every �-system (L,P, (≤L� )�<�, E) with the extendability con-
dition, there is a computable infinite 0-run . A 0-run can be built uniformly in the
�-system.

Proof of Theorem 5.13. The proof is essentially the same as the proof of
Theorem 3.2 in [24]. By the trivial case of the extendability condition, there is
�0 ∈ L with 〈�0〉 ∈ P. Now suppose that we have a 0-run  = 〈�0, . . . , �s−1〉. We
want to define �s ∈ L such that ̂ �s ∈ P, and such that for every � < �, if t ≤� s ,
then �t ≤L� �s .
Let {t� | � < �}, sk < · · · < s0 = s−1, and �1 < · · · < �k be as inDefinition 5.11.
If t ≤� s , then t ≤ t� , and by (B8), t ≤� t� , so since  is a 0-run �t ≤L� �t� . So it is
sufficient to find � with ̂ � ∈ P such that, for � < �, �t� ≤L� � . That is, we must find
an � with ̂ � ∈ P, �sk �L � and �si ≤L�i � for 0 ≤ i < k.
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By (B8), for i ≤ k, since si+1 ≤�i+1 s and si ≤�i s , si+1 ≤�i+1 si . Sincep is a 0-run,
�si+1 ≤L�i+1 �si . By the extendability condition, there is � ∈ L with p̂ � ∈ P, �sk �L � ,
and �si ≤L�i � for i < k. We can find such an l effectively, since we have described
how to compute the si and since the relations ≤L� and �L are computable. 


§6. Proof of Theorem 1.5. In this section, we will give the proof of Theorem 1.5.
The proof will use the �-systems as developed in Section 5, together with a strategy
expanding on that in the proof of Theorem 4.1. It is not sufficient to simply combine
the techniques of Theorem 4.1 with the α-system construction. Consider a Σ02 set
C . The difficulty is that in the approximation of C , an element x may enter C , exit
C , and then later exit C again (and may continue to enter and exit C infinitely
many times). Each time x enters C , we will have to code this in a way that can be
distinguished from each other time that x entered C . To do this, we will use that
fact that given a tuple ā in a structure of sufficient length, we can pick a tuple b̄
which is automorphic to ā (coding that x is not in C ), or we can pick a tuple b̄
which is not isomorphic to ā (coding that x is in C ). In the latter case, we will
distinguish between how many times x has entered C by choosing b̄ to be in a
different automorphism orbit each time. Of course, we must also code whether or
not x + 1 is in C . But the actions that we take towards coding x can interfere with
those that we take to code x + 1, and because x can both enter and exit C , the
interactions between the two become much more complicated than they were in the
case of Theorem 4.1; in that case, if x entered C , we simply started coding x + 1 in
a new place. Now, if x later exits C , we must return to where we were coding x + 1
beforehand, and if x enters C again, then we must code x +1 in another new place
because we may have interfered with the previous coding locations of x+1 (and we
must have the coding of x tell us where to look for the coding of x + 1).
To begin, we prove the following lemma which we will use for coding.
Lemma 6.1. Let A be a countable structure. Let x̄ be a tuple from A. Let α1 >
�1, . . . , αn > �n be computable ordinals with �1 ≥ �2 ≥ · · · ≥ �n. Let ū1, . . . , ūn and
v̄1, . . . , v̄n be tuples from A such that |ūi+1| = |ūi | + |v̄i | and such that v̄i is αi -free
over ūi . Then there is a tuple ȳ fromA such that, for each i = 1, . . . , n,
(1) x̄ �|ū1| = ȳ �|ū1|,
(2) x̄ �|ūi |+|v̄i | ≤�i ȳ �|ūi |+|v̄i |,
(3) ȳ �|ūi |+|v̄i | � ūi v̄i .
Proof. Wewill inductively define tuples x̄0, . . . , x̄n, so that taking ȳ = x̄n satisfies
the lemma.
Begin with x̄0 = x̄, so x̄0 satisfies (1) and (2).
Given x̄m satisfying (1) and (2) for all i , and (3) for i = 1, . . . , m, define x̄m+1
as follows. If x̄m already satisfies (3) for i = m + 1, set x̄m+1 = x̄m. Otherwise,
x̄m �|ūm+1|+|v̄m+1| ∼= ūm+1v̄m+1. Since v̄m+1 is αm+1-free over ūm+1, there is x̄m+1 with
x̄m ≤�m+1 x̄m+1, x̄m �|ūm+1| = x̄m+1 �|ūm+1|, and x̄m+1 �|ūm+1|+|v̄m+1| � ūm+1v̄m+1. So
x̄m+1 satisfies (3) for i = m + 1. Note that since x̄m �|ūm+1| = x̄m+1 �|ūm+1|, we have
x̄m+1 �|ūi |+|v̄i | = x̄m �|ūi |+|v̄i | for i ≤ m, so that x̄m+1 satisfies (1) and satisfies (2)
and (3) for 1 ≤ i ≤ m. Since x̄m ≤�m+1 x̄m+1, and for i ≥ m+1, �i ≤ �m+1, we have
x̄ �|ūi |+|v̄i | ≤�i x̄m �|ūi |+|v̄i | ≤�i x̄m+1 �|ūi |+|v̄i | for such i . So (2) holds for x̄m+1. 

Theorem 1.5 will follow easily from the following technical result.
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Theorem 6.2. Let A be a countable structure. If � is an ordinal and A is not Δ0�
categorical on any cone for any � < �, then there exists an e such that for all d ≥ e,
there exists a d-computable copy B of A such that
(1) there is a Δ0�(d)-computable isomorphism between A and B and
(2) for every isomorphism f between A and B, f ⊕ d computes Δ0�(d).
Proof. SupposeA is not Δ0� categorical on any cone for any � < �. Let e be such
that:

(i) A and � are e-computable, and e computes a Scott family for A in which
each tuple satisfies a unique formula and also computes, for tuples in A,
which formula in the Scott family they satisfy,

(ii) A is � + 1-friendly relative to e,
(iii) given a tuple ā and � < �, e can decide whether a tuple b̄ is �-free over

ā. (Such a tuple is guaranteed to exist by Corollary 2.11 since A is not
Δ0� -categorical on any cone.)

Fix d ≥ e and D ∈ d. Our argument involves a D-computable �-system. To ease
notation, we make no further mention of D (e.g., whenever we write ∇� we really
mean ∇� (D), we will say computable when we mean d-computable, etc.).
We will define our �-system. Let B be a computable set of constant symbols not
occurring in A. Let L be the set of sequences

〈p; (ā0, b̄0), (ā1, b̄1), . . . , (ār , b̄r)〉,
where:

(L1) p is a finite partial bijection B → A,
(L2) ān, b̄n ∈ A are tuples with |ān+1| = |ān|+ |b̄n|,
(L3) | ran(p)| = |ār |+ |b̄r |,
(L4) dom(p) and ran(p) include the first r elements of B and A, respectively,
(L5) b̄n is α-free over ān, where α = maxm≤n H (m) (see (B7)).
Note that (L1)–(L4) are clearly computable, and that (L5) is computable by (iii).
If � has first coordinate p, and � ′ has first coordinate p′, then for � < �, we
set � ≤L� � ′ if and only if p ≤� p′, that is, if and only if ran(p) ≤� ran(p′) as
substructures of A under the usual back-and-forth relations.
Then (≤L� )�<� is nested since the usual back-and-forth relations are, and (≤L� )�<�
and �L are computable by (ii).
Let P consist of the sequences �0, . . . , �r such that

(P1) if
�n = 〈p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)〉

then
�n+1 = 〈p∗; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n), (ān+1, b̄n+1)〉

with dom(p) ⊆ dom(p∗),
(P2) for each n, if

�n = 〈p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)〉
then for each i , ran(p �|āi |+|b̄i |) ∼= āi b̄i if and only if i � n,

(P3) if m � n, �m has first coordinate pm, and �n has first coordinate pn, then
pm ⊆ pn.
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Note that (P1) and (P3) are computable, and that (P2) is computable by (i).
Given

�n = 〈p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)〉,
letE(�) be the partial atomic diagram onB obtained by the pullback along p (using
only the first |p| logical symbols).
Note that E(�) is computable, and if �0 ≤L0 �1 with first coordinates p0 and p1,
respectively, then p0 ≤0 p1, so that E(�0) ⊆ E(�1).
Thus we have an �-system (L,P, (≤L� )�<�, E).
Lemma 6.3. The �-system (L,P, (≤L� )�<�, E) has the extendability condition.
Proof. Suppose we have a finite 0-run  = 〈�0, . . . , �s−1〉, and let sk < sk−1
< · · · < s0 = s − 1, and �0 < �1 < · · · < �k−1 < � be the associated sequences
of stages and ordinals to s , as in Definition 5.11. Suppose that for each i , the first
coordinate of �si is qsi .

Claim. There exists p ⊃ qsk such that qsi ≤�i p for 0 ≤ i ≤ k.
Proof. We construct p inductively as follows.We let q∗s0 = qs0 , and for 0 ≤ i < k,
let q∗si+1 ⊇ qsi+1 be such that q∗si ≤�i q∗si+1 . This is possible since qsi+1 ≤�i+1 qsi and
since q∗si ⊇ qsi . Let p = q∗sk . Then certainly q∗sk ≤L�k p. As q∗si ≤�i q∗si+1 and �i < �i+1,
it follows inductively that each q∗si ≤�i p. Since q∗si ⊇ qsi , we have qsi ≤�i p as
desired. 

Let

�s0 = �s−1 = 〈qs−1; (ā0, b̄0), (ā1, b̄1), . . . , (ās−1, b̄s−1)〉.
Claim. There exists p∗ ⊃ qsk such that qsi ≤�i p∗ for 0 ≤ i < k and such that
ran(p∗ �|ān |+|b̄n|) � ānb̄n for sk < n ≤ s0 = s − 1.
Proof. Let p ⊃ qsk be as in the previous claim. We will use Lemma 6.1. Let
x̄ = ran(p) and n = s0 − sk . For i = 1, . . . , n, let ūi = āsk+i and v̄i = b̄sk+i .
For i = 1, . . . , n, let αi = max1≤j≤sk+i H (j) and let �i = �j where j is such that
sj+1 < i ≤ sj . Note that by (L5), v̄i isαi -free over ūi and that�1 ≥ �2 ≥ · · · . Also, if
sj+1 < i ≤ sj , then since sj+1 = t�j+1, i �≤�j+1 s . So αi ≥ H (i) ≥ �j +1 > �j = �i .
Let ȳ be the tuple we get by applying Lemma 6.1 and let p∗ map the domain of p
to ȳ. Then

p∗ �|āsk |+|b̄sk | = p �|āsk |+|b̄sk |⊃ qsk ,
and so p∗ ⊇ qsk . Also,

qsi ≤�i p �|āsi |+|b̄si | ≤�i p
∗ �|āsi |+|b̄si |,

and so qsi ≤�i p∗. Finally, for i = sk + 1, . . . , s0, p∗ �|āi |+|b̄i | � āi b̄i . 

Let ās = ran(p∗), and let b̄s be α-free over ās where α = maxt≤s H (t), and such
that ās b̄s contains the first s-many elements ofA. Let c̄ be a new set of constants in
B and let p∗∗ = p∗ ∪ {c̄ �→ b̄s}. Let

�s = 〈p∗∗; (ā0, b̄0), (ā1, b̄1), . . . , (ās−1, b̄s−1), (ās , b̄s)〉.
We claim that �0, . . . , �s is in P. That (L1), (L2), and (L3) hold is clear. (L4) and
(L5) follow from the choice of b̄s . (P1) is also clear. (P3) follows from the fact that
p∗∗ ⊇ qsk and sk was maximal with sk � s .
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For (P2), if i ≤ sk , then sincep∗∗ ⊇ qsk and (P2) held at stage sk, ran(p∗∗ �|āi |+|b̄i |)∼= āi b̄i if and only if i � sk , and since sk � s , i � sk if and only if i � s by (B8)
and (B9). If sk < i < s , then since sk is maximal with sk � s , i � s and by choice
of p∗ in the second claim above, ran(p∗∗ �|āi |+|b̄i |) � āi b̄i . The case i = s is clear.
Hence ˆ�s ∈ P.
Since p∗∗ ⊇ qsk , qsk ≤� p∗∗ for all � < �. Given i < k, qsi ≤�i p∗ ⊆ p∗∗. This
completes the proof of the extendability condition. 

By the metatheorem, there is a computable 0-run  = �0�1 · · · for (L,P,
(≤Li )i≤�, E). E() is the diagram of a structure on B. For each j, let

�j = 〈pj ; (ā0, b̄0), (ā1, b̄1), . . . , (āj , b̄j)〉.
Then, along the true stages, by (P3) the pi are nested, and by (L4) they form a
bijection B → A. By definition of E, they are an isomorphism B → A.
Lemma 6.4. Let f : B → A be an isomorphism. Then f ≥T Δ0� .
Proof. Using f we will compute the true path i1 � i2 � · · · . Then we can
compute∇� = ⋃

n∈�∇�in . We claim that �j is a true stage if and only if
(∗) ran(f �|āj |+|b̄j |) ∼= āj b̄j .
Note that (∗) is computable in f, and so this will complete the proof.
If j is a true stage, then pj extends to an isomorphism B → A. Since f is also an
isomorphism, there is an automorphism ofA taking ran(f �dom(pj )), as an ordered
tuple, to ran(pj). By (P2), we have ran(pj �|āj |+|b̄j |) ∼= āj b̄j and so we have (∗).
If j satisfies (∗), then we claim that j is a true stage. Suppose not, and let
p =

⋃
n∈� pin be the isomorphism B → A along the true path. Let in be such that

j < in. Then by (B10), j � in, and so ran(pin �|āj |+|b̄j |) � āj b̄j . Since pin ⊆ p and
f is also an isomorphism B → A, we have

ran(f �|āj |+|b̄j |) ∼= ran(pin �|āj |+|b̄j|) � āj b̄j .
This contradicts (∗). So j is a true stage. 

Lemma 6.5. There is an isomorphism f : B → A with Δ0� ≥T f.
Proof. Using Δ0� we can compute the true path i1 � i2 � · · · . Then along this
path we compute an isomorphism f =

⋃
n pin from B → A. 


This completes the proof. 

As before, we can improve the statement of the theorem slightly as follows using
Knight’s theorem on the upwards closure of degree spectra.

Corollary 6.6. Let A be a countable structure. If � is an ordinal andA is not Δ0�
categorical on any cone for any � < �, then there exists an e such that for all d ≥ e,
there exists a d-computable copy B of A such that Δ0�(d) computes an isomorphism
between A and B, and every such isomorphism computes Δ0�(d).
Proof. Take e as guaranteed by the theorem, with e computing A and �, and
fix d ≥ e. Let B be as guaranteed by Theorem 1.5. Since B is d-computable, by the
proof of Knight’s upward closure theorem [19], there exists C such that deg(C) = d
and such that there exists a d-computable isomorphism h : C ∼= B. Now since A
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is e-computable and deg(C) = d, any isomorphism g : A ∼= C computes d. Since d
computes h, g computes the isomorphism g◦h : B ∼= A and hence Δ0�(d).Moreover,
d computes an isomorphism between A and B, and hence between A and C. 

It is now simple to extract Theorem 1.5 from the above result.

Proof of Theorem 1.5. Let A be a countable structure. By Remark 2.5, there
is an ordinal α such that A is Δ0α categorical on a cone. Let α ≥ 1 be the least
such. By Corollary 6.6, there is a cone on which A and α are computable such that
for every d in the cone, there exists a d-computable copy B of A such that every
isomorphism between A and B computes Δ0α(d). Thus A has Δ0α-complete strong
degree of categoricity on this cone. 
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