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Galilean non-invariance of the shallow-water equations describing the motion of a rotating
fluid implies that a homogeneous background flow modifies the dynamics of localized
vortices even without the B-effect. In particular, in a divergent quasi-geostrophic model
on a B-plane, which originates from the shallow-water model, the equation of motion
in the reference frame attached to a uniform zonal background flow has the same form
as in the absence of this flow, but with a modified B-parameter depending linearly on
the flow velocity U. The evolution of a singular vortex (SV) embedded in such a flow
consists of two stages. In the first, quasi-linear stage, the SV motion is induced by the
secondary dipole (S-gyres) generated in the neighbourhood of the SV. During the next,
nonlinear stage, the SV merges with the S-gyre of opposite sign to form a compact
vortex pair interacting with far-field Rossby waves radiated previously by the SV, while
the other B-gyre loses connection with the SV and disappears. In the absolute reference
frame and with g = 0, the SV drifts downstream and at an angle to the background flow.
The SV always lags behind the background flow, with the strongest resistance during the
quasi-linear stage and weakening resistance at the nonlinear stage of SV evolution. In
the general case where B > 0, the SV can move both upstream (for small-to-moderate
U > 0) and downstream (for U < 0 or sufficiently large U > 0). Under weak-to-moderate
westward and all eastward flows the SV cyclone (anticyclone) also moves northward
(southward), its meridional drift increasing with U.
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1. Introduction

Interactions between eddies and large-scale flows affect in important ways the properties
of general circulation in the ocean and atmosphere. In this work, we attempt to elucidate
key elements of these interactions in the simplest setting, by studying the evolution
of a localized vortex embedded in a zonal background flow. We use the framework
of a 1.5-layer quasi-geostrophic (QG) model on a S-plane, which is derived from
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the rotating shallow-water equations in the limit of small Rossby number (see, for
example, Zeitlin 2007), leading to the well-known equation for the conservation of QG
potential vorticity (PV); in plasma physics, the analogous equation is known as the
Hasegawa-Mima equation (see, for example, Tur & Yanovsky 2017). Elementary analysis
below shows that the quasi-geostrophic potential vorticity (QGPV) equation, as well as the
rotating shallow-water equations it originates from, are non-invariant relative to Galilean
transformations to a reference frame in uniform motion with respect to the original
reference frame. This non-invariance is of no dynamical significance in the absence of
the mean flow, but it turns out to be important and bears non-trivial consequences for
interactions of eddies with such flows, even in the simplest case when the mean flow is
itself uniform.

Eddy-mean-flow interactions in a rotating fluid have been a subject of extensive
research efforts. For example, Vandermeirsch ef al. (2003a,b) and Sokolovskiy et al.
(2016) examined mutual influences of a vortex and a narrow jet in the context of ocean
dynamics; Vandermeirsch et al. (2003a) also provide a short but informative review of
earlier studies on the subject. A major focus of these studies was to clarify physical
mechanisms and conditions for the vortex to cross the jet axis. Similar theoretical studies
in atmospheric settings (Gilet, Plu & Riviere (2009); Oruba, Lapeyre & Riviere (2012,
2013), among others) emphasized effects of vortex deformation by the shear flow on
vortex dynamics. In a more applied work, Tamarin & Kaspi (2016, 2017) proposed an
explanation of the observed downstream poleward deflection of the midlatitude storm
tracks which involved baroclinic self-interaction of the cyclones accompanied by diabatic
heating and non-uniform background-flow advection. However, a simple and potentially
important effect of Galilean non-invariance of the governing equations on the dynamics of
localized vortices in such systems has thus far been largely overlooked. In the present work,
we address this problem via numerical simulations of the QGPV equation describing the
motion of a monopolar singular vortex (hereafter SV) embedded in a uniform zonal flow,
using the algorithm developed in Kravtsov & Reznik (2019); hereafter KR2019.

In the latter study, the authors demonstrated that in the absence of the mean flow, the SV
evolution exhibits three stages. The first — linear — stage is characterized by the formation,
in the neighbourhood of the SV, of a regular dipolar field (8-gyres), which advects the SV
along the dipole axis. At the initial time, this axis is oriented along the meridian, but is
quickly turned by the vortex in the direction of the SV rotation, resulting in the singular
cyclone moving northwest and singular anticyclone moving southwest. The development
of B-gyres was studied by many authors using analytical (Reznik 1992; Reznik & Dewar
1994; Sutyrin & Flierl 1994; Llewellyn Smith 1997) and numerical approaches (Sutyrin
et al. 1994; Lam & Dritschel 2001; Early, Samelson & Chelton 2011), as well as laboratory
experiments (for example, Carnevale, Kloosterziel & van Heijst 1991).

During the second stage, which was not described prior to KR2019, the regular
field’s dipolar structure disintegrates and the SV gets embedded into the B-gyres’
lobe of the opposite polarity, forming a new dipolar singular—-regular pair, which still
propagates north-westward for the case of the singular cyclone and south-westward for
the singular anticyclone. In this stage, the radiation of the Rossby waves by the SV and
self-interactions within the regular field play an important role, making the underlying
dynamics fundamentally nonlinear; hence, it seems reasonable to call this stage a nonlinear
stage.

Finally, at the third, frictional stage, the effects of horizontal viscosity come into play;
during this stage, the SV’s motion is near uniform and the regular field stays nearly
constant in the reference frame associated with the SV. While KR2019 documented the
occurrence of these three stages of SV evolution, physical mechanisms governing the
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dynamics during each stage and transitions between these stages remained unclear. A
more in-depth examination of these mechanisms constitutes the second major goal of the
present study, with the emphasis on the first two stages — quasi-linear and nonlinear; the
horizontal hyperviscosity in the present high-resolution model is taken to be minimal
and the frictional stage does not occur, at least throughout the duration of numerical
experiments.

The remainder of the paper is organized as follows. In § 2, we formulate the governing
equations and show that, due to their Galilean non-invariance, even the simplest, zonally
uniform background flow substantially modifies the dynamics of localized vortices
superimposed on this flow, with or without g-effect. The rest of the work is mainly devoted
to the examination of an isolated SV embedded in a uniform zonal flow. In § 3, we derive
the system of equations describing the evolution of such a SV (some invariants of motion
associated with these equations are given in appendix A), briefly describe the numerical
formulation and outline the numerical experiments, which effectively extend those in
KR2019 to a wider range of model parameters. Sections 4 and 5 present the results of
these experiments. In § 6, we detail the mechanisms governing the evolution of a localized
vortex. Finally, § 7 contains the discussion of our main findings and their geophysical
applications.

2. Localized vortices in background zonal flow
2.1. Problem formulation
The QGPV equation for the 1.5-layer fluid on a B-plane is

(V2 — @), + B, +J (W, V2) = 0. (2.1)

Here 1& = @(x, v, t) is the streamfunction, a = R;l is the inverse Rossby radius Ry,
the parameter § is the y-derivative of the Coriolis parameter at the reference latitude, the
subscripts ¢ and x denote partial differentiation with respect to time ¢ and x-coordinate,
respectively, V? is the Laplacian and J is the Jacobian.

Now consider a localized vortex-like disturbance in a purely zonal background flow with

the streamfunction v (y). At the initial time, the streamfunction 1 is

V=9 +9i(x,y); di(x,y) = 0, r— o0; (2.2)

hereafter, the subscript I denotes the initial field, so 1}1 (x, y) is our initial localized vortex.
The solution of the problem (2.1), (2.2) can be written as follows:

V=9 +TI@y.0; ¥ =0, r—>00 Yloo=1i (2.3)
while (2.1) reduces to the following equation for the localized vortex streamfunction
(V2 = aP), + B +J (W + 0, VY — ) =0, 2.4)
where
B=B=B+0; 0=,V —ay. 2.5)

Note that, hereafter, we will use the notation Q = V*yr — a?v for the relative potential

vorticity, as in (2.5) for the background flow or Q = V21/~/ — a21/~/ — for the PV associated
with the localized vortex disturbance. The relative potential vorticity is a sum of the
vertical component of vorticity Vv and the vertical vortex-tube stretching —a*yr. In (2.5),
we have also used an alternative notation for the partial y-derivative d,, with the second
derivative denoted as 9y, and so forth.
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FIGURE 1. A cartoon of the vortex velocity vector (red arrows) relative to a uniform zonal
background flow depending on the flow’s velocity U. (a) The general case with a #0, 8 #0;
(b) the case where a #0, 8 = 0; (c¢) the barotropic case, in which a = 0, 8 #0. In the latter

case, the relative velocity of the vortex is independent of U.

2.2. Uniform zonal flow

For the simplest case of a uniform zonal background flow with zero shear we have
V(y) =-Uy; 08,0=—d0y =d’U, (2.6a,b)
where U = const. is the background-flow velocity. The effective S-parameter here is
B =p+dU. 2.7)
In the coordinate system associated with the background flow, that is,
X' =x—-U, Y=y, =t (2.8a—c)
equations (2.4) and (2.3) take the form (the primes are omitted)

(VY — @), + BY + I, V) =0, ¥lieo = Y. 2.9)

From (2.7) and (2.9) it follows that, in the coordinate system (2.8a—c), the vortex moves
in the same way as in the absence of the background zonal flow, but with a modified
B-parameter equal to 8. The problem (2.9) has been actively studied in the past (see, for
example, Reznik 1992; Reznik & Dewar 1994; Sutyrin & Flierl 1994; Sutyrin et al. 1994;
Reznik, Grimshaw & Benilov 2000; Lam & Dritschel 2001; Early et al. 2011; KR2019).
Based on these studies, one can provide a qualitative description of the vortex motion
relative to the background zonal flow as a function of U (see figure 1 for the case of a
cyclone). When B > 0, a cyclone moves north-westward, with the eastward mean flow
(U > 0) enhancing the B-effect and making the vortex move faster to the north and west
relative to the mean flow than for the case U = 0. The stronger the background flow U > 0
is, the larger the effective B-parameter 8 = B + a*U and the faster the vortex motion
relative to the background flow are. Note that, in general, the vortex velocities depend on
time and are not necessarily parallel for different U, as shown in our schematic figure 1
(a #0).

For the westward background flow U < 0, the B-drift of the vortex and its advection
by the mean flow are of the same sign, so, for small-to-moderate |U|, the vortex outruns


https://doi.org/10.1017/jfm.2020.906

https://doi.org/10.1017/jfm.2020.906 Published online by Cambridge University Press

Monopoles in a uniform zonal flow 909 A23-5

the mean flow, but when U reaches the maximum (negative) velocity of Rossby waves
—BR2, the effective B-parameter becomes B = 0, and the vortex stops moving relative to
the mean flow. Further increase of |U| leads to ,3 < 0 and the vortex’s motion against the
mean flow, with a cyclone moving south-eastward and anticyclone north-eastward.

From (2.7), it follows that similar considerations also apply in the absence of the
B-effect, when 8 = 0. In this case, the original equation (2.1) does not, by itself, contain
preferential directions, but a zonal background flow brings in anisotropy and induces its
own B-effect characterized by the effective -parameter 8 = a*U, which is proportional to
the background-flow velocity U. For any non-zero value of U, the vortex will move in the
same direction as the mean flow but will lag behind the mean flow (figure 1). In addition,
the vortex will also have a velocity component normal to the mean flow: in particular, a
cyclone will move to the left and anticyclone — to the right of the mean flow. In summary,
even in the absence of the f-effect, a uniform background flow does not simply advect a
vortex, but makes the vortex move along a complex curved trajectory with respect to the
background flow.

Generation of the S-effect by a uniform background flow is due to the vortex-tube
stretching associated with the term —a?y in the relative PV Q. In the barotropic case
where a =0, (2.1) takes the form

V20, 4 B, + (W, V2 = 0. (2.10)

Equation (2.10) possesses Galilean invariance, that is, the invariance with respect to the
transformation

v — —Uy+y(x—Ut,y,0. @2.11)

Accordingly, in this case, there is no generation of the additional B-effect, and the vortex
motion relative to the background flow does not depend on U (see figure 1). On the other
hand, if a # 0, the solution of (2.1) is not invariant with respect to the transformation
(2.11), and the relative vorticity Q associated with the uniform background flow ¢ = —Uy
is non-zero — Q = @*Uy - resulting in the generation of the background-flow-induced
B-effect. The above arguments demonstrate that the Galilean non-invariance of (2.1) stems
from the fact that this equation describes the motion of a fluid in a non-inertial rotating
coordinate system in the presence of the vertical vortex-tube stretching. It is readily shown
that the original rotating shallow-water equations, from which (2.1) is derived, are also
non-invariant to the Galilean transformations.

Thus, the presence of a uniform background flow modifies strongly even the f-plane
dynamics by permitting Rossby waves which, in turn, determine the evolution of localized
monopoles. On a B-plane, the effective f-parameter 8 is the sum (2.7) of the planetary
and mean-flow-induced parts, which brings about an even richer spectrum of possible flow
dynamics. Generation of an additional S-effect by a homogeneous rectilinear zonal flow
in model (2.1) has been known for a long time; for example, Pedlosky (1979) showed
that the effective B-parameter (2.7) enters the dispersion relation for the Rossby waves
in such a flow. However, the physical reason behind this generation, namely the Galilean
non-invariance of the rotating shallow-water model and of (2.1), as well as its basic effects
on the eddy—mean-flow interactions were not considered previously to the best of our
knowledge.

Finally, we note here that the combination of rotation and vertical vortex-tube stretching
is a necessary but not sufficient condition for the Galilean non-invariance. For example,
the equations describing the motion of a stratified fluid in a domain vertically confined
between two parallel rigid lids do possess the Galilean invariance. In particular, in a
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commonly used two-layer model, in which both layers have finite depths (see, for example,
Pedlosky 1979), the stretching is proportional to the difference v, — v, between the upper-
and lower-layer streamfunctions, so adding a uniform barotropic flow does not result in
changes of the effective B-parameter. The same is valid for the so-called lﬁ—layer model
(Ingersoll & Cuong 1981; Flierl, Morrison & Swaminathan 2019) — the two-layer model
with an infinitely deep but active lower layer. The Galilean non-invariance discussed here
only takes place in a layer (stratified or homogeneous) bounded by free surfaces (from
above and/or below), which separate this layer from the quiescent ambient fluid.

2.3. Estimates of vortex’s zonal speed

Previous analytical and numerical results (see, for example, Reznik 1992; Reznik & Dewar
1994; Sutyrin & Flierl 1994; Sutyrin et al. 1994; Lam & Dritschel 2001; Early ez al. 2011)
combined with the arguments of § 2.2 allow one to estimate the vortex’s zonal velocity
U (in the absolute reference frame) depending on the background-flow velocity U. In
particular, from this previous work, it is known that in the absence of the mean flow (that
is, for U = 0), the vortex moves westward with the velocity not exceeding the maximum
(westward) velocity of the Rossby waves —BR2, viz.

—BR < U < 0. (2.12)

For the zonal background flow such that —BR? < U (which includes all eastward and

weak-to-moderate westward flows), the effective B-parameter B > 0; see (2.7). Hence,
from (2.12) it follows that in the reference frame associated with the mean zonal flow,
the relative zonal velocity of the vortex lies in the range —BR3 < U < 0. Combining this
expression with (2.7) leads to the following estimate for the zonal velocity of the vortex in
the absolute reference frame [compare with (2.12)]

—BR: < U < U. (2.13)
For the strong westward mean flows with
U< —BR, (2.14)

the effective S-parameter 8 becomes negative, and the vortex moves eastward in the
reference frame associated with the background flow; in this reference frame, the relative
zonal velocity of the vortex is within the interval (0, — ﬁRj) [compare with (2.12)]. In the
absolute reference frame, we therefore have

U<U< —BR.. (2.15)

In the remainder of the paper, we will use numerical experiments to study, in detail,
the motion and dynamics of singular monopoles in the presence of a uniform background
zonal flow.

3. Singular monopole in background zonal flow
3.1. Problem formulation

To explore the consequences of the Galilean non-invariance of the governing equations
described above, we will utilize the numerical model of interaction between localized
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singular vortices and a regular flow developed in KR2019. In this system, the localized
initial disturbance v;(x, y) in (2.2) is the Bessel SV

~ A
Y = —2—K0[P|" — rorll, 3.1
b

where A is the constant intensity of the vortex, L, = p~' is its spatial scale, r = (x, y) is
a coordinate vector and ry; is the initial position of the SV. Without loss of generality,
we assume that A > 0, which corresponds to (3.1) representing a singular cyclone.
Accordingly, v/ in (2.3) is given by

~ A
v=vtys Y=o Klplr = r@ll, (3.2)

and the equation for the regular-flow streamfunction i/ obtained from (2.4) and (3.2) is
(Reznik 1992)

Qi +J (W, Q) + BoYs + (P = @) (W +y + Uy = Vx, ) (33)
+BOY +I(W + 9, Q) = —KVy, 0=V —dy, '

where we added, on the right-hand side, the hyperviscosity term —KV®y required for
numerical stability (KR2019). Equations (3.3) are supplemented by those for the SV
velocity (U, V) and the initial condition on ¥

U=io= =3, +V)lryy, V=30=8Vlery, ¥leo=0. (3.4a—c)

To ensure that our numerical model provides a faithful approximation of the continuous
equations, we will monitor the integrals of energy E and enstrophy L, as well as the
conservation of PV at the centre of the SV (Reznik 1992; Reznik & Kizner 2007; KR2019);
see appendix A.

3.2. Model parameters and numerical experiments

In this study, we examine the simplest case of the SV embedded in_a uniform zonal
flow with velocity U (and the corresponding streamfunction ¢ = —Uy) by analysing
numerical solutions of the system (3.2)-(3.4a—c). These equations were discretized on
an equally spaced regular grid in an x-periodic channel of length L, and width L, using
the second-order accuracy central differences in space subject to the no-flow and free-slip
conditions on zonal boundaries (Y, = ¥, = ¥,,, = 0), the fourth-order Arakawa scheme
for advection (Arakawa 1966) and the leapfrog time integration scheme, as well as mass
and momentum constraints (McWilliams 1977). To suppress the spurious numerical mode
of the leapfrog scheme, we average the variables carried by its two time levels every 100
time steps. We made sure that the geometrical parameters L, and L, are large enough
so that the presence of y-boundaries and x-cyclicity have essentially no effect on the
motion of the singular vortex throughout the duration of our numerical experiments;
hence, our numerical solutions effectively approximate the solutions in an unbounded
domain.

Following KR2019, the analytical Bessel SV (3.1) was replaced, in our numerical
formulation, by its finite-difference analogue; given the current SV location r((f), the
regular-flow velocities U, V at this location, as well as the singular streamfunction
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Parameter notation/value Parameter description
Ry = 600 km Rossby radius of deformation
B=2x10""ms! y-gradient of the Coriolis parameter
Ax =Ay=A=R;/24 =25km Model resolution
L, =2048A = 52 000 km x-extent of the channel
Ly =1200A = 30 000 km y-extent of the channel
T < L./BR%; T =80 days Duration of each simulation
At=20s Time step
K=2x108m*s! Hyperviscosity
A=21 x SﬂRz Amplitude of the SV (intense SV case;
cf. Reznik 1992)
L, = 300 km SV size: small-vortex case
600 km SV size: point-vortex case
1200 km SV size: large-vortex case
a= R;' Inverse Rossby radius
p=L; ! Inverse singular-vortex size

TABLE 1. Model parameters.

Ys(|r — ro(2)|) on the model grid in the vicinity of ry(¢) were both computed using cubic
splines (see KR2019 for further details).

All model parameters are listed in table 1, where we also note the expressions for
the domain size (L., L,), the spatial resolution A, the duration of each experiment T
and the SV amplitude A in terms of the Rossby radius of deformation R, and the
B-parameter. In our experiments, we chose the ‘environmental’ parameter values typical
for the mid-to-high-latitude troposphere (e.g. Marshall and Molteni 1993) and studied the
evolution of the system on both an f-plane (with 8 = 0), using the U values in the range
between 1 and 10m s~', and on a B-plane, with U in the range between —10 and 10 m
s~1. All of the experiments were performed for the SVs of three different sizes L, = p~',
namely for a point vortex (L, = R;; p = a), a small vortex (L, = R;/2; p = 2a) and a
large vortex (L, = 2R;; p = a/2). In the figures below, the dimensionless streamfunction
has the scale of [¢] = [U][L] m* s~!, where we used the velocity scale of [U] = 10 m s~
and the length scale of [L] = 25 km.

The results obtained below can also be interpreted in an oceanographic context by
choosing the Rossby scale to be approximately ten times smaller than in the atmosphere,
that is, by setting R; = 60 km; the mean-flow velocities U should be scaled accordingly
as BR2, leading to values of the order of one hundredth of the corresponding atmospheric
value. The appropriate grid size in this case thus becomes A = R,;/24 = 2.5 km and
analogous adjustments are needed for the parameters (L., L,), T and A (see table 1).

4. Point-vortex results: the case f§ = 0

In this section, we will concentrate on the point vortex (L, = R;; p = a) and consider
first its evolution on an f-plane (8 = 0). The point-vortex experiments on a S-plane will
be analysed in § 5; the results for the small and large SVs are qualitatively similar to those
for the point vortex and will be discussed in § 6.4.
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4.1. Quasi-linear evolution in weak background flow

In the absence of the B-effect, the mean-field parameters in (3.3) and (3.4a—c) are given
by

v(y) =-Uy;, B=dU. (4.1a,b)

Without loss of generality, we assume that U > 0; also, for convenience, we will
refer to the background flow as being zonal and call the direction normal to the flow
meridional, despite the fact that at 8 = 0 equation (2.1) is isotropic. For weak-to-moderate
background flows (U < 5ms™"), the SV evolves in an approximately linear regime
(KR2019) throughout the simulation; in this regime, the regular streamfunction i remains
small and the full system (3.3), (3.4a—c) can be approximated, in the reference frame
moving with the SV, by the following simplified system (see Reznik (1992) and KR2019
for details):

O, +J (Y5, Q) + B + (P> — @I (W + X0y — Yox, ¥) =0, (4.2)
Xo = —=0y¥lr=0, Yo =0:Y¥lr=0, Yli=o =0. (4.3a—c)

The problem (4.2), (4.3a—c) is linear in 1 and is easily solved analytically for the point
vortex p = a (Reznik 1992) and numerically for p #a (KR2019); the resulting solution
depends linearly on 8, hence the name of the linear regime it describes.

The solution v of (4.2), (4.3a—c) for the point-vortex case and U = 5 m s~! is shown
in figure 2; the solutions for p # a are qualitatively similar (not shown). The regular field
Y of this solution is due to the near-field radiation of Rossby waves by the SV, which
leads to the formation of a variable, in space and time, symmetric dipole (the so-called
B-gyres) centred at the SV; this dipole in turn drives the SV self-propagation. The absence
of the term B, in (4.2) inhibits the far-field radiation of Rossby waves. For 8 > 0, the
anticyclonic (cyclonic) B-gyre is located to the north-east (south-west) of the SV. At small
times, the fB-gyres dipole axis is oriented nearly along the meridian (not shown), but at
later times the SV turns this axis counter-clockwise, resulting in the SV/g-gyres system
moving north-westward relative to the background flow (but still north-eastward in the
absolute reference frame).

In the solution of the full system (3.3), (3.4a—c) (figure 3), the SV also moves
north-eastward (that is, with a zonal component in the direction of the background
flow), but the regular streamfunction field is more complex than in figure 2. This is
due to the dispersion term B, in (3.3), which is responsible for the far-field radiation
of Rossby waves and the formation of the wave trail to the east of the SV; see Reznik
(2010) and KR2019 for a qualitative description of this process. The amplitude of the
Rossby-wave far-field trail for the present case of a fairly weak background flow remains
relatively small in comparison with the B-gyres, and the near-field 8-gyre dipole persists
throughout the simulation, but loses its symmetry in the full solution, with the anticyclonic
lobe of the f-gyres progressively intensifying, the cyclonic lobe weakening, and the
SV being gradually sucked into the former, which cannot happen in the purely linear
regime described by (4.2), (4.3a—c) (compare with figure 2). Yet, these changes are not
accompanied by the loss of the SV connection with the cyclonic 8-gyre, as during the
fully developed nonlinear stage of the SV evolution (see KR2019 and below), and the SV
velocities and trajectories in the full solution remain close to those of the linear model
(4.2), (4.3a—c) (figure 4). We therefore call the dynamical regime of SV evolution at
small-to-moderate values of U (here U < 5 m s~'), that is, with a small-to-moderate j, a
quasi-linear regime.
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FIGURE 2. Evolution of the regular streamfunction v for the point SV in a uniform background
flow on an f-plane (p =a, B =0, U =5 m s~') obtained by solving, numerically, the linear
equations (4.2), (4.3a—c). The contours show the solution in the reference frame attached to the
SV (denoted by the black dot), with blue contours corresponding to the negative streamfunction
values, orange contours corresponding to the positive values and the zero contour shown in black.
The contour interval (CI) is 2, the maximum value of v is given in the corner of each panel. The
continuum of red dots shows the SV trajectory in the absolute reference frame. The size of the
sub-region shown is approximately 50 x 30R;. The full domain is approximately 85 x S0R;
(table 1).

For all values of the background-flow velocity U considered here, the SV moves zonally
in the direction of the background flow, but always lags behind this flow, with the SV
zonal velocity U, which equals to U at the initial time, abruptly dropping, in the course
of 1-2 days, to significantly smaller values (figure 4c). The SV relative ‘resistance’ to
the mean flow is especially pronounced for weak flows (small U). For example, by the
end of the simulation, the SV zonal velocity U in the absolute reference frame for the
cases U =1 and U =3 ms~! amounts to only slightly over 0.1U (figure 4c). The SV
meridional velocity V for these weak background-flow cases first increases and then starts

to decrease, ending up with the values of approximately 0.06 — 0.08U by the end of the
simulation (figure 4d). The approximate self-similarity of the U(#) and V(¢) curves for
weak-to-moderate values of the background flow, and their proximity to the solutions of
the linear model (4.2), (4.3a—c) in figures 4(c) and 4(d), respectively, is due to the latter
solution’s scaling linearly with 8 and, therefore, with U, as readily follows from (4.2),
(4.3a—c).
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FIGURE 3. The same as in figure 2, but for the solution of the full equations (3.3), (3.4a—c).

To summarize, the S-effect induced by the background flow slows down the motion of
the SV; without this factor, the SV would simply be ‘frozen’ in the background flow, as in
the barotropic case (2.10).

4.2. Development of a nonlinear regime at large U

The background-flow-induced B-effect increases with U, and the evolution of the SV
becomes more complex: a relatively short quasi-linear stage gives way to the nonlinear
stage, in which the dispersion term B, and the self-interactions within regular field
J(¥ + v, Q) in (3.3) become important. A typical example of such a behaviour is the
case U =10 ms™'. Initially, the SV evolves in a quasi-linear regime, as seen from the
plots of SV velocity in figure 4(c,d); the normalized velocities for the case U = 10 m s~!
essentially coincide with the linear solution up to # = 5 days and stay relatively close to
it up to r = 15 days. After this quasi-linear stage, at > 15 days, the character of the SV
evolution changes drastically. In particular, both components of the SV velocity, instead
of continuing monotonic trends as in the linear solution, exhibit oscillatory behaviour
(figure 4c,d). This behaviour in the zonal SV velocity is combined with a slow trend
corresponding to an overall decrease of the relative |U| (figure 4c¢), so that the SV tends
to catch up with the mean flow at large times. The meridional component of SV velocity
|V| (figure 4d), after a quick growth and a subsequent more gradual decay during the
quasi-linear stage, starts to quickly increase again, and ends up oscillating around the
mean level of about 0.2U, which corresponds to a fairly strong northward drift of the SV.
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FIGURE 4. Trajectories (top) and velocities (bottom) of the point SV for 8 = 0 and different
U (as shown in the legend of each panel): (a) trajectories in the absolute reference frame;
(b) trajectories with respect to the background flow; (¢) SV zonal velocity relative to the
background flow as a function of time; and (d) SV meridional velocity as a function of time.
The continuum of black dots in the bottom panels shows the solution of the linear problem (4.2),
(4.3a—c). The SV velocities are normalized by U and the SV coordinates — by R.

Note that the average propagation speeds of the SV grow nonlinearly with the increase of
U from 5 to 10m s~!: this doubling of U (and, hence, B) results in a more than trifold
increase in the distance travelled by the SV (compare the trajectories in figure 4a); this is
yet another reason to refer to this stage of the SV evolution as the nonlinear regime.

The onset of the nonlinear regime is also apparent in the behaviour of the regular
flow at U = 10 ms~! (figure 5). Here again, for the initial times up to 15 days, the
evolution approximately follows the quasi-linear regime shown in figures 2 and 3: the
regular field i consists mainly of the fS-gyres dipole in the vicinity of the SV and a
relatively weak trail of Rossby waves to the east of SV, which does not significantly affect
the SV motion. However, the intensity of the anticyclonic B-gyre and the Rossby-wave
far field at U = 10 m s~! both grow much faster than at U = 5 m s~! (compare figures 3
and 5). This growth is accompanied by a faster and deeper penetration of the SV into
the anticyclonic B-gyre, so that at large times the SV ends up close to the centre of
the latter gyre (figure 6). This B-gyre and the SV itself form a vortex pair which drifts
north-westward relative to the background flow. As the SV gets sucked in the anticyclonic
B-gyre, this gyre becomes more compact and nearly circular in shape and intensifies
rapidly; by the end of the simulation, its intensity exceeds that of the U = 5 m s™' case by
a factor of 2.5 (compare figures 3 and 5 for ¢+ = 75 days). On the other hand, the intensity
of the cyclonic B-gyre stops increasing after the period of initial growth and, with time,
turns out to be almost an order of magnitude weaker than the intensity of its anticyclonic
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FIGURE 5. The same as in figure 3, but for U=10ms L.

counterpart. Even before that, the cyclonic S-gyre essentially loses its connection with the
SV (figure 5). The transition from the S-gyre advection regime to the vortex-pair regime is
the first major distinction between the quasi-linear and nonlinear stages of the SV evolution
(KR2019).

The second major difference between the two regimes is that the Rossby-wave trail
radiated by the SV, which tags along with the SV in the quasi-linear regime (see, for
example, the r = 15 frames in figures 3 and 5), starts to interact with the SV in the
nonlinear regime (figure 5, + > 15 days), leading to oscillations in the SV propagation
velocity in figure 4(c,d). Indeed, a straightforward analysis shows that the number of
maxima in the SV velocity graphs coincides with the number of the Rossby-wave crests
the SV passes through along its path.

5. Point-vortex results: the case 8 £#0

We saw in §4 that on an f-plane the SV always propagates in the direction of the
background flow, albeit with a smaller zonal velocity due to the flow-induced S-effect.
This is, in general, not the case for 8 # 0, where the SV can move against the zonal flow.
Furthermore, with B #0, the SV evolution depends on the direction of the background
flow, since the effective B-parameter is given by (2.7): B = B +a*U. An eastward
background flow with U > 0 always enhances the B-effect compared to the case with
U = 0, while a westward flow enhances the B-effect only when

U< —2B/d°, (5.1
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¥ (15 days)

FIGURE 6. The merger of the point SV cyclone with the anticyclonic B-gyre. Black contours
and colour shading in each panel show the regular streamfunction at different times (see panel
captions). The black dot denotes the SV position, the x-symbol marks the maximum of the
regular streamfunction, which defines the centre of the anticyclonic B-gyre, red dots outline the
portion of the SV trajectory in the absolute reference frame that fits into the sub-region shown.
The latter sub-region has the size of approximately 4 x 4Rj.

and weakens the B-effect otherwise, that is, for
—2B/a*> < U < 0. (5.2)

These statements are illustrated in figure 7. Consider first the range of negative U from
—5to —1 ms™', for which the background flow is slower than the maximum (negative)
Rossby-wave velocity —BR?; since —f/a* < U < 0, (5.2) is also valid, and the effective
B-parameter 8 = B + a>U is positive and decreases with increasing |U|. This means that
stronger westward background flows correspond to weaker meridional displacements and
meridional velocities of the SV, as clearly seen in figures 7(a) and 7(c), respectively,
for weak-to-moderate westward flows with [U| <5 m s~!. For such flows, the SV zonal
velocity satisfies —BR% < U < U (figure 7b), so the SV outruns the westward mean flow,
but is still slower than the Rossby waves. At —5 < U < —3 m s, f is sufficiently small
and the SV evolves in a quasi-linear regime, as seen from figure 8, in which the relative SV
velocities for these cases follow the linear solution (black curves here and in figure 4c,d).
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FIGURE 7. The point SV trajectories and velocity components in the absolute reference frame
for different values of U (see the legend); 8 > 0. The SV velocities are normalized by ﬁRfl and
the SV coordinates by R,.

Accordingly, the evolution of the regular streamfunction v (not shown) is similar to that
in figure 2. B

Consider now a moderate positive U (eastward flow) from 1 to 6 m s~!, in which the
SV moves in the north-westward direction opposite to the direction of the mean flow
(figure 7a). For U > —3 m s~!, B becomes large enough to induce the nonlinear stage at
which the normalized relative velocities for different cases diverge (figure 8). During this
stage, the SV zonal velocity U oscillates about a gradually increasing mean level, so that
the difference between U and U decreases with time, but the SV still continues to move to
the west relative to the flow (that is, against the eastward mean flow) (figures 7 and 8). The
meridional SV velocity also oscillates, but about an approximately constant mean level,
leading to a fairly monotonic SV displacement to the north. The SV trajectories strongly
depend on the background-flow velocity U: the larger U is, the larger the SV meridional
displacement and the smaller the SV zonal displacement are (figure 7a).

In particular, the ratio of the meridional to zonal SV displacement by the end of the
simulation monotonically increases from about 0.04 at U = —5ms™' to 0.25 at U =
Oms~'to2.7at U=>5ms"'. We can conclude that moderate eastward flows inhibit the
SV’s zonal displacement and enhance its meridional displacement. Conversely, moderate
westward flows ‘encourage’ the SV’s zonal displacement and weaken its meridional
displacement.
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FIGURE 8. The same as in figure 7(b,c), but for the relative SV velocities normalized by BR?I.
Black curves show the solution of the linear problem (4.2), (4.3a—c).

We have considered thus far moderate background flows, for which, in the absolute
reference frame, the SV propagates north-westward and its zonal speed is bounded from
below by the maximum (negative) Rossby-wave velocity /3R2 (here —7.2 ms™') (see
figure 7) and does not exceed the background-flow velocity U, consistent with (2. 13). Let
us discuss now the SV behaviour at larger values of |U|. For westward flows with U < 0,
the parameter f8 reaches zero at U = —BR2, at which point the SV propagates westward
with the mean flow and has no meridional displacement. Further decrease in U leads to
B becoming negative and the singular cyclone moving to the south and to the east with
respect to the background flow. In the absolute reference frame, the SV zonal motion
satisfies (2.15): U < U < —BR2, so the SV, once again, ‘resists’ the background-flow
advection. The corresponding results for the case U = —10 m s~ are shown in figure 7
for the SV trajectory and velocity components and in figure 9 for the evolution of the
regular field ¥. Due to the smallness of 8 < 0, the SV evolves here in the quasi-linear
regime. Note that the evolution of ¥ here is visually very different from that in the linear
regime with 8 > 0 in figure 2: in particular, the B-gyres switch locations and Rossby
waves propagate to the east relative to the background flow.

For U > 0, the parameter 8 increases with the mean-flow speed, which leads to the
shortening of the quasi-linear stage of the SV evolution, and shorter periods of the
nonlinear-stage velocity oscillations (figures 7 and 8). For small and moderate values of
0 < U < 4 m s~! the SV zonal velocity U in the absolute reference frame quickly becomes
negative during the quasi-linear stage and stays negative during the entirety of simulation
(figure 7b). As U increases, the initial drop in U decreases, and U further rebounds during
the nonlinear stage to become positive toward the end of the simulation (see the cases
U=6and U=7.2ms"" in figure 7b). For the case U = 10 m s~' the SV zonal velocity
stays positive (eastward) throughout the entire simulation, approaching U toward the end
of the simulation (figure 7b). In other words, the SV does get carried along by a sufficiently
strong background zonal flow, but still lags behind this flow, yet with a progressively
smaller lag as the time evolves. The SV meridional velocity V also increases with U
(and, hence, 8; see figure 7¢), leading to comparable meridional and zonal displacements
of the SV at large U (see, for example, the SV trajectory for the case U = 10 m s~ in
figure 7a).
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FIGURE 9. The same as in figure 3, but for § > 0and U = —10 m s~

6. Key elements of the SV evolution
6.1. Similarity theory

In the above discussion, we have been considering the SV of a fixed amplitude A in the
background of zonal flows with different U. To study the joint effect of these two factors,
it is convenient to use the similarity theory. For the case of a point vortex, the solution to
the problem (3.2)—(3.4a—c) with ¥/ (y) = —Uy depends on three dimensional parameters
A, R; and B, from which one can form the single dimensionless parameter

o =2mBARI/A, (6.1)

which governs the properties of this solution. The parameter o represents the scale ratio
of the term J(v, Q + By) (advection of the regular PV by the regular flow) to the term
J(Yy, O + By) (advection of the regular PV by the SV) in (3.3) (Reznik 1992). The smaller
« is, the longer the term B0, v + J(i, Q) in (3.3) stays small relative to the other terms,
and the longer the quasi-linear stage of the SV evolution is, and vice versa. According to
the pi theorem (Sedov 1993), the SV velocities can be written as

A - - _ A
,v) = ITd[FU(a’ 1), Fy(a, )], t= R_ﬁt’ (6.2)

where Fy, Fy are some functions of « and 7. Note that there exist other, equivalent forms,
of (6.2), but the particular form above is most convenient for the interpretation of our
numerical experiments, which utilized the SV of a fixed amplitude A (table 1).
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(a) SV scaled U-velocity vs. stretched time (L, = R ) (b) SV scaled V-velocity vs. stretched time (L, = R)
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FIGURE 10. The dependence of scaled (relative) velocities of the SV on the stretched time (see
text for details).

Our numerical experiments demonstrate that for small values of « and in the quasi-linear
regime, the function Fy(«,7) monotonically decreases and the function Fy(«,?) first
increases sharply and then monotonically decreases with increasing 7 (see figure 4(c,d)
for the cases U =1 m s7!, 3m s7!, as well as for the linear solution; see also figure 8
for the case U = —5 m s~!). With increasing o, a monotonic decay of SV velocities
in time gives way to oscillations, starting at the times 7y,, = Ty,, (o) and Ty, =
Ty, (o) corresponding to the timing of the first minimum of zonal and meridional SV
velocities U, = U,in(@) and V,;,, = V0 (), respectively. The relative velocities U(t),
V(t) normalized by U,,;, and V,,;, and plotted against a scaled time t/7y,, (figure 10;
compare with figure 8) are close to one another for different experiments, despite
very different durations of these experiments in the units of the scaled time. One can
hypothesize then, that at different values of « the SVs behave in a qualitatively similar
way: during the time interval [0, T, ], the SV evolves in the quasi-linear regime and then,
for t > Ty,, , the nonlinear regime takes place. Hereafter, we will use a simpler notation
Ty for Ty, -

We can write the parameters 7, Ui, as

_ R
Umin = IBRjG(a)’ Tmin = KdH(a)a (63d,b)
where the functions G(«), H(x) can be estimated from our numerical experiments.
In figure 11, these functions correspond to the parameter a = (pR;)~! =1 and are
approximately equal to
G =—exp(—ya), H=7.63a"", (6.4a,b)

where y ~ 1.37 and p ~ 1.85. From (6.4a,b), (6.3a,b) and (6.1), it follows that the
duration of the quasi-linear stage T, rapidly decreases with increasing U at a constant
SV intensity A, or with decreasing A at a constant U, consistent with the graphs of the SV
velocities at large U in figures 4, 7 and 8. For the experiments with small and moderate
values of U (see figure 4(c,d) for the cases U = 1 m s~!,3ms~! and figure 8 for the cases
U=—-5ms ', U= —3ms"), the duration of the experiment turns out to be comparable
with or less than 7,,,; for example, at B =0, U =3 m s~ we estimate, from (6.4a,b),
(6.3a,b) and (6.1), T,,;, =~ 145 days.
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FIGURE 11. The dependence of (a) the first minimum of the SV zonal velocity Uy, and (b) its
timing 7, on o = 2n,3R /A. The dimensionless vortex size is denoted by a = (de)’ the

time scale T = Rd/A. In the legend here & = 21 8p 3 /A.

In the same way, it is easy to show that the magnitude of the minimum of the SV zonal
Ve1001ty |U,.in| decreases with A at a fixed U. In discussing the dependence of U,,;, on U,
it is convenient to work with the minimum value of U in the absolute reference frame U2
equal to

U™ = Upin + U. (6.5)

Using (6.5), (6.4a,b), (6.3a,b) and (2.7), we have

Ui = U(1 —e77%) — BRye 7, (6.6)
from which we can find
8Uabv
— -1 —(1—yw)e 7 > 0. 6.7
o0 (I —-ya) (6.7

Therefore, in the absolute reference frame, the first minimum of the SV zonal velocity
increases with U (compare with figure 7b).

This parameter dependence of T, U,;, implies that the duration of the quasi-linear
stage of SV development decreases (and the mean-flow-induced zonal drift of the SV
increases) not only with an increasing background-flow velocity U at a fixed SV intensity
A, but also with a fixed U and decreasing A. In other words, the larger the parameter « is,
that is, the smaller the relative intensity of the SV AB~! (or the larger the relative B-effect
BA~") is, the weaker the SV resists to the background-flow-induced downstream drift of
the vortex. As we will see below, this property plays an important role in the transition
from the quasi-linear to the nonlinear regime of the SV evolution (§ 6.3).

6.2. Merger of cyclonic SV with anticyclonic B-gyre

We saw in § 4.2 that the drift of the SV into the B-gyre of the opposite sign (an anticyclonic
B-gyre for a singular cyclone) plays an important role in the SV evolution. We now show
that this effect is purely linear and has to do with the radiation of the Rossby waves by
the SV.
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Consider a purely linear evolution of the SV on a S-plane

A A A A A
WV —a®Y) + Y =0, Yloog=1v, = — 5 Ko(pr). (6.8)

Looking for the solution in the form

A

=19+ (6.9)

we find
(VY —a* ) + By = —B0 Yy,  Yl—o=0. (6.10)

The streamfunction ¥ describes the Rossby-wave field radiated by the SV . The
numerical solution for ¢ (figure 12) shows that the SV quickly finds itself in the centre
of the anticyclonic S-gyre and stays there for the duration of the experiment, with the
intensity of this gyre rapidly increasing. In other words, the regular anticyclone generated
in the neighbourhood of the singular cyclone tends to compensate the latter. In the linear
problem (6.10), this is the consequence of the Rossby-wave dispersion, which would
cause any localized regular initial disturbance to decay with time. For the singular initial
condition in (6.8), this follows, first of all, from the energy equation, which can be obtained
by multiplying the first equation in (6.10) by ¥ + v, and area integrating over the entire
plane; compare with the derivation of (A 4) in appendix A. The resulting equation

/ IV + a9’ = (0 — )¢, ¥)y dx dy — AY|,—, = 0, (6.11)

coincides with (A 4) at ¢ = 0, K = 0. From our numerical results, it follows that the
integral in (6.11) is positive (which is trivial in the case of the point vortex p = a) and
grows with time, and so does ¥|,—,,, which indicates the strengthening in time of the
anticyclonic S-gyre. Secondly, if we neglect in (6.10) the term B1,, which is responsible
for the Rossby-wave dispersion, multiply the resulting equation by 1, and integrate over
the plane, we get

AY|r=, = 0. (6.12)

Consequently, without the Rossby-wave dispersion, the SV would be bound to stay at
the isoline 1 = 0 and, thus, could not penetrate into the anticyclonic S-gyre.

These arguments, of course, only apply to the linear problem (6.10). To verify them in
the full nonlinear problem, we computed the SV evolution according to (3.3), (3.4a—c),
but without the term B1/,. In these experiments (figure not shown), the SV, indeed, does
not leave the isoline ¢ = 0 and, therefore, does not merge with the anticyclonic g-gyre.
Recall that the term A1/, controls the Rossby-wave far field, while the near field (8-gyres)
is dominated by the dynamics involving the term 89, v, in (3.3).

6.3. Transition from quasi-linear to nonlinear regime

The drift of the SV toward the centre of an intensifying anticyclonic S-gyre is equivalent to
the formation, in the neighbourhood of the SV, of a growing compensating anticyclone v,
so that the intensity of the total vortex ¥, + ¥, gradually decreases with time (figure 13).
The full field consists of the compact total vortex and the Rossby waves radiated by the
SV earlier. Importantly, as the regular field grows in time, this full vortex monotonically
weakens and becomes more compact. Hence, the effective relative amplitude of the vortex
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FIGURE 12. Evolution of the regular field in the linear problem (6.10). CI =5; otherwise, the
same symbols and conventions as in figure 2.

decreases, along with its capacity to ‘resist’ the advection by the mean flow (see the last
paragraph of § 6.1). Accordingly, at some time, the regular PV advection terms 89,y +
J(, Q) in (3.3), which were small and could be neglected during the quasi-linear regime,
become important, marking the beginning of the nonlinear regime.

6.4. Sensitivity to SV size

The presentation thus far concentrated on the point-vortex case, for which p = a in (3.1).
The evolution for the SV with double/half the size of the point vortex is qualitatively
similar to that of the point SV. The main quantitative differences include the duration of the
quasi-linear regime 7,,,, the magnitude of the first minimum of the SV zonal velocity U,;,,
as well as the amplitude of SV velocity oscillations in the nonlinear regime (figures 11 and
14). The resistance of the SV to the mean-flow advection is maximal for the large SV and
minimal for the small SV, while the meridional propagation speeds for vortices of different
sizes are comparable, resulting in their similar northward displacements.

7. Summary and discussion

The central result of the theory developed here is the demonstrated ability of a uniform
zonal background flow to affect the motion of a vortex relative to this flow, due to the joint
effect of rotation and vertical vortex-tube stretching. In the absence of at least one of these
factors, this phenomenon would not be possible; for example, on a barotropic S-plane, due
to Galilean invariance of (2.10), a vortex would move relative to a uniform background
flow in the same way as it would — without such a flow — in the absolute reference frame.
On the other hand, the QGPV equation (2.1) for the 1.5-layer fluid considered here, as well
as the shallow-water equations describing the motion of a rotating fluid, from which the


https://doi.org/10.1017/jfm.2020.906

https://doi.org/10.1017/jfm.2020.906 Published online by Cambridge University Press

909 A23-22 S. Kravtsov and G. Reznik

(a) t= 10 days (b) =50 days (o) ¢ =80 days

-150

-200

-250

(d) Radially-symmetric components of ¥ (=80 days)  (e) Radially-symmetric component of ¥ (5-daily)

100 100
0__——tmhﬂhﬁhmhﬂﬂﬂq_h‘_‘—‘——h 0 =
~ ~
=, 100 & -100
= =
= 2200 + 200
~— o~
5 &
300 < 300
——Regular
—400 —Singular —400
——Sum
-500 -500
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5
¥R, 1R,

FIGURE 13. Evolution of the full streamfunction field ¥ + v and its singular and regular
components in the neighbourhood of the SV for the point-vortex case and U = 0 m s~!. (a—c)
The full streamfunction at different times (see panel captions); (d,e) The profiles of the radially
symmetric streamfunction (obtained by averaging over the azimuthal angle) in the reference
frame associated with the SV: (d) the profiles of the regular, singular and full streamfunction
fields at t = 80 days; (e) the full streamfunction profiles shown at the 5-daily intervals (coloured
curves); these profiles start from v, [red curve in (d), the bottom curve here] at r=0 and
monotonically tend to the final state at = 80 days [black curve in (d) and the top curve here].

QGPYV equation is derived, are not invariant to the Galilean transformations owing to the
effects of vortex stretching. As a result, interaction of a vortex with a uniform background
flow does not reduce to a mere kinematic translation of the vortex by the mean flow, but,
instead, changes the vortex dynamics. The reason lies in the fact that the background flow
modifies the B-effect: in the reference frame associated with a uniform zonal background
flow U, the relative motion of the vortex 1s described by the same QGPV equation, but
with the effective S-parameter f = 8 + a*U which includes the term proportional to U;
see (2.9). Therefore, the evolution of the vortex relative to the background flow is different
from the B-drift in the absence of this flow.

We studied this phenomenon in the context of an isolated SV. Due to the considerations
above, this problem reduces to the one for the evolution of the SV on a _B-plane with
the zero background flow, but with a modified B-parameter 8 = B + a>U. Analogous
problem was addressed in KR2019, except that in that work the B-parameter was fixed,
whilst here we explore a wide range of this parameter by changing U. The dynamics of a
point SV of intensity A > 0 (cyclone) depends on three dimensional parameters: A, 8 and
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FIGURE 14. Trajectories and velocities of the small SV, point SV and large SV (see legend).
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FIGURE 15. A cartoon of the vortex velocity vector (red arrows; cf. figure 1) in the absolute
reference frame for a #0: (a) B = 0; (b) B > 0.

the Rossby radius R; = a™', from which one can form the single dimensionless parameter
a = 27 BR3 /A that controls the properties of the solution. In the absence of dissipation, the
SV evolution consists of two stages (or ‘regimes’). During the first, quasilinear stage,
the SV motion is induced by the secondary regular dipole — the 8-gyres — generated in the
neighbourhood of the SV. For U > —BR?, the effective B-parameter is positive and the
zonal (relative) SV velocity rapidly decreases from zero to a negative minimum value,
while the meridional SV velocity first rapidly grows, but then also decreases to its own
(positive) minimum. Decreasing (increasing) « amplifies (weakens) these minima and
prolongs (shortens) the quasi-linear regime. In other words, the duration of the quasi-linear
regime T,,;, rapidly decreases with increasing 8 and/or decreasing A.

During the second, nonlinear stage (discovered in KR2019 and further explored in
this paper), which follows the quasi-linear regime, the B-gyres disintegrate, with the
cyclonic fB-gyre losing its connection with the SV and gradually disappearing, and the
anticyclonic f-gyre merging with the SV to form a compact vortex pair which moves
north-westward and interacts with the far-field Rossby waves radiated previously by the
SV. This interaction results in oscillations in the SV velocity about an approximately
constant level for its meridional component and about a slowly growing level for the zonal
component, leading to a net reduction in the zonal SV motion relative to the background
flow. Therefore, the SV ‘resistance’ to the mean flow weakens in the nonlinear regime.

From the SV velocities in the reference frame associated with the background flow, one
can readily deduce the SV velocities in the absolute reference frame. The SV interaction
with a uniform zonal flow manifests, in its purest form, on an f-plane with 8 = 0. In this
case, the QGPV equation does not contain preferred directions, but the inclusion of the
background flow makes the problem anisotropic and creates its own, induced B-effect,
with B = a?U. In the reference frame attached to the background flow, this flow-induced
B-effect makes the SV move against the flow, with the zonal speed not exceeding |U|, and
meridionally to the north (see figure 1). In other words, the SV resists the background
advection and lags behind the background flow, but still moves, in the absolute reference
frame, in the direction of, yet at an angle to the background flow, leaving the background
flow on the right (figure 15a). The less the speed of the background flow and/or the more
intense the SV is, the stronger the SV resists to the background advection and the more it
lags behind the background flow. The SV resistance to the background flow is the strongest
during the quasi-linear stage of the SV development and reduces in the nonlinear regime.
The duration of the quasi-linear regime decreases with increasing |U| (see above), thus
resulting in a stronger net drift of the SV in the direction of the mean flow; at the same
time, the SV velocity and displacement components normal to the background flow grow
as well.

In the general case 8 # 0 an analogous diagram is much more complex (see figure 15b
and table 2) and the SV can move both upstream and downstream. For the strong
westward background flows with U < —BR2, the effective B-parameter is negative
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U< —BR? U<U-<—BR:V <0
U=—BR3 U=—-BR3, V=0
—BRZ<U<Uy —BRE<U<0,V>0
U = U U=0,V>0

U > U U>0,V=>0

TABLE 2. The range of SV velocities (U, V) in the absolute reference frame (right) depending
on the background flow U (left).

— B=B+d*U <0 - and the cyclone moves south-eastward relative to the mean flow,
that is, against the latter. In the absolute reference frame, the SV drifts westward, with
the velocity in between U and —BR?, and southward. The SV southward displacement
and its resistance to background advection both decrease as U approaches —BR2; at
U=— BR? (B = 0), the SV becomes ‘frozen’ in the background flow and moves with the
mean flow in a purely zonal direction. At U > ,BRZ, the effective S-parameter becomes
positive — B = B 4+ a>U > 0 — and increases with U, leading to a progressively larger SV
displacement northward. _

The SV zonal velocity U in the absolute reference frame depends on U in the following
way: there exists a threshold velocity U, > 0 such that for — ,6R2 < U < U, the SV moves
westward, with U changing monotonically from —BR% 10 0 as U increases from —BR3 to
Uy. Thus, the eastward flow with 0 < U < Uy, is too weak to advect the SV eastward; the
vortex effectively resists the advection and drifts against the flow. At U = Uy, the zonal
propagation of the SV is strongly inhibited, and the SV drifts practically northward. A
stronger eastward flow with U > U, forces the SV to move eastward at all times, but with
U < U, and northward, with the SV meridional drift increasing with U and becoming
comparable to the zonal drift for large U. The threshold velocity U, depends on the SV
size and intensity: Uy = Uy(A, Ry, p) > 0; for the parameters used here Uy ~ 5-7 m s~!,
with the smaller/larger value in this range corresponding to the small/large SV, and the
value for the point SV in the middle.

These results have implications for the eddy—mean-flow interaction in the atmosphere
and the ocean. For example, the existence of a positive threshold velocity U, points to a
possibility of the predominantly meridional regimes of vortex propagation in regions of
weak (or weakening) eastward zonal flows. Furthermore, according to our findings, the
vortex advection by an eastward flow is necessarily accompanied by an enhanced (with
respect to the reference case of no flow) poleward deflection of the vortex trajectory; the
stronger the flow, the larger the deflection (compare with Orlanski 1998; Tamarin and
Kaspi 2016, 2017). By contrast, westward flows with —BR% < U < O result in a decreasing
poleward deflection with increasing |U|, up to zero deflection at U = —BR2; for the even
stronger westward flows with U < —BR? the sign of the poleward deflection switches,
with a cyclone (anticyclone) drifting southward (northward).

An anonymous reviewer of this paper kindly drew our attention to possible planetary
physics implications of our results. For example, in westward jets on Jupiter the effective
beta-parameter can be negative (Marcus & Shetty 2011; Dowling 2020), similar to our
case of a strong uniform westward flow. Drift rates of the Jupiter’s Great Red Spot (e.g.
Trigo-Rodriguez et al. 2000) and of the cloud features on Neptune (Sromovsky 1991)
exhibit oscillations akin to those of our singular-vortex translation speed in figures 4, 7
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and 10. Of course, our model is highly idealized, and, in reality, the background zonal flow
generally consists of the jets with strong velocity shears. We plan to conduct a numerical
study of the singular vortices embedded in a shear background flow in the nearest future.
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Appendix A. Integrals of motion
To derive the enstrophy integral, we rewrite (3.3) as

O +JW + v, 0+ Q) + Ba (¥ + ¥, — VW +¥) — p*( + ¥), ¥
+ (p* —a)J(Uy — Vx, ) = —=KV°y, (A1)

multiply (A 1) by V2(¥ 4+ ) — p*(¥ + ¥) and take an area integral of the resulting
expression over the entire plane, which gives

i= —Kfv%[vw 4 ) — W+ P)ldrdy, (A2)
where
L= / [S + (V2§ — pPE)(V2y — py)]dx dy — BAyo:
§ = 3(VY) + 7 + )V + pa’y’]

In an analogous way, multiplying (A 1) by ¥ + ¥ + ¥, we obtain, after area integration,
the following expression for the energy integral

(A3)

E=—K [y + 0070 dxdys
E= / BUVY) + @Y1+ VI VY + @0y — (0 — @)y (§ + )} dr dy

—AW + V),
(A4

Finally, the conservation of the regular component of potential vorticity at the centre of
the SV is written as

Olr—r, + O(y0) + Byo = Q(or) + BYor- (A'5)
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