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Recent numerical simulations of dynamo action resulting from rotating convection
have revealed some serious problems in applying the standard picture of mean field
electrodynamics at high values of the magnetic Reynolds number, and have thereby
underlined the difficulties in large-scale magnetic field generation in this regime.
Here we consider kinematic dynamo processes in a rotating convective layer of
Boussinesq fluid with the additional influence of a large-scale horizontal velocity
shear. Incorporating the shear flow enhances the dynamo growth rate and also leads
to the generation of significant magnetic fields on large scales. By the technique of
spectral filtering, we analyse the modes in the velocity that are principally responsible
for dynamo action, and show that the magnetic field resulting from the full flow relies
crucially on a range of scales in the velocity field. Filtering the flow to provide a true
separation of scales between the shear and the convective flow also leads to dynamo
action; however, the magnetic field in this case has a very different structure from that
generated by the full velocity field. We also show that the nature of the dynamo action
is broadly similar irrespective of whether the flow in the absence of shear can support
dynamo action.
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1. Introduction
One of the outstanding theoretical problems in astrophysical magnetohydrodynamics

(MHD) is to account for the generation of global-scale magnetic fields, as detected
in many cosmic bodies. These are generally held to be produced by a hydromagnetic
dynamo process, in which the magnetic fields are maintained against resistive effects
by induction due to the plasma motions. It is, however, hard to provide a convincing
theoretical explanation of how such large-scale fields – i.e. those with a significant
component on scales much larger than that of the plasma motions responsible for their
generation – can be generated.

The traditional theoretical approach to explaining the generation of large-scale
magnetic fields is via mean field electrodynamics (see e.g. Moffatt 1978; Krause &
Rädler 1980). Here, the evolution of the mean (large-scale) field is governed by the
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mean induction equation,

∂B0

∂t
=∇ × (U0 × B0)+∇ × E + η∇2B0, (1.1)

where B0 represents the mean magnetic field, U0 the mean velocity, E the mean
electromotive force (emf) and η the magnetic diffusivity. The mean emf is defined by

E = 〈u× b〉, (1.2)

where u and b represent the (small-scale) fluctuating velocity and magnetic fields, and
angle brackets denote a spatial average over intermediate scales. The theory proceeds
on the assumption that E is a linear functional of B0, which leads to the expansion

Ei = αijB0j + βijk
∂B0j

∂xk
+ · · · . (1.3)

(Hughes & Proctor (2010) discuss the implications of a more general expansion
procedure involving also temporal derivatives of the mean field.) In the kinematic
regime, in which the field is assumed to exert no back-reaction on the flow, the
components αij and βijk depend solely on the properties of the velocity field and on
the magnetic diffusivity. The symmetric part of the α tensor (the so-called ‘α-effect’)
leads to field amplification, and can be non-zero only in flows that lack reflectional
symmetry, such as helical flows. For isotropic turbulence, βijk = βεijk and the scalar
β can then be identified as a turbulent diffusivity; in general though, βijk has a much
more complicated interpretation (see Krause & Rädler 1980). In most astrophysical
applications, the mean field is considered to be axisymmetric; it can then be written,
in cylindrical polar coordinates (s, φ, z), as B0 =∇ × (A(s, z)eφ)+ B(s, z)eφ . Under the
strongest simplifying assumptions of isotropic turbulence and an azimuthal mean flow,
the mean field is then described by the following two equations:

∂A

∂t
= αB+ η̃(s, z)

(
∇2 − 1

s2

)
A, (1.4)

∂B

∂t
= s (BP ·∇) ω + (∇ × (αBP)) · eφ + η̃

(
∇2 − 1

s2

)
B+ 1

s
∇η̃ ·∇(sB), (1.5)

where BP denotes the poloidal field, sω(s, z)eφ is the mean flow and η̃(s, z)= η + β is
the total magnetic diffusivity. It is necessary for dynamo action that the coupling terms
in these equations are non-zero; the dynamo cycle depends crucially on the generation
of poloidal field from toroidal, and, conversely, the generation of toroidal field from
poloidal. The former requires the α-effect, while the latter can result either from the
α-effect or from shearing of poloidal field by the differential rotation, the ω-effect. The
resulting dynamos are designated, respectively, as α2 or αω-dynamos. Closed form
expressions for α and β can be obtained only under simplifying assumptions, notably
small values of the magnetic Reynolds number on the fluctuating scale, or short
correlation times for the flow. Neither of these applies, however, in the astrophysical
context. In consequence, astrophysical modelling typically involves adopting plausible,
albeit arbitrary, spatial forms and amplitudes of α and β.

Recent research has focused on attempts to measure the α-effect directly in
numerical simulations of turbulent flows, either in forced helical turbulence (e.g.
Cattaneo & Hughes 1996; Brandenburg 2001; Cattaneo, Hughes & Thelen 2002)
or in rotating turbulent convection (e.g. Cattaneo & Hughes 2006; Hughes & Cattaneo
2008). Mean field coefficients can only be properly determined if there is adequate
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Dynamos in rotating sheared convection 397

separation between the small scales of the turbulence and the system size; for
convective turbulence, this is most readily accomplished by adopting the relatively
simple system of plane-layer Boussinesq convection. The study of large-scale dynamo
action in this system has quite a long history, dating back to the pioneering papers
of Childress & Soward (1972) and Soward (1974). Subsequently, there have been
a number of numerical investigations of the problem (e.g. St Pierre 1993; Jones
& Roberts 2000; Rotvig & Jones 2002; Stellmach & Hansen 2004). These have
considered magnetic field generation in domains with an O(1) aspect ratio, driven by
mildly supercritical convection at fairly rapid rotation rates; the resulting dynamo can
then be interpreted as a mean field α2-dynamo.

More recently, with ever-improving computational performance, it has become
possible to investigate more turbulent regimes at larger aspect ratios (e.g. Cattaneo
& Hughes 2006; Käpylä, Korpi & Brandenburg 2010). The paper of Cattaneo &
Hughes (2006) suggested two significant problems with the standard mean field
picture. The first is that when the convection is sufficiently vigorous, it acts as a
small-scale dynamo, despite the flow being significantly helical. There is no tendency
to generate large-scale field; indeed, the spectrum of magnetic energy is essentially
identical to that resulting from the small-scale dynamo generated by turbulent non-
rotating convection (Cattaneo 1999; Cattaneo & Hughes 2006). Attempts to measure
the α-effect by imposing a uniform horizontal field for turbulent convection just below
the dynamo threshold, but still at high magnetic Reynolds number Rm, reveal the
second problem. Despite averages being taken over many convective cells, the α-effect
exhibits significant temporal variations about a mean value that is much smaller than
the characteristic speeds of the flow. Surprisingly, a coherent helicity distribution does
not lead to a significant α-effect.

However, rather different conclusions were reported for the convective dynamo
simulations of Käpylä et al. (2010), who obtained significant mean fields and sizeable
α-effects. The differences can be attributed to a number of factors: (i) the α-effect
depends on the horizontal correlations of the turbulence – which, in turn, depend on
the degree of supercriticality and the rotation rate; (ii) different calculations employ
different magnetic boundary conditions; and (iii) there are different definitions of the
α-effect and the means of measuring it – e.g. the traditional imposed field method
(Moffatt 1978), the test field method (Schrinner et al. 2007) and the ‘resetting’ method
(Ossendrijver et al. 2002). A detailed discussion of all of these issues can be found in
Hughes, Proctor & Cattaneo (2011).

Although the precise nature of the dynamo mechanism in these simulations remains
uncertain, there is no doubt that large-scale fields are observed in nature, and it
is therefore important to identify other mechanisms that may lead to such fields.
Since most astrophysical bodies possess a large-scale differential rotation, it is natural
to incorporate a large-scale shear flow into the convection model and explore the
consequences for any dynamo action. In this paper we carry out such a programme,
building on the results of Hughes & Proctor (2009) and Proctor & Hughes (2011),
who were the first to show that a combination of small-scale convection and large-
scale velocity shear could lead to magnetic field growth on large scales. In order
to obtain scale separation between the convection and the shear flow, we consider a
unidirectional horizontal flow, dependent only on the other horizontal direction. We
concentrate in this paper solely on the kinematic dynamo problem, in which the
back-reaction of the magnetic field on the velocity via the Lorentz force is ignored;
thus we examine in some detail the nature of the generation mechanism, but we do not
address the means by which magnetic field growth is saturated.
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The paper is organized as follows. In § 2 we discuss the various ways in which a
large-scale shear flow may affect the dynamo process. The mathematical formulation
of the problem is contained in § 3. In § 4 we consider the introduction of a velocity
shear into a convective flow that, in the absence of shear, does not act as a dynamo;
we describe first the characteristics of the flow and then those of the magnetic field
that it generates. Section 5 looks in more detail at the dynamo process, through
considering ‘filtered’ flows, in which only certain scales in the velocity are retained.
In § 6 we consider a more vigorous convective state than in § 4, one that supports
dynamo action even in the absence of shear, in order to determine whether this is a
crucial factor in the nature of the ensuing dynamo action. In the concluding § 7 we
discuss the implications of our results and their relation to parallel studies of dynamos
driven by a combination of forced turbulence and uniform shear.

2. The influence of velocity shear on convective dynamos
Before describing our results it is instructive to consider the various possible ways

in which a large-scale velocity shear may influence the nature of dynamo action driven
by rotating convection. A number of possibilities suggest themselves.

At high Rm, rotating convective turbulence, in the absence of shear, can induce
large local emfs, but these are decorrelated in space and time, leading to a small
net α-effect. In consequence, any dynamo field generated in extended domains is
predominantly small-scale (Cattaneo & Hughes 2006). It is though conceivable that a
coherent large-scale shear may impose more order on the correlations and, in so doing,
enhance the α-effect. Alternatively, even if the mean emfs remain very small, a large
shear may be able to compensate for a feeble α-effect (or a more complicated mean
field process) to make a viable two-scale dynamo; in the classical mean field picture it
is the product of α and ω that controls the efficiency of the dynamo.

A rather different possibility is that enhanced dynamo action may depend on the
interaction of a wide range of scales, from the largest scale of the shear to the
convective cell size. In an extreme version of this, dynamo action might result solely
from the interactions between the large-scale shear and the induced motions on a
similarly large scale; this would then be effectively a small-scale (i.e. one-scale)
dynamo, but on the scale of the shear flow rather than that of the convection. We shall
interpret our findings with these possibilities in mind, considering cases for which the
convection in the absence of shear does, and does not, act as a dynamo.

3. Formulation
Following Cattaneo & Hughes (2006) and Hughes & Cattaneo (2008), we consider

thermally driven convection in a three-dimensional Cartesian layer (0 < x, y < λd,
0 < z < d) of Boussinesq fluid rotating about the vertical. The layer has angular
velocity Ω , density ρ, kinematic viscosity ν, thermal diffusivity κ and magnetic
diffusivity η. This basic model is then extended by the inclusion of a horizontal flow
of the (dimensional) form

U0 = U0 f (y/d)x̂ with f (y/d)= cos
2πy

λd
, (3.1)

where the total velocity is now u + U0. This is accomplished by replacing u with
u + U0 in the governing equations except for the viscous term (equivalent to forcing
the flow via the momentum equation, but eliminating viscous transients). We adopt a
periodic flow for consistency with the periodic horizontal boundary conditions adopted
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in Cattaneo & Hughes (2006). For the purposes of this paper we shall restrict attention
to kinematic dynamo action, so that the back-reaction of the Lorentz forces on the
convection is neglected, as is appropriate for very weak fields.

Following standard practice, we adopt the layer depth d, the thermal relaxation time
d2/κ and the temperature drop across the layer 1T as the units of length, time and
temperature, respectively. All velocities are scaled with κ/d; in particular, U0 below
is now dimensionless. The governing non-dimensional equations for the velocity u,
temperature perturbation θ and magnetic field B can then be expressed as

(∂t − σ∇2)u+ u ·∇u+ U0( f (y)∂xu+ f ′(y)uyx̂)+ σTa1/2ẑ× u=−∇p+ σRa θ ẑ, (3.2)

(∂t − ζ∇2)B+ u ·∇B+ U0 f (y)∂xB= B ·∇u+ U0 f ′(y)Byx̂, (3.3)

(∂t −∇2)θ + u ·∇θ + U0 f (y)∂xθ = u · ẑ, (3.4)
∇ ·B=∇ ·u= 0, (3.5)

where w is the vertical velocity, and θ denotes the temperature fluctuations relative to
a linear background profile (e.g. Chandrasekhar 1961). As noted in the introduction,
we consider here only the kinematic dynamo problem, and thus the Lorentz force is
omitted in the momentum equation (3.2); the problem is then linear in the magnetic
field, the scaling of which is arbitrary. Five dimensionless parameters appear explicitly
in the governing equations: the Rayleigh number Ra = gα̃β̃d4/κν (where g is the
gravitational acceleration, α̃ is the coefficient of thermal expansion and β̃ is the
superadiabatic temperature gradient), which measures the strength of thermal buoyancy
relative to dissipation; the Taylor number Ta = 4Ω2d4/ν2; the kinetic and magnetic
Prandtl numbers

σ = ν
κ

and σm = ν
η
; (3.6)

and the dimensionless speed U0. Additionally, there is the choice of the aspect ratio λ.
The purely hydrodynamic solution is evolved until it reaches a stationary state,

starting from an initial condition of a small perturbation to the shear flow (3.1). We
then consider the dynamo action resulting from such stationary states. It should be
noted that although a flow with a large-scale component (i.e. with the same spatial
dependence as the ‘target flow’ (3.1)) does indeed occur, its amplitude may differ
appreciably from U0; the hydrodynamic state that ensues depends on interactions
between the shear flow and convection and, possibly, on instabilities of the shear flow
itself. We also introduce the derived quantity

S= 2πU0`/λurms, (3.7)

where ` and urms are estimates, respectively, of the horizontal scale of the convection
and of the typical velocity in the absence of shear; S provides a measure of the
competition between shear and convection.

In the horizontal directions, we assume that all fields are periodic with periodicity
λ. In the vertical, we consider standard illustrative boundary conditions on the
temperature and velocity fields, namely that the boundaries are perfect thermal
conductors, impermeable and stress-free. Formally these correspond to

θ = w= ∂zu= ∂zv = 0 at z= 0, 1. (3.8)

The natural average in this system is one over horizontal planes, which involves
averaging over many convective cells. From the point of view of generating large-scale
fields with the simplest vertical structure, it is therefore preferable to choose perfectly
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conducting boundary conditions, for which the field is purely horizontal, thereby
admitting field configurations with only one node in the vertical. Thus we choose

Bz = ∂zBx = ∂zBy = 0 at z= 0, 1. (3.9)

Equations (3.2)–(3.5) are solved numerically by standard pseudo-spectral methods
optimized for machines with parallel architecture. Details concerning the numerical
methods can be found in Cattaneo, Emonet & Weiss (2003).

Cattaneo & Hughes (2006) and Hughes & Cattaneo (2008) explored dynamo action
and mean emf generation in systems with the fixed values of Ta = 500 000, σ = 1,
σm = 5 and for values of Ra between 80 000 (slightly above the onset of convection)
and 1 000 000; the onset of dynamo action is at Ra ≈ 170 000. Hughes & Proctor
(2009) and Proctor & Hughes (2011) examined the influence of a range of values
of shear amplitude U0 for the same fixed values of Ta, σ and σm, for Ra = 150 000
(for which there is no dynamo in the absence of shear) and aspect ratio λ = 5. Here
we consider extended spatial domains, with λ = 10 and, for a few runs, λ = 20,
and consider both Ra = 150 000 and Ra = 250 000 (for which there is a small-scale
dynamo in the absence of shear). For Ra = 150 000, urms ≈ 60 (in the absence of
shear), and the width of the convective cells is comparable with, though a little smaller
than, the layer depth; taking l ≈ d leads to S ≈ U0/600 in this case. In §§ 4 and 5 we
concentrate on the case of Ra = 150 000; similarities and differences for the case of
Ra = 250 000 are discussed in § 6. The numerical resolution and parameter values for
all the simulations presented in this paper are summarized in table 1.

4. Flows and fields in rotating sheared convection
4.1. Influence of shear on convection

Understanding the interactions between a shear flow and rotating convection is a
complex problem, of relevance for both stellar and planetary physics. The majority
of work has focused on the case of a shear flow dependent on the vertical
direction, arising from relative motion of the horizontal boundaries or, alternatively,
from a fictitious force (see e.g. Hathaway, Toomre & Gilman 1980; Hathaway &
Somerville 1983, 1986; Kropp & Busse 1991; Matthews & Cox 1997; Cox 1998). The
hydrodynamical problem of a horizontally dependent shear flow, the case we consider
here, may also be of relevance in planetary atmospheres, and has been examined in the
nonlinear regime by Hathaway & Somerville (1987).

On increasing the amplitude U0 of the target shear flow, various regimes can be
identified in the nature of the resulting convection. These are demonstrated in figure 1,
which plots the ratio of the kinetic energy in the target flow to the total kinetic energy
as a function of time for three different values of U0, and figure 2, which shows
the corresponding density plots of the temperature fluctuations close to the upper
boundary, together with that of the non-sheared state. For U0 = 300 (shear parameter
S ≈ 0.5) the convection is such as to decrease the energy in the shear mode from its
target value; note from figure 1(a) that, at least for this value of U0, a long temporal
integration is needed in order to determine the final stationary state. In figure 2(b), it is
possible to detect a large-scale vortex underlying the small-scale convection. For O(1)
values of S, the kinetic energy in the shear flow is comparable with its target value,
and this mode dominates the total kinetic energy (e.g. figure 1b). (It should be noted
that the hydrodynamic state has been evolved for much longer than shown in figure 1b,
with no transition to a different state.) As shown in figure 2(c), the shear leads to
a clear elongation of the convective cells, together with significant inhomogeneity
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FIGURE 1. Temporal evolution of the energy in the target shear flow mode (i.e. the mode
with wavenumbers ky = 1, kx = kz = 0) normalized by the total kinetic energy of the flow:
(a) U0 = 300; (b) U0 = 1000; (c) U0 = 2000.

Ra Ta U0 σ σm λ Nx × Ny × Nz

1.5× 105 5× 105 0 1 5 10 512× 512× 97
1.5× 105 5× 105 100 1 5 10 512× 512× 97
1.5× 105 5× 105 200 1 5 10 512× 512× 97
1.5× 105 5× 105 300 1 5 10 512× 512× 97
1.5× 105 5× 105 400 1 5 10 512× 512× 97
1.5× 105 5× 105 500 1 5 10 512× 512× 97
1.5× 105 5× 105 600 1 5 10 512× 512× 97
1.5× 105 5× 105 700 1 5 10 512× 512× 97
1.5× 105 5× 105 800 1 5 10 512× 512× 97
1.5× 105 5× 105 900 1 5 10 512× 512× 97
1.5× 105 5× 105 1000 1 5 10 512× 512× 97
1.5× 105 5× 105 2000 1 5 10 512× 512× 97
1.5× 105 5× 105 1000 1 5 20 1024×1024×97
1.5× 105 5× 105 2000 1 5 20 1024×1024×97

2.5×105 5× 105 0 1 5 10 512× 512× 97
2.5×105 5× 105 200 1 5 10 512× 512× 97
2.5×105 5× 105 400 1 5 10 512× 512× 97
2.5×105 5× 105 600 1 5 10 512× 512× 97
2.5×105 5× 105 800 1 5 10 512× 512× 97
2.5×105 5× 105 1000 1 5 10 512× 512× 97
2.5×105 5× 105 1200 1 5 10 512× 512× 97
2.5×105 5× 105 1400 1 5 10 512× 512× 97
2.5×105 5× 105 1630 1 5 10 512× 512× 97

TABLE 1. Summary of the parameter values and numerical resolution for the simulations.

between the two halves of the domain in the y direction. For 0 < y < λ/2, the
vorticity augments the underlying vorticity due to the rotation of the layer, whereas for
λ/2< y< λ it tends to reduce it. The net underlying vorticity in the z-direction can be
expressed in dimensionless form as

Ta1/2 + 2πU0

λ
sin

2πy

λ
. (4.1)
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(a) (b)

(c) (d)

FIGURE 2. (Colour online) Snapshots of the temperature perturbations close to the upper
boundary for Ra = 150 000 and four different values of the shear flow: (a) U0 = 0; (b)
U0 = 300; (c) U0 = 1000; (d) U0 = 2000. White denotes hot fluid, black cool fluid. The target
shear flow is U0 = U0 cos(2πy/λ)x̂, where x is the direction of the abscissa.

Clearly (when U0 is positive) the underlying vorticity has the smallest absolute value
when y = 3λ/4. The vorticity dynamics in the two halves of the layer is similar if U0

is very small or large; the maximum disparity between the two halves of the layer (in
y) occurs when U0 ∼ λTa1/2/2π≈ 1125 here. In figure 2(c), U0 is close to this optimal
value, and it can be seen that convection is indeed most vigorous in the neighbourhood
of y = 3λ/4. For U0 . 500 (S . 1), convection dominates in the sense that there are
no streamlines extending across the domain. For larger values of U0 (e.g. figure 2c)
a clear ‘channel flow’ is established in 0 < y < λ/2. For a range of values of the
shear amplitude U0, this shear-dominated flow remains stable. However, at yet larger
values of U0, the shear becomes unstable and the resulting flow reverts to being less
shear-dominated, as can be seen by figure 1(c) for U0 = 2000. At these larger values
of U0, a large coherent vortex forms and the flow has a very different structure, with
the convective cells expelled from the vortex (see figure 2d). In this paper we shall
concentrate principally on the nature of the dynamo action resulting from values of
U0 for which the convection and shear flow can coexist (e.g. figure 2c) and for which
there is a clear separation in their spatial scales. Figure 3 gives a measure of the
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(a)

(b)

FIGURE 3. (Colour online) Snapshots of the measure of planarity P in the yz-plane for two
values of the shear flow: (a) U0 = 0; (b) U0 = 1000. Each plot is scaled individually between
P = 1 (white) and the minimum value of P in the flow (black).
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FIGURE 4. Snapshots of the horizontally averaged relative flow helicity h(z) for y < λ/2
(dashed line) and y> λ/2 (solid line) for U0 = 1000. Exact antisymmetry about the midplane
(z= 0.5) is recovered by time averaging.

planarity P for the flows with U0 = 0 and U0 = 1000, where P is defined as the ratio
of the horizontal to total kinetic energies,

P(y, z)= 〈U
2
H〉
〈U2〉 , (4.2)

with angle brackets denoting an average over x. It can be seen that for U0 = 1000
the flow is essentially two-dimensional for much of the domain, with patches of
fully three-dimensional flows centred around the turning points in the target shear
flow. For Boussinesq convection, the helicity distribution is antisymmetric about the
mid-plane (see e.g. Childress & Soward 1972; Cattaneo & Hughes 2006). However,
the introduction of a shear flow in a rotating frame allows for differences between the
domains y < λ/2 and y > λ/2; this is illustrated by figure 4, which shows the relative
helicity h(z) for the two halves of the y-domain, where

h(z)= 〈u ·∇ × u〉
〈u2〉1/2〈(∇ × u)2〉1/2 , (4.3)
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FIGURE 5. Dynamo growth rates versus U0 for Ra= 150 000 and λ= 10 (asterisks). The
diamonds show the growth rates when the shear amplitude is 2U0 with λ= 20.

with the averages taken over horizontal planes. The relative helicity is greater where
the total vorticity is smaller, but the flow is more three-dimensional.

4.2. Kinematic dynamo action
Figure 5 plots the dynamo growth rate as a function of U0, for Ra= 150 000. It can be
seen that the incorporation of velocity shear facilitates dynamo action, with the critical
value of the shear amplitude given by U0 ≈ 200 (i.e. S ≈ 0.3). Further increases in U0

serve to enhance the growth rate, although there is no simple power-law relationship.
The levelling off in the growth rate for 500 . U0 . 700 corresponds to a change in
the nature of the flow regime, as described above. We have also calculated the dynamo
growth rates for a domain that is twice as wide (λ = 20); a comparison between the
domains of differing sizes then requires U0 to be replaced with 2U0, to keep the
same value of S, according to definition (3.7). For the smaller value of S there is
little influence of the box size, whereas at the larger value of S, although the growth
rates are similar, there is a clear influence of the domain size, with the dynamo in
the larger domain being more efficient. In any case, we do not necessarily expect
close agreement, since although the shear S is the same for the λ = 10, U0 = 1000
and λ = 20, U0 = 2000 runs, the convective structures are independent of the box
size whereas the region of, say, positive shear scales with λ. The dynamo growth
rates are also consistent with those found in Hughes & Proctor (2009) in a domain
of half the width (so the values of S in that paper should here be multiplied by two
for comparison). The more extensive data that we now have make it clear that the
relationship between growth rate and shear is more complicated than the linear one
with which the earlier data were consistent.

Figure 6, which plots Bx at the top of the layer, illustrates how the magnetic
field changes with increasing U0. At U0 = 200, essentially the smallest value of the
shear flow that allows for dynamo action, although there is already some evidence of
asymmetry between the two halves of the y-domain, there is still significant magnetic
energy in 0 < y < λ/2 (a 28–72 % split in the energy of the Bx field between the two
halves of the y-domain). At U0 = 300, the underlying vortex depicted in figure 2(b)
has a clear influence, introducing a strong large-scale variation in magnetic field in the
x-direction. With a further increase in U0 to U0 = 400, the flow enters the regime of
O(1) values of S, and the field shows a clear asymmetry between the two halves of the
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(a) (b) (c)

FIGURE 6. (Colour online) Density plots of Bx at the upper boundary, for increasing values
of U0: (a) U0 = 200; (b) U0 = 300; (c) U0 = 400. Each plot is scaled individually; grey
(colour) scale as in figure 7.

y-domain. The field persists in this form for a range of U0, until the shear amplitude is
sufficiently great as to trigger an instability (figure 2d).

Figure 7 shows snapshots of Bx and By in the xy-plane at the upper boundary, for
U0 = 500 and U0 = 1000. A movie of such plots (included as supplementary material
available at http://dx.doi.org/10.1017/jfm.2012.584) reveals clearly the advection of the
magnetic field pattern by the velocity shear. Two important features can be noted.
One is that the dynamo action is strongly inhomogeneous, being concentrated in
λ/2< y< λ. The other is that the stronger shear leads to pronounced stretching of the
field structures in the x-direction.

In order to obtain a quantitative description of the scales on which the field is being
generated, two-dimensional Fourier transforms of B2

x and B2
y are constructed, after

both depth averaging and time averaging and having removed the exponential growth
of the field. Figure 8 shows these plots for the range of horizontal wavenumbers
0 6 kx, ky < 32. The plots are scaled individually, but it should be pointed out that
the bulk of the magnetic energy resides in Bx, as is perhaps to be expected from a
flow that is strongly influenced by a shear U(y)x̂; for the parameter values of figure 8,
〈B2

x〉/〈B2〉 ≈ 0.77, 〈B2
y〉/〈B2〉 ≈ 0.14 and 〈B2

z 〉/〈B2〉 ≈ 0.09 (where angle brackets denote
an average over the fluid volume and time). The distribution over wavenumbers
displays a marked asymmetry in kx and ky for 〈B2

x〉, but is roughly symmetric for
〈B2

y〉. For the former case, which provides the principal contribution to the overall
magnetic energy, the dominant modes are kx = 1, ky = 1, 2, 3; the fall-off with energy
with increasing kx is significantly greater than that with increasing ky. An alternative
representation of the distribution of the magnetic energy over wavenumbers is provided
by figure 9, which shows the one-dimensional spectra of B2

x and B2
y having summed

over either kx or ky. These spectra should be compared with that for the case of no
velocity shear (e.g. figure 6 of Cattaneo & Hughes 2006), in which the magnetic
energy is peaked at the scale of the convective cells and falls off rapidly to both larger
and smaller scales.

Having demonstrated the broad features of the dynamo-generated field, and shown
that a field with large-scale structure in the horizontal plane is indeed produced, it is
important to seek an understanding of the underlying physical processes responsible
for field generation. In particular, is it possible to distinguish between the various
scenarios outlined in § 2? To this end, in the following section we try to answer this
question by comparing the dynamo properties of the actual convective flows with those
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(a) (b)

(c) (d )

0

FIGURE 7. (Colour online) Snapshots of the two components of the horizontal magnetic field
at the upper boundary: (a) Bx for U0 = 500; (b) By for U0 = 500; (c) Bx for U0 = 1000; (d) By
for U0 = 1000. The plots for each U0 are scaled individually; the grey (colour) scale ranges
from −max|Bx| to max|Bx|.

(a) (b)

FIGURE 8. (Colour online) Density plots of the time-averaged and depth-averaged Fourier
transform of the magnetic energy in (a) Bx and (b) By for U0 = 1000. The horizontal and
vertical axes are the x and y wavenumbers, respectively, in the range 0 6 k < 32. The plots are
scaled individually, from dark/blue (highest energy) to pale/yellow (lowest).
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FIGURE 9. One-dimensional spectra of the energy in (a) Bx and (b) By. The solid (dashed)
lines show the spectra as a function of kx (ky) after averaging over y (x).

of related flows obtained by the removal of selected Fourier modes, a process we term
‘filtration’.

5. Filtered flows
5.1. The filtration process

The process of filtration that we employ is essentially that of low- and high-pass
filtration, first introduced into the study of turbulence by Obukhov (1941). In the
context of isolating the important modes for dynamo action, the idea of spectral
filtering has been explored by Tobias & Cattaneo (2008).

By virtue of the periodicity in the x and y directions, all variables can be expressed
as a sum of Fourier modes of the form

f (z, kx, ky, t) exp[± i(2πλ−1(kxx+ kyy))], (5.1)

where kx and ky are integers. If we denote a cutoff wavenumber by kcut, then the
filtration takes one of the following forms:

(a) short-wavelength (SW) cutoff (i.e. long wavelengths retained): set to zero the
amplitudes of all modes for which k =max(|kx|, |ky|) > kcut;

(b) long-wavelength (LW) cutoff (i.e. short wavelengths retained, plus the shear): set to
zero the amplitudes of all modes for which k = min(|kx|, |ky|) < kcut, but retain the
mode (0, 1) corresponding to the shear. It is worth stressing that the amplitude of
the (0, 1) mode emerges from the interaction of the convection with the imposed
shear of amplitude U0; for the flows considered in this section, the energy in the
(0, 1) mode is ∼90 % of the target energy.

The filtration is applied in kx and ky since we are addressing the issues of scale
separation and large-scale field generation in the horizontal plane. For completeness,
we have also performed some runs in which filtration has been applied to the vertical
spectrum, but we have found that this further filtration makes no significant difference
to the properties of the magnetic fields that result.
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(a) (b)

(c) (d )

FIGURE 10. (Colour online) Density plots of the vertical velocity close to the upper
boundary for: (a) SWC30; (c) SWC20 and (d) SWC10. (b) The residual small-scale flow
removed by the filtration SWC30. Panels (a–c) are on the same scale; the residual velocity
in panel (b) is of much smaller amplitude and is scaled independently. White denotes upward
velocity, black falling velocity.

Whichever the filtration adopted, the procedure is as follows:

(i) solve the momentum and heat equations at full resolution;
(ii) at each time step, perform the filtering to produce a filtered velocity uf together

with the shear;
(iii) solve the induction equation (3.3) at full resolution with u replaced by uf .

It is helpful to introduce some notation: thus SWCn denotes a short-wave cutoff at
kcut = n and LWCn a long-wave cutoff at kcut = n. In the following subsections we
investigate the short- and long-wave cutoffs for a range of values of kcut for the case of
Ra= 150 000, U0 = 1000.

5.2. Short-wavelength cutoffs
The influence on the convection of filtration via a short-wavelength cutoff is exhibited
clearly in plots of the vertical velocity, as shown in figure 10. As is to be expected,
notable changes come about when k−1

cut is comparable with the number of convective
cells across the domain. For the example shown in figure 10, there is little readily

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

58
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.584


Dynamos in rotating sheared convection 409

0.2 0.4 0.6 0.8 1.0

Time
0 1.2

104

102

100

10–2

10–4

M
ag

ne
tic

 e
ne

rg
y

106

10–6

(c) (b) (a)

(d)
(e)
( f )

(g)

FIGURE 11. Magnetic energy versus time, with U0 = 1000 and for various short-wave
cutoffs SWCn: (a) all modes retained; (b) n = 20; (c) n = 10; (d) n = 5; (e) n = 4; (f ) n = 3;
(g) n= 2.

appreciable difference between the SWC30 flow and the full flow; the high-frequency
residual velocity that is removed by the filtration is shown in figure 10(b).

Before discussing the influence of short-wave cutoffs on flows with shear, it is
important to understand the dynamo properties of an unsheared flow subject to the
same filtration process. For the case of Ra = 150 000, which, recall, does not act as
a dynamo in the absence of shear, the dynamo properties initially improve as kcut is
decreased, owing to the removal of the damping effect of the small scales; indeed,
there is a range of kcut around 20 for which the filtered flow acts as a dynamo.
However, when kcut is sufficiently small so as to exclude the energy-containing modes
of the convection, the filtered flow becomes too feeble to support dynamo action.

Analogous behaviour occurs in the sheared case, as shown in figure 11, which
plots the magnetic energy versus time for various filtrations with U0 = 1000. As in
the unsheared case, dynamo action is enhanced slightly by the removal of just the
smallest scales. In comparison with the unsheared case, the value of kcut at which a
significant reduction in the growth rate occurs is now rather smaller, reflecting the
importance of modes of scale intermediate between that of the shear and that of the
original (unsheared) convection; figure 2 clearly shows these longer scales. The SWCn
(n = 3, 4, 5) flows are still able to support dynamo action, although the growth is
weak and somewhat irregular. It is important to note that the dynamo fails if kcut = 2,
thereby showing that the dynamo process does not depend on the largest velocity
scales alone, but must rely crucially on velocity scales comparable with those of the
convection.

The fact that the growth rate of, for example, the SWC20 and SWC10 dynamos is
similar to that resulting from the full, unfiltered flow does not, of itself, mean that
the same dynamo mode is being excited. It is, in addition, necessary to examine the
morphology of the magnetic field generated. Comparison of figure 12 with figure 7,
which show the same localization and striated structures, does though confirm that the
dynamo mechanism is identical in the filtered and unfiltered cases.

5.3. Long-wavelength cutoffs
The idea behind implementing long-wavelength cutoffs is to obtain velocity fields with
a strict scale separation between the large scale of the shear and a much smaller
convection scale; in this way we can find to what extent the dynamo is of a classical
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(a) (b) (c)

FIGURE 12. (Colour online) Density plots of Bx at the upper boundary, for various
short-wave cutoffs SWCn: (a) n= 20; (b) n= 10; (c) n= 5. Grey (colour) scale as in figure 7.
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FIGURE 13. Magnetic energy versus time for various long-wave cutoffs LWCn: (a) all modes
retained; (b) n= 20; (c) n= 10; (d) n= 5; (e) n= 4; (f ) n= 3; (g) n= 2.

mean field αω type. It should first be noted that there is no dynamo action resulting
from flows with long-wave cutoffs that also discard the target shear mode. Although
perhaps not too surprising, this rules out the possibility that the influence of the shear
on the small scales is such that the small scales, of themselves, become capable of
acting as a dynamo.

Figure 13 shows the temporal growth of the magnetic energy for LWCn flows for
a range of values of n. For sufficiently large n, the small scales that are retained, in
conjunction with the shear mode, do not support dynamo action. However, the n = 20
flow does act as a dynamo, with a very well-defined uniform growth of the field with
time, albeit with a slow growth rate. As can be seen from figure 13, decreasing n
further leads to more efficient dynamo action, with the dynamo growth rate of the
LWC5 flow becoming comparable with that of the full convective flow. It is surprising
that dynamo action for the LWC2 flow is much weaker than that for the full flow; it
is though possible to shed some light on this by consideration of the structure of the
magnetic field generated.

Simply from inspection of the growth rate, we cannot rule out the possibility that
the dynamo mechanisms of the full flow and the LWC flows are the same; for
example, the growth rates of LWC10 and LWC5 are very similar to that of the full
flow. However, in this case, examination of the magnetic field reveals that of the LWC
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(a) (b) (c)

FIGURE 14. (Colour online) Density plots of Bx at the upper boundary, for various long-wave
cutoffs LWCn: (a) n= 20; (b) n= 10; (c) n= 5. Grey (colour) scale as in figure 7.

dynamos to be very different in spatial structure from that resulting from the full flow.
Figure 14 shows Bx at the upper boundary for three LWC flows. In marked contrast
to the magnetic field generated by the full flow (figure 7), the field is essentially
zero in λ/2 < y < λ and is confined to two bands in 0 < y < λ/2. It is of interest
to note that magnetic field is expelled from regions of vigorous flow in λ/2 < y < λ
and from the region of strong shear in 0 < y < λ/2. Figure 14 exhibits a large-scale
modulation in y in addition to small-scale fluctuations. Therefore, it might be thought
that such a dynamo could be understood within the mean field framework with an
averaging that allows for y modulation. However, direct calculation of the α-effect
reveals that α is large where the field is weak and so it is not clear that such a
mean field description is appropriate. The anomalous behaviour of the LWC2 flow in
figure 13 can be understood in terms of the existence of two different types of dynamo
mechanism. The field generated by LWC2 is of the type exhibited in figure 14 for
the higher LWCn modes, and for which the addition of low-n modes is eventually
detrimental to dynamo action. It is only when the n = 1 modes are included that the
true dynamo is recovered.

6. Higher Rayleigh number
For Ra & 170 000 (when Ta = 500 000), the convective flow supports kinematic

dynamo action even in the absence of an imposed shear flow; as shown by Cattaneo
& Hughes (2006), the generated field is small scale. The standard formulation of mean
field dynamo theory proceeds on the assumption that small-scale dynamo action is not
sustainable and that any small-scale field results only from the interaction between a
large-scale field and a small-scale velocity. Although here the situation is somewhat
different in terms of the description of the large-scale magnetic field, it is nonetheless
of interest to explore whether the results of §§ 4 and 5 are critically dependent on the
lack of dynamo action in the absence of shear, or if they are more widely applicable.
Here we concentrate on the case of Ra= 250 000.

Figure 15 plots the dynamo growth rate versus U0 for Ra= 250 000. Here the higher
Rayleigh number leads to a greater kinetic energy in the absence of the shear flow,
leading to S ≈ U0/1000. The largest value of U0 shown is U0 = 1630, which has the
same value of the shear parameter S as the flow with U0 = 1000 at Ra = 150 000.
The incorporation of shear is again destabilizing, with a similar, non-straightforward,
dependence of the growth rate on U0 as exhibited at the lower Rayleigh number
(cf. figure 5). Three different regimes can be identified. For U0 . 400 (S . 0.4), the
shear is not sufficiently strong to change the basic convection pattern and hence
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FIGURE 15. Dynamo growth rates versus U0 for Ra= 250 000 and λ= 10.

(a) (b)

FIGURE 16. (Colour online) Snapshots of the temperature perturbations close to the upper
boundary for Ra = 250 000 and two different values of the shear flow: (a) U0 = 600;
(b) U0 = 1630.

the resulting dynamo action. For 500 . U0 . 1100, the small-scale convection is
modulated by large-scale vorticity, as shown in figure 16(a). For U0 & 1200, the
convective pattern clearly reflects the influence of the target shear flow, as shown in
figure 16(b). Note that, although figures 2(c) and 16(b) show flows with the same
formal value of the shear parameter S, and are indeed similar in structure, the shear
at the lower Ra is slightly more dominant in stretching out the convective cells in
0< y< λ/2.

Comparison of the growth rate dependences and convective flow patterns for the
two different Rayleigh numbers suggests that, once the shear flow is influential, the
underlying dynamo mechanism is the same in the two cases; the fact that the flow
acts as a dynamo at the higher Ra in the absence of shear would therefore appear
immaterial. To confirm this, it is though also necessary to look at the structure of
the magnetic field generated at the higher value of Ra and to verify that the effects
of the filtration process are similar to those discussed in § 5. As for the example
with the lower Rayleigh number, we have examined the nature of the dynamo action
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(a) (b) (c)

FIGURE 17. (Colour online) Density plots of Bx at the upper boundary, for Ra= 250 000:
(a) all modes retained; (b) SWC10; (c) LWC10. Grey (colour) scale as in figure 7.

resulting from short- and long-wavelength cutoffs of the flow. The overall trend is
found to be the same. For the short-wavelength cutoffs SWCn, the dynamo growth
rate first increases as n decreases, is maximized at some n in the range 10 < n < 20,
and then decreases rapidly for n < 5; thus a range of spectral modes is required for
efficient dynamo action. As shown in figure 17(a,b), the magnetic field generated by
the short-wavelength cutoffs is consistent with that generated by the entire flow. For
long-wavelength cutoffs LWCn, dynamo action ensues for n . 30 (a somewhat higher
value of n than for the Ra = 150 000 case) and the growth rate initially increases as n
decreases; again though as can be seen from figure 17(c), the resulting magnetic field
is of a very different form from that generated by the full flow.

7. Discussion
The research reported in this paper has allowed us to gain a full understanding

of the phenomenon first described in Hughes & Proctor (2009), which indicated
that the incorporation of a large-scale shear flow into rotating convection promoted
the generation of large-scale magnetic fields. We have examined the importance for
field generation of the various scales in the flow by considering spectrally filtered
velocity fields. Our main result, which we believe to be potentially significant in
terms of understanding astrophysical magnetic field generation, is that the observed
dynamo process depends for its existence on the entire range of scales, from the
shear flow down to the scale of the convective cells. In § 2 we speculated that
the introduction of shear might enhance the efficacy of the two-scale (mean field)
dynamo process for turbulent flows at high Rm. Instead, we see that the dynamo
is produced by a completely different mechanism, with no scale separation. It thus
remains an open question as to whether the mean field ansatz is ever appropriate in
these circumstances.

Our first aim was to confirm the earlier result that the addition of shear to a
convective flow led to an enhancement of dynamo action. The growth rate of the
dynamo increases with the magnitude of the shear S. Numerical studies of forced
turbulence with shear by Yousef et al. (2008a,b), together with a calculation for a
simple model by Heinemann, McWilliams & Schekochhin (2011), suggest that, over a
range of shear amplitudes, the growth rate of such a dynamo should increase linearly
with the shear, though Proctor (2012) has shown analytically that the linear scaling
cannot continue to arbitrarily large values of S. In the present case, for both values of
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the Rayleigh number studied, the growth with S is far from linear. This is because the
nature of the flow changes significantly as the shear is increased, as discussed in § 4.1.

We considered two different values of the Rayleigh number. For Ra = 150 000,
the convective flow is not a dynamo, and so the effect of shear is crucial. For
Ra= 250 000, on the other hand, there is a small-scale dynamo even in the absence of
shear. Adding shear to this flow enhances dynamo action and produces a large-scale
component to the magnetic field, but the morphology of the evolving fields is very
similar when S = O(1). This suggests the interpretation that the action of the shear,
whether on a small-scale ‘non-dynamo’ or a small-scale dynamo, is very similar in
both cases.

While Yousef et al. (2008b) considered forced rotating turbulence with shear, the
earlier paper (Yousef et al. 2008a) has no superimposed rotation, and yet the dynamo
appears to function in a very similar manner in both cases. This led us to undertake
further computations to look at the effects of shear on dynamo action in a non-rotating
layer. However, in the absence of rotation, the imposed shear turns out to be readily
destabilized by the convective flow and, at least with our target shear flow, it was not
possible to attain a stable state with O(1) values of the shear parameter S. The same
problem precluded any systematic investigation of the ‘shear-current effect’ (see e.g.
Rogachevskii & Kleeorin 2007; Sridhar & Singh 2010).

We have tried to understand the nature of the dynamo process by considering
‘filtered’ flows. Clearly the dynamo is not much influenced by the smallest scales of
flow, but removing scales intermediate between the shear and the turbulence has a
huge effect on the form of the growing field, but not necessarily on the growth rate.
One might expect a true mean field dynamo in the latter case, but in fact the largest
scale of variation of the field is much smaller than the scale of the shear and, although
a reduced model might be constructed by averaging along the direction of the shear
flow, the resulting emf cannot be represented by a mean field coefficient of the usual
kind. So, paradoxically, the creation of conditions for a mean field dynamo precludes
a dynamo of mean field type! All scales of flow except the smallest are needed to
describe the dynamo process that is observed. To date, we have only considered a
simple filtering process in Fourier space, isotropic in the horizontal directions. Given
that anisotropy is introduced by the shear flow, it would be interesting to consider
filtrations for which kcut is different in the x and y directions. More broadly, further
physical insights may be gained by employing a wavelet filtration, where one could
filter in space as well as in scale of variation.

There are of course other ways of combining shear and convection to produce a
dynamo. For example, shear can be created through an Ekman layer in a rotating
convecting fluid (e.g. Ponty, Gilbert & Soward 2001; Zhang, Gilbert & Zhang
2006); alternatively, the shear might be produced as a thermal wind by horizontal
temperature gradients. It would be of interest to know what scales of motion control
the appearance of the dynamo in these cases.

The present study has investigated only the kinematic phase of the dynamo; the
effects of the Lorentz force on the flow, which will eventually lead to equilibration,
have been ignored. The final form of the magnetic field and the relation of the
shear amplitude to the final magnetic energy are, however, of considerable interest.
Our earlier results (Hughes & Proctor 2009) suggest that, somewhat surprisingly, the
final field amplitude is almost unaffected by the shear provided that the dynamo is
sufficiently vigorous. We intend to return to this question in future work.
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and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron.
Astrophys. 394, 735–745.

PONTY, Y., GILBERT, A. D. & SOWARD, A. M. 2001 Kinematic dynamo action in large magnetic
Reynolds number flows driven by shear and convection. J. Fluid Mech. 435, 261–287.

PROCTOR, M. R. E. 2012 Bounds for growth rates for dynamos with shear. J. Fluid Mech. 697,
504–510.

PROCTOR, M. R. E. & HUGHES, D. W. 2011 Competing kinematic dynamo mechanisms in rotating
convection with shear. In Astrophysical Dynamics: From Stars to Galaxies, Proceedings IAU
Symposium No. 271 (ed. N. H. Brummell, A. S. Brun, M. Miesch & Y. Ponty), pp. 239–246.
Cambridge University Press.

ROGACHEVSKII, I. & KLEEORIN, N. 2007 Shear-current effect in a turbulent convection with a
large-scale shear. Phys. Rev. E 75, 046305.

ROTVIG, J. & JONES, C. A. 2002 Rotating convection-driven dynamos at low Ekman number. Phys.
Rev. E 66, 056308.
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