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Complex biological products, such as those used to treat various forms of cancer, are typically

produced by mammalian cells in bioreactors. The most important class of such biological

medicines is proteins. These typically bind to sugars (glycans) in a process known as glyc-

osylation, creating glycoproteins, which are more stable and effective medicines. The glycans

are large polymers that are formed by a long sequence of enzyme catalysed reactions. This

sequence is not always completed, thus leading to a heterogeneous glycoprotein distribution.

A better comprehension of this distribution could lead to more efficient production of high

quality drugs. To understand how the manufacturing process can affect the extent of glyc-

osylation of protein, a non-linear ODE model of glycoprotein production is developed which

describes the bioreactor configuration as well as the protein production and glycosylation

reactions within the cell. The entire system evolves eventually to a stable steady state. The

earlier evolution is critical however, as the amount of product produced and its quality varies

over time. The model is considered as two coupled systems: the bioreactor submodel and the

glycosylation submodel. To investigate the early time evolution within the bioreactor sub-

model, analytical and numerical properties are derived using matched asymptotic expansions

and a finite difference scheme for a range of initial conditions. This leads to qualitatively

different regimes for aglycosylated protein production, which affect the glycosylation sub-

model. The discrete glycoprotein distribution is approximated as continuous and written as

a first-order PDE, with good agreement between the discrete and continuous models. The

PDE is found to admit shocks, but the existence of these shocks is dependent on the early

time evolution within the bioreactor submodel and leads to higher levels of glycosylation at

early time. This suggests that changing the bioreactor configuration can lead to higher quality

product at certain times.
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1 Introduction

Whilst historically the majority of medicines were small molecules, a rapidly increasing

number of new drugs developed by the pharmaceutical industry are protein therapeutics

[8]. Proteins are complex macromolecules which are involved in almost all processes

within cells. Their complexity and specificity of action means that they are able to

produce therapeutic effects that could not be replicated by small molecule drugs. Protein
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therapeutics have been used for a number of reasons: to aid drug delivery, as vaccines, and

to treat diseases including cancer, genetic diseases and diseases of the immune system [17].

Additionally, there are financial incentives for companies to develop protein therapeutics

since they typically have a shorter clinical development and approval time than small

molecule drugs, and companies are able to acquire comprehensive patents [19]. The

majority of these therapeutic proteins are produced using recombinant DNA technology.

This entails the alteration of the genetic material of a host organism, (typically the

bacterium Escherichia coli, yeast, or mammalian cells) to insert the gene coding for the

protein of interest. The host organism then produces the recombinant protein alongside

the native proteins necessary for usual function. These cells are produced outside of their

natural environment in a bioreactor, where conditions such as temperature, pH and cell

substrate levels are carefully monitored.

However, after the protein is synthesised by the host cell, the molecule is typically

modified in a number of ways before being excreted by the cell. One of the most

common of these post-translational modifications is glycosylation – the process by which

carbohydrate molecules are attached to the protein. There are two kinds of glycosylation,

the N-linking of sugars to asparagine residues, and O-linking of sugars to serine or

threonine residues. The kind and extent of glycosylation seems to influence therapeutic

efficacy as well as half-life in the body [10,20]. It is therefore important to understand how

to produce protein-based therapeutics with appropriate glycosylation [11]. Unfortunately,

the biochemistry of glycosylation is extremely complex , involving many enzymes, various

locations in the Golgi apparatus and endoplasmic reticulum, and a large number of

product variants [3, 25].

Attempts have been made to model glycosylation as a complex network [14], leading

to elaborate models. Engineering models have embedded glycosylation models into biore-

actors [12,16,26], and have substantially improved our understanding of the behaviour of

glycosylation in bioreactors. However, such models contain a large number of parameters,

many of which cannot be measured directly. In this paper, we take a different approach.

Using a very simple kinetic model for the stepwise addition of one kind of sugar to a

product, we analyse product formation in terms of quality and quantity in a chemostat.

This gives rise to a set of coupled, non-linear ordinary differential equations, which are

analysed in detail to explore the influence of a wide range of initial conditions giving

significant variation in quality and quantity distinct from that in steady state. The focus is

on allowing a large number of such sugar additions; we also show that passing to the limit

of a continuous mixture, a tractable partial differential equation (PDE) results. This PDE

is hyperbolic, and admits of the formation of a shock. The condition for shock formation

is established explicitly, and it is shown that selecting initial conditions that generate a

shock results in improved product quality and quantity, relative to the product obtained at

steady state. This unusual result suggests that the trade-off between quantity and quality

is more subtle than previously believed. In the discussion, some suggestions are presented

on how to extend the present analysis to more complex models of glycosylation.

2 Model development

Our model considers the interaction between cell mass and substrate in a chemostat, where

substrate is fed into the reactor at a constant rate, and a fraction of the bioreactor culture
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is washed out continuously. The reactor is stirred and therefore spatially homogeneous.

All other important parameters, such as temperature or pH are held constant. The specific

growth rate of the cells increases with substrate concentration, following Monod kinetics.

The rate of production of aglycosylated protein per cell again increases with substrate

concentration according to Michaelis–Menten kinetics.

We then consider glycosylation as the enzyme catalysed stepwise addition of sugars to

the protein. The concentration of other reactants necessary for glycosylation is assumed

to not be a limiting factor and hence these reactions follow Michaelis–Menten kinetics.

This process leads to differing glycoprotein variants, which are denoted p∗j , where j is

the number of sugars attached to the protein molecule and the asterisk denotes the

dimensional quantity. The maximum number of sugars that can be attached is n, and so

the final variant is p∗n . In the following, the bioreactor parameters are the dilution rate D∗

and the concentration of the substrate feed s∗f . For the cell mass, r∗x is the maximal specific

growth rate, K∗
x is the half-saturation constant, k∗d is the cell death rate and Y ∗

x is the yield

coefficient. The parameters concerning protein production are the maximal production

rate r∗0 , the half saturation constant K∗
0 and the yield coefficient Y ∗

0 . The reaction that

leads to the formation of the glycoprotein variant p∗j , where 0 � j � n, has the following

parameters: r∗j is the maximal reaction rate, K∗
j the half-saturation constant and Y ∗

j is

the yield coefficient.

Thus, the full-dimensional model is as follows. It is first to solve for the cell mass x∗,

the substrate s∗ and the aglycosylated protein p0 using

dx∗

dt∗
=

r∗xs
∗x∗

K∗
x + s∗

− (D∗ + k∗d )x
∗, (2.1a)

ds∗

dt∗
= D∗(s∗f − s∗) − 1

Y ∗
x

(
r∗xs

∗x∗

K∗
x + s∗

)
− 1

Y ∗
0

(
r∗0 s

∗x∗

K∗
0 + s∗

)
, (2.1b)

dp∗0
dt∗

=
r∗0 s

∗x∗

K∗
0 + s∗

− 1

Y ∗
1

(
r∗1p

∗
0

K∗
1 + p∗0

)
− D∗p∗0 , (2.1c)

and then for 1 � j � n to solve for the intermediate glycoprotein variants p∗j as well as

the final glycoprotein variant p∗n using

dp∗j
dt∗

=
r∗j p

∗
j−1

K∗
j + p∗j−1

− 1

Y ∗
j+1

(
r∗j+1p

∗
j

K∗
j+1 + p∗j

)
− D∗p∗j , (2.1d )

dp∗n
dt∗

=
r∗n p

∗
n−1

K∗
n + p∗n−1

− D∗p∗n . (2.1e)

The initial conditions are

x∗(0) = x∗0 , (2.2a)

s∗(0) = s∗0 , (2.2b)

p∗j (0) = 0 for all j, (2.2c)

where x∗0 and s∗0 are given constants from the operating conditions of the bioreactor. To

reduce the considerable number of parameters in the system, non-dimensionalisation is
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now performed by setting

(t∗, x∗, s∗, p∗j ) =

(
t

D∗ , K
∗
xY

∗
x x,K

∗
x s, K

∗
j+1pj

)
. (2.3)

Whilst most of the values are intrinsic parameters of the system, we introduce K∗
n+1 as a

half-saturation constant for a theoretical reaction where the substrate is p∗n , and K∗
n+1 is

used as a typical value for p∗n . (It would be expected to be in line with K∗
n .) We also set

rx =
r∗x
D∗ , (2.4a)

kd =
k∗d
D∗ , (2.4b)

sf =
s∗f
K∗

x

, (2.4c)

r0 =
r∗0K

∗
xY

∗
x

K∗
1D

∗ , (2.4d )

K0 =
K∗

0

K∗
x

, (2.4e)

Y0 =
K∗

xY
∗
0

K∗
1

, (2.4f )

rj =
r∗j

K∗
j+1D

∗ for all j >= 1, (2.4g)

Yj =
K∗

j Y
∗
j

K∗
j+1

for all j >= 1. (2.4h)

The initial values x(0) = x0 and s(0) = s0 are thus as follows from (2.2),

s0 =
s∗0
K∗

x

, (2.5a)

x0 =
x∗0

K∗
xY

∗
x

. (2.5b)

From (2.1), we now have our non-dimensionalised model:

dx

dt
=

rxsx

1 + s
− (1 + kd)x, (2.6a)

ds

dt
= sf − s− rxsx

1 + s
− 1

Y0

(
r0sx

K0 + s

)
, (2.6b)

dp0

dt
=

r0sx

K0 + s
− 1

Y1

r1p0

1 + p0
− p0, (2.6c)
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Table 1. The dimensionless parameter values used

for all model runs, unless indicated otherwise

Parameter Value

n 20

rx 2

kd 0.1

sf 10

r0 1

K0 1

Y0 0.2

rj 1

Yj 1

and for 1 � j � n− 1,

dpj

dt
=

rjpj−1

1 + pj−1
− 1

Yj+1

rj+1pj

1 + pj
− pj , (2.6d )

dpn

dt
=

rnpn−1

1 + pn−1
− pn. (2.6e)

The values of the parameters in our system will now be considered, with the values

used throughout the paper detailed in Table 1. We have relative freedom for the initial

conditions in our bioreactor s∗0 and x∗0 , and these will be varied to characterise different

qualitative behaviour within the bioreactor. The experimenter also has choice when it

comes to setting s∗f and D∗. The cell growth and product production parameters r∗x , K
∗
x ,

Y ∗
x , r∗0 , K∗

0 and Y ∗
0 vary widely between cell lines. Generally, k∗d in (2.4b) is a small

number, as cell death is slow in comparison to other cellular processes when the reactor

is operating at ideal conditions [24].

The number of glycoprotein variants, here denoted as n, considered in previous models

varies from 33 to 5,685, depending on their level of detail [12,16,26]. Here, we set n = 20,

but the results are qualitatively similar for other values of n. The stoichiometry of each

glycosylation reaction sets Y ∗
j = 1. Determining the parameter values for the glycosylation

reactions is a complex task [27]. Therefore, for most of the paper, we will assume that

all glycosylation reactions are catalysed by the same enzyme, and thus r∗j and K∗
j are

constant for j > 0. Whilst there are multiple enzymes involved in the full reaction network,

each enzyme catalyses many reactions [12], and thus this a reasonable starting point to

understand this effect of each enzyme.

Since this model is generic and does not aim to produce results for a particular cell line,

a set of representative dimensionless parameters each of order 1 is used, as illustrated in

Table 1. However, the advantage of the present analytical approach is that the effect of

parameter changes can be deduced without running a large parameter sweep.

The whole model can be divided quite naturally into two coupled submodels – the

cell-substrate interaction consisting of x, s and p0, and the glycosylation system consisting

of pj with 0 � j � n. The behaviour at finite time t turns out to be important throughout,

as the extent of the glycosylation, and thus the quality of the product, varies in time.
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3 Cell substrate interaction

In this section of the paper, we consider the submodel for the bioreactor, to determine

the production of unglycosylated protein. This consists of the governing equations for the

cell mass x (2.6a), substrate s (2.6b) and unglycosylated protein p0 (2.6c).

Part of the qualitative behaviour of the system will be examined, by determining the

existence and properties of the steady states. The time evolution of the system is then

examined first by solving the equations numerically. Second, by considering the relative

initial conditions for cell mass and substrate to be asymptotically large or small, analytical

solutions for whole time evolution are found.

3.1 Steady states and stability

There are two possible steady states for this system. The first is the trivial zero cell case,

where x = 0, s = sf and p0 = 0. If there are no cells, due to complete cell death or a zero

initial condition, no protein can be produced and thus the system consists only of the

substrate entering the reactor. If certain constraints on parameter values hold, there is a

second steady state as follows:

se =
1 + kd

rx − (1 + kd)
, (3.1)

xe =
sf − se

rx
se

1+se
+ r0

Y0

se
K0+se

, (3.2)

p0,e =
1

2

⎡
⎣ r0sexe

K0 + se
− r1

Y1
− 1 +

√(
r0sexe

K0 + se
− r1

Y1
− 1

)2

+ 4
r0sexe

K0 + se

⎤
⎦ . (3.3)

Since all variables are non-negative, the other quadratic root for p0,e is neglected. For the

same reason, this steady state will exist only if the conditions rx > 1 + kd, sf > se and
r0sexe
K0+se

> r1
Y1

+ 1 hold. It is well established that this steady state is stable if it exists since

the reactor is a chemostat [24]. The zero cell steady state is undesirable as no protein

is produced, so from this point, we assume that the conditions on the parameters hold

and therefore the system has a unique non-trivial stable steady state to which it can

evolve.

3.2 Time evolution

The equations were solved numerically using a finite difference scheme, to investigate the

time evolution of the system. In addition to the equation parameters, the initial conditions

for the cell mass, x0 and substrate, s0 have large effects on the early time behaviour

of the system. This is illustrated in Figure 1: The phase plane for the cell mass x and

the substrate s on a log scale, with varying initial conditions for both x and s. Linear

stability is visible for all trajectories close to the steady states, but there are clearly several

regimes of qualitatively different behaviour, depending on the initial conditions. The three

principal regimes are highlighted, and the full time-dependent numerical solutions for

x, s and p0 are given for regime A in Figure 2(a), for regime B in Figure 3 and for
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Figure 1. The phase plane for the cell mass x and the substrate s trajectories, displayed on a log

scale. Three trajectories are highlighted as representative of three different regimes. The black dots

are plotted at evenly spaced time intervals to illustrate the progress through time.

regime C in Figure 4. In the next section, these are explained and analytical solutions are

found using matched asymptotic expansions. This asymptotic analysis allow us to clearly

understand the most important processes within our system at each time scale, and thus

clearly differentiate between each regime in Figure 1. Similar methods have been used

extensively when modelling biological systems [4, 9, 18].

We consider a typical initial-value parameter ε � 1 and then explore the major details

of the evolution where at least one of the initial conditions x0 and s0 is either O(ε) or

O( 1
ε
). Since these initial conditions affect the protein production at early time, and thus

the extent of glycosylation, changing these is found to lead to differing quality levels

thoroughout time.

3.3 Main examples of evolution

The three principal regimes A, B and C are explored in the following subsections. Table

1 gives parameter values used throughout. These are supplemented by analysis which

exposes interesting multi-scaling present for t of O(1), cf [21–23] in other fields, and

provides fresh insight and clarity as to how early time behaviour can affect quantity and

quality.

3.3.1 Regime A

First, the behaviour of solutions is explored when the initial values s0 and x0 are order
1
ε
. This is represented as regime A in the top right-hand corner of Figure 1, where the

trajectories move downwards, initially curving to the right, before turning a sharp corner

to move diagonally towards the steady state. The full numerical solutions for x, s and p0

are illustrated in Figure 2(a). Whilst the solution for s seems to turn a sharp corner, the

short time scales expanded upon in this section fully explain this behaviour. For these
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Figure 2. Numerical and analytical solutions for cell mass x, substrate s and protein p0 in regime

A, where x0 = 50 and s0 = 50. We take ε = 0.02. The solid curves represent numerical solutions

and the dotted curves analytical solutions.

(a) Illustrates the full time evolution to steady state.

(b) Illustrates the first time scale from the expansions (3.4) with the solutions (3.6), (3.8) and (3.10).

Here, x̄0 = s̄0 = 1.

(c) Illustrates the second time scale from the expansions (3.11) with the solutions (3.13), (3.16) and

(3.19). Here, t0 = 0.13, ŝ0 = 2, x̂0 = 1.1, p̂0,0 = 0.117.

(d) Illustrates the third time scale from the expansions (3.21) with the solution (3.23). Here, ť0 = 1,

š0 = 1, x̌0 = 1.094, p̌0,0 = 0.123.

(e) Illustrates the fourth time scale, with the expansions (3.25) and the solution (3.28). Here,

x̃0 = 1.094, s̃0 = 1.31, p̃0,0 = 0.123.
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initial conditions, the denominators appearing in (2.6a)–(2.6c) simplify and the effects of

the sf and r1 contributions become secondary; so the governing equations of the model

(2.6) become linearised. The main response arises first on the O(1) time scale, where t = t̄

with the expansions

x =
1

ε
x̄ + · · · , (3.4a)

s =
1

ε
s̄ + · · · , (3.4b)

p0 =
1

ε
p̄0 + · · · , (3.4c)

holding then. Here, the size of p0 is dictated by the protein production term involving sx

over the O(1) time scale; earlier p0 is smaller of course due to the initial condition. At

leading order, the governing equation for the cell mass x (2.6a) thus becomes

dx̄

dt
= (rx − 1 − kd)x̄. (3.5)

Hence, x is independent of s initially, as substrate is not limiting cell growth. As

described in Section 3.1, for the non-trivial steady state to exist, rx > 1 + kd. Hence, x̄

grows exponentially and has the form

x̄ = x̄0e
(rx−1−kd)t. (3.6)

The substrate s̄ is governed by

ds̄

dt
= −

(
rx +

r0

Y0

)
x̄− s̄, (3.7)

and hence the solution for s̄ is a sum of exponential decay and negative exponential

growth.

s̄ = (̄s0 + γx̄0)e
−t − γx̄0e

(rx−1−kd)t, (3.8)

where γ =
rx+

r0
Y0

rx−kd
. The substrate is therefore rapidly depleted due to the large cell mass.

The governing equation for the unglycosylated protein p̄0 is

dp̄0

dt
= r0x̄− p̄0, (3.9)

which can be solved to give

p̄0 =
r0

rx − kd

(
e(rx−1−kd)t − e−t

)
. (3.10)

Hence, the amount of protein in the bioreactor increases rapidly initially because there is

a large quantity of cell mass and the substrate does not limit protein production.

These analytical solutions are compared to the numerical solutions in Figure 2(b) and

show good agreement initially, with the solutions diverging as the initial assumptions

(3.4) fail. The solution for s̄ is the leading factor for the expansions ceasing to hold,

as it decreases to zero at a finite time t = t0 (contrasting with x̄ and p̄0 which remain
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O(1) then). This leads to a new expansion, beginning around the time t0 when s̄ in effect

decreases to O(ε), so s becomes O(1) and the influence of the denominators in (2.6a–2.6c)

comes into play as the substrate begins to limit cell growth and protein production. Thus,

t = t0 + εt̂, (3.11a)

x =
1

ε
(x̂0 + εx̂) + · · · , (3.11b)

s = ŝ + · · · , (3.11c)

p0 =
1

ε

(
p̂0,0 + εp̂0

)
+ · · · , (3.11d )

with the hatted variables to be found. The governing equations then become

dŝ

dt̂
= −rx

x̂0ŝ

1 + ŝ
− r0

Y0

x̂0ŝ

K0 + ŝ
, (3.12a)

dx̂

dt̂
=

rxx̂0ŝ

1 + ŝ
− (1 + kd)x̂0, (3.12b)

dp̂0

dt̂
=

r0x̂0ŝ

1 + ŝ
− p̂0,0. (3.12c)

For simplicity, we set K0 = 1 here, although this assumption could be relaxed if required.

We then set β = rx + r0
Y0

and integrate to obtain an implicit relation between t̂ and ŝ,

−βx̂0 t̂ = ŝ− ŝ0 + log

(
ŝ

ŝ0

)
. (3.13)

Explicit features are found for limiting values of t̂. For large negative t̂ (matching back to

the previous stage), we have

ŝ ∼ ŝ0 −
βx̂0ŝ0

1 + ŝ0
t̂, (3.14)

and for large positive t̂,

ŝ ∼ ŝ0e
−βx̂0 t̂; (3.15)

so ŝ → 0 as t̂ → ∞. Meanwhile, the governing equation for x̂ gives the relation

x̂ = −x̂0

[
rx

β
(ŝ− ŝ0) + (1 + kd)t̂

]
. (3.16)

At large negative t̂,

x̂ ∼ x̂0

[
rxx̂0ŝ0

1 + ŝ0
− (1 + kd)

]
t̂, (3.17)

which is increasing if we ensure this phase is begun early enough. At large positive t̂,

x̂ ∼ rxx̂0ŝ0

β
− (1 + kd) t̂, (3.18)

and so x̂ has a maximum in this time range and then begins to decrease due to the small

https://doi.org/10.1017/S0956792516000437 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000437


A simplified model of glycoprotein production within cell culture 545

values of ŝ at this point. This can be clearly seen in Figure 1, as the trajectories turn

significantly in the bottom right-hand corner. Similarly, we can integrate our equation for

p̂0,0 to obtain

p̂0 = − r0x̂0

β
(ŝ− ŝ0) − p̂0,0 t̂ (3.19)

which mimics the behaviour of x̂. These analytical solutions are again compared with

numerical solutions in Figure 2(c).

Once more, our assumptions break down due to the exponential decay of ŝ at large

time, and another expansion begins at the time ť0 when

εš0 ∼ ŝ0e
−βx̂0 t̂. (3.20)

With this logarithmic time shift, the time scale and expansions are:

t = t0 + ε(Fť0 + ť), (3.21a)

x =
1

ε
(x̌0 + εx̌ + · · · ), (3.21b)

s =
1

ε
(ε2š + · · · ), (3.21c)

p0 =
1

ε
(p̌0,0 + εp̌0 + · · · ), (3.21d )

where F = − 1
βx̂0

log(ε š0
ŝ0

) is a large positive constant. To leading order, our governing

equations become

dš

dť
= sf − βx̂0š, (3.22a)

dx̌

dť
= 0, (3.22b)

dp̌0

dť
= 0, (3.22c)

and so x̌ and p̌0 remain at their initial values x̌0 and ˇp0,0 respectively, whilst

š =
1

βx̂0

[
sf − (sf − βx̂0š0)e

−βx̂0 ť
]
, (3.23)

all of which are illustrated and compared to the numerical solutions in Figure 2(d).

As ť → ∞, the exponential term in š becomes small, and therefore we define a new time

scale which begins when

sf − βx̂0š0

βx̂0
eβx̂0 ť ∼ ε. (3.24)

Here, we let ť = Gt̃0, where G = − 1
βx̂0 š0

log( εβx̂0

sf−βx̂0
) and t̃0 is an arbitrary constant of order
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1. Thus, the final time scale and expansions are as follows:

t = t0 + ε(Fť0 + Gt̃0) + t̃, (3.25a)

x =
1

ε
x̃ + · · · , (3.25b)

s = εs̃ + · · · , (3.25c)

p0 =
1

ε
p̃0 + · · · , (3.25d )

with

s̃(0) =
sf

βx̂0
, (3.26a)

x̃(0) = x̌0, (3.26b)

p̃0(0) = p̌0,0. (3.26c)

To leading order the governing equations become

0 = sf − βx̃s̃, (3.27a)

dx̃

d̃t
= −(1 + kd)x̃, (3.27b)

dp̃0

d̃t
= −p̃0, (3.27c)

and so we have the following pure exponential solutions:

s̃ =
sf

βx̃0
e(1+kd )̃t, (3.28a)

x̃ = x̌0 e
−(1+kd )̃t, (3.28b)

p̃0 = p̌0,0 e
−t̃. (3.28c)

This regime is again clearly visible as the straight diagonal line in Figure 1. Additionally,

these analytical solutions are compared with the numerical ones in Figure 2(e). In

logarithmic time, our assumptions fail, but the qualitative behaviour does not markedly

change as the solutions display linear stability.

Whilst explicit solutions have only been given for the case, where x0 ∼ 1
ε
, s0 ∼ 1

ε
, similar

or related qualitative behaviour is seen in Figure 1 for other initial conditions. This can

be explained with reference to regime A. First, if x0 ∼ 1 and s0 ∼ 1
ε
, the solution is very

similar to regime A illustrated before. However, the first stage represented by the barred

variables in (3.4) is slightly different, with (3.7) modified to be

ds

dt
= −s (3.29)

and hence s falls more slowly. On the other hand, since x is growing exponentially in (3.6),

the x term re-enters (3.29) and hence the solution continues as previously described, but

the exponential growth lasts for longer, as is visible in Figure 1. The solution for p0 also

remains unmodified.
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Similarly, if x0 ∼ 1
ε

and s0 ∼ 1, the solution is identical in form to regime A, except that

we begin with the hatted variables and (3.11) and (3.12c). Again, if we have x0 ∼ 1
ε

and

s0 ∼ ε, the solutions for cell mass and substrate are the same as for regime A, beginning

with the checked variables in (3.21) and (3.22), moving on to the tilde variables (3.25)

and (3.27). However, the solution for p0 in the tilde time scale will clearly be different, as

(3.25d) will not hold due to the zero initial condition. Instead, we introduce

p0 = ˜̃p0 (3.30)

and hence (3.28c) is replaced by

d˜̃p0

d̃t
= r0x̃s̃−

r1

Y1

˜̃p0

1 + ˜̃p0

− ˜̃p0, (3.31)

which can be solved implicitly.

3.3.2 Regime B

We now describe the behaviour shown by regime B in Figure 1, which occurs when the

initial values x0 ∼ ε and s0 ∼ ε are both small. The full time evolution is shown in Figure

3. These initial conditions and the forcing due to sf in (2.6b) imply that initially we have

an O(1) time scale and the following expansions:

t = T , (3.32a)

s = S + · · · , (3.32b)

x = εX + · · · , (3.32c)

p0 = εP0 + · · · , (3.32d )

so that the governing equation (2.6a)–(2.6c) become

dS

dT
= sf − S, (3.33a)

dX

dT
=

rxSX

1 + S
− (1 + kd)X, (3.33b)

dP0

dT
=

r0SX

K0 + S
− (

r1

Y1
+ 1)P0. (3.33c)

Thus, the expressions

S = sf + (S0 − sf)e
−T , (3.34a)

X = X0e
(rx−1−kd)T

[
(1 + sf)e

T + (S0 − sf)

1 + S0

] −rx
1+sf

, (3.34b)

P0 =

∫
r0XS
1+S

e
(
r1
Y1

+1)T
dT

e
(
r1
Y1

+1)T
, (3.34c)

describe the solutions at this stage. Since rx−1−kd is always positive, exponential growth

dominates the expression for x. The numerical and analytical solutions are compared in
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Figure 3. Numerical and analytical solutions for cell mass x, substrate s and protein p0 in Regime

B, where x0 = 0.01 and s0 = 01. The solid curves represent the numerical solutions for the full time

evolution. The dashed curves represents the analytical solution as given by the expansions in (3.32)

and the solutions in (3.34). Here, ε = 0.01, X0 = 1, S0 = 1.

Figure 4. Numerical and analytical solutions for cell mass x, substrate s and protein p0 in Regime

C, where x0 = 0.01 and s0 = 100. The solid curves represent the numerical solutions for the full

time evolution. The dashed curves represents the analytical solution as given by the expansions in

(3.35) and the solutions in (3.37). Here, ε = 0.01, x̀0 = 1, s̀0 = 1.

Figure 3, where it is clear that the expansions break down in logarithmic time, and the

cell growth term rxxs
1+s

re-enters the s equation. This is where the trajectory begins moving

downwards towards linear stability in the phase plane in Figure 1.

3.3.3 Regime C

We now consider the top left-hand corner of the phase plane in Figure 1, where s(0)

is large of order 1
ε

and x(0) is small of order ε. The full evolution in time is shown in

Figure 4. Guided by the initial values and the influence of interactive terms, we set the

expansions

x = εx̀ + · · · , (3.35a)

s =
1

ε
s̀ + · · · , (3.35b)

p0 = εp̀0 + · · · , (3.35c)
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for t of O(1) and hence our governing equations become

ds̀

dt
= −s̀, (3.36a)

dx̀

dt
= (rx − 1 − kd)x̀, (3.36b)

dp̀0

dt
= r0x̀− (

r1

Y1
+ 1)p̀0. (3.36c)

The solutions are

s̀ = s̀0e
−t, (3.37a)

x̀ = x̀0e
(rx−1−kd)t, (3.37b)

p̀0 =
r0

rx − kd + r1
Y1

(
e(rx−1−kd)t − e

−(
r1
Y1

+1)t
)
. (3.37c)

Hence, the dominant process for substrate s is washout, leading to exponential decay. Cell

mass x is growing at its maximum rate, but is tempered by washout and cell death, leading

to exponential growth. The protein production mimics cell growth, although glycosylation

and washout slow the growth. This behaviour is clearly visible in Figure 1 in the top

left-hand corner. Again, a comparison with numerical solutions is shown in Figure 4. The

expansions cease to hold as s becomes order 1, and the cell growth and protein production

terms are no longer linear. However, the time evolution continues in a qualitatively similar

way, before approaching linear stability.

By considering regimes A, B and C, the qualitative and quantitative behaviour of

the entire phase plane can thus be explained. It can be seen that changing the initial

conditions for cell mass x and substrate s (which can be done by the experimenter) has

a large effect on the quantity of protein in the bioreactor at early time. In particular,

the protein production in regime A, shown in Figure 2(a), is markedly different from the

protein production in regime B, shown in Figure 3. In the latter half of the paper, we

demonstrate how these two regimes have very different glycosylation patterns at early

time, which has implications for the quality of the product.

4 Glycosylation submodel

We now turn our attention to the glycosylation submodel, in order to determine the shape

of the dynamic glycosylation distribution pj(t). First, the steady glycosylation distribution

will be examined, before considering the time evolution. The governing equations of this

subsystem consist of (2.6c)–(2.6e) as stated earlier. Again, the number of glycoprotein

variants, n, is assumed to be relatively large, and the reaction rates rj and yield coefficients

Yj are assumed constant for all j.

4.1 Steady states

The steady states for each variant, where the time derivatives are equal to zero, depend

only on the steady state of the previous variant, because each glycosylation reaction is
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stepwise. Since all quantities are non-negative, we can see from (2.6d) that each equation

has one non-negative root:

pj =
1

2

⎛
⎝ rjpj−1

1 + pj−1
− rj+1

Yj+1
− 1 +

√(
rjpj−1

1 + pj−1
− rj+1

Yj+1
− 1

)2

+ 4
rjpj−1

1 + pj−1

⎞
⎠ . (4.1)

From (2.6e), the terminal glycoprotein has a steady state

pn =
rnpn−1

1 + pn−1
. (4.2)

We repeat that the evolution in t however is of most concern, as by adjusting the

configuration of the bioreactor via the initial conditions for cell mass x and substrate

s, the glycosylation distribution can be manipulated. Thus, the dynamic behaviour is

examined in detail, to identify points at which the quality of the product is favourable.

5 A continuum glycosylation model

To further explore the dynamic glycoform distribution, we consider a PDE model for the

glycosylation system. The number of glycoform variants, n, is relatively large [16], and

therefore we look to approximate the glycoform distribution investigated in Section 3.1

as continuous. We replace the discrete glycosylation index j with a continuous variable z

that represents the extent of glycosylation, and obtain

pj(t) = p(t, z). (5.1)

Here, the integer points of the continuous variable z correspond to the discrete indices

j. However, we now allow intermediate reactions where z takes non-integer values. Each

glycosylation reaction is thus seen as increasing the extent of glycosylation by δz, i.e. each

reaction is denoted by

p(t, z) → p(t, z + δz). (5.2)

The non-dimensional parameters rj and Yj are also modified. Since rj is the maximal

reaction rate in the jth reaction, the equivalent rate for the reaction represented in (5.2)

is R(z)
δz

. The yield coefficient is defined from the non-dimensionalisation in equation (2.4):

Yj =
K∗

j Y
∗
j

K∗
j+1

. (5.3)

We have assumed perfect conversion and hence Y ∗
j = 1. If the Monod constants Kj vary

smoothly, then we model them by a smooth function κ(z). Hence, we take

Yj =
κ(z)

κ(z + δz)
. (5.4)

If δz is sufficiently small, then we may write

1

Yj

= 1 − κ′(z)

κ(z)
δz. (5.5)
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We also introduce the following function for our reaction terms,

f(p(t, z), R(z)) =
R(z)p(t, z)

1 + p(t, z)
. (5.6)

The equation (2.6d) for each intermediate glycoform variant becomes now

∂p

∂t
(t, z) =

1

δz
f(p(t, z − δz), R(z)) − 1

δz
f(p(t, z), R(z + δz))

(
1 − κ′(z)

κ(z)
δz

)
− p(t, z). (5.7)

We then take the limit as δz → 0 and obtain the first-order PDE:

∂p

∂t
(t, z) = −df

dz
+ R(z)

κ′(z)

κ(z)
f(z) − p(t, z) (5.8)

for the system. The function f(z) allows this derivation to hold for many kinetic forms [1,2].

However, for our case with Michaelis–Menten kinetics given by (5.6), we obtain

∂p

∂t
+

R(z)

(1 + p)2
∂p

∂z
= (R(z)

κ′(z)

κ(z)
− R′(z))

p

1 + p
− p, (5.9)

with a zero initial condition at t = 0 and a dynamic boundary condition at z = 0 taken

from the solution for p0 from the bioreactor submodel; thus,

p(z, 0) = 0, (5.10)

p(0, t) = p0(t). (5.11)

For our analysis, we focus on the case mentioned previously where the parameter values

do not vary between reactions and hence R(z) and κ(z) are constant, giving

∂p

∂t
+

R

(1 + p)2
∂p

∂z
= −p. (5.12)

The final glycoform variant pn(t) has an equation of a different form but can be found

from the continuum model as

pn(t) =

∫ ∞

n

p(t, z) dz (5.13)

from all the glycoform variants.

5.1 Steady state analysis

We can obtain the steady state p = ps, to compare with the discrete system, by taking
∂p
∂t

= 0 in (5.12) which yields

dps

dz
=

−ps(ps + 1)2

R
. (5.14)

From this, certain properties of the glycoform distribution are immediately clear. First,

the distribution is always monotonically decreasing. Second, higher values of R (and r for

the discrete solutions) lead to a flatter distribution, and finally, higher values of p0 lead
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Figure 5. A comparison of the steady-state glycoform distribution for the discrete and continuum

models. The round markers are the discrete solutions for the distribution, the sequence pj at steady

state. The left plot shows solutions for different values of r = R and the right plot shows the

distribution where p0 = 0.1, 0.2 and 0.3 for r = R = 10.

to a steeper distribution. These attributes, as well as a comparison between the steady

state results for the discrete and continuum models, are shown in Figure 5. A close fit is

obtained for values of r above 10, and the agreement is still reasonable at r = 2.

We now perform a linear stability analysis on this steady solution, by considering the

evolution of a small perturbation to the steady state:

p(z, t) = ps(z) + B(z)e−αt + · · · , (5.15)

where α > 0 and B(z) � 1. Substituting this solution into the original PDE (5.12) and

linearising, to first order the PDE becomes, on rearrangement,

dB

B
=

[
(α− 1)

(ps + 1)2

R
+

2p′s
(ps + 1)

]
dz. (5.16)

Here, ′ denotes differentiation with respect to z. However, from (5.14), we have

(ps + 1)2

R
dz =

dps

−ps
, (5.17)

since p′sdz = dps and so (5.16) gives

dB

B
=

[
1 − α

ps
+

2

ps + 1

]
dps. (5.18)

Integrating this from z = 0, we obtain

B(z)

B(0)
=

(
ps(z)

p0,s

)1−α (
ps(z) + 1

p0,z + 1

)2

. (5.19)

If we impose α > 1, the perturbation decays in z and thus the steady state is stable as

expected.
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5.2 Dynamic solution

Since the equation (5.12) is hyperbolic, it can be solved by the method of characteristics.

Two sets of characteristics are found, one which transmits information from the zero initial

condition and one that transmits information from the dynamic boundary condition, in

the form

dt

1
=

dz
R

(1+p)2

=
dp

−p
. (5.20)

We introduce ξ to parameterise the characteristics, as the point at which a characteristic

crosses the t axis, where z = 0. Along the characteristics, p decays exponentially

p = p0(ξ)e(ξ−t), (5.21)

from (5.20). However, if the characteristic does not cross the positive t axis, then we apply

the zero initial condition instead of the boundary condition, implying that p = 0 along

such characteristics. Hence, we obtain the “zero” characteristics:

z = R(t− ξ). (5.22)

By integrating (5.20), the “non-zero” characteristics have the shape

z(t, ξ) = h(p0(ξ)e(ξ−t)) − h(p0(ξ)), (5.23)

where

h(p) = −R

(
log

(
p

p + 1

)
+

1

p + 1

)
. (5.24)

The evolution of p0(t) therefore drives the shape of the characteristics. Thus, the evolution

of p0, as discussed in Section 3.2 is critical to understanding the dynamic glycoform

distribution. Certain p0 trajectories in fact lead to crossed characteristics. This in turn

leads to a discontinuity in p(z) which manifests itself as a shock. In Figure 6(a), the initial

conditions correspond qualitatively to regime A in Section 3.2 and a shock is present;

whereas in Figure 6(b), the initial conditions correspond qualitatively to regime B and

a shock does not occur. In both cases, there is also reasonably good agreement with

the discrete case. The conditions determining the occurrence of a shock are investigated

below.

5.3 Shock condition

For a shock to occur, two adjacent characteristics must meet. Hence, for small δξ,

z(t, ξ) = z(t, ξ + δξ), (5.25)

and so, from the limit δξ → 0, they will meet if

∂

∂ξ
(z(t, ξ)) = 0, (5.26)
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Figure 6. A comparison of the dynamical solutions for the discrete and continuous models. The

left panels represent the discrete solution. The panels on the right show the characteristics, whilst

the coloured dots give contours of constant p. In (a), the large initial conditions lead to a shock,

whereas in (b), the small initial conditions do not. Here, r = R = 10.

and

(p′0 + p0)e
ξ−th′(p0e

ξ−t) + p′0h
′(p0) = 0. (5.27)

Thus, the condition becomes

p′0 = − (p0 + 1)2

(1 − eξ−t)(p0(1 + eξ−t) + 2
. (5.28)

The condition is used to find the time at which the characteristics first cross, and therefore

when the shock begins. This time is the minimum t for which the condition is satisfied,

which occurs at the most negative value of p′0. The value of ξ at which the minimum of

p′0 occurs gives the leading characteristic into the shock. In Figure 7, the shock condition

(5.28) is illustrated with differing values of t for two different sets of initial conditions. In

the right panel of Figure 7(a), the trajectory intersects with the shock conditions and thus

the characteristics begin to cross at t = 0.24, as shown by the red circular marker, which

is also shown in the left panel as the point where the characteristics begin. In Figure 7(b)

by contrast, the p0 trajectory does not intersect with the shock condition for any time,

and thus the characteristics shown in the left panel do not cross. This shock condition

indicates that a shock will only form if p0 decreases sharply, as occurs in regime A in

Section 3.2, but not in regimes B or C.
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Figure 7. The right panels show the conditions for a shock to form. The solid curves represent the

conditions for a shock to begin at varying values of t. From the bottom to the top, the values of

t are increasing. The dashed curve is the p0 trajectory corresponding to the initial conditions for x

and s. In (a), the large initial conditions mean the trajectory satisfies the conditions for a shock to

form and the circular marker shows the point at which the characteristics first cross. This marker in

the left panel also shows where the shock begins in the (t, z) plane. In (b), the large initial conditions

do not lead to a shock forming.

5.4 Shock position

Since the shock represents a discontinuity, the model needs to be modified to give a

physical solution. The simplest way of doing this is to add a small term including the

second z derivative, which is only felt close to the shock. This allows us to calculate the

speed of the shock, using say

∂p

∂t
+

R

(1 + p)2
∂p

∂z
= −p + ε

∂2p

∂z2
. (5.29)

The change of variables z − h(t) ≡ z̄, where z = h(t) is the position of the shock, yields

∂p

∂t
− h′(t)

∂p

∂z̄
+

R

(1 + p)2
∂p

∂z̄
= −p + ε

∂2p

∂z̄2
, (5.30)
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and so in the shock layer, i.e. where z̄ = εẑ, to leading order we have

−h′
∂p

∂ẑ
+

R

(1 + p)2
∂p

∂ẑ
=

∂2p

∂ẑ2
. (5.31)

We also have conditions at the edge of the shock layer where the solution for p is well

defined:

As ẑ → +∞, p → p+∞ = p0(ξ + ξshock)e
ξ+ξshock−t; (5.32)

As ẑ → −∞, p → p−∞ = p0(ξ − ξshock)e
ξ−ξshock−t. (5.33)

Additionally, as ẑ → ±∞, ∂p
∂ẑ

→ 0. By integrating (5.31) between +∞ and −∞, we obtain

h′(t) =
R

(1 + p+∞)(1 + p−∞)
(5.34)

which gives the slope of the shock. This is the geometric mean of the slope of the two

characteristics entering the shock. The “height” of the shock is p+∞ − p−∞, which has

a factor of eξ−t and therefore decays exponentially as t → ∞, and hence the shock

dissipates.

Thus, when the model has been modified in this way, the discontinuous shock is replaced

by a wave that moves forward in z and dissipates as time progresses. In the left panel of

Figure 8(a), this wave is visible in the results for the discrete model. In this case, a shock

has occurred in the corresponding continuous model, due to the rapid decrease in p0 visible

in the right panel. Thus, the glycosylation distribution is no longer always monotonically

decreasing, which potentially has impact on the quality of the product. For example, at

t = 0.9, p5 > p0, and hence there is more protein with a higher level of glycosylation. By

contrast, in Figure 8(b), a shock has not occurred in the corresponding continuous model

and there is no wave. The glycosylation distribution is always monotonically decreasing,

and thus there is no favourable point with higher levels of glycosylation.

6 Discussion

The glycosylation patterns of therapeutic proteins can be highly heterogeneous, and

controlling this heterogeneity is an important element in maintaining product quality in

the biopharmaceutical industry. Measuring the glycosylation distribution of therapeutic

proteins experimentally is a difficult task, and thus mathematical modelling is a useful tool

to further understanding. The complexity of detailed glycosylation models [12, 13, 16, 26]

has made them difficult to use in process bioreactor models. In the rare cases where

complex glycosylation models are used [15], the values of the parameters used are an

important consideration for practical application.

Our focus has been on the detailed analysis of the consequences to the bioreactor

of using a simple glycosylation model. The impact of the initial configuration of the

bioreactor on the aglycosylated protein production is fully understood, as well as the

impact this has on the glycosylation distribution. The simplicity of the model has al-

lowed us to analyse completely the behaviour of any number of product variants, which
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Figure 8. The left panels show solutions for the dynamic glycosylation distribution pj at given

time points. On the right, the aglycosylated protein production p0(t) is shown, with the time points

from the left panels also marked. In (a), the large inital conditions lead to a shock in the continuous

model, and this manifests itself as a wave in the discrete model. In (b), the small initial conditions

do not lead to a shock, and so there is no wavelike behaviour in the discrete model.

led to the continuous-mixture limit [1, 7], in which a denumerably infinite number of

product variants is considered. This limit has often produced insights that are hard

to obtain from discrete models [2], and that trend has held true in this model. The

occurrence of a shock in the hyperbolic PDE model, as shown in Figure 6, predicted

non-monotonic product distributions for certain cases, which also occurred in the discrete

analogue with a finite number of product variants, but would have been much harder to

discern.

Also, on practical applications, it is not known yet if shock formation for example occurs

in realistic configurations but the shock effect typifies the range where initial conditions

lead to considerable unusual features; these and other features raise interesting possibilities

for experimental study. The usefulness of the approximations involved also rests in their

demonstration that the responses and subtle structures arising during evolution are quite

different from what is encountered in the steady state, a matter taken up below in terms

of quality and quantity during product formation.

We now detail explicitly how the purposeful creation of a non-monotonic product

distribution generates product of higher quality and quantity than is found at steady
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state. The total product quantity is denoted

ptotal(t) =

n∑
j=0

pj(t). (6.1)

The quality of the product is defined in two ways: the mean level of glycosylation

qmean(t) =

∑n
j=0 jpj(t)

ptotal(t)
, (6.2)

and the fraction of product that is glycosylated above a critical level c

qthresh(t) =

∑n
j=c pj(t)

ptotal(t)
. (6.3)

Changing this critical level does not change the qualitative behaviour. Thus, using the

second quality metric, we also define the total amount of good quality product:

pqual(t) = ptotal(t)qthresh(t). (6.4)

In Figure 9, product quantity and quality are described as a function of time for two

different initial conditions, x0 = s0 = 20, which is similar to regime A (dashed line) and

x0 = s0 = 0.05, which is similar to regime C (solid line); these regimes were previously

discussed in detail in Section 3.2. The values shown are those in the bioreactor at the

specific time point, but since the reactor is a chemostat these are proportional to those in

the outflow which go on to be processed [24].

The top left panel shows the total product quantity, which evolves as predicted. For the

small initial conditions, as seen in (3.35) ptotal ∼ ε, and hence the growth to steady state

is slow and monotonic. However, for the large initial conditions detailed in (3.4), there

is initial fast growth, followed by a slower decline towards the steady state. Hence, the

glycoprotein production is larger before the reactor reaches steady state.

However, this also has an impact on product quality in a non-obvious fashion. As

seen in the top right and bottom left panels, with large initial conditions, both quality

measures rise quickly to a maximum before dropping to the steady state. Therefore, for a

significant period of time, the quality of the glycoprotein is higher. The maximum occurs

because of the shock formation in the equivalent continuous model – the glycosylation

distribution is then not monotonically decreasing, which therefore increases both quality

measures. The bottom right panel shows the total amount of good quality protein (the

amount glycosylated above the threshold), which again shows a maximum for the large

initial conditions. This quality increase due to difference in bioreactor configuration is not

obvious, and merits further investigation.

One reason we were able to analyse this model fully is its relatively small number

of parameters, which is further reduced by passing to the continuous limit of the PDE.

The results were shown to be quite generally valid, which is very difficult to show for

high-parameter systems, because the number of simulations needed to reveal all the

interactions grows exponentially with the number of parameters. A related benefit is that
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Figure 9. The quantity and quality of product formation with two differing initial conditions in the

bioreactor, from the discrete model. Two quality metrics are shown, the mean level of glycosylation

in the top right panel and the proportion above a threshold level of glycosylation in the bottom left

panel. The total good quality glycoprotein in the bottom right panel shows the amount of protein

that is glycosylated above that threshold. There are 20 glycoprotein variants and the glycosylation

threshold is 10. Here, rx = 10.

the parameters of our model could be easily determined from experiment, since it is

clearly not over-parameterised.

A natural extension is to apply the model to other reactor modes, especially the

fed-batch mode that is widely used in therapeutic production. The simple model for cell

growth could also be made more realistic, by accounting for cell heterogeneity. Production

bioreactors, with volumes exceeding 10m3, inevitably are not well-mixed, and have regions

of relatively low oxygen and substrate levels. The state of cells in these regions will also

be different from those in other regions. These model adaptations could be investigated

in future work.

The complex interactions amongst the product variants, even in this simple kinetic

model, have led to unexpected operating conditions leading to effective productivities

that are quite different from the corresponding steady-state values. Such results have

been discussed in the literature for very different chemical systems [5, 6]. The possibility

that such improved productivity could be attained for more realistic bioreactor modes is

intriguing, and we are studying such generalisations.
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