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In this paper we present a classification of a class of globally subanalytic CMC
surfaces in R

3 that generalizes the recent classification made by Barbosa and do
Carmo in 2016. We show that a globally subanalytic CMC surface in R

3 with
isolated singularities and a suitable condition of local connectedness is a plane or a
finite union of round spheres and right circular cylinders touching at the
singularities. As a consequence, we obtain that a globally subanalytic CMC surface
in R

3 that is a topological manifold does not have isolated singularities. It is also
proved that a connected closed globally subanalytic CMC surface in R

3 with isolated
singularities which is locally Lipschitz normally embedded needs to be a plane or a
round sphere or a right circular cylinder. A result in the case of non-isolated
singularities is also presented. It also presented some results on regularity of
semialgebraic sets and, in particular, it proved a real version of Mumford’s Theorem
on regularity of normal complex analytic surfaces and a result about C1 regularity of
minimal varieties.
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1. Introduction

The question of describing minimal surfaces or, more generally, surfaces of constant
mean curvature (CMC surfaces) is known in Analysis and Differential Geometry
since the classical papers of Bernstein [4], Bombieri, De Giorgi and Giusti [9], Hopf
[23] and Alexandrov [1]. Recently, in the paper [2], Barbosa and do Carmo showed
that the connected algebraic smooth CMC surfaces in R3 are only the planes, round
spheres and right circular cylinders. A generalization of this result was proved in
Barbosa et al. [3], it obtained the same conclusion in the case of connected globally
subanalytic smooth CMC surfaces in R3. In [30], Perdomo showed that there are no
algebraic smooth surfaces of degree 3 in R3, with nonzero constant mean curvature.
Recently, this result was generalized by Perdomo and Tkachev in [31], they showed
that there are no algebraic smooth hypersurfaces of degree 3 in Rn, n � 3, with
nonzero constant mean curvature.
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When we know well about smooth sets in a certain category, it is natu-
ral to think about objects in this category that have singularities. Thus, it
is natural to study and classify algebraic CMC surfaces with singularities. In
fact, minimal surfaces with singularities play an important role in the study
of minimal submanifolds and there are already many works on minimal sur-
faces with singularities (see [5,9,10,17,28,35]). Let us remark that these papers
are devoted to give conditions on CMC surfaces with singularities such that
their singularities are removable or to present examples with non-removable
singularities.

Thus, this paper is devoted to study and classify algebraic CMC surfaces in R3

with possibly non-removable singularities. For instance, it is easy to find examples
of algebraic surfaces with non-removable isolated singularities such that the smooth
part have non-zero constant mean curvature, namely, finite unions of round spheres
and right circular cylinders touching at the singularities.

A first natural question is: Are there further examples?
The main aim of this paper is to show that the answer to the question above

is no, when we impose a suitable condition of local connectedness called here by
connected links (see definition 2.19).

As it was said before, some of the papers quoted above are devoted to give
conditions on CMC surfaces with singularities such that their singularities are
removable. Looking for minimal surfaces with removable singularities is also a
subject studied in Complex Algebraic Geometry, since any complex analytic set
is a minimal variety (possibly with singularities) (see p. 180 in [11]). A pioneer
result in the topology of singular analytic surfaces is Mumford’s Theorem (see
[27]) that in C3 can be formulated as follows: if X ⊂ C3 is a complex analytic sur-
face with an isolated singularity p and its link at p has trivial fundamental group,
then X is smooth at p. We can find some results related with Mumford’s Theorem
in [7,32,33].

Let us describe how this paper is organized. In § 2 are presented some defi-
nitions and main properties used in the paper about globally subanalytic sets.
Section 3 is devoted to show the main result of this paper. A classification is
presented in theorem 3.1 of the globally subanalytic CMC surfaces X ⊂ R3 with
dim Sing(X) < 1 and such that each connected component ofX \ Sing(X) is a CMC
surface and has connected links (see definition 2.19). In § 4 are presented some con-
sequences of theorem 3.1 and its proof. For instance, it is presented in corollary 4.2
a classification of the closed connected globally subanalytic CMC surfaces X ⊂ R3

with dim Sing(X) < 1 which have connected links and in corollary 4.11 a clas-
sification of the closed connected globally subanalytic CMC surfaces X ⊂ R3

with dim Sing(X) < 1 which are locally LNE (see definition 4.10). In partic-
ular, these results generalize the main results of [2,3]. Moreover, it is given
a classification of globally subanalytic CMC surfaces X ⊂ R3 when each con-
nected component of X \ Sing(X) has smooth closure (see proposition 4.12). Some
results on regularity of subanalytic sets are also presented and, in particular, it
is proved a real version of Mumford’s Theorem on regularity of normal complex
analytic surfaces (see corollary 4.19) and it is also given a proof that a minimal
variety in Rn which is a subanalytic C1 submanifold needs to be smooth (see
proposition 4.26).
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2. Preliminaries

In this section, we make a brief exposition about globally subanalytic sets. In order
to know more about globally subanalytic sets, for example, see [12,14–16].

Definition 2.1 Algebraic sets. A subset X ∈ Rn is called algebraic if there are
polynomials p1, . . . , pk : Rn → R such thatX = {x ∈ Rn; p1(x) = · · · = pk(x) = 0}.
Definition 2.2 Semialgebraic sets. A subset X ∈ Rn is called semialgebraic if
X can be written as a finite union of sets of the form {x ∈ Rn; p(x) = 0, q1(x) >
0, . . . , qk(x) > 0}, where p, q1, . . . , qk are polynomials on Rn. A function f : X ⊂
Rn → Rp is said to be a semialgebraic function if its graph is a semialgebraic
set.

Definition 2.3. A subsetX ∈ Rn is called semianalytic at x ∈ Rn if there exists an
open neighbourhood U of x in Rn such that U ∩X can be written as a finite union of
sets of the form {x ∈ Rn | p(x) = 0, q1(x) > 0, . . . , qk(x) > 0}, where p, q1, . . . , qk are
analytic functions on U . A subsetX ⊂ Rn is called semianalytic ifX is semianalytic
at each point x ∈ Rn.

Definition 2.4. A subset X ⊂ Rn is called subanalytic at x ∈ Rn if there exists
an open neighbourhood U of x in Rn and a relatively compact semianalytic sub-
set S ⊂ Rn × Rm, for some m, such that U ∩X = π(S) where π : Rn × Rm → Rn

is the orthogonal projection map. A subset X ⊂ Rn is called subanalytic if X is
subanalytic at each point of Rn.

Definition 2.5. Let X ⊂ Rn be a subanalytic set. A map f : X → Rk is called a
subanalytic map if its graph is subanalytic.

Remark 2.6. The complement, the closure and the interior of a subanalytic set are
subanalytic sets. A finite intersection of subanalytic sets is still a subanalytic set.

Definition 2.7. A subset X ⊂ Rn is called globally subanalytic if its image under
the map, from Rn to Rn,

(x1, . . . , xn) �→
(

x1√
1 + x2

1

, . . . ,
xn√

1 + x2
n

)
is subanalytic.

Remark 2.8.

(1) Any semialgebraic set is a globally subanalytic set;

(2) Any bounded subanalytic set is a globally subanalytic set;

(3) Any globally subanalytic set is a subanalytic set;

(4) The collection of all globally subanalytic sets form an O-minimal structure
(see the main theorem in [15]). In particular, a bounded subanalytic subset
of R is a finite union of intervals.
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Notation. Let p be a point in Rn, Y ⊂ Rn and ε > 0. Then we denote the sphere
with centre p and radius ε by

Sn−1
ε (p) := {x ∈ Rn; ‖x− p‖ = ε},

the open ball with centre p and radius ε by

Bn
ε (p) := {x ∈ Rn; ‖x− p‖ < ε},

and the cone over Y with vertex p by

Conep(Y ) := {tx+ p ∈ Rn; x ∈ Y and t ∈ [0, 1]}.
Here smooth means C∞ smooth.

Definition 2.9. Let X ⊂ Rn be a subset. The singular set of X, denoted by
Sing(X), is the set of points x ∈ X such that U ∩X is not a smooth submanifold
of Rn for any open neighbourhood U of x. A point of Sing(X) is called a singular
point (or a singularity) of X. If p ∈ Reg(X) := X \ Sing(X), we say that X is
smooth at p.

Thus, if p ∈ Reg(X) = X \ Sing(X), there is open neighbourhood U ⊂ Rn of
p such that X ∩ U is a smooth submanifold of Rn and, then, we define the dimen-
sion of X at p by dimpX = dimX ∩ U . Thus, we define the dimension of
X by

dimX = max
p∈Reg(X)

dimpX.

We say that X has pure dimension, if dimX = dimpX for all p ∈ Reg(X).
In the case that X ⊂ Rn is a subanalytic set, we have that Sing(X) is also

subanalytic with dim Sing(X) < dimX (see [6, theorem 7.2]).
Here we assume that the sets have pure dimension.

Proposition 2.10. Let Y ⊂ Rn be a subanalytic set. Suppose that there exists an
open neighbourhood U of p such that (Y \ {p}) ∩ U is a smooth submanifold of Rn.
For any small enough ε > 0, Y ∩ Sn−1

ε (p) is a smooth submanifold of Rn.

Proof. We can assume that U = Bδ(p) for some δ > 0. Let M = (Y \ {p}) ∩Bδ(p)
and let ρ : M → R be the function given by ρ(x) = ‖x− p‖. Since M is a bounded
subanalytic set, we have that ρ is a globally subanalytic function and, in particular,
Σ = {x ∈M ; dρx = 0} and Δ = ρ(Σ) are globally subanalytic sets. Since ρ is also
smooth, by Sard’s Theorem, Δ has zero Lebesgue measure and therefore dim Δ = 0,
which implies that Δ is a finite number of points, since it is a globally subanalytic
set. Then, for any 0 < ε < min Δ, ρ−1(ε) = Y ∩ Sn−1

ε (p) is a smooth submanifold
of Rn. �

Proposition 2.11 [12, theorem 4.10]. Let Y ⊂ Rn be a subanalytic set and p ∈ Rn.
For any sufficiently small ε > 0, the pair (Bn

ε (p), Y ∩Bn
ε (p)) is homeomorphic to

the pair (Bn
ε (p),Conep(Y ∩ Sn−1

ε (p))).
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In this case, we denote the set Y ∩ Sn−1
ε (p) by linkp(Y ) and it is called the link

of Y at p.

Definition 2.12. LetX ⊂ Rn be a set and x0 ∈ X be a non-isolated point. Suppose
that X \ Sing(X) is a smooth manifold with dimension d. We denote by N (X,x0)
the subset of the Grassmannian Gr(d,Rn) of all d-dimensional linear subspaces
T ⊂ Rn such that there is a sequence of points {xi} ⊂ X \ Sing(X) tending to x0

and limTxi
X = T . We denote by Ñ (X,x0) the subset of Rn given by the union of

all T ∈ N (X,x0).

Definition 2.13. LetX ⊂ Rn be a set and x0 ∈ X. We say that v ∈ Rn is a tangent
vector of X at x0 ∈ Rn if there are a sequence of points {xi} ⊂ X tending to x0

and sequence of positive real numbers {ti} such that

lim
i→∞

1
ti

(xi − x0) = v.

Let C(X,x0) denote the set of all tangent vectors of X at x0 ∈ Rn. We call C(X,x0)
the tangent cone of X at x0.

Remark 2.14. It follows from Curve Selection Lemma for subanalytic sets that, if
X ⊂ Rn is a subanalytic set and x0 ∈ X \ {x0}, then

C(X,x0) = {v; there exists a subanalytic arc α : [0, ε) → Rn s.t. α((0, ε)) ⊂ X

and α(t) − x0 = tv + o(t)},
where g(t) = o(t) means that g(0) = 0 and limt→0+ g(t)/t = 0.

Remark 2.15. If X ⊂ Rn is a subanalytic set, it follows from lemma 4 in [29],
which works also in the subanalytic setting, that C(X, p) ⊂ Ñ (X, p).

Remind that if X ⊂ Rn is a smooth hypersurface and there exists a constant
H ∈ R such that if X is locally expressed as the graph of a smooth function
u : Bn−1

ε (p) → R, then u is a solution of the following PDE

div
(
(1 + |∇u|2)−1/2∇u

)
= (n− 1)H, (2.1)

we say that X is a smooth CMC hypersurface (with mean curvature H)
and when n = 3, we say also that X is a smooth CMC surface (with mean
curvature H).

In the following definition we are going to generalize the notion of smooth CMC
hypersurface.

Definition 2.16. We say that a subset X ⊂ Rn is a CMC hypersurface (with
mean curvature H) if X \ Sing(X) is a (n− 1)-dimensional smooth CMC hyper-
surface (with mean curvature H) and Hn−1(Sing(X)) = 0, where Hn−1 denotes
the (n− 1)-dimensional Hausdorff measure. When X is a CMC hypersurface with
mean curvature H = 0, we say that X is a minimal hypersurface.
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When n = 3, in the above definition we use the word surface instead of hypersurface.
More generally, we say that a smooth submanifold X ⊂ Rn is a minimal

submanifold if X is locally expressed as the graph of a smooth mapping u =
(u1, . . . , uk) : Bm

ε (p) → Rk, satisfying the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
i,j=1

∂

∂xi

(√
ggij ∂ur

∂xj

)
= 0, r = 1, . . . , k

m∑
i=1

∂

∂xi
(
√
ggij) = 0, j = 1, . . . ,m,

(2.2)

where (gij) is the inverse matrix of the matrix (gij), where gij = δij +
〈∂u/∂xi, ∂u/∂xj〉, and where g = det(gij).

Definition 2.17. We say that a subset X ⊂ Rn is a minimal variety if X \
Sing(X) is a m-dimensional minimal submanifold and Hm(Sing(X)) = 0, where
Hm denotes the m-dimensional Hausdorff measure.

Remark 2.18. It is well known that a smooth submanifold Mm ⊂ Rn that locally
minimizes volume is a minimal submanifold. Thus, we have that if X ⊂ Rn is a set
that locally minimizes volume then X is a minimal variety.

Definition 2.19. We say that a subset Y ⊂ Rn has connected link at y ∈ Y if
there exists ε0 > 0 such that for each 0 < ε � ε0, (Y \ {y}) ∩Bn

ε (y) has a unique
connected component C with y ∈ C. We say that Y has connected links if Y has
connected link at y for all y ∈ Y .

Remark 2.20. The definition that a set has connected links is essentially more
general than the definition of topological submanifolds in Rn, since any topological
submanifold Y m ⊂ Rn (m > 1) has connected links and there exist sets that have
connected links and are not topological submanifolds, for example, the union of two
transversal planes in R3.

Definition 2.21. Let π : Rn → Rn−1 be a linear projection. We say that a subset
Y ⊂ Rn is a π-graph of a continuous function f : Ω ⊂ Rn−1 → R if there exists a
rotation mapping L : Rn → Rn such that L(π−1(0)) = {(0, . . . , 0, xn);xn ∈ R} and
L(Y ) = {(x, f(x));x ∈ Ω}.

3. CMC surfaces with singularities

Theorem 3.1. Let X ⊂ R3 be a closed and connected globally subanalytic set such
that dim Sing(X) < 1. Suppose that each connected component of X \ Sing(X) has
connected links. If X is a CMC surface with mean curvature H, then we have the
following:

(1) if H = 0, then Sing(X) = ∅ and X is a plane;

(2) if H = 0, then
(i) X is a round sphere or a right circular cylinder, when Sing(X) = ∅;
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(ii) X is a finite union of round spheres and right circular cylinders touching
at the points of Sing(X), when Sing(X) = ∅.

Proof. Let X1, . . . , Xm be the connected components of X \ Sing(X). Thus, X =⋃m
i=1Xi. Fixed i ∈ {1, . . . ,m}, it is enough to show that Z := Xi is a plane or a

round sphere or a right circular cylinder.

Claim 1. Z is a topological manifold.

Proof of claim 1. Let p ∈ Z. If p ∈ Sing(X), it is clear that Z is a topological man-
ifold around p and that N (Z, p) contains a unique plane. Thus, we can assume
that p ∈ Sing(X). Let ε0 > 0 be a number that satisfies definition 2.19 and propo-
sitions 2.10 and 2.11. Then, by definition 2.19, (Z ∩B3

ε0
(p)) \ {p} is connected and

by proposition 2.10, Z ∩ S2
ε0

(p) is smooth (and compact). By proposition 2.11,
Z ∩ S2

ε0
(p) is connected and using the classification of compact smooth curves, we

have that Z ∩ S2
ε0

(p) is homeomorphic to S1. Therefore, by proposition 2.11, once
again, Y := Z ∩B3

ε0
(p) is a topological manifold. �

Claim 2. N (Z, p) contains a unique plane and C(Z, p) has at least 2 different lines
passing through the origin, for all p ∈ Z.

Proof of claim 2. Claim 1 gives that Σ := Xi ∩B3
ε0

(p) = (Z \ {p}) ∩B3
ε0

(p) is
smooth and homeomorphic to a punctured disc. By hypothesis, we have that Σ has
constant mean curvature and as it is smooth, Σ is C2,1. Then by the main theorem in
[20], there exists a mapping x : B2

r (0) → Σ ∪ {p} for some r > 0 such that x(0) = p,
x|B2

r(0)\{0} is a smooth parametrization of Σ, x is C1,α for all α ∈ (0, 1) and satisfies
the following isothermal conditions

‖xu‖2 − ‖xv‖2 = 〈xu,xv〉 = 0. (3.1)

Moreover, by remark 3 in [20], x satisfies, for some non-negative integer n and
a ∈ C3 \ {0}, the following asymptotic condition:

xu(w) + ixv(w) = awn + o(wn) (3.2)

when w := u+ iv → (0, 0). Here, we are doing the canonical identification C ∼= R2.
Now, since x is C1 and satisfies (3.1) and (3.2), it follows that N (Z, p) contains a
unique plane P generated by the vectors Re(a) and Im(a) (see also lemma 3.1 in
[21]). Moreover, after we integrate equation (3.2) (like as in lemma 3.3 in [19]), it
is easy to verify that C(Z, p) has 2 different lines passing through the origin, which
finishes the proof of claim 2. �

Let p ∈ Z and let P ⊂ R3 be the plane as in the proof of claim 2, i.e., P = Ñ (Z, p).
Let π : R3 → P ∼= R2 be the orthogonal projection.

Claim 3. There exists an open neighbourhood A of p in Z such that π|A is an open
mapping.

Proof of claim 3. By remark 2.15, we have C(Z, p) ⊂ P = Ñ (Z, p) and, in particu-
lar, C(Z, p) ∩ P⊥ = {0}. Since dim Sing(X) < 1, we can choose an open neighbour-
hood U of p so small such that Ñ (Z, q) ∩ P⊥ = {0} for all q ∈ U ∩ Z, Z ∩ U \ {p}
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is smooth and (Z ∩ U) ∩ π−1(π(p)) = {p}. In particular, C(Z, q) = TqZ for all
q ∈ Z ∩ U \ {p} and C(Z, q) ∩ P⊥ = {0} for all q ∈ Z ∩ U . We claim that π is then
an open mapping on A := Z ∩ U . To see this, fix q ∈ A. Since Z is closed, there is a
r > 0 small enough such that V := B3

r (q) ∩ Z ⊂ A is compact, and the topological
boundary ∂V of V in Z lies on ∂B3

r (q), which implies that q ∈ ∂V. Moreover, for a
small enough r > 0, we can assume that

π(q) ∈ π(∂V )

otherwise, there exists a sequence of positive numbers {rk} tending to 0 such that
for each k, there is a point qk ∈ Z ∩ ∂B3

rk
(q) with π(qk) = π(q). So, extracting a

subsequence if necessary, we can assume that limk→∞((qk − q)/‖qk − q‖) = v = 0.
This implies that v ∈ P⊥ ∩ C(Z, q), which is a contradiction, since C(Z, q) ∩ P⊥ =
{0}. Since π(∂V ) is a compact set, there is s > 0 such that

B2
s (π(q)) ∩ π(∂V ) = ∅. (3.3)

It is enough to show that π(q) is an interior point of π(V ) in P .
Thus, suppose by contradiction that π(q) is not an interior point of π(V ). Then

B2
δ (π(q)) ⊂ π(V ), for any δ > 0. In particular, there is a point

x ∈ B2
s/2(π(q)) \ π(V ).

Since x ∈ π(V ) and π(V ) is compact, for t = dist(x, π(V )), we have that B2
t (x) ⊂ P

intersects π(V ) while B2
t (x) ∩ π(V ) = ∅. Moreover, since q ∈ V , we have t � ‖x−

π(q)‖ < s/2, and if y ∈ B2
t (x) then

‖y − π(q)‖ � ‖y − x‖ + ‖x− π(q)‖ � t+ s/2 < s,

which yields

B2
t (x) ⊂ B2

s (π(q)).

Thus B2
t (x) ∩ π(∂V ) = ∅ by (3.3). Take y′ ∈ B2

t (x) ∩ π(V ) and y ∈ π−1(y′) ∩ V .
Note that y ∈ ∂V , so y is an interior point of V , and hence C(V, y) = C(Z, y).

Since B2
t (x) ∩ π(V ) = ∅, no point of V is contained in the cylinder C :=

π−1(B2
t (x)). This implies that � ⊂ Ty∂C for each line � ⊂ C(Z, y) passing through

the origin. In fact, let � ⊂ C(Z, y) be a line passing through the origin, then we
have two arcs γ1, γ2 : [0, ε) → V such that γi(τ) − y = (−1)iτu+ o(τ) for i = 1, 2,
where u ∈ R3 \ {0} satisfies � = {τu; τ ∈ R}. Thus, suppose that � ⊂ Ty∂C, then
the line y + � = {y + τu; τ ∈ R} and C intersect transversally at y, this forces
the image of γ1 or γ2 to intersect C, which is a contradiction, since V ∩ C = ∅.
Therefore, � ⊂ Ty∂C. Moreover, by our choice of the open neighbourhood U of p,
C(Z, y) = TyZ or C(Z, y) = C(Z, p) ⊂ P and, in any case, C(Z, y) is contained in
some plane P̃ such that P̃ ∩ P⊥ = {0}. Since C(Z, y) has at least two different lines
passing through the origin and P⊥ ⊂ Ty∂C, we obtain that Ty∂C has three linearly
independent vectors, which is a contradiction, since Ty∂C is a 2-dimensional linear
subspace.

Therefore, π(q) is an interior point of π(V ) and this finishes the proof of claim 3.
�
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Claim 4. There exists an open neighbourhood W ⊂ R3 of p such that Z ∩W is a
π-graph of a continuous function f : B2

r (0) → R, for some r > 0.

Proof of claim 4. After a translation, if necessary, we can assume that p = 0. By
claim 3, there exists a bounded neighbourhood A of the origin in Z such that π =
π|A : A→ π(A) is an open mapping and π(A) is an open set in R2 and, moreover,
Ñ (Z, q) ∩ P⊥ = {0} for all q ∈ A, A \ {0} is smooth and A ∩ π−1(0) = {0}. After
a rotation, if necessary, we can suppose that π is the projection on the two first
coordinates. Let B ⊂ A be a bounded open subset of Z such that K = B ⊂ A and
0 ∈ B. Let f : Ω := π(K) → R given by f(x) = max{y3 ∈R; (y1, y2, y3)∈π−1(x) ∩
K}. Then, f(0) = 0 and 0 ∈ Graph(f).

We are going to show that f is a continuous function. Since Z is globally
subanalytic, we have that if x ∈ Ω, then π−1(x) ∩K is finite and, in particular,
π−1(x) ∩K is discrete. Let {xk}k∈N ⊂ Ω with xk → x ∈ Ω and for each k ∈ N we
define x̄k = (xk, f(xk)). Then, taking a subsequence, if necessary, we have that
x̄k → x̄′ ∈ K, since K is compact. But x̄′ ∈ π−1(x) ∩K, then π3(x̄′) � π3(x̄) =
f(x), where π3 : R3 → R is the projection on the third coordinate. Suppose that
π3(x̄′) < π3(x̄), then there exist B′ and B′′ disjoint open balls with centre x̄′ and
x̄, resp., such that π(B′ ∩ Z) and π(B′′ ∩ Z) are open neighbourhoods of x in R2.
Hence, V ′ := B′ ∩ Z is below V ′′ := B′′ ∩ Z. Then, for k sufficiently large, x̄k ∈ V ′

and xk ∈ π(V ′) ∩ π(V ′′). Therefore, π−1(xk) ∩ V ′′ is above π−1(xk) ∩ V ′, but this
is a contradiction. Thus f is continuous at x.

There exist an open neighbourhood W of the origin in R3 and an open ball B2
r (0)

such that Graph(f |B2
r(0)) = Z ∩W . In fact, since Z is a topological manifold by

claim 1, there exists a homeomorphism ϕ : W1 ∩ Z → B2
s (0), where W1 is an open

neighbourhood of the origin in R3 and using that f is a continuous function, we can
take r > 0 such that Graph(f |B2

r(0)) ⊂W1 ∩ Z. Moreover, let ψ : B2
r (0) →W1 ∩ Z

be the mapping given by ψ(y) = (y, f(y)), we have that ϕ ◦ ψ : B2
r (0) → B2

s (0) is a
continuous and injective map. Then, by the Invariance of Domain Theorem, ϕ ◦ ψ
is an open mapping. In particular, ψ(B2

r (0)) is an open set of Z and, therefore,
there exists an open neighbourhood W of the origin in R3 such that ψ(B2

r (0)) =
Graph(f |B2

r(0)) = Z ∩W , which finishes the proof of claim 4. �

Claim 5. Z is a smooth CMC surface.

Proof of claim 5. Let p ∈ Z. It is enough to show that Z is smooth at p, i.e., p ∈
Sing(Z). We can suppose that p = 0 and by claim 4, we can assume that there are
r > 0 small enough, a continuous function f : B2

r (0) → R and an open subset W ⊂
R3 such that Graph(f) = Z ∩W and Ñ (Z, q) ∩ ({0} × R) = {0} for all q ∈ Z ∩W .
Therefore, by Implicit Function Theorem, f is smooth on B2

δ (0) \ {0} for some
0 < δ � r. Thus, by theorem 3 in [34, p. 168] (or main theorem in [18, p. 170]),
f is smooth on B2

δ (0). Therefore, Z is smooth at p. �

Now, we are ready to complete the proof of the theorem. By theorem 3.2 in [3],
Z is a plane, a round sphere or a right circular cylinder, since Z is a smooth CMC
surface and also a closed globally subanalytic set. Thus, it is clear that X is a
finite union of planes or a finite union of round spheres and right circular cylinders
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touching at the singularities. However, since X is connected and dim Sing(X) < 1,
if X is a finite union of planes (in the case H = 0), then m = 1 and X is plane and,
in particular, X is smooth. �

By remark 2.18 and since a complex analytic set locally minimizes volume
(see page 180 in [11]), we get that theorem 3.1 does not hold true if we con-
sider 2-dimensional minimal varieties in R4 ∼= C2. For example, X = {(x, y) ∈ C2;
y = x2} is a 2-dimensional minimal submanifold which is not a plane.

The hypothesis dim Sing(X) < 1 cannot be removed, since there exist CMC sur-
faces in R3 with non-isolated singularities that do not satisfy the conclusion of
theorem 3.1, as we can see in the next example.

Example 3.2 Enneper’s minimal surface. Let X be the self-intersecting minimal
surface generated using the Enneper–Weierstrass parameterization with f = 1 and
g = id [13, p. 93, proposition 4]. With some computations, we can see that X is
algebraic and it is given by the following equation (see [36])(

y2 − x2

2
+

2z3

9
+

2z
3

)3

− 6z
(
y2 − x2

4
− z

4

(
x2 + y2 +

8
9
z2

)
+

2z
9

)2

= 0.

Next example shows a C1 submanifold X of R3 with dim Sing(X) = 1 and the
connected components of X \ Sing(X) are smooth CMC surfaces with different
constants.

Example 3.3. Let X = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1 and y � 0} ∪ {(x, y, z) ∈
R3;x2 + z2 = 1 and y � 0}. We have that each connected component of X \
Sing(X) is a semialgebraic smooth CMC hypersurface and X is a C1 submanifold
of R3, but it is not a smooth submanifold of R3.

4. Some applications of theorem 3.1 and its proof

4.1. CMC surfaces with isolated singularities

Corollary 4.1. Let X ⊂ R3 be a locally closed subanalytic set. Suppose that
dim Sing(X) < 1. If X is a CMC surface, then for each p ∈ Sing(X) there exists
δ > 0 such that X ∩B3

δ (p) = Z1 ∩ Z2, where Z1 and Z2 are smooth CMC surfaces
satisfying Z1 ∩ Z2 = {p} and TpZ1 = TpZ2.

Proof. Since X is subanalytic and has an isolated singularity at p, there exists
δ > 0 such that X ∩B3

δ (p) \ {p} is smooth and X ∩B3
δ (p) is homeomorphic to

Cone(X ∩ S2
δ(p)). LetX1, . . . , Xm be the connected components ofX ∩B3

δ (p) \ {p}.
Thus, X =

⋃m
i=1 Zi, Zi = Xi ∪ {p} for i = 1, . . . ,m. In particular, Zi ∩ Zj = {p}

for any i = j. Fixed i ∈ {1, . . . ,m}, it is enough to show that Z̃ := Zi is smooth.
However, by reading the proof of theorem 3.1, everything works to Z̃ up to the
end of the proof of claim 5. Then, Z̃ is smooth, which forces TpZi = TpZj for
i, j ∈ {1, . . . ,m} and by Maximum Principle for embedded CMC hypersurfaces
(see lemma 2.7 in [38]), we must have m = 2. �
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Corollary 4.2. Let X ⊂ R3 be a closed connected globally subanalytic set. Suppose
that X has connected links and dim Sing(X) < 1. If X is a CMC surface, then
Sing(X) = ∅ and X is a plane or a round sphere or a right circular cylinder.

Proof. Since X has connected links, we obtain that X \ Sing(X) has only one con-
nected component. Thus, in the proof of theorem 3.1, we can take Z to be X,
which implies Sing(X) = ∅ and X is a plane or a round sphere or a right circular
cylinder. �

The hypothesis that X has connected links in corollary 4.2 cannot be removed
neither, as we can see in the next example.

Example 4.3. Let X = {(x, y, z) ∈ R3; ((x− 1)2 + y2 + z2 − 1)((x+ 1)2 + y2 +
z2 − 1) = 0}. It is clear that X is an algebraic set and a non-smooth CMC surface.
Moreover, X does not have connected links, since for all 0 < ε < 1, X \ {0} ∩B3

ε (0)
has two connected components such that the closure of each one of them contains
the origin.

The hypothesis dim Sing(X) < 1 in corollary 4.2 cannot be removed, since there
exist CMC surfaces in R3 with non-isolated singularities that have connected links,
as we can see in example 3.2. Another example is the following.

Example 4.4. Let X = {(x, y, z) ∈ R3; xy = 0}. Then X is an algebraic set, a
CMC surface and has connected links, but it is not smooth.

In fact, the hypothesis dim Sing(X) < 1 in corollary 4.2 cannot be removed, even
if we impose that the CMC surface X ∈ R3 is a graph of a global Lipschitz function
and, in particular, having connected links.

Example 4.5. Consider the Lipschitz function f : R2 → R given by f(x, y) = |x|.
Then X = {(x, y, z) ∈ R3; z = f(x, y)} is a closed semialgebraic set and a CMC
surface, but it is not smooth.

Corollary 4.6. Let X ⊂ R3 be a closed and connected globally subanalytic set.
Suppose that X is a topological manifold and dim Sing(X) < 1. If X is a CMC
surface, then Sing(X) = ∅ and X is a plane or a round sphere or a right circular
cylinder.

Proof. The proof follows from corollary 4.2, since X is a 2-dimensional topological
manifold and this implies that X has connected links. �

Definition 4.7 [2]. Let p : R3 → R be a polynomial and M = p−1(0). We say that
M is regular if the gradient of p vanishes nowhere in M .

Thus, by corollary 4.2, we obtain also the main results in [2,3].

Corollary 4.8 [2, theorem 1.1 and proposition 4.1]. Let p : R3 → R be a polyno-
mial and M = p−1(0). Assume that M is regular. If M is a smooth CMC surface
then it is a plane or a round sphere or a right circular cylinder.
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Corollary 4.9 theorem 3.2 in [3]. Let X ⊂ R3 be a closed and connected globally
subanalytic set. If X is a smooth CMC surface, then X is a plane or a round sphere
or a right circular cylinder.

4.2. CMC surfaces which are locally LNE

Let Z ⊂ Rn be a path connected subset. Given two points q, q̃ ∈ Z, we define the
inner distance in Z between q and q̃ by the number dZ(q, q̃) below:

dZ(q, q̃) := inf{length(γ) | γ is an arc on Z connecting q to q̃}.

Definition 4.10. We say that a set Z ⊂ Rn is Lipschitz normally embedded
(shortly LNE), if there is a constant C > 0 such that dZ(q, q̃) � C‖q − q̃‖, for
all q, q̃ ∈ Z. We say that Z is locally LNE, if for each p ∈ Z there is an open
neighbourhood U of p such that Z ∩ U is LNE.

Since any smooth submanifold of Rn is locally LNE, we have that the next result
is another generalization of the main results in [2,3] (see corollaries 4.8 and 4.9).

Corollary 4.11. Let X ⊂ R3 be a closed connected subanalytic set. Suppose that
X is a CMC surface and dim Sing(X) < 1. If X is locally LNE, then X is smooth.
In particular, if X is globally subanalytic and locally LNE then X is a plane or a
round sphere or a right circular cylinder.

Proof. Suppose that there exists p ∈ Sing(X). It follows from corollary 4.1 that
there exists 0 < r � 1 such that Yr = X ∩B3

r (p) is the union of 2 smooth CMC
surfaces with the same tangent space P at p and, moreover, they intersect only at
p. Let us denote these surfaces by Z1 and Z2. Let v ∈ P be a unitary vector and for
each i = 1, 2 let γi : [0, δr) → Zi be a C1 arc such that γ′(0) = v. We can assume
that ‖γi(t) − p‖ = t for all t ∈ [0, δr) and i = 1, 2. Thus, dYr

(γ1(t), γ2(t)) � 2t and
since γ1 and γ2 have the same tangent vector at 0, we have that

lim
t→0+

‖γ1(t) − γ2(t)‖
t

= 0.

Therefore there is no constant C > 0 such that dYr
� C‖ · ‖ for all small enough

r > 0, which is a contradiction with the fact that X is locally LNE. Then X is
smooth and, thus, the result follows from theorem 3.2 in [3]. �

The hypothesis dim Sing(X) < 1 in corollary 4.11 cannot be removed, since the
set X given in example 4.5 is LNE.

4.3. CMC surfaces with non-isolated singularities

Proposition 4.12. Let X ⊂ R3 be a closed connected globally subanalytic set.
Suppose that we can write X \ Sing(X) =

⋃r
k=1Xk such that for each k ∈

{1, . . . , r}, the closure of Xk is smooth and connected and Xk is a union of con-
nected components of X \ Sing(X). If X is a CMC surface, then each Xk is a plane
or a round sphere or a right circular cylinder. In particular, X is a finite union of
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planes or a finite union of round spheres and right circular cylinders touching at
the points of Sing(X).

Proof. We have that Xk is a closed connected globally subanalytic smooth CMC
surface. It follows from theorem 3.2 in [3] that Xk is a plane or a round sphere or
a right circular cylinder. Since X =

⋃r
k=1Xk, we obtain that X is a finite union of

planes or a finite union of round spheres and right circular cylinders touching at
the points of Sing(X). �

Corollary 4.13. Let X ⊂ R3 be a closed connected globally subanalytic set.
Suppose that the closure of each connected component of X \ Sing(X) is smooth,
dim Sing(X) = 1 and Sing(X) does not have isolated points. If X is a CMC surface,
then Sing(X) is a union of lines and X is a finite union of right circular cylinders
touching at Sing(X).

Proof. By proposition 4.12, X is a finite union of planes or a finite union of round
spheres and right circular cylinders touching at the points of Sing(X). However, ifX
is a finite union of planes, the closure of each connected component of X \ Sing(X)
is a closed half plane, which is not smooth. Therefore, X is a finite union of right
circular cylinders touching at the points of Sing(X), since the existence of spheres
forces Sing(X) to have isolated points or forces X \ Sing(X) to have a connected
component with non-smooth closure. By the same reason X cannot contain two
right circular cylinders with intersection being a non-empty compact set. Thus, we
obtain that Sing(X) is a union of lines and X is a finite union of right circular
cylinders touching at Sing(X). �

4.4. A topological implicit function theorem

Definition 4.14. LetX ⊂ Rn be a subset such thatX \ Sing(X) is a d-dimensional
smooth submanifold. We say that X has a non-degenerate tangent cone at
p ∈ X if

(i) C(X, p) is a d-dimensional linear subspace of Rn;

(ii) Ñ (X, p) � Rn.

When X has a non-degenerate tangent cone at p for all p ∈ X, we say that X has
non-degenerate tangent cones.

Remark 4.15. Any C1 submanifold Mm ⊂ Rn has non-degenerate tangent cones.

Corollary 4.16. Let X ⊂ Rn be a subanalytic hypersurface with non-degenerate
tangent cones and isolated singularities. If X is a topological manifold, then X is
locally a graph of continuous functions.

Proof. The conditions that X has non-degenerate tangent cones and isolated sin-
gularities imply that for each p there exists a open neighbourhood A of p in X
such that π|A is an open mapping, where π : Rn → �⊥ and � is a line such that
� ∩ Ñ (X, p) = {0}, just like in claim 3. By taking � such that P = �⊥ = C(X, p),
the proof is an easy adaptation of the proof of claim 4. �
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We would like to remark that the ‘hypersurface’ hypothesis in corollary 4.16
cannot be removed.

Example 4.17. We consider the cusp C = {(x, y) ∈ C2; y2 = x3} ⊂ C2 ∼= R4.
Thus, if there exists a continuous function f : (C, 0) → (C, 0) such that (C, 0) =
(Graph(f), 0), then the pairs (C2, C) and (C2,C × {0}) are homeomorphic. How-
ever, by the main result in [37, p. 454], there is no homeomorphism φ : (C2, 0) →
(C2, 0) such that φ(C) = C × {0}. Therefore, C cannot be a graph of such a function
f .

4.5. A real version of Mumford’s Theorem

In 1961, D. Mumford proved in [27] the following result.

Theorem 4.18 Mumford’s Theorem, see [27]. Let V ⊂ C3 be a complex analytic
surface with an isolated singularity at p. If V is a topological manifold around p,
then V is smooth at p.

In fact, D. Mumford proved that it is enough to impose π1(linkp(X)) = {0}
instead of the condition ‘V is a topological manifold around p’. However, it is easy
to find a non-smooth real analytic surface which is a topological manifold with
isolated singularities, for instance, X = {(x, y, z) ∈ R3; z3 = x3y + xy3}. Since any
complex analytic set is a minimal variety, then the correct assumptions that we need
to impose in a real version of Mumford’s Theorem should be an analytic set X ⊂ R3

that is a minimal surface (or, more generally, a CMC surface) with isolated singu-
larities and π1(linkp(X)) ∼= π1(S1) ∼= Z. Thus, we obtain the following real version
of Mumford’s Theorem.

Corollary 4.19. Let X ⊂ R3 be a closed subanalytic CMC surface. Suppose that
dim Sing(X) < 1. If H1(linkp(X)) ∼= Z then X is smooth at p.

Proof. Let ε > 0 be a number that satisfies propositions 2.10 and 2.11. Thus, X ∩
S2

ε(p) is a closed and smooth set and, in particular, the connected components
Y1, . . . , Yr of X ∩ S2

ε(p) are closed manifolds. By classification of compact smooth
curves, for each i ∈ {1, . . . , r}, we have that Yi is homeomorphic to S1. Then,

H1(linkp(X)) ∼= Zr.

Then, r = 1 and by corollary 4.1, we obtain that X ∩B3
ε (p) is a smooth CMC

surface. �

Let us remark that we cannot remove the hypothesis ‘CMC surface’ in
corollary 4.19, even for algebraic sets, as we can see in the following example.

Example 4.20. X = {(x, y, z) ∈ R3; x3 + y3 = z3} is an algebraic set and
H1(linkp(X)) ∼= Z for any p ∈ X, but it is not smooth at 0.

4.6. Ck,α regularity

Corollary 4.21. Let X be a subanalytic Ck submanifold of Rn. Suppose that X
is (n− 1)-dimensional, has non-degenerate tangent cones and isolated singularities,
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when k = 0. Then, for any compact subset K ⊂ X, there are α = α(K) ∈ (0, 1] and
an open subset, UK , of X such that K ⊂ UK and UK is a Ck,α submanifold of Rn.

Before we prove corollary 4.21, we need of the following results.

Proposition 4.22 [6, theorem 6.4]. Let K ⊂ Rn be a compact subset, and let
f, g : K → R be continuous subanalytic functions such that f−1(0) ⊂ g−1(0). Then
there exist C > 0 and r > 0 such that

|f(x)| � C|g(x)|r, ∀ x ∈ K.

Remark 4.23. Let U ⊂ Rn be an open subset and h : U → R be a continuous
subanalytic function. Then h is locally a Hölder function. In fact, for each com-
pact subanalytic subset K ⊂ U , we define f, g : K ×K → R by f(x, y) = |x− y|
and g(x, y) = |h(x) − h(y)|. Then f and g are subanalytic functions and f−1(0) ⊂
g−1(0). Therefore, by proposition 4.22, there exist C > 0 and r > 0 such that

|f(x, y)| � C|g(x, y)|r, ∀ (x, y) ∈ K ×K.

Thus

|h(x) − h(y)| � M |x− y|α, ∀ x, y ∈ K,

where α = 1/r and M = 1/Cα.

Proposition 4.24 [8, proposition 2.9.1]. Let U ⊂ Rn be a open subset and f :
U → R be a subanalytic C1 function. Then, the partial derivatives ∂f/∂xi : U → R,
i = 1, . . . , n, are subanalytic functions.

Proof of corollary 4.21. Let d = dimX. For each x ∈ X, by Implicit Function
Theorem, if k > 0 or by corollary 4.16, if k = 0, there are open neighbourhoods
U ⊂ Rd and W ⊂ Rn with x ∈W , a rotation φ : Rn → Rn and a Ck function
g : U → R such that φ(X ∩W ) = Graph(g). Now, let B ⊂ U be an open ball and
let I be an open interval such that x ∈ φ−1(B × In−d) ⊂W . Then, Graph(g|B) =
φ(X ∩ φ−1(B × In−d)) = φ(X) ∩ (B × In−d). Therefore, f = g|B is a subanalytic
function, since B × In−d and φ(X) are subanalytic sets. By remark 4.23 and propo-
sition 4.24, f is Ck,α for some α ∈ (0, 1]. Therefore, by shrinking B, if necessary, we
have that φ−1 ◦ ψ : B → X ∩ φ−1(B × In−d) is a Ck,α parametrization of X, where
ψ : B → Graph(f) is given by ψ(u) = (u, f(u)).

Thus, if K is compact subset of X, we can find a finite open cover of K, K ⊂⋃r
i=1 ψi(Bd

1 (0)), where each ψi is a Ck,αi parametrization of X, for some αi ∈
(0, 1]. Therefore, by taking UK =

⋃r
i=1 ψi(Bd

1 (0)) and α = min{αi; i = 1, . . . , r},
we obtain that UK is a Ck,α submanifold of Rn, which finishes the proof. �

We would like to remark that theorem 4.21 does not hold true if we remove the
hypothesis ‘subanalytic’.
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Example 4.25. Let f : (− 1
2 ,

1
2 ) → R be the function given by

f(t) =
∫ t

0

1
ln |x| dx.

Then, X = Graph(f) ⊂ R2 is a C1 submanifold, however it is not a C1,α subman-
ifold for any α > 0, since f is C1 function, however f ′ is not α-Hölder for any
α > 0.

4.7. C1 singularities

We can see in example 4.5 that there is a subanalytic minimal hypersurface
with non-isolated singularities which is a Lipschitz submanifold of R3. However, in
contrast with example 4.5, we have the following result.

Proposition 4.26. Let X ⊂ Rn be a minimal variety. If X is a subanalytic C1

submanifold of Rn then X is a smooth submanifold of Rn.

Proof. Since the problem is local and X is a C1 submanifold of Rn, we can assume
that X is a graph of a C1 function u : Bm

r (p) → Rk. Moreover, Sing(X) is a
bounded subanalytic set and dim Sing(X) � m− 1. In particular, we have that
Hm−1(Sing(X)) < +∞. Therefore, u is a weak solution of (2.2) (see theorem 1.2 in
[22]), which implies that u is real analytic (cf. theorem 2.2 in [24]; see also [25,26])
and, in particular, X is a smooth submanifold of Rn. �

Finally, we would like to remark that the above results hold true if we assume
that the set X is definable in a polynomially bounded O-minimal structure on
R, instead of the assumption that X is a globally subanalytic or subanalytic set.
In order to know more about O-minimal structures, for example, see [12].
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