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Abstract

We investigate some properties of complex structures on Lie algebras. In particular, we focus on nilpotent
complex structures that are characterised by suitable J-invariant ascending or descending central series,
d j and dj, respectively. We introduce a new descending series pj and use it to prove a new characterisation
of nilpotent complex structures. We also examine whether nilpotent complex structures on stratified Lie
algebras preserve the strata. We find that there exists a J-invariant stratification on a step 2 nilpotent Lie
algebra with a complex structure.
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1. Introduction

In recent years, complex structures on nilpotent Lie algebras have been shown to be
very useful for understanding some geometric and algebraic properties of nilmanifolds.
In [3, 4], Cordero et al. introduced nilpotent complex structures, studied 6-dimensional
nilpotent Lie algebras with nilpotent complex structures and provided a classification.
Since the ascending central series is not necessarily J-invariant, they introduced a
J-invariant ascending central series to characterise nilpotent complex structures. More
recently, Latorre, Ugarte and Villacampa defined the space of nilpotent complex
structures on nilpotent Lie algebras and studied complex structures on nilpotent
Lie algebras with one-dimensional centre [10, 11]. They also provided a theorem
describing the ascending central series of 8-dimensional nilpotent Lie algebras with
complex structures. In [7], Gao et al. studied the relation between the step of a nilpotent
Lie algebra and the smallest integer j0 such that the J-invariant ascending central
series stops. Furthermore, they introduced a J-invariant descending central series,
which is another tool to characterise nilpotent complex structures. These papers use
the language of differential forms to characterise nilpotent complex structures. Our
proofs are purely Lie algebraic.
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Let G be a Lie group and g � TeG be its Lie algebra, which we always assume
to be real, unless otherwise stated. A linear isomorphism J : TG→ TG is an
almost complex structure if J2 = −I. By the Newlander–Nirenberg theorem [13], an
almost complex structure J corresponds to a left invariant complex structure on G if
and only if

[JeX, JeY] − [X, Y] − Je([JeX, Y] + [X, JeY]) = 0, (1.1)

for all X, Y ∈ g. Since we are interested only in Lie algebras in this paper, from now
on, we will write J for Je. We will refer to (1.1) as the Newlander–Nirenberg condition.

2. Complex structures on nilpotent Lie algebras

In this section, we consider some properties of the central series of a nilpotent Lie
algebra with complex structure J and define a J-invariant central series. We define
nilpotent complex structures, and relate their properties to the dimension of the centre
z of a nilpotent Lie algebra.

DEFINITION 2.1 (see, for example, [9]). Let g be a Lie algebra. The descending
central series and ascending central series of g are denoted by cj(g) and cj(g), respec-
tively, for all j ≥ 0, and defined inductively by

c0(g) = g, cj(g) = [g, cj−1(g)];

c0(g) = {0}, cj(g) = {X ∈ g : [X, g] ⊆ cj−1(g)}.

REMARK 2.2.

(i) Notice that c1(g) = Z(g), c1(g) = [g, g] and cj(g)/cj−1(g) = Z(g/cj−1(g)) for all j ≥
1, where Z(·) means the centre of a Lie algebra. Furthermore, cj(g)/cj+1(g) ⊆
Z(n/cj+1(g)) for all j ≥ 0. It is clear that cj(g) and cj(g) are ideals of g for all j ≥ 0.

(ii) A Lie algebra g is called nilpotent of step k, for some k ∈ N, if ck(g) = {0} and
ck−1(g) � {0}. We will denote nilpotent Lie algebras by n in this paper. (See, for
example, [8, Section 5.2] or [9].)

2.1. J-invariant central series and nilpotent complex structures. Following [3,
Definition 1], we define the J-invariant ascending central series d j for nilpotent
Lie algebras and introduce nilpotent complex structures on nilpotent Lie algebras.
Furthermore, we recall the definition of the J-invariant descending central series dj
[7, Definition 2.7].

DEFINITION 2.3. Let n be a Lie algebra with a complex structure J. Define a sequence
of J-invariant ideals of n by d0 = {0} and

d j = {X ∈ n : [X, n] ⊆ d j−1, [JX, n] ⊆ d j−1} (2.1)

for all j ≥ 1. We call the sequence d j the J-invariant ascending central series. The
complex structure J is called nilpotent of step j0 if there exists j0 ∈ N such that d j0 = n

and d j0−1 ⊂ n.
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We define inductively the J-invariant descending central series by

d0 = n, dj = [dj−1, n] + J[dj−1, n] for all j ≥ 1. (2.2)

REMARK 2.4.

(i) For the ascending J-invariant central series d j,

d j/d j−1 = Z(n/d j−1) ∩ JZ(n/d j−1) for all j ≥ 1.

In particular, d1 = z ∩ Jz, which is the largest J-invariant subspace of z and, if
J is nilpotent, then d1 � {0}. The nilpotency of J implies that the ascending
J-invariant central series d j of n is strictly increasing until d j0 = n. Furthermore,
if n is a step k nilpotent Lie algebra with a nilpotent complex structure J of step
j0, then k ≤ j0 ≤ 1

2 dim n (see, for example, [3, 7]).
(ii) By definition, if n admits a nilpotent complex structure, then n is nilpotent.
(iii) For all j ≥ 0, it is clear that cj(n) + Jcj(n) ⊆ dj; furthermore, dj � n and d j � n

where � is the notation for an ideal.
(iv) Let n be a Lie algebra with a complex structure J. Then J preserves all terms of

cj(n) if and only if d j = cj(n) for all j ≥ 0 [3, Corollary 5]. Similarly, J preserves
all terms of cj(n) if and only if dj = cj(n) for all j.

The following lemma provides a connection between J-invariant ascending and
descending central series.

LEMMA 2.5. Let n be a Lie algebra with a complex structure J.

(i) If J is nilpotent of step j0, then n/d j0−1 is Abelian. Conversely, if there exists j0 ∈ N
such that n/d j0−1 is Abelian, then J is nilpotent of step at most j0.

(ii) If J is nilpotent of step j0, then dj ⊆ d j0−j for all j ≥ 0. Conversely, if there exists
j0 ∈ N such that dj ⊆ d j0−j for all j ≥ 0, then J is nilpotent of step at most j0.

PROOF. For part (i), suppose that J is nilpotent of step j0. By definition, d j0 = n and
d j0−1 ⊂ n. Then Z(n/d j0−1) ∩ JZ(n/d j0−1) = n/d j0−1. It is obvious that Z(n/d j0−1) =
n/d j0−1. Hence, n/d j0−1 is Abelian.

Conversely, suppose that there exists j0 ∈ N such that n/d j0−1 is Abelian. Then {0} �
c1(n) ⊆ d j0−1. For all X ∈ n, we have [X, n] ⊆ d j0−1 and [JX, n] ⊆ d j0−1. We deduce that
n = d j0 and therefore J is nilpotent of step at most j0.

For part (ii), assume that J is nilpotent of step j0. By definition, d0 = n = d j0 . Next,
assume that ds−1 ⊆ d j0−s+1 for some s ∈ N. Then

ds = [ds−1, n] + J[ds−1, n] ⊆ [d j0−s+1, n] + J[d j0−s+1, n] ⊆ d j0−s + Jd j0−s = d j0−s.

Hence, by induction, dj ⊆ d j0−j for all j ≥ 0.
Conversely, suppose that there exists j0 ∈ N such that dj ⊆ d j0−j for all j ≥ 0. In

particular, d1 ⊆ d j0−1. By definition, c1(n) ⊆ d1. It follows that

[n/d j0−1, n/d j0−1] ⊆ [n, n] + d j0−1 = c1(n) + d j0−1 ⊆ d1 + d j0−1 ⊆ dj0−1,

and thus n/d j0−1 is Abelian. From Lemma 2.5, J is nilpotent of step at most j0. �
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REMARK 2.6. Under the condition of Lemma 2.5, if J is nilpotent of step j0, then
dj0−1 ⊆ d1 ⊆ z and dj0−1 is Abelian. Furthermore, there exists j0 ∈ N such that n/d j0−1

is Abelian if and only if dj ⊆ d j0−j for all j ≥ 0. This is proved by induction as in the
proof of Lemma 2.5.

COROLLARY 2.7. Let n be a step k nilpotent Lie algebra with a complex structure J.
Then J is nilpotent of step k if and only if dj ⊆ dk−j for all j ≥ 0.

PROOF. Suppose that J is nilpotent of step k. By Lemma 2.5, dj ⊆ dk−j for all j ≥ 0.
Conversely, assume that dj ⊆ dk−j for all j. Again by Lemma 2.5, J is nilpotent of step
at most k. Furthermore, it follows that {0} � ck−1(n) ⊆ dk−1. Therefore, dk−1 � {0} and
J is nilpotent of step k. �

REMARK 2.8. From Remark 2.6, J is nilpotent of step k if and only if n/dk−1 is Abelian.

We introduce a new descending central series whose descending ‘rate’ is slower
than that of cj(n) but faster than that of dj.

DEFINITION 2.9. Let J be a complex structure on a Lie algebra n. We define the
sequence pj inductively by

p0 = n and pj = [pj−1, n] + [Jpj−1, n] for all j ≥ 1. (2.3)

REMARK 2.10. It is clear that pj+1 ⊆ pj for all j ≥ 0. Furthermore, pj � n since [pj, n] ⊆
pj+1 ⊆ pj for all j ≥ 0.

LEMMA 2.11. Let n be a Lie algebra with a complex structure J. Then cj(n) ⊆ pj for all
j ≥ 0. Furthermore, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0.

PROOF. By definition, c0(n) = n = p0. It follows, by induction, that cj(n) ⊆ pj for all
j ≥ 0. Using (2.2), [dj−1, n] ⊆ dj. By definition, p0 = n = d0 and Jp0 = Jn = n = d0.
Next, suppose that ps ⊆ ds and Jps ⊆ ds for some s ∈ N. Then by (2.3),

ps+1 = [ps, n] + [Jps, n] ⊆ [ds, n] ⊆ ds+1 and Jps+1 ⊆ J[ds, n] ⊆ ds+1.

By induction, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0. �

REMARK 2.12.

(i) Notice that pj/pj+1 ⊆ Z(n/pj+1) for all j ≥ 0. Indeed, for all P ∈ pj and Y ∈ n, since
[P, Y] ⊆ pj+1, it is enough to deduce

[P + pj+1, Y + pj+1] = [P, Y] + pj+1 ⊆ pj+1.

Hence, pj/pj+1 ⊆ Z(n/pj+1).
(ii) By Lemma 2.11, pj + Jpj ⊆ dj for all j ≥ 0. We show that pj + Jpj � n for all j ≥ 0.

Indeed, for all P, P′ ∈ pj,

[P + JP′, n]︸��������︷︷��������︸
⊆[pj+Jpj,n]

⊆ [P, n]︸︷︷︸
⊆pj+1

+ [JP′, n]︸��︷︷��︸
⊆pj+1

⊆ pj+1 ⊆ pj+1 + Jpj+1 ⊆ pj + Jpj.
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Hence, pj + Jpj � n. From part (ii), we can show that pj + Jpj is a J-invariant
descending central series. Indeed, for all T = P + JP′ ∈ pj + Jpj and Y ∈ n,

[T + pj+1 + Jpj+1, Y + pj+1 + Jpj+1] ⊆ [T , Y] + pj+1 + Jpj+1 ⊆ pj+1 + Jpj+1.

THEOREM 2.13. Let n be a Lie algebra with a complex structure J. The following are
equivalent:

(i) J is nilpotent of step j0;
(ii) pj0 = {0} and pj0−1 � {0};
(iii) dj0 = {0} and dj0−1 � {0}.

PROOF. We first show that (i) and (ii) are equivalent. Assume that J is nilpotent of step
j0. From Lemma 2.5(ii), dj0−1 ⊆ d1. Hence, by Lemma 2.11,

pj0 ⊆ [dj0−1, n] ⊆ [d1, n] = {0}.

Thus, pj0 = {0}. Assume, by contradiction, that pj0−1 = {0}. We show by induction
that pj0−j−1 + Jpj0−j−1 ⊆ d j for all j ≥ 0. By definition, pj0−1 + Jpj0−1 = {0} = d0. Next,
suppose that pj0−s−1 + Jpj0−s−1 ⊆ ds for some s ∈ N. Then from Remark 2.12(ii),

[pj0−s−2 + Jpj0−s−2, n] ⊆ pj0−s−1 + Jpj0−s−1 ⊆ ds.

This implies, using (2.1), pj0−s−2 + Jpj0−s−2 ⊆ ds+1. By induction, pj0−j−1 + Jpj0−j−1 ⊆
d j for all j ≥ 0. In particular, let j = j0 − 1. Then n ⊆ d j0−1, which implies that J is
nilpotent of step j0 − 1 by definition. This is a contradiction. Therefore, pj0−1 � {0}.

Conversely, suppose that pj0 = {0} and pj0−1 � {0}. We show that J is nilpotent of
step j0. By definition, pj0 + Jpj0 = {0} = d0. It follows, by induction, that pj0−j + Jpj0−j ⊆
d j for all j ≥ 0. Hence, pj0−j ⊆ d j. In particular, let j = j0 − 1. Then p1 = [n, n] ⊆ d j0−1,
which implies that n/d j0−1 is Abelian. By Lemma 2.5, J is nilpotent of step at most j0.

We next show that d j0−1 � n. Assume, by contradiction, that n = d j0−1. We show by
induction that pj−1 ⊆ d j0−j for all j ≥ 1. By definition, p0 = n = d

j0−1. Next, suppose
that ps−1 ⊆ d j0−s for some s ∈ N. Then

ps = [ps−1, n] + [Jps−1, n] ⊆ [d j0−s, n] + [Jd j0−s, n] ⊆ d j0−s−1.

By induction, pj−1 ⊆ d j0−j for all j ≥ 1. In particular, let j = j0. We deduce that pj0−1 ⊆
d0 = {0}. This implies that pj0−1 = {0} which is a contradiction. Hence, d j0−1 � n. By
definition, J is nilpotent of step j0.

We now show (i) and (iii) are equivalent. Since J is nilpotent of step j0, it follows
from Lemma 2.5(ii) that dj ⊆ d j0−j for all j ≥ 0. In particular, let j = j0. By definition,
dj0 = d

0 = {0}. We show that dj0−1 � {0}. By Lemma 2.11, {0} � pj0−1 + Jpj0−1 ⊆ dj0−1.
Hence, dj0−1 � {0}.

Conversely, assume that dj0 = {0} and dj0−1 � {0}. From the definition, [dj0−1, n] ⊆
dj0 = {0}. Hence, {0} � dj0−1 ⊆ d1. Next, assume that dj0−s ⊆ ds for some s ∈ N. Then
by definition,

[dj0−s−1, n] ⊆ dj0−s ⊆ ds.
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By (2.1), dj0−s−1 ⊆ ds+1. By induction, dj0−j ⊆ d j for all j ≥ 0. Let j = j0. We find that
d0 = n ⊆ d j0 . Therefore, d j0 = n and J is nilpotent of step at most j0.

We next show that d j0−1 � n. Suppose not, that is, n = d j0−1. By definition, d0 = n =
d j0−1. It follows, by induction, that dj−1 ⊆ d j0−j for all j ≥ 1. Let j = j0. We find that
dj0−1 ⊆ {0}, a contradiction. Hence, d j0−1 � n and J is nilpotent of step j0.

Finally, since (i) is equivalent to both (ii) and (iii), we conclude that (ii) and (iii) are
equivalent. �

REMARK 2.14. Suppose that a Lie algebra n admits a nilpotent complex structure J of
step j0. Then

cj(n) + Jcj(n) ⊆ pj + Jpj ⊆ dj ⊆ d j0−j (2.4)

for all j ≥ 0.

It is shown, in [3, Corollary 7], that if cj(n) is J-invariant for all j ≥ 0, then J is
nilpotent. We will provide a different approach to this.

COROLLARY 2.15. Let n be a step k nilpotent Lie algebra with a complex structure J.
Suppose that all cj(n) are J-invariant. Then pj = cj(n) for all j ≥ 0. Furthermore, J is
nilpotent of step k.

PROOF. Since all cj(n) are J-invariant, by definition, p0 = n = c0(n). By induction, pj =

cj(n) for all j ≥ 0. Therefore, pk = ck(n) = {0} and pk−1 = ck−1(n) � {0}. By Theorem
2.13, J is nilpotent of step k. �

COROLLARY 2.16. Let n be a step k nilpotent Lie algebra with a nilpotent complex
structure J of step k. Suppose that ck−1(n) = z. Then z is J-invariant.

PROOF. Since J is nilpotent of step k, by (2.4),

z + Jz ⊆ dk−1 ⊆ d1 ⊆ z⇒ [z + Jz, n] = {0}.

Hence, Jz = z. �

COROLLARY 2.17. Let n be a Lie algebra with a nilpotent complex structure J of step
j0. Then for all j ≥ 1, dj0−j is not contained in d j−1.

PROOF. Since J is nilpotent of step j0, by Theorem 2.13, dj0−1 � {0} = d0. Hence, dj0−1
is not contained in d0. Next, suppose that dj0−s+1 is not contained in ds−2 for some
integer s ≥ 2. We show that dj0−s is not contained in ds−1. Suppose not, that is, dj0−s ⊆
ds−1. Then

dj0−s+1 = [dj0−s, n] + J[dj0−s, n] ⊆ [ds−1, n] + J[ds−1, n] ⊆ ds−2.

It follows that dj0−s+1 ⊆ ds−2. This is a contradiction. Hence, dj0−s is not contained in
ds−1. By induction, for all j ≥ 1, dj0−j is not contained in d j−1. �

We investigate the possible range of dim z for a Lie algebra n with a nilpotent
complex structure J.
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PROPOSITION 2.18. Let n be a non-Abelian Lie algebra of dimension 2n with a
nilpotent complex structure J. Then 2 ≤ dim z ≤ 2n − 2.

PROOF. Recall that d1 = z ∩ Jz, which is the largest J-invariant subspace of z. Since J
is nilpotent, it is clear that d1 � {0}. Furthermore, since d1 is J-invariant, it follows that
2 ≤ dim d1 ≤ dim z. Then the lower bound of dim z is 2.

Next, we show that the upper bound of dim z is 2n − 2. Since n is non-Abelian, it is
possible to find X, Y ∈ n such that 0 � [X, Y] ∈ c1(n). Then span{X, Y} is 2-dimensional
and span{X, Y} ∩ z = {0}. Hence, dim z ≤ 2n − 2.

In conclusion, 2 ≤ dim z ≤ 2n − 2. �

REMARK 2.19. From Proposition 2.18, we can further conclude that if dim z = 1, then
the complex structure J on n is nonnilpotent. In particular, the Lie algebra of n × n
upper triangular matrices does not admit a nilpotent complex structure.

3. Stratified Lie algebras with complex structures

In this section, we consider a special type of nilpotent Lie algebras: stratified Lie
algebras. Recent results on nilpotent Lie algebras with a stratification can be found in
[5, 6, 12]. We start with the definition of stratified Lie algebras.

DEFINITION 3.1. A nilpotent Lie algebra n is said to admit a step k stratification if
it has a vector space decomposition of the form n1 ⊕ n2 ⊕ · · · ⊕ nk, where nk � {0},
satisfying the bracket generating property [n1, nk] = {0} and

[n1, nj−1] = nj for all j ∈ {2, . . . , k}.

A Lie algebra n that admits a stratification is called a stratified Lie algebra. A complex
structure J on a stratified Lie algebra n is said to be strata-preserving if it preserves
each layer of the stratification.

REMARK 3.2. Let n be a step k stratified Lie algebra. By induction,

cj(n) =
⊕

j+1≤l≤k

nl for all j ≥ 0. (3.1)

PROPOSITION 3.3. Let n be a 2n-dimensional step n nilpotent Lie algebra for some
n ∈ N. Suppose that dim cj(n) = 2n − 2j for 1 ≤ j ≤ n. Then n does not admit a
stratification.

PROOF. Assume, by contradiction, that n admits a stratification. By (3.1), cj(n) =⊕
j+1≤l≤n nl and dim c1(n) = 2n − 2, so dim n1 = 2. Since n is a stratified Lie algebra,

n2 = [n1, n1]. Thus, dim n2 = 1 and dim c2(n) = 2n − 3 > 2n − 4. This is a contradic-
tion. �

PROPOSITION 3.4. Let n be a step k stratified Lie algebra with a complex structure J
and k ≥ 2. Suppose that dim n1 = 2. Then J is not strata-preserving.
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PROOF. Suppose, by contradiction, that there exists a strata-preserving complex struc-
ture J. Then dim nj ∈ 2N for all j ≥ 1. However, dim n1 = 2 implies that dim n2 = 1,
which contradicts the assumption that dim n2 ∈ 2N. Hence, n does not have a
strata-preserving complex structure. �

REMARK 3.5. Let n be a step 3 stratified Lie algebra with a strata-preserving complex
structure. Arguing in a similar way as in Proposition 3.4, we conclude that dim n � 4
or 6.

We show that there always exists a stratification on a step 2 nilpotent Lie algebra
with a strata-preserving complex structure J.

THEOREM 3.6. Let n be a step 2 nilpotent Lie algebra with a complex structure J.
Suppose that c1(n) is J-invariant. Then n admits a J-invariant stratification.

PROOF. Define a J-invariant inner product ψ by

ψ(X, Y) = φ(X, Y) + φ(JX, JY) for all X, Y ∈ n,
where φ is an inner product on n. We show that there exists a stratification on n
such that n1 and n2 are J-invariant. Define n2 = [n, n] and n1 = n

⊥
2 , the orthogonal

complement of n2 with respect to ψ. Then n2 = c1(n) is J-invariant and by definition,
n = n1 ⊕ n2. Also note that

n2 = [n1 ⊕ n2, n1 ⊕ n2] = [n1, n1].

This implies that n1 generates n. Thus, J is a complex structure that preserves both n1
and n2. �

REMARK 3.7.

(i) Let g be an arbitrary Lie algebra. A complex structure J on g is called bi-invariant
if J[X, Y] = [JX, Y] for all X, Y ∈ g. That is, J ◦ ad = ad ◦J. A complex structure
J is called Abelian if [X, Y] = [JX, JY] for all X, Y ∈ g. See, for example, [2, 14].
Notice that J preserves all terms of cj(n) and cj(n) if J is bi-invariant, while if J is
Abelian, J only preserves all terms of cj(n).

(ii) Suppose that n is a step k stratified Lie algebra with a bi-invariant complex
structure J. From (3.1), cj(n) =

⊕
j+1≤l≤k nl and it is clear that dim nj ∈ 2N for

all j ∈ {1, . . . , k}.

PROPOSITION 3.8. Let n be a step k stratified Lie algebra with a strata-preserving
complex structure J. Then Jcj(n) = cj(n) for all j ≥ 0 and J is nilpotent of step k.

PROOF. We first show that Jcj(n) = cj(n) for all j ≥ 0. Recall, from (2.1), that cj(n) =⊕
j+1≤l≤k nl and hence Jcj(n) = cj(n) for all j ≥ 0. By Corollary 2.15, J is nilpotent of

step k. �

It is known that every step 2 nilpotent Lie algebra may be stratified (see, for
example, [12]). We will provide another proof in Theorem 3.9, that every complex
structure on a step 2 nilpotent Lie algebra is nilpotent of step 2 or 3 (compare [7,
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TABLE 1. Nilpotency of J.

J Strata-preserving Nonstrata-preserving

Jz = z J nilpotent of step 2 J nilpotent of step 2
Jz � z J nilpotent of step 2 J nilpotent of step 3

Theorem 1.3] and [15, Proposition 3.3]). In what follows, we denote by k = n2 ∩ Jn2
the largest J-invariant subspace contained in n2 and we also remind the reader that
d1 = z ∩ Jz is the largest J-invariant subspace contained in z.

THEOREM 3.9. Let n = n1 ⊕ n2 be a step 2 nilpotent Lie algebra with a complex
structure J and a J-invariant inner product ψ.

(i) If k = {0}, then d1 is Abelian and J is nilpotent of step 2.
(ii) If {0} � k ⊂ n2, then J is nilpotent of step 3.
(iii) If n2 = k, then J is strata-preserving and nilpotent of step 2.

In conclusion, J is nilpotent of either step 2 or 3.

PROOF. We start with parts (i) and (ii) together. Suppose that Jn2 � n2. Then, p2 =

[Jn2, n] ⊆ n2. For all Z2 ∈ n2 and X, JX ∈ n, by the Newlander–Nirenberg condition,

[Jn2, n] � [JZ2, JX] = J[JZ2, X] ∈ J[Jn2, n]. (3.2)

This implies that p2 is J-invariant in n2. We now consider the following two
possibilities.

(i) If k = {0}, then from (3.2), p2 = {0}. By Theorem 2.13, J is nilpotent of step 2.
(ii) If {0} � k ⊂ n2, since {0} � p2 ⊆ k and Jp2 ⊂ n2, then by definition, p3 = {0}. By

Theorem 2.13, J is nilpotent of step 3.

Finally, for part (iii), suppose that n2 = k. We find that J preserves n2. By Theorem
3.6, J is strata-preserving. From Corollary 3.8, J is nilpotent of step 2.

In conclusion, J is either nilpotent of step 2 or 3. �

REMARK 3.10.

(i) If J is nilpotent of step 3, then there does not necessarily exist a J-invariant
stratification.

(ii) We recall, from [7, Theorem 1.3], if z is not J-invariant, then J is nilpotent of
step 3. From Theorem 3.9, we derive Table 1.

From Table 1, if J is nilpotent of step 2, then J is either strata-preserving
or centre-preserving. More precisely, we conclude that either k = n2 ∩ Jn2 = {0} or
Jn2 = n2. Indeed, if n is step 2 nilpotent Lie algebra with a nilpotent complex structure
J of step 2, J may not be strata-preserving.
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An even dimensional nilpotent Lie algebra with dim c1(n) = 1 has step 2. There does
not exist a J-invariant stratification for dimensional reasons. We give the following
result for dim c1(n) ≥ 2.

THEOREM 3.11. Let n be a step 2 stratified Lie algebra with a complex structure J.

(i) Suppose that dim n2 = 2. Then

(a) J is nilpotent of step 2;
(b) if dim d1 = 2, then Jn2 = n2.

(ii) Suppose that dim n2 = 2l for some l ≥ 2 ∈ N. Furthermore, assume that dim d1 ≤
4l − 2 and Jn2 � n2. Then J is nilpotent of step 3.

PROOF. By Theorem 3.9, J is nilpotent of either step 2 or 3.
Start with part (i). Assume that dim n2 = 2. For part (a), notice that J could be either

strata-preserving or not. If J is strata-preserving, by Theorem 3.9(iii), J is nilpotent of
step 2. Otherwise, J is not strata-preserving. Since dim n2 = 2, it follows that k = {0}.
Then by Theorem 3.9(i), J is Abelian and hence nilpotent of step 2.

Next, for part (b), recall that d1 = z ∩ Jz is the largest J-invariant subspace of z.
Suppose that n2 is not J-invariant. Then k = {0}. From part (i), J is nilpotent of step 2.
It follows, from Theorem 2.13, that d2 = {0} and d1 ⊆ d1. Butdim d1 = dim n2 ⊕ Jn2 =

4 > dim d1. This is a contradiction. Hence, Jn2 = n2.
We now show part (ii). Notice that l � 1. Otherwise dim n2 = dim d1 = 2. This

implies that Jn2 = n2. Suppose, by contradiction, that J is not nilpotent of step 3.
Hence, J is nilpotent of step 2. Then from Remark 3.10(ii), k = {0} and by definition,
d1 = n2 ⊕ Jn2 ⊆ d1. However, dim d1 = 4l > dim d1. This is a contradiction. Hence,
k � {0}. By Theorem 3.9(ii), J is nilpotent of step 3. �

REMARK 3.12. We can extend the statement of part (i) into a higher step stratification
as follows. Let n be a step k stratified Lie algebra with a nilpotent complex structure J
of step k. Suppose that dim nk = 2 and dim d1 = 2. Then Jnk = nk.

COROLLARY 3.13. Let n = n1 ⊕ n2 be a step 2 stratified Lie algebra with a complex
structure J such that dim n2 = 2. Then J is centre-preserving or strata-preserving or
both. Furthermore, suppose that 2 ≤ dim z ≤ 3 or dim z = 4 and Jz � z. Then there
exists a J-invariant stratification.

PROOF. By Theorem 3.11, J is nilpotent of step 2. Then by Table 1, Jn2 = n2 or Jz = z
or both if n2 = z.

Furthermore, dim d1 = 2 since 2 ≤ dim z ≤ 3 or dim z = 4 and Jz � z. By Theorem
3.11(ii), Jn2 = n2. Furthermore, by Theorem 3.6, there exists a J-invariant stratifica-
tion. �

Suppose that n is a 6-dimensional step 2 nilpotent Lie algebra with a complex
structure. In [4, Table 1], there is a complete classification of complex structures on
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these algebras. However, no information is provided on whether or not J preserves the
strata.

COROLLARY 3.14 [1, 4]. Let n be a 6-dimensional step 2 nilpotent Lie algebra with a
complex structure J such that dim c1(n) = 2. Then n admits a J-invariant stratification.

PROOF. By Theorem 3.9 and Proposition 2.18, J is nilpotent and 2 ≤ dim z ≤ 4. If
dim z = 4, dim c1(n) = 1 and J is not strata-preserving due to dimensional reasons.
We omit this case. Next, assume that dim z ≤ 3. The result is a direct consequence
of Corollary 3.13. �

In what follows, we focus on higher step stratified Lie algebras with complex
structures.

PROPOSITION 3.15. Let n be a step 3 stratified Lie algebra with a complex structure J.
Suppose that Jn3 = n3. Then J is nilpotent of step 3.

PROOF. By the definition of the descending central series pj in (2.3), it follows
that {0} � p2 = n3 + [Jc1(n), n]. On the one hand, suppose that [Jc1(n), n] = {0}. We
deduce that p2 = n3 and hence p3 = {0} by definition. Using Theorem 2.13, J is
nilpotent of step 3. On the other hand, suppose that [Jc1(n), n] � {0}. Then by the
Newlander–Nirenberg condition, for all U ∈ c1(n) and X, JX ∈ n,

0 � [JU, JX] − J[JU, X]︸�������������������︷︷�������������������︸
∈[Jc1(n),n]+J[Jc1(n),n]

= [U, X] + J[U, JX]︸����������������︷︷����������������︸
∈n3

.

Hence, [Jc1(n), n] ⊆ n3. This implies that p2 ⊆ n3 and therefore Jp2 ⊆ n3. Then p3 =

[p2, n] + [Jp2, n] = {0}. Again by Theorem 2.13, J is nilpotent of step 3. �

PROPOSITION 3.16. Let n be an 8-dimensional step 3 stratified Lie algebra with a
complex structure J such that 2 dim n3 = dim c1(n) = 4. Suppose that Jn3 � n3 and
dim z ≤ 3. Then J is nilpotent of step 4. Furthermore, d2 = n3 ⊕ Jn3.

PROOF. Since n3 ⊆ z, dim z ≥ 2. By [10, Corollary 3.12], J is nilpotent. Then using
Remark 2.4(i), 3 ≤ j0 ≤ 4, where j0 is the nilpotent step of J. Suppose, by contradiction,
that J is nilpotent of step 3. It follows, from equation (2.4), that n3 + Jn3 ⊆ d2 ⊆ d1 ⊆ z.
On the one hand, since dim z ≤ 3, dim d1 = 2. On the other hand, since Jn3 � n3
and dim n3 = 2, n3 ∩ Jn3 = {0} and therefore dim n3 ⊕ Jn3 = 4 > dim d1. This is a
contradiction. So J is nilpotent of step 4.

We now show that d2 = n3 ⊕ Jn3. It is sufficient to show that d2 ⊆ n3 ⊕ Jn3. By
definition,

d2 = [d1, n] + J[d1, n] = span{[T , X] + J[T ′, X′] : for all T , T ′ ∈ d1, for all X, X′ ∈ n}.
For all T , T ′ ∈ d1, we may write T = U + JV and T ′ = U′ + JV ′ where U, V , U′, V ′ ∈
c1(n). Then

0 � [T , X] + J[T ′, X′] = [U, X] + J[U′, X′]︸����������������︷︷����������������︸
∈n3⊕Jn3

+[JV , X] + J[JV ′, X′]. (3.3)
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By the Newlander–Nirenberg condition,

0 � [JV , X] + J[JV , JX]︸�������������������︷︷�������������������︸
∈[Jc1(n),n]+J[Jc1(n),n]

= J[V , X] − [V , X] ∈ n3 ⊕ Jn3.

Hence, [JV , X] + J[JV ′, X′] ∈ n3 ⊕ Jn3. From (3.3), [T , X] + J[T ′, X′] ∈ n3 ⊕ Jn3.
Hence d2 ⊆ n3 ⊕ Jn3. In conclusion, d2 = n3 ⊕ Jn3. �
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