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Abstract We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through

odd (or more general) points. Following categorical principles, we derive a conceptual framework for

their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups
and orbits through general points. In this setting, we show that the coadjoint orbits always admit

a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of

Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an
odd direct integral of characters and construct universal families of representations, parametrised by a

supermanifold, for two different super variants of the Heisenberg group.
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1. Introduction

The present formulation of the theory of actions and representations of Lie supergroups

does not appropriately address all relevant phenomena: Consider the basic example of

the additive Lie supergroup G of an odd-super vector space g. The coadjoint action is

trivial, so the orbit through the unique point 0 ∈ g∗ is again a point. Similarly, G has only

the trivial irreducible unitary representation. Although this confirms the idea of the orbit
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method in a narrow sense, there is no hope of decomposing the regular representation

of G on OG =
∧

g∗ by these means, nor can one reasonably expect thereby to construct

representations of G in any generality.

This suggests that it is crucial to broaden the notion of points. Following Grothendieck,

a T -valued point of a space X is a map x : T −→ X . This idea is based on considering an

ordinary point as a map ∗ −→ X where ∗ is a singleton, allowing the parameter space

to acquire additional degrees of freedom. The G-isotropy (or stabiliser) through x should

then be a ‘group bundle’ Gx −→ T , and the orbit a ‘bundle’ G · x −→ T with a fibrewise

G-action.

For any Lie supergroup G with Lie superalgebra g acting on a supermanifold X and

any x : T −→ X , we obtain the following.

Superorbit Theorem. The isotropy supergroup Gx exists as a Lie supergroup over T if and

only if the orbit morphism is of locally constant rank, which is the case if and only if the

OT -module x∗(Ag) is a locally direct summand of x∗(TX ). Here, Ag is the fundamental

distribution generated by the fundamental vector fields.

Moreover, in this case, the orbit G · x −→ T × X through x exists as an equivariant

local embedding of supermanifolds over T .

For the special case of orbits through ordinary points, the Superorbit Theorem

was first proved by Kostant [31] in the setting of Lie–Hopf algebras, by Boyer and

Sánchez-Valenzuela [12] for differentiable Lie supergroups, and by Balduzzi et al. [10]

using a functorial framework and super Harish–Chandra pairs. We recover the case of

usual orbits through ordinary points as a special case.

In the case of the coadjoint action of G on g∗ and of a T -valued point f of g∗, we prove

the following result.

Supersymplectic Orbit Form Theorem. If G f exists as a Lie supergroup, then the

coadjoint orbit G · f admits a canonical supersymplectic structure over T .

We stress that our point of view allows us to stay within the realm of even

supersymplectic forms, whereas in previous work [39, 40], it was necessary to work with

inhomogeneous symplectic forms.

Furthermore, we introduce a general framework of supergroup representations over

T to extend Kirillov’s method [30] to orbits through T -valued points. As a proof of

concept, we apply this to derive a Plancherel formula for the odd Abelian supergroup g,

presenting its regular representation as an ‘odd direct integral’ of ‘unitary’ characters. In a

similar vein, we construct representations for two super versions of the three-dimensional

Heisenberg group which arise by assigning suitable parities to the generators in the

commutation relation [x, y] = z. In this case, we find ‘universal’ parameter spaces T and

‘universal’ representations over T . Not surprisingly, these bear a striking similarity to the

Schrödinger representation.

The idea that irreducible representations should be constructed from orbits on some

universal G-space is suggested by the general philosophy of geometric quantisation. The

case where this works best is that of nilpotent Lie groups, where it was established by

Kirillov in the form of his orbit method.
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The goal of extending this method to Lie supergroups was first addressed by Kostant,

in his seminal paper [31]. In fact, as he remarks in his note [32]: Lie supergroups are

‘likely to be [. . . ] useful [objects] only insofar as one can develop a corresponding theory

of harmonic analysis’. Similarly, Kac [29, 5.5.4] poses the problem of constructing Lie

supergroup representations via the orbit method, in particular infinite-dimensional ones.

For nilpotent Lie supergroups through ordinary points, it was shown by Salmasian [38]

(and further investigated by Neeb–Salmasian [37]) that indeed, there is a one-to-one

correspondence of coadjoint orbits through ordinary points, i.e. through elements of g∗
0̄
,

with irreducible unitary representations in the sense of Varadarajan et al. [13, 14].

As remarked at the beginning of this introduction, this does not yet attain the goal

of a theory of harmonic analysis for Lie supergroups, even in the Abelian case. These

limitations are overcome by considering orbits through T -valued points.

A framework for the study of orbits through T -valued points was formulated in the

category of schemes by Mumford in his influential monograph [36], based on foundational

work by Grothendieck and Gabriel. Although these ideas remain fruitful, the algebraic

theory cannot be simply transferred to the differentiable category, and indeed the

technical obstructions are formidable. At the same time, the differentiable setting is

necessary for the envisaged applications: While all Lie groups are real analytic, any

nonanalytic (complete) vector field gives rise to an action which is not analytic (much

less algebraic). Such situations are ubiquitous, particularly in the context of solvable Lie

groups and their super generalisations.

A careful study of coadjoint orbits (through regular semi-simple elements) of the

orthosymplectic and special linear supergroups in the algebraic category was conducted

by Fioresi and Lledó in [21]. The first one to consider coadjoint orbits through noneven

functionals was Tuynman [39, 40] in the form of a case study. His considerations are

geared towards a specific example and formulated for DeWitt type supermanifolds.

It is not clear whether this can be built into a general procedure and translated to

Berezin–Kostant–Leites supermanifolds. Moreover, in his approach, he has to consider

inhomogeneous ‘symplectic’ forms.

We conclude the introduction by summarising the paper’s contents. We present general

categorical notions for the study of actions in § 2. We emphasise the technique of base

change known from algebraic geometry. This allows, among other things, to give a

general definition of isotropy (or stabiliser) groups at T -valued points. In § 3, we review

categorical quotients in the setting of differentiable and analytic superspaces and suggest

a weak notion of geometric quotients. In order to treat quotients by group actions and

equivalence relations on an equal footing, and with a view towards future applications, we

introduce and employ the language of groupoids and their quotients. In § 4, we specialise

the discussion to supermanifolds. We prepare our discussion of isotropy supergroups at

T -valued points by generalising the notion of morphisms of constant rank to relative

supermanifolds (over a possibly singular base). We prove a rank theorem in this context

(Proposition 4.14); this is based on a family version of the inverse function theorem

presented in Appendix A (Theorem A.1), also valid over a singular base. We investigate

when the orbit morphism through a general point has constant rank (Theorem 4.16)

and, as an application, show the representability of isotropy supergroups under general
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conditions (Theorem 4.20). This gives the existence of orbits under the same assumptions

(Theorem 4.25) and also implies that the isotropy supergroups exist only if the orbit

morphism has constant rank. This relies on a family version of the closed subgroup

theorem that we prove in Appendix B (Theorem B.1). In § 5, we construct the relative

Kirillov–Kostant–Souriau form for coadjoint orbits through general points (Theorem 5.4).

Finally, in § 6, we define the concept of representations over T . We then decompose

the left-regular representation A0|n as a direct integral of characters and construct

representations over appropriate parameter superspaces T for super variants of the

Heisenberg group.

2. A categorical framework for group actions

2.1. Categorical groups and actions

Groups and actions can be defined quite generally for categories with finite products.

In this subsection, we recall the relevant notions and give a number of examples from

differents contexts, which will serve to illustrate our further elaborations.

In what follows, let C be a category with a terminal object ∗. For any S, T ∈ Ob C, let

CS
T be the category of objects in C, which are under S and over T . That is, objects and

morphisms are given by the commutative diagrams depicted below:

S S S

X X Y

T T T .

Similarly, we define the categories CT of objects over T and CS of objects under S.

We recall the definition of group objects and actions. These concepts are well known,

see e.g. [34]. If X, S ∈ Ob C, then we write x ∈S X for the statement ‘x : S −→ X is

a morphism in C’. We also say ‘x is an S-valued point of X ’ and denote the set of

all these by X (S). This defines the object map of the point functor X (−) of X . For a

morphism f : X −→ Y in C and x ∈S X , we define f (x) := f ◦ x . Applying this procedure

to S-valued points of X for various S defines the point functor on morphisms.

Definition 2.1 (Groups and actions). A C-group is the data of G ∈ Ob C, such that all

nonempty finite products G× · · ·×G exist in C, together with morphisms

1 = 1G : ∗ −→ G, i : G −→ G, m : G×G −→ G

called, respectively, the unit, the inverse, and the multiplication of G, which are assumed

to satisfy, for any S ∈ Ob C and any r, s, t ∈S G, the group laws

1r = r1 = r, rr−1
= 1 = r−1r, (rs)t = r(st),

where we denote st := m(s, t) and s−1 := i(s). In particular, ∗ is in a unique fashion a

C-group, called the trivial C-group. Given a C-group G with structural morphisms 1, i ,
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and m, we define the opposite C-group G◦ to G, together with the morphisms 1 and i , and

the multiplication m◦ : G×G −→ G, where the latter is defined by m◦(s, t) := m(t, s) for

all T ∈ Ob C and s, t ∈T G.

Let X ∈ Ob C and assume that the nonempty finite products Y1× · · ·× Yn exist in C,

where Y j = G or Y j = X for any j . A (left) action of a C-group G in C, interchangeably

called a (left) G-space, consists of the data of X and a morphism

a : G× X −→ X,

written g · x = a(g, x), for which we have

1 · x = x, (rs) · x = r · (s · x)

for any S ∈ Ob C, x ∈S X , and r, s ∈S G. Slightly abusing terminology, it is sometimes the

morphism a that is called an action and the space X that is called a G-space. A G◦-space

is called a right G-space. An action of G◦ is called a right action of G.

Remark 2.2. The data in the definition of a C-group are not independent. Given m and

1 satisfying all above equations not involving i , there is at most one morphism i with the

above conditions verified. Similarly, 1 is determined uniquely by m.

Since the Yoneda embedding preserves limits, a C-group is the same thing as an

object G of C whose point functor G(−) = HomC(−,G) is group-valued. Actions can

be characterised similarly.

Example 2.3. Group objects and their actions are ubiquitous in mathematics. Since our

main interest lies in supergeometry, we begin with three examples from this realm.

(i) The general linear supergroup GL(m|n) is a complex Lie supergroup (i.e. a group

object in the category of complex-analytic supermanifolds). Its point functor is given on

objects T by

GL(m|n)(T ) :=
{(

A B
C D

) ∣∣∣∣ A ∈ GL(m,O0̄(T )), B ∈ O1̄(T )
m×n

C ∈ O1̄(T )
n×m, D ∈ GL(n,O0̄(T ))

}
.

Here, we let Ok(T ) := 0(OT,k), k = 0̄, 1̄, 0 denoting global sections and OT the structure

sheaf of T , with graded parts OT,0̄ and OT,1̄. The group structure is defined by the matrix

unit, matrix inversion and multiplication at the level of the point functor.

For X = Am|n , we have

X (T ) =
{(

a
b

) ∣∣∣∣ a ∈ O0̄(T )
m×1, b ∈ O1̄(T )

n×1
}
.

Hence, an action of GL(m|n) on X is given at the level of the functor of points by the

multiplication of matrices with column vectors.

As another example, consider X = Grp|q,m|n , the super-Grassmannian of p|q-planes in

m|n-space (where p 6 m and q 6 n). For affine T , the point functor takes on the form

X (T ) =
{

Z
∣∣ Z rank p|q direct summand of O(T )m|n

}
.

Again, GL(m|n) acts by left multiplication of matrices on column vectors. For general

T (which need not be affine), the functor of points can be computed in terms of locally

direct subsheaves, compare [35].
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(ii) In the category C of (K,k)-supermanifolds [5], where k ⊆ K and both are R or C,

consider the affine superspace G := A0|1 with the odd coordinate τ . Then G(T ) = O1̄(T ),
and the addition of odd superfunctions gives G the structure of a supergroup.

Let X be a manifold. The total space 5T X of the parity reversed tangent bundle of X
has the underlying manifold X and the structure sheaf O5T X = �

•

X , the sheaf of K-valued

differential forms, with the Z/2Z grading induced by the Z-grading.

The supermanifold 5T X has the point functor

5T X (T ) ∼= HomC(T ×A0|1, X).

We denote elements on the left-hand side by f and the corresponding elements on the

right-hand side by f̃ .

We may let x ∈T G act on f ∈T 5T X by defining x · f via

(x · f )∼ : T ×A0|1
−→ X : (t, y) ∈R (T ×A0|1) 7−→ f̃ (t, y+ x(t)) ∈R X.

If X has local coordinates (xa), then 5T X has local coordinates (xa, dxa). If f ∈T 5T X ,

then in terms of the point functor above, we have

f ](xa) = j]( f̃ ](xa)), f ](dxa) = j]
(
∂

∂τ
f̃ ](xa)

)
.

Here, j : T −→ T ×A0|1 is the unique morphism over T defined by j](τ ) := 0, τ denoting

the standard odd coordinate function on A0|1.

From this description, we find that the action of G on 5T X is the morphism

a : G×5T X −→ 5T X, a](ω) = ω+ τdω.

Expanding on this example a little, one may consider the action α of (A1,+) on A0|1

given by dilation, i.e. α](τ ) = etτ . This defines a semi-direct product supergroup G ′ :=
A1 nA0|1, and the action a considered above may be extended to G ′ by dilating and

translating in the A0|1 argument.

In terms of local coordinates, the thus extended action is given by

a](ω) = ent (ω+ τdω),

for ω of degree n, compare [28, Lemma 3.4, Proposition 3.9].

(iii) Let G := A0|1 with its standard additive structure and X := A1|1. Then G acts on

X via a : G× X −→ X , defined by

a(γ, (y, η)) := (y+ γ η, η)

for all R and γ ∈R G, (y, η) ∈R X . In terms of the standard coordinates γ on G and

(y, η) on X , we have

a](y) = y+ γ η, a](η) = η.

Example 2.4. Complementing our examples from supergeometry, we give a list of
examples for categorical groups and actions from different contexts.
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(i) Let G be a C-group. Any X ∈ Ob C can be endowed with a natural G-action, given

by taking a : G× X −→ X to be the second projection. That is, g · x := x for all T ∈ Ob C,

g ∈T G, and x ∈T X . This action is called trivial.

(ii) Any C-group G is both a left and a right G-space, by the assignments

g · x := gx or x · g := xg,

respectively, for all T ∈ Ob C, g ∈T G, and x ∈T X .

(iii) Topological groups and Lie groups, and their actions on topological spaces and

smooth manifolds, respectively, are examples of categorical groups and actions.

(iv) Group schemes and their actions on schemes are examples of categorical groups

and actions as well, see [19, Chapitre II, § 1.1] [36, Definitions 0.2–3].

(v) A pointed (compactly generated) topological space (W, w0) is called an H -group, if

it is equipped with based continuous maps µ : W ×W −→ W , e : W −→ W with e(W ) =

w0, and j : W −→ W such that the following holds:

µ ◦ (e, idW ) ' µ ◦ (idW , e) ' idW ,

µ ◦ (µ× idW ) ' µ ◦ (idW ×µ), µ ◦ (idW , j) ' µ ◦ ( j, idW ) ' e,

where ' denotes based homotopy equivalence, cf. [1, § 2.7]. Given a pointed, compactly

generated topological space (X, x0), its based loop space �X is a prime example of an

H -group.

In the category C of pointed, compactly generated topological spaces with based

homotopy classes of continuous maps as morphisms, an H -group together with the

homotopy classes of e, j , and µ is simply a C-group. The basic theorem that the set

[X,W ]∗ = HomC(X,W ) of based homotopy classes has a group structure that is natural

in the variable X if and only if W is an H -group [1, Theorem 2.7.6] is an instance of

Remark 2.2.

If now (G, 1G) = (W, w0) is an H -group and (X, x0) a pointed topological space, then

a pointed continuous map a : G× X −→ X is a group action in C if and only if a(1G , ·)

is pointed homotopy equivalent to idX and the diagram

G×G× X G× X

G× X X

µ×idX

idG×a

a

a

commutes up to a pointed homotopy.

(vi) In the theory of integrable systems one encounters the following situation: (M, ω)
is a symplectic manifold of dimension 2n and ρ : M −→ B is a fibration whose fibres are

compact, connected Lagrangian submanifolds. Then there is a smooth fibrewise action

of T ∗B on M . In the above language, T ∗B −→ B is a group in the category of smooth

manifolds over B, and it acts on X = (M −→ B).
To see this latter fact, let m ∈ M , b = ρ(m), and Mb := ρ

−1(b). The dual of

the differential of ρ is an injective linear map (Tmρ)
∗
: T ∗b B −→ T ∗m M whose image

is the annihilator of Tm(Mb). Since Mb is Lagrangian, the musical isomorphism
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ω
[
m : T ∗m M −→ Tm M identifies this annihilator space with Tm(Mb). We thus have canonical

linear isomorphisms T ∗b B −→ Tm(Mb) depending smoothly on m. Given v ∈ T ∗b B, we

obtain a smooth vector field v̂ on Mb.

It is easy to see that these vector fields extend to a commuting family of Hamiltonian

vector fields on M , and that a linearly independent set of elements of T ∗b B yields vector

fields on the fibre Mb that are everywhere independent. Since Mb is compact, we obtain

an action of the additive group of T ∗b B whose isotropy is a cocompact lattice 3b [26,

Theorem 44.1].

2.2. Isotropies at generalised points

For many applications of group actions, the notion of isotropy (or stabiliser) groups is

essential. In the categorical framework, we can consider isotropy groups through T -valued

points, by following the general philosophy of base change and specialisation: As we shall

see, this allows us to consider T -valued points as ordinary points in the category of objects

over T , leading to a general definition of isotropy groups.

Construction 2.5 (Base change of groups and actions). Let G be a C-group, X a G-space

and T ∈ Ob C. We assume that the finite products T × Y1× · · ·× Yn exist in C for any

choice of Y j = X or Y j = G.

Consider the category CT . The morphism idT : T −→ T is a terminal object in CT .

Nonempty finite products in CT , provided they exist, are fibre products ×T over T in C.

Thus, if we denote

GT := T ×G, XT := T × X,

then

(Y1)T ×T · · · ×T (Yn)T = T × Y1× · · ·× Yn = (Y1× · · ·× Yn)T

exist as finite products in CT . So it makes sense to define on GT and XT the structure

of a CT -group and a GT -space, respectively. The CT -group structure

1 = 1GT : T −→ GT , i = iGT : GT −→ GT , m = mGT : GT ×T GT −→ GT

on GT is defined by the equations

1(t) := (t, 1), (t, g)−1
:= (t, g−1), (t, g)(t, h) := (t, gh)

for all g, h ∈R G and t ∈R T , where we have written all morphisms in C and used the

notational conventions from Definition 2.1.

Similarly, XT is a GT -space via

GT ×T XT −→ XT : (t, g) · (t, x) := (t, g · x)

for all g ∈R G, x ∈R G, and t ∈R T .

As we have seen, groups and actions are easily defined in the full generality of categories

with terminal objects. Possibly after base change and specialisation, it will be sufficient

to consider isotropy groups only through ordinary points. Their definition at the level of

functors presents no difficulty.
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We define isotropy groups at ordinary points, passing to the general case of T -valued

points only after base change. This definition will be equivalent to the one given in [36,

Definition 0.4] in the case of schemes over some base scheme.

Definition 2.6 (Isotropy group). Let G be a C-group and X a G-space. We write X0 :=

X (∗) and call the elements of this set the ordinary points of X . Let x ∈ X0. The isotropy

at x (a.k.a. the stabiliser at x) is the functor Gx : C −→ Sets whose object map is defined

by

Gx (R) :=
{
g ∈R G

∣∣ g · x = x
}
,

for any R ∈ Ob C. In other words, Gx is the fibre product defined by the following diagram

in the category of set-valued functors on C:

Gx G

∗ X.

ax

x

Here, ax : G −→ X is the orbit morphism defined by

ax (g) := g · x (2.1)

for all R ∈ Ob C and g ∈R G.

The functor Gx is group-valued. Indeed, let R ∈ Ob C. By construction, an R-valued

point g ∈ Gx (R) is just g ∈R G such that g · x = x . If g, h ∈ Gx (R), then

(gh) · x = g · (h · x) = g · x = x,

so gh ∈ Gx (R). Taking this as the definition of the group law on Gx , we see that the

canonical morphism Gx −→ G preserves this operation. Since G(R) is a group, so is

Gx (R), and this proves the assertion. In particular, if Gx is representable and the finite

direct products Gx × · · ·×Gx exist, then Gx is a C-group.

Although the above definition defines the isotropy group only for ordinary points,

we may use the procedure of base change from Construction 2.5 to give a satisfactory

definition of the isotropy of an action at a T -valued point, as we now proceed to explain

in detail.

Construction 2.7 (T -valued points as ordinary points). Recall the natural bijection

HomC(A, B) −→ HomCT (A, BT ) : f 7−→ (pA, f ), (2.2)

valid for any (pA : A −→ T ) ∈ Ob CT and any B ∈ Ob C. This allows us to consider any

morphism in C from an object over T as a morphism over T .

Applying this to A = T = ∗T , we obtain in the notation of Definition 2.6

(XT )0 = HomCT (∗T , XT ) = HomC(T, X) = X (T ).
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Thus, we may consider any T -valued point x of X as an ordinary point of the base change

XT ∈ Ob CT of X . This is one of the main distinguishing traits of our general point of

view.

Let now G be a C-group, X a G-space, and x ∈T X . By Construction 2.5, GT is a

CT -group and XT is a GT -space. In particular, we obtain an orbit morphism ax : GT −→

XT in CT , from Equation (2.1). It is the composite

T ×G T × X ×G T × X,
(idT ,x)×idG idT×(a◦σ)

denoting the action of G on X by a, and by σ the exchange of factors, i.e.

ax (t, g) =
(
t, g · x(t)

)
, ∀t ∈R T, g ∈R G. (2.3)

The objects T = ∗T , GT , and XT in the category CT are promoted to contravariant

functors on CT . Similarly, x and ax : GT −→ XT are promoted to morphisms of functors.

We now pose the following definition.

Definition 2.8 (Isotropy functor). The isotropy functor (a.k.a. stabiliser functor) Gx :=

(GT )x : CT −→ Sets is the fibre product defined by the diagram

Gx GT

T = ∗T XT

ax

x

in the category of (contravariant) set-valued functors on CT .

Remark 2.9. This coincides with Mumford’s definition [36, Definition 0.4] in the case of

C = SchS .

Consider now the following diagram in the category C:

T ×G

T T × X.

ax

(idT ,x)

Its limit in the functor category is the fibre product functor given on R ∈ Ob C by(
T ×T×X (T ×G)

)
(R) =

{
(t1, t2, g) ∈R (T × T ×G)

∣∣∣∣ t1 = t2
x(t1) = g · x(t2)

}
=
{
(t, g) ∈R (T ×G)

∣∣ g · x(t) = x(t)
}
.

If R comes with morphisms R −→ T and R −→ T ×G in C completing the fibre product

diagram above, then we may consider R ∈ Ob CT via either of the T -projections thus

obtained. The above computation then gives

Gx (R) =
(
T ×T×X (T ×G)

)
(R).
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Hence, the representability of the functor Gx = (GT )x in CT is equivalent to the existence

of this fibre product in C.

Example 2.10. Recall the notation from Example 2.3(iii). We investigate the

representability of the isotropy functor for different choices of points. To that end, recall

the category SSplfg
K = SSp$,lfgK,k of locally finitely generated superspaces from § 3 below

and/or [5]. This category is finitely complete and contains SManK = SManK,k as a full

subcategory. Finite limits in SManK, when they exist, are finite limits in SSplfg
K .

Any point p ∈ X0 = X (∗) gives rise to pR ∈ X (R) and we obviously have γ · pR = pR for

all γ ∈R G and all R ∈ Ob SSplfg
K . Thus, we find G p = G as functors, so G p is represented

by the Lie supergroup G.

By contrast, take T = A0|1 with the odd coordinate θ and define x ∈T X by

x](y) := 0, x](η) := θ.

where we might as well take any other number for x](y). That is, for any R ∈ SSplfg
K , we

have

x(θ) = (0, θ), ∀θ ∈R T .

In this case, the isotropy functor Gx evaluates on any R ∈ SSplfg
T as

Gx (R) =
{
(θ, γ ) ∈R (T ×G)

∣∣ γ θ = 0
}
.

Therefore, Gx is represented by the superspace

SpecK[θ, γ ]/(θγ ) =
(
∗,K[θ, γ ]/(θγ )

)
,

where θ, γ are odd indeterminates. It lies over T via the morphism

p : Gx −→ T, p](θ) := θ.

The group multiplication works out to be

m : Gx ×T Gx −→ Gx , m](γ ) := γ1+ γ2,

where γi := p]i (γ ). Thus, Gx is a group object in SSplfg
T but not given by a Lie supergroup

over T .

Definition 2.11 (Specialisation of a point). Let C be a category, T1, T2, X be objects in

C. Given two points x1 ∈T1 X and x2 ∈T2 X , we say that x2 is a specialisation of x1 if for

some morphism ϕ : T2 −→ T1 in C, the following diagram commutes:

T2 T1

X.

ϕ

x2 x1

Proposition 2.12. Let G be a C-group and X a G-space. Let x1 ∈T1 X and x2 ∈T2 X such

that x2 is a specialisation of x1. Then there is a natural isomorphism

T2×T1 Gx1 = Gx2

of Sets-valued contravariant functors on CT2 .
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In particular, if Gx1 is representable in CT1 , then Gx2 is representable in CT2 if and

only if the fibre product T2×T1 Gx1 exists in C.

Proof. By assumption, we have x2 = x1 ◦ϕ for some morphism ϕ : T2 −→ T1 in C. We

compute for each R ∈ Ob C and (t, g) ∈R GT2 that

g · x2(t) = g · x1(ϕ(t)),

so that the map (t, g) 7−→ (t, ϕ(t), g) on R-valued points defines a natural bijection

Gx2(R) −→
(
T2×T1 Gx1

)
(R).

This proves the assertion.

Definition 2.13 (Free G-spaces). Let G be a C-group and X a G-space. Given a T -valued

point x ∈T X , the G-space X is called free at x if (GT )x is the trivial group in the category

of Sets-valued contravariant functors on CT . It is simply called free if it is free at any

x ∈T X , for any T ∈ Ob C.

As the following corollary to Proposition 2.12 shows, it is equivalent to require that X
be free at the generic point x = idX ∈X X .

Corollary 2.14. Let G be a C-group and X a G-space. Assume that X is free at the generic

point x = idX ∈X X . Then X is free.

2.3. Quotients and orbits

In this subsection, we introduce basic facts and terminology relating to quotients and

orbits. Although we are mainly interested in quotients by group actions, we shall need

a general statement on quotients by equivalence relations for our applications (see

Proposition 4.22, which is applied in the proof of Proposition 4.23).

In order to be able to treat quotients by group actions and equivalence relations on the

same footing, the language of groupoids, introduced to this context by Gabriel [23, § 1],

has proved to be convenient. Moreover, applications in forthcoming work actually rely

on this generality. We briefly recall the main definitions and give a number of motivating

examples before going into the applications. In what follows, we let C be a category with

all finite products.

Definition 2.15 (Groupoids). Let X ∈ Ob C. A C-groupoid on X is a 0 ∈ Ob C , together

with morphisms s, t : 0 −→ X—called source and target—such that all finite fibre

products

0(n) := 0×X 0×X · · · ×X 0 = 0×s,X,t 0×s,X,t · · · ×s,X,t 0

exist, and morphisms

1 : X −→ 0, i : 0 −→ 0, m : 0(2) −→ 0
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—where the first and third are over X × X (where we consider X as lying over X × X
via 1X and 0 as lying over X × X via (t, s)) and the second is over the flip σ : X × X −→
X × X—such that the following diagrams commute:

0(3) 0(2)

0(2) 0

m×X id

id×X m m

m

0 0(2)

0(2) 0

(1◦t)×X id

id×X (1◦s) m

m

0 X

0(2) 0

s

(i,id) 1

m

0 0(2)

X 0.

(id,i)

t m

1

A morphism ϕ : X −→ Y in C that coequalises s and t , i.e.

ϕ ◦ s = ϕ ◦ t : 0 −→ Y

will be called 0-invariant.

A subgroupoid of 0 is a monomorphism j : 0′ −→ 0 with the induced source and target

morphisms, such that 1, i ◦ j , and m ◦ ( j ×X j) factor through j .

Example 2.16. We need the following three simple examples of groupoids.

(i) Let G be a C-group and X be a G-space with action morphism a. Then 0 := G× X
is a C-groupoid over X , called the action groupoid of a. Its structural morphisms are

s := p2 : 0 −→ X, t := a : 0 −→ X, 1 := (1G , idX ) : X −→ 0,

as well as the inversion i and multiplication m defined by

i(g, x) := (g−1, g · x), m(g1, x, g2) := (g1g2, x), ∀g1, g2 ∈T G, x ∈T X,

respectively. Here, we identify 0(2) = G× X ×G via the morphism induced by id0 × p1 :

0×0 −→ G× X ×G.

(ii) Let X ∈ Ob C. Then 0 := X × X is a C-groupoid over X , called the pair groupoid

of X . Its structural morphisms are

s := p1, t := p2 : 0 −→ X, 1 := 1X : X −→ 0,

as well the inversion i and multiplication m defined by

i(x, y) := (y, x), m(x, y, z) := (x, z), ∀x, y, z ∈T X,

respectively. Here, we identify 0(2) = X × X × X via the morphism induced by id0 × p2 :

0×0 −→ X × X × X ,

(iii) Let X ∈ Ob C. By definition, an equivalence relation on X is a subgroupoid R of

the pair groupoid of X . This definition, in the categorical context, seems to be due to

Gabriel [23, § 3 e)]. Almorox [8, Definition 2.1] was the first to adapt this definition to

the case of supermanifolds.

We now recall the notion of categorical quotients [36, Definition 0.5]. Although

Mumford does not use the language of groupoids introduced above, the definition

immediately extends to this case.
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Definition 2.17 (Categorical quotients). Let X ∈ Ob C and 0 be a C-groupoid on X . A

morphism π : X −→ Q is called a categorical quotient of X by 0 if it is universal among

0-invariant morphisms. That is, the morphism π is 0-invariant, and for any 0-invariant

morphism f : X −→ Y , where Y ∈ Ob C, there is a unique morphism f̃ : Q −→ Y such

that the following diagram commutes:

X Q

Y.
f

π

f̃

By abuse of notation, we also say that Q is a categorical quotient (of X by 0).

We say that π : X −→ Q is a universal categorical quotient if for all morphisms Q′ −→
Q, the fibre products X ′ := Q′×Q X and 0′ := (Q′× Q′)×Q×Q 0 exist, and π ′ := Q′×Q
π : X ′ −→ Q′ is a categorical quotient of X ′ by 0′.

We use the notation X/0 for categorical quotients. In case 0 is the action groupoid

for the left (respectively, right) action of a C-group G, we write G\X (respectively, X/G)

for the categorical quotient (if it exists).

We now apply these notions to pointed spaces, to arrive at a definition of orbits.

At this point, we have to depart from Mumford’s definitions [36, Definition 0.4], since

the notion of scheme-theoretic image does not apply to the setting of C∞ differentiable

supermanifolds that we are primarily interested in.

For any category C with a terminal object ∗, we define the category C∗ of pointed spaces

to be the category of objects and morphisms under ∗. We denote the objects ∗ −→ X in

this category by (X, x).

Definition 2.18 (Categorical orbits). Let G be a C-group and X be a G-space. Let x ∈T X ,

where T ∈ Ob C is arbitrary. Assume that Gx is representable in CT . Being a group object

in that category, it is naturally pointed by the unit. Since the unit acts trivially, we have a

right Gx -action on GT in (CT )
∗. If it exists, the categorical quotient πx : GT −→ GT /Gx

in (CT )
∗ is called the categorical orbit of G through x , and denoted by πx : GT −→ G · x .

If the quotient is universal categorical, then we say that the orbit is universal categorical.

The space XT is pointed by

xT := (idT , x) : T −→ XT ,

and by definition, Gx acts trivially on xT , so if the categorical orbit exists, there is a

unique pointed morphism ãx : G · x −→ XT over T such that ãx ◦πx = ax . In order to

avoid cluttering our terminology, we also refer to ãx as the orbit morphism of x . Also,

by definition, the categorical orbit G · x is pointed in CT , so that it comes with a section

T −→ G · x whose composite with ãx is x . We call this section canonical and usually also

denote it by x .

We now spell out in detail what the definition given above of an orbit through a

T -valued point is. Let G be a C-group, X a G-space in C, T ∈ Ob C, and x ∈T X . Assume
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that Gx is representable in CT . As we have seen above, this means that the fibre product

Gx = T ×T×X (T ×G)

exists in C. So we have in C a fibre product diagram

Gx T ×G

T T × X.

ax

(idT ,x)

Recall that we are working under the assumption that finite products exist in C. Then

G · x , provided it exists in (CT )
∗, is characterised as follows: For every Gx -invariant

morphism f , which fits into a commutative diagram as depicted on the left-hand side

of the display below, there is a unique morphism f̃ completing the right-hand diagram

commutatively:

T T

T ×G Y G · x Y

T T

(idT ,1) y y
f

pY

∃! f̃

pY

In other words, for any such T , the set of pointed morphisms G · x −→ Y in CT is in

natural bijection to the set of morphisms f : GT −→ Y , which satisfy the conditions:
f (t, 1) = y(t),

pY ( f (t, g)) = t,

h · x(t) = x(t) H⇒ f (t, gh) = f (t, g)

for all R ∈ Ob C, g, h ∈R G, and t ∈R T . Here, we recall that the equation h · x(t) = x(t)
characterises the R-valued points (t, h) of Gx .

Universal categorical orbits carry a natural action.

Proposition 2.19. Let G be a C-group, and (X, x) a pointed G-space in C. If the G-orbit

G · x exists and is universal categorical, then the morphism

πx ◦m : G×G −→ G · x

induces an action of G on G · x. It is the unique action of G on G · x for which πx : G −→
G · x is G-equivariant. Moreover, the canonical point x : ∗ −→ G · x of G · x is invariant

under the action of Gx .

Proof. By assumption, G · x is universal categorical, so the base change

id×πx : G×G −→ G× (G · x)

along the projection G×G · x −→ G · x is a categorical quotient in C, for the groupoid

0′ := G×0 = G×G×Gx
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derived from 0 = G×Gx . In particular, id×πx is an epimorphism. Applying the base

change for a further copy of G, we see that so is id× id×πx .

Consider the multiplication m of G. We have

πx (m(g1, g2h)) = πx (g1g2h) = πx (g1g2) = πx (m(g1, g2))

for all R ∈ Ob C, g1, g2 ∈R G, and h ∈R Gx . It follows that

(p1, πx ◦m) : G×G −→ G× (G · x)

is 0′-invariant, and hence, there is a unique morphism

aG·x : G× (G · x) −→ G · x

such that aG·x ◦ (id×πx ) = πx ◦m. In particular, πx will be G-equivariant and aG·x
uniquely determined by this requirement as soon as we have established that it indeed is

an action. To do so, we compute

aG·x ◦ (id× aG·x ) ◦ (id× id×πx ) = aG·x ◦ (id× (πx ◦m))

= πx ◦m ◦ (id×m)

= πx ◦m ◦ (m× id)

= aG·x ◦ (m×πx )

= aG·x ◦ (m× id) ◦ (id× id×πx ),

which shows that

aG·x ◦ (id× aG·x ) = aG·x ◦ (m× id),

since id× id×πx is an epimorphism. Similarly, one has

aG·x ◦ (1× id) = idG·x .

Hence, aG·x is an action for which πx is G-equivariant. We denote it by ·, as for any

action.

Finally, we verify the claim that x is Gx -fixed. By construction, πx is pointed, so

that πx (1) = x . For h ∈R Gx , we compute, by use of the left G-equivariance and right

Gx -invariance of πx , that

h · x = h ·πx (1) = πx (h · 1) = πx (h) = πx (1) = x .

This completes the proof of the proposition.

Example 2.20 (Examples of orbits). Returning to the groups and actions from Example

2.4, we explain the notion of isotropy groups and orbits in these cases. In items (i) and

(ii) below, let C denote a category such that all finite products exist.

(i) Let G be a C-group acting trivially on X ∈ Ob C. Then for all x : T −→ X and

R ∈ Ob C, we have Gx (R) = GT (R). Thus, the isotropy functor Gx is represented by

GT = T ×G. Here, the morphism πx = p1 : GT → T is a universal categorical orbit, as

can be seen as follows: πx is invariant with respect to the action groupoid 0 coming from
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the right GT -action on GT . Given any 0-invariant morphism f : GT → Y with Y over

T , it uniquely factors over πx to f̃ = f ◦ (idT × 1G).

Furthermore, given Q → T , the fibre product Q×T GT = G Q exists. Moreover, Q×T
πx = idQ × p1 : G Q → Q = Q×T T is a categorical quotient by the above, since (Q×
Q)×T×T 0 is the action groupoid for the right G Q-action on G Q .

(ii) Assume given a C-group G, viewed as a left G-space via left multiplication. For

T ∈ Ob C and x ∈T G, we have

Gx (R) =
{
(t, g) ∈R GT

∣∣ g · x(t) = x(t)
}
=
{
(t, 1G(t))

∣∣ t ∈R T
}
∼= T (R).

Thus, Gx is represented by T . Defining πx by idGT : GT −→ Q := GT , we obtain for any

Y and any GT -invariant f : GT → Y a unique factorisation f̃ := f . Thus, πx : GT −→ Q
is the categorical quotient of GT with respect to the Gx -action. In other words, it is the

categorical orbit of G through x .

Furthermore, given Q′ ∈ Ob C and Q′ −→ Q, we have Q′×Q GT = Q′ and Q′×Q 0 =

Q′×Q GT = Q′. The projections id′Q ×Q s and id′Q ×Q t are the identity of Q′, so that

Q′×Q πx = idQ′ is the categorical quotient of Q′ (the space) by Q′ (the groupoid). It

follows that πx : GT −→ GT is a universal categorical orbit.

(iii) Let a continuous or smooth action a : G× X −→ X , respectively, of a topological

group or Lie group on a topological space or a smooth manifold be given. The isotropies at

x ∈ X0 = X (∗) = X are represented by the obvious set-theoretic isotropy groups, endowed

with the subspace topology coming from the inclusion into G. Since these isotropies are

closed, they are notably Lie subgroups in the smooth case.

Both in the topological and the smooth case, a categorical orbit through such an x
is represented by the set of right cosets with respect to the isotropy group Gx , with its

canonical structure of topological space or smooth manifold, respectively. For the rest of

this example, let us focus on the topological case.

Then we can consider arbitrary continuous maps x : T −→ X , defined on some

topological space T , and observe that

Gx =
{
(t, g) ∈ GT

∣∣ g ∈ Gx(t)
}

with the subspace topology from T ×G. We may define an equivalence relation ∼ on GT
by

(t, g) ∼ (t ′, g′) :⇐⇒ t = t ′, g · x(t) = g′ · x(t).

The quotient space Q := X/ ∼ with the canonical map πx : GT −→ Q satisfies the

universal property of the categorical orbit of G through x .

If πx is an open map, then it is already an universal categorical orbit. Indeed, in this

case, for any Q′ −→ Q, the projection p1 : Q′×Q GT −→ Q′ is open and in particular a

quotient map. The map πx is open in case T = ∗, which is the situation studied classically.

In general, however, this fails to be true, as one may see in the following example: Let

G := (R,+), T := R, and X := R2. Define the action by

g · (t, s) := (t, tg+ s)

and set x : T −→ X, x(t) := (t, 0). Then Gx = (0×R)∪ (R×× 0) and the projection

GT −→ GT /Gx is not open, as the saturation of an open set U ⊆ GT containing (0, 0)
is (R× 0)∪U , which is open only if R× 0 is already contained in U .
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The smooth case is more subtle, since in general, the isotropy Gx might not exist

as a smooth manifold over T . In § 4, we study these questions for the category of

supermanifolds. A fortiori, these apply to ordinary manifolds.

(iv) The existence question for isotropies and orbits in the homotopy category of

pointed topological spaces leads immediately to subtle questions concerning homotopy

pullbacks and homotopy orbits. We do not dwell on these matters here.

(v) From the description of the action of T ∗B on M in Example 2.4(vi), it follows

immediately that for any b ∈ B, the action of T ∗b B on the fibre Mb is transitive and the

orbits are n-dimensional real tori. Furthermore, the isotropy is a cocompact lattice 3b in

T ∗b B, depending smoothly on b, cf. [26, Theorem 44.1]. The union of the 3b is the total

space a smooth Zn-principal subbundle 3 of T ∗B −→ B.

The traditional description underlines the ensuing action-angle coordinates: Action for

the base directions of B, angle for the fibre directions (compare the detailed analysis of

Duistermaat [20]). In the terminology introduced above, we find that the isotropy of the

generic point x = idX : T = X → X is the subgroup Gx = M ×B 3 of GT = M ×B T ∗B.

By our results below (Theorems 4.20 and 4.25), the orbit

G · x = GT /Gx = (M ×B T ∗B)/(M ×B 3)

exists as a universal categorical quotient in the category of manifolds over M . Moreover

(loc. cit.), it coincides with the image of the orbit morphism ax , which is a surjective

submersion. Hence, we have G · x ∼= M ×B M as manifolds over M .

3. Groupoid quotients of superspaces

We now apply the general setup of § 2 to the categories of locally finitely generated

superspaces and of relative supermanifolds constructed in [5]. We start by recalling some

basic definitions, referring to that paper for more details.

We fix a field K ∈ {R,C}. The category SSpK has as objects pairs X = (X0,OX )

where X0 is a topological space and OX is a sheaf of K-superalgebras with local stalks.

Such objects are called K-superspaces. Morphisms ϕ : X −→ Y are again pairs (ϕ0, ϕ
])

where this time, ϕ0 : X0 −→ Y0 is a continuous map and ϕ] : OY −→ (ϕ0)∗OX is a local

morphism of K-superalgebra sheaves.

If S is a fixed K-superspace, the category of objects and morphisms in SSpK over S will

be denoted by SSpS . Objects are denoted by X/S and morphisms by ϕ : X/S −→ Y/S.

Now we fix a subfield k of K containing R and a ‘differentiability’ class $ ∈ {∞, ω}.

Here, ∞ means ‘smooth’ and ω means ‘analytic’ (over k). We consider model spaces

adapted to these data. Namely, let a finite-dimensional super-vector space V = V0̄⊕ V1̄
over k be given, together with a compatible K-structure on V1̄. Then we may consider

on the topological space V0̄ the sheaf C$V0̄
of K-valued functions of differentiability class

$ . We set

A(V ) :=
(
V0̄, C

$
V0̄
⊗K

∧
(V1̄)

∗
)

and call this the affine superspace associated with V . It depends on the data of (K,k,$),
but we usually omit them from the notation.
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By definition, a supermanifold over (K,k) of class C$ is a Hausdorff K-superspace X
which admits a cover by open subspaces which are isomorphic to open subspaces of affine

superspaces. We usually just say that X is a supermanifold. The full subcategory of SSpK
comprised of these objects will be denoted by SManK.

In the literature, the case K = k = R corresponds to (smooth or real-analytic) real

supermanifolds [15, Definitions 3.2.1 and 4.2.1], [33, 3.1.2], and the case K = k = C
corresponds to (holomorphic) supermanifolds [15, Definition 4.8.1], [35, Ch. 4, § 1,

Definition 1]. In the case of K = C and k = R, supermanifolds are also known as ‘cs

manifolds’ [18, § 4.8]. We take this opportunity to replace this unfortunate terminology

with a hopefully less confusing one.

In [5], we construct a full subcategory SSplfg
K = SSp$,lfgK,k of SSpK that admits finite fibre

products and contains SManK as a subcategory closed under finite products. Here, ‘lfg’

stands for ‘locally finitely generated’. For any S ∈ Ob SSplfg
K , the category of objects and

morphisms over S in SSplfg
K will be denoted by SSplfg

S . Given any super-vector space V as

above, we define AS(V ) := S×A(V ) (where the product is taken in SSplfg
K ). Using these

as model spaces, we arrive at a definition of supermanifolds over S, compare op. cit.

We denote the corresponding full subcategory of SSplfg
S by SManS . Note that this now

makes sense for a wide class of singular base spaces S and, moreover, that, contrary to

the setting of schemes, it would not be appropriate to instead consider products in SSpS ,

as already the embedding SManK −→ SSpK does not preserve products. For this reason,

the use of the intermediate category SSplfg
K is essential.

3.1. Geometric versus categorical quotients

In what follows, fix S ∈ SSplfg
K , and let C be a full subcategory of SSplfg

S admitting finite

products. Particular cases are C = SSplfg
S and C = SManS , by [5, Corollaries 5.27, 5.42].

Furthermore, let X ∈ Ob C and 0 be a groupoid over X in C.

Proposition 3.1. The coequaliser π : X −→ Q of s, t : 0 −→ X exists in SSpS and is

regular in the sense of [5, Definition 4.12]. If Q ∈ Ob C, then Q is the categorical quotient

of X by 0.

Proof. The existence and regularity of Q is immediate from [5, Propositions 2.17, 5.5].

By definition, the morphism π : X −→ Q is a coequaliser in SSpS . But since C is a full

subcategory of SSpS , SSplfg
S being full in the latter, Q is the coequaliser of s, t in C if

Q ∈ Ob C, and thus has the properties required by Definition 2.17.

Remark 3.2. We can describe the colimit Q of s, t : 0 −→ X explicitly. Indeed, by [5,

Remark 2.18], OQ is the equaliser in the category Sh(Q0) of sheaves on Q0, defined by

the diagram

OQ π0∗OX (π0 ◦ s0)∗O0.
π] s]

t]

Moreover, since the embedding of SSpS in SSp preserves colimits, one may see easily that

Q0 is the coequaliser of s0, t0 : 00 −→ X0, i.e. the topological quotient space of X0 by the

equivalence relation generated by s0(γ ) ∼ t0(γ ).
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Example 3.3. Recall the action from Example 2.3(iii) and the T -valued point x from

Example 2.10. Recall that the isotropy supergroup Gx is in this case representable by

the group object

Gx = SpecK[θ, γ ]/(θγ ), p](θ) = θ, m](γ ) = γ1+ γ2, 1](γ ) = 0

in SSplfg
T , where θ, γ are odd indeterminates. In particular, it lies in (SSplfg

T )
∗.

Let ε be an even indeterminate and define

Q := SpecK[ε|θ ]/(ε2, θε).

We then have morphisms

pQ : Q −→ T, p]Q(θ) := θ, q : T −→ Q, q](ε) := 0, q](θ) := θ.

The morphism

πx : GT −→ Q, π]x (θ) := θ, π]x (ε) := θγ

is in the category (SSplfg
T )
∗. We claim that πx : GT −→ Q is the categorical orbit of G

through x .

To establish this claim, let b : GT ×T Gx −→ GT denote the action by right

multiplication of the isotropy, i.e. b](γ ) = γ1+ γ2. We compute

(πx ◦ b)](ε) = b](θγ ) = θ(γ1+ γ2) = θγ1 = p]1(θγ ) = (πx ◦ p1)
](ε)

so πx is indeed Gx -invariant. If f is a function on GT , then

f = f0+ fθθ + fγ γ + fθγ θγ

where fα ∈ K for α = 0, θ, γ, θγ . Then

b]( f )− p]1( f ) = fγ γ2,

so f is Gx -invariant if and only fγ = 0. In this case,

f = πx ( f̃ ), f̃ = f0+ fθθ + fθγ ε,

and f̃ is unique with this property. It is easy to conclude that πx : GT −→ Q is the

categorical quotient of GT by Gx , and thus the claim follows. Notice that G · x = Q is

not a supermanifold over T .

Definition 3.4 (Weakly geometric quotients). The coequaliser π : X −→ Q of s, t : 0 −→
X is called a weakly geometric quotient of X by 0 if Q ∈ Ob C. We say that π : X −→ Q
is a universal weakly geometric quotient if for all morphisms Q′ −→ Q, the fibre products

X ′ := Q′×Q X and 0′ := (Q′× Q′)×Q×Q 0 exist in C, and π ′ := Q′×Q π : X ′ −→ Q′ is

the weakly geometric quotient of X ′ by 0′.

Remark 3.5. The terminology is justified as follows: If G is a group scheme acting on

a scheme X , then a morphism π : X −→ Q is called a geometric quotient of X by G if

it is the coequaliser of p2, a : G× X −→ X in the category of locally ringed spaces, and

in addition, the scheme-theoretic image of (p2, a) : G× X −→ X × X is X ×Q X , see [36,

Definition 0.6].
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In terms of the above terminology, we may rephrase Proposition 3.1 as follows. The

result is a generalisation of [36, Proposition 0.1].

Corollary 3.6. Let the (universal) weakly geometric quotient Q of X by 0 exist in C.

Then Q is the (universal) categorical quotient of X by 0 in C.

4. Existence of superorbits

In this section, we derive general sufficient conditions for the existence of isotropies at

and orbits through generalised points in the category SManS of supermanifolds over S,

where in what follows, S will denote some object of SSplfg
K .

The material is organised as follows: In § 4.2, we discuss at length the notion of

morphisms of constant rank basic for our considerations. In particular, we characterise

precisely when the orbit morphism of a generalised point is locally of constant rank.

Subsequently, in § 4.3, we study the isotropy of a supergroup action at a generalised point.

This leads, in § 4.4, to a characterisation of the existence of orbits through generalised

points.

4.1. Tangent sheaves of supermanifolds over S

We briefly collect some definitions and facts concerning tangent sheaves. These are totally

classical if S is itself a supermanifold.

Definition 4.1 (Tangent sheaf). Let pX : X −→ S and pY : Y −→ S be superspaces over

S and ϕ : X/S −→ Y/S a morphism over S. Let U ⊆ X0 be open. An p−1
X,0OS-linear sheaf

map

v : ϕ−1
0 OY |U −→ OX |U

will be called a vector field along ϕ over S (defined on U) if v = v0̄+ v1̄ where

vi ( f g) = vi ( f )ϕ](g)+ (−1)i | f |ϕ]( f )vi (g)

for all i = 0̄, 1̄ and all homogeneous local sections f, g of p−1
X,0OY |U .

The sheaf on X0 whose local sections over U are the vector fields along ϕ over S
defined on U will be denoted by TX/S→Y/S or Tϕ:X/S→Y/S if we wish to emphasise ϕ.

It is an OX -module, and will be called the tangent sheaf along ϕ over S. In particular,

we define TX/S := TidX :X/S→X/S and TX := TX/∗, the tangent sheaf of X over S and the

tangent sheaf of X , respectively.

Let τ be an even and θ an odd indeterminate. Whenever X is a K-superspace, we define

X [τ |θ ] :=
(
X0,OX [τ |θ ]/(τ

2, τθ)
)
.

There is a natural morphism (·)|τ=θ=0 : X −→ X [τ |θ ] whose underlying map is the

identity and whose pullback map sends τ and θ to zero.

Lemma 4.2 (Superderivations and super-dual numbers). Let X/S and Y/S be superspaces

over S and ϕ : X/S −→ Y/S be a morphism over S. There is a natural bijection{
φ ∈ HomS

(
X [τ |θ ], Y

) ∣∣ φ|τ=θ=0 = ϕ
}
−→ 0(TX/S−→Y/S) : φ 7−→ v
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given by the equation

φ]( f ) ≡ ϕ]( f )+ τv0̄( f )+ θv1̄( f ) (τ 2, τθ) (4.1)

for all local sections f of OY . Symbolically, we write

v0̄( f ) =
∂φ]( f )
∂τ

and v1̄( f ) =
∂φ]( f )
∂θ

.

Proof. Since X [τ |θ ] is a thickening of X [5, Definition 2.10], the underlying map of φ is

fixed by φ0 = ϕ0. The assertion follows easily.

Definition 4.3 (Infinitesimal flow). Let v ∈ 0(TX/S−→Y/S). The unique morphism φv ∈

HomS(X [τ |θ ], Y ), such that φv|τ=θ=0 = ϕ, associated with v via Lemma 4.2, is called the

infinitesimal flow of v.

The infinitesimal flow construction allows us to introduce for each fibre coordinate

system a family of fibre coordinate vector fields.

Construction 4.4 (Fibre coordinate vector fields). Let S ∈ SSplfg
K and X/S be in SManS

with a global fibre coordinate system x = (xa).

By [5, Propositions 5.18, 4.19, Corollary 5.22], we have X [θ |τ ] ∈ Ob SSplfg
K , and there

are unique morphisms φa
∈ HomS(X [τ |θ ], X) such that

φa](xb) =

 xb
+ τδab for |xa

| = 0̄,

xb
+ θδab for |xa

| = 1̄.

Evidently, we have (φa
|τ=θ=0)

](xb) = xb, and hence φa
|τ=θ=0 = idX .

On account of Lemma 4.2, the morphisms φa are the infinitesimal flows of unique vector

fields over S, denoted by ∂
∂xa ∈ 0(TX/S). We call these fibre coordinate vector fields and

simply coordinate vector fields in case S = ∗.
Observe that the meaning of each individual ∂

∂xa depends on the entire fibre coordinate

system (xb), and not only on the coordinate xa .

As we shall presently see, the coordinate vector fields give systems of generators for

the relative tangent bundle.

Proposition 4.5 (Coordinate expression of vector fields). Let S be in SSplfg
K , X/S be in

SSplfg
S , Y/S be in SManS, and ϕ : X/S −→ Y/S be a morphism over S. Let (ya) be a local

fibre coordinate system on an open subset V ⊆ Y0. Let U ⊆ X0 be an open subset, such

that ϕ0(U ) ⊆ V , and v ∈ TX/S−→Y/S(U ). Then

v =
∑

a
v(ya) ϕ] ◦

∂

∂ya . (4.2)

In particular, we have

TX/S→Y/S = ϕ
∗(TY/S) := OX ⊗ϕ−1

0 OY
ϕ−1

0 TY/S,

and this OX -module is locally free, of rank rkx TX/S→Y/S = dimS,ϕ0(x) Y for x ∈ X0.
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Proof. We may assume that (ya) is a globally defined fibre coordinate system. Define the

vector field v′ ∈ ϕ∗(TY/S)(U ) ⊆ TX/S→Y/S(U ) by

v′ :=
∑

a
v(ya) ϕ] ◦

∂

∂ya .

Let φ and φ′ be the infinitesimal flows of v and v′, respectively. For any index a, we

have v′(ya) = v(ya), and hence φ](ya) = φ′](ya). This implies that φ = φ′, by reason of

[5, Propositions 5.18, 4.19, Corollary 5.22]. Hence, we have v′ = v.

In particular, the vector fields ϕ] ◦ ∂
∂ya form a local basis of sections of TX/S−→Y/S , and

this readily implies the remaining assertions.

Corollary 4.6 (Local freeness of TX/S). Let S ∈ SSplfg
K and X/S ∈ SManS. Then TX/S is

locally free, with rkx TX/S = dimS,x X , for x ∈ X0.

A special case of the above concerns the relative tangent spaces.

Definition 4.7 (Tangent space). Let p = pX : X −→ S be a superspace over S. For any

point x ∈ X0 we let mX,x be the maximal ideal of OX,x and ~(x) := OX,x/mX,x . Setting

s := pX,0(x), we define

Tx (X/S) := DerOS,s (OX,x , ~(x)),

the Z-span of all homogeneous v ∈ HomOS,s (OX,x , ~(x)) such that

v( f g) = v( f )g(x)+ (−1)| f ||v| f (x)v(g). (4.3)

This is naturally a super-vector space over ~(x), called the tangent space at x over S.

For S = ∗, we also write Tx X . The elements are called tangent vectors (over S).

As is immediate from the definitions, the tangent space coincides with the tangent

sheaf over S along the morphism (∗, ~(x)) −→ X .

Corollary 4.8 (Dimension of TS,x X). Let S ∈ SSplfg
K , X/S be a supermanifold over S, and

x ∈ X0. Then dimK TS,x X = dimS,x X .

Definition 4.9 (Tangent morphism). Let ϕ : X/S −→ Y/S be a morphism of superspaces

over S. We define the tangent morphism

Tϕ/S : TX/S −→ TX/S→Y/S

by setting

Tϕ/S(v) := v ◦ϕ
]

for any locally defined vector field v over S. In view of Proposition 4.5, if Y is in SManS ,

then the range of Tϕ/S is in ϕ∗(TY/S).

Similarly, we obtain for any x ∈ X0 a tangent map

Tx (ϕ/S) : Tx (X/S) −→ Tϕ0(x)(Y/S)

by setting

Tx (ϕ/S)(v) := v ◦ϕ]x
for any tangent vector v over S.
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4.2. Morphisms of constant rank

In order to handle supergroup orbits through T -valued points, we need to understand

morphisms of locally constant rank in the setting of relative supermanifolds. Already for

ordinary supermanifolds, the notion is somewhat different from the standard one used

for manifolds. The correct definition was first given in [33, 2.3.8].

For our present purposes, it is useful to state this in a more invariant form. We need

the following definitions and facts, which are more or less standard.

Definition 4.10 (Conditions on module sheaves). Let E be a sheaf (of Z-modules) and

I = (I0̄, I1̄) a graded set, i.e. a pair of sets. We write E (I ) for the direct sum
⊕

I0̄
E ⊕

⊕
I1̄
E

with its natural Z/2Z-grading.

Let X be a superspace and F an OX -module (understood to be graded). We say that

E is locally generated by sections if any x ∈ X0 admits an open neighbourhood U ⊆ X0
and a surjective morphism of OX |U -modules (OX |U )

(I )
−→ E |U for some I . If I can be

chosen to be finite for any x , we say that E is of finite type.

Proposition 4.11. Let X be a superspace and ϕ : E −→ F a morphism of OX -modules,

with E of finite type and F finite locally free. For x ∈ X0, we define

E(x) := Ex/mX,xEx .

For every x ∈ X0, the following are equivalent:

(i) The ~(x)-linear map defined below is injective:

ϕ(x) := ϕx ⊗OX,x id~(x) : E(x) −→ F(x).
(ii) For some open neighbourhood U ⊆ X0 of x, the morphism ϕ|U is injective and the

OX |U -module (F/ imϕ)|U is locally free.

(iii) For some open neighbourhood U ⊆ X0 of x, ϕ|U admits a left inverse.

(iv) There exist an open neighbourhood U ⊆ X0 of x and homogeneous bases of sections

for E |U and F |U , such that the matrix Mϕ of ϕ is

Mϕ =

(
A 0
0 D

)
, A =

(
1 0
0 0

)
, D =

(
1 0
0 0

)
.

The set of all those x ∈ X0 where this holds is open. Moreover, in this case, E is locally

free on an open neighbourhood of x.

Proof. The equivalence of (i)–(iii) follows from [25, Chapitre 0, Proposition 5.5.4], and

the equivalence with (iv) can be seen from its proof.

Proposition 4.11 suggests the following definitions.

Definition 4.12 (Morphisms of constant rank). Let X be a superspace and ϕ a morphism

E −→ F of OX -modules. We say that ϕ is split if F/ imϕ is locally free.

Let f : X/S −→ Y/S be a morphism of superspaces over S and x ∈ X0. We say that f
is of locally constant rank over S at x if for some open neighbourhood U of x , the tangent

map

T f/S : TX/S|U −→ ( f ∗TY/S)|U
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is a split morphism of OX |U -modules. We say f is of locally constant rank over S if it is

of locally constant rank over S at x for any x ∈ X0.

Corollary 4.13. Let f : X/S −→ Y/S be a morphism over S and x ∈ X0, where X/S ∈
SSplfg

S and Y/S is a supermanifold over S. Then the following are equivalent:

(i) The morphism f has locally constant rank over S at x.

(ii) For every x ′ in a neighbourhood of x, the map

(im T f/S)(x ′) −→ ( f ∗TY/S)(x ′) = T f0(x ′)(Y/S)

induced by the inclusion im T f/S −→ f ∗(TY/S) is injective.

(iii) There exist an open neighbourhood U ⊆ X0 of x and homogeneous bases of TX/S|U
and f ∗TY/S|U such that the matrix M of T f/S|U has the form

M =
(

A 0
0 D

)
, A =

(
1 0
0 0

)
, D =

(
1 0
0 0

)
.

Proof. Locally, X admits an embedding into a supermanifold Z/S over S, so that locally,

TX/S injects into TX/S→Z/S , which is finite locally free by Proposition 4.5. Hence, TX/S
is of finite type. By the same proposition, f ∗(TY/S) is finite locally free. Therefore, the

assumptions of Proposition 4.11 are verified, which proves the assertion.

With the above definition and corollary, we generalise the rank theorem [33, Theorem

2.3.9, Proposition 3.2.9] in two respects: First, one may consider supermanifolds and

morphisms over a general base superspace S. Secondly, we show the regularity not only

of fibres, but also of the inverse images of subsupermanifolds of the image.

Proposition 4.14 (Rank theorem). Let X/S and Y/S be in SManS, and let f : X/S −→
Y/S be a morphism of locally constant rank over S. Then the following statements hold

true:

(i) For any x ∈ X0, there is an open subset U ⊆ X0, so that the morphism f |U factors

as f |U = j ◦ p. Here, j : Y ′/S −→ Y/S is an injective local embedding of supermanifolds

over S and p : X |U/S −→ Y ′/S is a surjective submersion over S.

Moreover, we may take Y ′ = (Y ′0,OY ′), where Y ′0 := f0(U ), endowed with the quotient

topology with respect to f0, and OY ′ := (OY /J )|Y ′0 , J := ker f ]. The morphism j is given

by taking j0 equal to the embedding of Y ′0 into Y0, and j] the quotient map with respect

to the ideal J .

(ii) If f ′ : X ′/S −→ Y/S is an embedding of supermanifolds over S with f ′0(X
′

0) ⊆

f0(X0) and ideal J ′ ⊇ J , then the fibre product X ′×Y X exists as a supermanifold over

S, and the projection p2 : X ′×Y X −→ X is an embedding over S. We have

dimS(X ′×Y X) = dimS X ′+ dimS X − dimS Y ′. (4.4)

The supermanifold Y ′/S over S constructed in item (i) is called the image of f |U . For

the assertion of item (ii) to hold, it is sufficient to assume that f has locally constant

rank over S at any x ∈ f −1
0 ( f ′0(x

′)), for any x ′ ∈ X ′0.
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Proof. The statement of (i) is well known in case S = ∗ [33, Theorem 2.3.9], in view of

Corollary 4.13. By Theorem A.1, the inverse function theorem holds over a general base.

Thus, by Corollary 4.13, the proof of the rank theorem carries over with only incremental

changes to the general case.

As for (ii), the assumption clearly implies that f ′ factors through j to an embedding

p′ : X ′/S −→ Y ′/S over S. Since p is a submersion over S, the fibre product X ′×Y ′ X
exists, and has the fibre dimension stated on the right-hand side of (4.4). (See [33, Lemma

3.2.8] for the case of S = ∗, the proof of which applies in general, appealing again to

Theorem A.1 and its usual corollaries.)

Since j is an injective local embedding, it is a monomorphism, and it follows that

X ′×Y ′ X is actually the fibre product of f ′ and f . We have a commutative diagram

X ′×Y ′ X X

X ′ Y ′

Y

p1

p2

p

f

f ′

p′

j

of morphisms over S such that the left upper square is a pullback whose lower row is an

embedding. In particular, p2,0 is injective. The image of p2,0 is the locally closed subset

f −1
0 ( f ′0(X

′

0)) of X0.

To show that this map is closed, we shall show that it is proper. Let K ⊆ X0 be a

compact subset and L := p′−1
0 (p0(K )), which is a compact subset of X ′0. Then p−1

2,0(K ) is

a closed subset of (X ′×Y X)0 = X ′0×Y ′0
X0 whose image in X ′0× X0 is contained in L × K .

Thus, p−1
2,0(K ) is compact and p2,0 is proper, hence closed by [11, Ch. I, § 10, Propositions

1 and 7]. Moreover, p]2 is a surjective sheaf map. Hence, p2 is an embedding.

Remark 4.15. From the relative inverse function theorem (Theorem A.1), it is clear that

the usual normal form theorems hold for submersions and immersions over S. Therefore,

the converse of Proposition 4.14 holds: Any morphism f : X/S −→ Y/S which factors

as f = j ◦ p where p is a submersion over S and j is an immersion over S has locally

constant rank over S.

4.3. Isotropies at generalised points

In what follows, fix a Lie supergroup G (i.e. a group object in SManK) and an action

a : G× X −→ X of G on a supermanifold X . Let T ∈ SSplfg
K and x ∈T X be a T -valued

point. We recall from Equation (2.3) the definition of the orbit morphism through x ,

ax : GT /T = (T ×G)/T −→ XT /T = (T × X)/T,

by

ax (t, g) =
(
t, a(g, x(t))

)
=
(
t, g · x(t)

)
, ∀(t, g) ∈R GT ,

and for any R ∈ SSplfg
K . When T = ∗ is the singleton space, i.e. x ∈ X0 is an ordinary

point, then ax : G −→ X is the usual orbit morphism [15, Definition 8.1.4].
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Let g be the Lie superalgebra of G, i.e. the set of left-invariant vector fields on G. This

is a Lie superalgebra over K. For v ∈ g, let av ∈ 0(TX ) denote the fundamental vector

field induced by the action. It is characterised by the equality

(v⊗ 1) ◦ a] = (1⊗ av) ◦ a]. (4.5)

Let x ∈T X with T ∈ SSplfg
K . The equation above specialises to

(1⊗ v) ◦ a]x = (p1, σ )
]
◦ (1⊗ 1⊗ (x] ◦ av)) ◦ (idT × a)]

= (1T × idG)
]
◦ (1⊗ (x] ◦ av)⊗ 1) ◦ (idT × (a ◦ σ))] (4.6)

where we denote the flip by σ and the diagonal morphism by 1T . Let Ag be the

fundamental distribution, i.e. the submodule

Ag := OX · ag ⊆ TX , ag :=
{
av
∣∣ v ∈ g

}
.

We shall need to understand when the orbit morphism ax for an arbitrary x ∈T X is a

morphism of locally constant rank over T . The following is a full characterisation.

Theorem 4.16. Let x ∈T X . The following statements are equivalent:

(i) The morphism ax : XT −→ GT has locally constant rank over T .

(ii) The pullback x∗(Ag) is a locally direct summand of the OT -module x∗(TX ).

(iii) For every t ∈ T0, the canonical map Ag(x0(t)) −→ Tx0(t)X is injective.

(iv) For any t ∈ T0, there are homogeneous v j ∈ g such that av j (x0(t)) ∈ Tx0(t)X are

linearly independent and the x] ◦ av j span x∗(Ag) in a neighbourhood of t in T0.

In the proof, we use the following two lemmas.

Lemma 4.17. Let f : Y −→ Z be a morphism of superspaces and E an OZ -module. Fix

y ∈ Y0. Then the map e 7−→ 1⊗ e : E f0(y) −→ ( f ∗E)y induces an isomorphism

~Y (y)⊗~Z ( f0(y)) E( f0(y)) −→ ( f ∗E)(y)

of ~Y (y)-super vector spaces.

Proof. Let z := f0(y). Now simply note that ~Y (y) is an OZ ,z-module via the map f ]x :
OZ ,z −→ OY,y . In particular, we have

( f ∗E)(y) = ~Y (y)⊗OY,y OY,y ⊗OZ ,z Ez = ~Y (y)⊗OZ ,z Ez = ~Y (y)⊗~Z (z) E(z).

This proves our claim.

Lemma 4.18. The map

x∗(Ag) −→ (idT , 1G)
∗
(
im Tax/T

)
: w 7−→ 1

]
T ◦ (1⊗w)

is an isomorphism.
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Proof. First, we define a map ϕ : Tx :T→X −→ (idT , 1G)
∗(T(idT ,x):T→XT /T ) by

ϕ(w) := 1
]
T ◦ (1⊗w).

It admits a left inverse ψ , defined by

ψ(u) := u ◦ p]2

where p2 : XT −→ X is the second projection. Indeed,

ψ(ϕ(w)) = 1
]
T ◦ (1⊗w) ◦ p]2 = w.

Moreover, we have

ϕ(x] ◦ av) = 1
]
T ◦ (1⊗ (x

]
◦ av)) ◦ (idT × a(1G , ·))

]

= (idT , 1G)
]
◦ (1T × idG)

]
◦ (1⊗ (x] ◦ av)⊗ 1) ◦ (idT × (a ◦ σ))]

= (idT , 1G)
]
◦ v ◦ a]x = (idT , 1G)

]
◦ Tax/T (v)

by (4.6), so ϕ descends to a map x∗(Ag) −→ (idT , 1G)
∗
(
im Tax/T

)
, as claimed. The above

computation also shows that

ψ((idT , 1G)
]
◦ Tax/T (v)) = ψ(ϕ(x] ◦ av)) = x] ◦ av,

so this map admits a left inverse. But the (idT , 1G)
]
◦ Tax/T (v) for v ∈ g generate

(idT , 1G)
∗(im Tax/T ), so ϕ is surjective, and is an isomorphism.

Proof of Theorem 4.16. For every (t, g) ∈ T0×G0, we consider the canonical map

ι(t,g) := ιTax /T,(t,g) :
(
im Tax/T

)
(t, g) −→ Tg·x0(t)(XT /T ). (4.7)

By Corollary 4.13, the morphism ax is of locally constant rank over T if and only if for

all (t, g), the map ι(t,g) is injective. Since ax is G-equivariant, it is equivalent that it be

injective for all points of the form (t, 1), where t ∈ T0 is arbitrary.

By Lemma 4.18, we have x∗(Ag) ∼= (idT , 1G)
∗(im Tax/T ). Because all residue fields in

question are equal to K, Lemma 4.17 shows that(
im Tax/T

)
(t, 1) =

(
x∗(Ag)

)
(t) = Ag(x0(t)),(

a∗x
(
TXT /T

))
(t, 1) = (TXT /T )(t, x0(t)) = Tx0(t)X = (x

∗(TX ))(t).

Thus, by Proposition 4.11, conditions (i)–(iii) are equivalent.

If (iv) holds, then ι(t,1) maps a generating set of (x∗Ag)(t) = (im Tax/T )(t, 1) to a basis

of Tx0(t)X , so it is injective and (i) holds. Conversely, assume (ii) and (iii). Thus, we

may choose homogeneous v j ∈ g such that av j (x0(t)) ∈ Tx0(t)X are linearly independent

and span the image of (x∗(Ag))(t). By assumption, the canonical images of the x] ◦ av j

in (x∗(Ag))(t) are linearly independent, so that (x] ◦ av j )t form a minimal generating

set of (x∗(Ag))t by the Nakayama Lemma. Since this module is free, they form a basis.

Since x∗(Ag) is finite locally free, [24, 4.1.1] shows that the x] ◦ av j form a local basis of

sections, proving (iv), and thus, the theorem.
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Corollary 4.19. Let T = ∗ and x ∈ X0. Then the orbit morphism ax : G −→ X has locally

constant rank.

Proof. In this case, x∗E = E(x0(∗)) for any OX -module E , so the condition (ii) of

Theorem 4.16 becomes void.

We now apply these general results to the question whether the isotropy supergroup

functor is representable. To that end, we define for t ∈ T0:

gx (t) :=
{
v ∈ g

∣∣ av(x0(t)) = 0
}
.

Theorem 4.20. Let x ∈T X with T ∈ SSplfg
K . Assume that ax has locally constant rank

over T . Then the functor Gx : SSplfg
T −→ Sets from Definition 2.8 is representable by a

supermanifold over T of fibre dimension

dimT,(t,g) Gx = dimK gx (t). (4.8)

The canonical morphism Gx −→ GT is a closed embedding.

Conversely, assume that Gx is representable in SSplfg
T . Then the canonical morphism

j : Gx −→ GT is an injective immersion with closed image. If Gx is representable in

SManT , then j is a closed embedding.

Proof. By Proposition 4.14, locally in the domain, the image of ax exists as a

supermanifold over T , and has fibre dimension

dimT,x0(t) im ax = rk T(t,g)(ax/T ) = dim g− dim gx (t).

In view of Proposition 4.14, it will be sufficient to prove for any superfunction f defined

on an open subspace of XT :

a]x ( f ) = 0 H⇒ x]T ( f ) = 0.

But for any supermanifold R and any t ∈R T , we have

a]x ( f )(t, 1GT ) = f (t, 1GT · x(t)) = f (t, x(t)) = x]T ( f )(t),

so this statement is manifestly verified. Hence, Gx is representable and the canonical
morphism is a closed embedding. The expression for the fibre dimension of Gx follows

from Equation (4.4), since dimT T = 0.

Conversely, assume the functor Gx is representable in SSplfg
T . Then j is manifestly a

monomorphism, i.e. Gx (R) −→ GT (R) is injective for any R ∈ SSplfg
K . Inserting R = ∗,

we see that the underlying map is injective with image{
(t, g) ∈ T0×G0

∣∣ g · x0(t) = x0(t)
}
,

which is closed. Inserting R = ∗[τ |θ ], we see that the tangent map T(t,g)( j/T ) is injective

for every (t, g), by Lemma 4.2.

If Gx is a Lie supergroup, then j0 is a closed topological embedding by Theorem B.1,

and hence, j is an embedding (as follows from Theorem A.1).
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Specialising Theorem 4.20 by the use of Corollary 4.19, we recover the case of orbits

through an ordinary point first treated by Kostant [31] in the setting of Lie–Hopf algebras,

by Boyer and Sánchez-Valenzuela [12] for differentiable Lie supergroups, and by Balduzzi

et al. [10] using a functorial framework and super Harish–Chandra pairs.

Corollary 4.21. Let T = ∗ and x ∈ X0. Then Gx is representable by a supermanifold and

the canonical morphism Gx −→ G is a closed embedding.

4.4. Orbits through generalised points

Having discussed the representability of the isotropy supergroup functor, we pass now

to the existence of orbits. In what follows, to avoid heavy notation, we largely eschew

writing /S for morphisms over S, instead mostly stating the property of being ‘over S’

in words.

We have the following generalisation of Godement’s theorem [3, Theorem 2.6], with an

essentially unchanged proof. We have added the detail that in this situation, the quotients

are universal categorical.

Proposition 4.22. Let R/S be an equivalence relation on X/S in SManS, as defined in

Example 2.16(iii). Then the following assertions are equivalent:

(i) The weakly geometric quotient π : X −→ X/R exists in SManS and, as a morphism,

is a submersion over S.

(ii) The subsupermanifold R of X ×S X is closed, and (one of, and hence both of)

s, t : R −→ X are submersions over S.

If this is the case, then π : X −→ X/R is a universal weakly geometric quotient. The

quotient is effective, that is, the morphism (t, s) : R −→ X ×X/R X is an isomorphism.

Moreover, its fibre dimension is

dimS(X/R) = 2 dimS X − dimS R. (4.9)

Proof. Apart from that about universal weakly geometric quotients, all statements are

proved for S = ∗ in [3, 8]. In general, the proof carries over unchanged.

Let us prove the claim of universality for the weakly geometric quotient. So, let the

assumption of item (i) be fulfilled and set Q := X/R. Then π is a submersion over S,

and hence, X ′ := Q′×Q X exists in SManS for any ψ : Q′ −→ Q, by [5, Proposition 5.41]

and the normal form theorem for submersions over S (which follows from Theorem A.1).

By item (ii), s is also a submersion over S. Then so is π ◦ s, and R′ := (Q′× Q′)×Q×Q R
exists in SManS , where R lies over Q× Q via (π ×π) ◦ (t, s) : R −→ Q× Q.

First, we claim that condition (ii) holds for the equivalence relation R′/S on X ′/S in

SManS . Note that we have a pullback diagram

R′ = Q′×Q R R

Q′ Q

s′ π◦s

ψ
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Since π ◦ s is a submersion over S, so is s′. Next, consider the morphism

R′ = (Q′× Q′)×Q×Q R −→ X ′×S X ′ = (Q′× Q′)×Q×Q (X ×S X).

It is an embedding by [5, Corollary 5.29]. Thus, the assumption (ii) is verified for R′

and X ′, the weakly geometric quotient π ′ : X ′ −→ X ′/R′ exists in SManS , and it is a

submersion over S. It is categorical by Corollary 3.6.

The morphism p1 = idQ′ ×Q π : X ′ −→ Q′ is manifestly R′-invariant, so that there is

a unique morphism

ϕ : X ′/R′ −→ Q′, ϕ ◦π ′ = idQ′ ×Q π.

Since so is p1, ϕ is a surjective submersion.

To see that it is a local isomorphism, we compute the dimensions of the supermanifolds

over S in question. On one hand, we have

dimS Q = 2 dimS X − dimS R,

and on the other, we have

dimS X ′/R′ = 2 dimS X ′− dimS R′

= 2(dimQ′ X ′+ dimS Q′)− (dimQ′×Q′ R′+ 2 dimS Q′)

= 2 dim′Q X ′− dimQ′×Q′ R′ = 2 dimQ X − dimQ×Q R

= 2(dimQ X + dimS Q)− (dimQ×Q R+ 2 dimS Q)

= 2 dimS X − dimS R.

Upon invoking the inverse function theorem (Theorem A.1), this proves that ϕ is a local

isomorphism over S. Finally, we need to show that ϕ0 is injective.

To that end, let q ′j ∈ Q′0, x j ∈ X0, such that ψ0(q ′j ) = π0(x ′j ). Assume that

ϕ0(π
′

0(q
′

1, x1)) = ϕ0(π
′

0(q
′

2, x2)), so that q ′1 = q ′2, because

ϕ0 ◦π
′

0 = p1,0 : X ′0 = Q′0×Q0 X0 −→ Q′0.

It follows that π0(x1) = ψ0(q ′1) = ψ0(q ′2) = π0(x2), so that (x1, x2) ∈ R0, since π is an

effective quotient. Then (q ′1, q ′2, x1, x2) ∈ R′0, so that π ′0(q
′

1, x1) = π
′

0(q
′

2, x2), proving the

injectivity.

We now wish to apply this proposition to supergroup actions. Thus, fix a Lie supergroup

G and a G-supermanifold X . Let x ∈T X , where T is some supermanifold. We assume

that Gx is representable in SManT and that the canonical morphism Gx −→ GT is an

embedding over T (automatically closed).

We define an equivalence relation Rx on GT by

Rx := GT ×T Gx , i : Rx −→ GT ×T GT ,

where i is given by

i(g, g′) := (g, gg′), ∀(g, g′) ∈T ′/T
(
GT ×T Gx

)
/T,

and for any supermanifold T ′/T over T . It is straightforward to check that i is an

embedding and indeed, that Rx is an equivalence relation.
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Proposition 4.23. Let Gx be representable in SManT . Then the universal weakly geometric

quotient πx : GT −→ G · x of GT by Gx exists in SManT . It is an effective quotient and

a submersion over T . Its fibre dimension is

dimT G · x = dim G− dimT Gx . (4.10)

Proof. The underlying map of Gx −→ GT is injective and a homeomorphism onto its

closed image, so it is proper. Therefore, the map underlying the morphism i : Rx −→

GT ×T GT is closed. The first projection s of Rx is obviously a submersion over T .

Then Proposition 4.22 applies, and we reach our conclusion. Equation (4.10) follows

from Equation (4.9), since dimT Rx = dim G+ dimT Gx .

Notation 4.24. By abuse of language, the morphism ãx : G · x −→ XT over T induced by

ax will also be called the orbit morphism.

Combining this fact with our previous results, we get the following theorem.

Theorem 4.25. Let x : T −→ X . The following are equivalent:

(i) The morphism ax has locally constant rank over T .

(ii) The isotropy functor Gx is representable in SManT .

In this case, the canonical morphism j : Gx −→ GT is a closed embedding, the weakly

geometric and universal categorical quotient G · x exists, πx : GT −→ G · x is a surjective

submersion over T , the fibre dimension of G · x is

dimT,(t,g·x0(t)) G · x = dim G− dim gx (t), ∀(t, g) ∈ (GT )0 = T0×G0, (4.11)

and ãx is an immersion over T .

Moreover, if U ⊆ X0 is open such that ax |U admits an image in the sense of

Proposition 4.14, then so does ãx |πx,0(U ), and these images coincide.

Proof. The implication (i) ⇒ (ii) is the content of Theorem 4.20.

Conversely, let Gx be representable in SManT . Then j is a closed embedding, by

Theorem 4.20. From Proposition 4.23, we conclude that G · x exists and πx : GT −→ G · x
is a surjective submersion over T . Because

ker T(t,g)(πx/T ) = gx (t) = ker T(t,g)(ax/T )

and ãx ◦πx = ax , it follows that ãx is an immersion over T . By Remark 4.15, ax is of locally

constant rank over T . This shows that (ii) holds. Equation (4.11) follows from Equation

(4.10) and Equation (4.8). Moreover, since πx,0 is surjective and π
]
x is injective, it follows

that the images of ax |U and ãx |πx,0(U ) are equal whenever one of the two is defined, proving

the asserted equivalence. The remaining statements follow from Proposition 4.23.

5. Coadjoint superorbits and their supersymplectic forms

In this section, we construct the Kirillov–Kostant–Souriau form in the setting of coadjoint

superorbits through T -valued points. For the case of ordinary points, where T = ∗,

https://doi.org/10.1017/S147474801600030X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801600030X


Superorbits 1097

coadjoint orbits of supergroups were studied by Kostant [31], Fioresi and Lledó [21],

and by Salmasian [38].

By the introduction of the parameter space T , it is always possible to work with even

supersymplectic forms, provided they are considered over T . Compare with the work of

Tuynman [39, 40], who is obliged to work with inhomogeneous forms.

We follow the notation and conventions of §§ 3–4 and [6], only briefly recalling the basic

ingredients. Let G be a Lie supergroup—i.e. a group object in SManK = SMan$K,k—with

Lie superalgebra g. We set gk := gk,0̄⊕ g1̄, where gk,0̄ is the Lie algebra of G0. (Note

that the latter is a k-form of g0̄.) The dual K-super vector space of g will be denoted by

g∗. Let g∗k be the set of K-linear functionals f = f0̄⊕ f1̄ ∈ g∗ such that f0̄(gk,0̄) ⊆ k. We

denote the adjoint action of G on A(gk) by Ad.

The coadjoint action is defined by〈
Ad∗(g)( f ), x

〉
:=
〈
f,Ad(g−1)(x)

〉
, ∀g ∈T G, x ∈T A(gk), f ∈T A(g∗k),

where 〈·, ·〉 denotes the canonical pairing of g∗ and g.

5.1. The supersymplectic Kirillov–Kostant–Souriau form

Let T ∈ SSplfg
K and f ∈T A(g∗k) be a T -valued point of the dual of the Lie superalgebra

g. We define an even super-skew symmetric tensor � f ,

� f : TGT /T ⊗OGT
TGT /T −→ OGT ,

by the formula

� f (v,w) :=
〈
p]GT

( f ), [v,w]
〉
, ∀v,w ∈ (OGT ⊗ g)(U ),

where U ⊆ T0×G0 is open, pGT = p1 : GT −→ T , and we identify f with a section of

OT ⊗ g∗ via the natural bijection

Hom
(
T,A(g∗k)

)
−→ 0

(
(OT ⊗ g∗)k,0̄

)
,

compare [5, Corollary 4.26, Proposition 5.18]. The identification is via

f ](x) = 〈 f, x〉, ∀ x ∈ g ⊆ 0(OA(g∗k)).

From now on and until the end of this subsection, assume that G f is representable in
SManT , so that in particular, G · f exists in SManT , by Theorem 4.25.

Lemma 5.1. The 2-form � f descends to a well-defined even super-skew symmetric tensor

ω̃ f ,

ω̃ f : TGT /T→G· f/T ⊗OGT
TGT /T→G· f/T −→ OGT ,

by the formula

ω̃ f
(
Tπ f /T (v), Tπ f /T (w)

)
:=
〈
p]GT

( f ), [v,w]
〉
, ∀v,w ∈ (OGT ⊗ g)(U ),

for every open U ⊆ (GT )0. The 2-form ω̃ f is nondegenerate.
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Proof. Let v ∈ TGT /T (U ) be homogeneous and x ∈ g ⊆ 0(OA(g∗k)). Let (x j ) be a

homogeneous basis of g and expand v =
∑

j v
j x j .

Then we compute for all R ∈ SSplfg
K and all µ ∈R A(g∗k) that

ax j (µ)(x) =
d

dτ

∣∣∣
τ=0

〈
Ad∗(φx j )(µ), x

〉
=

d
dτ

∣∣∣
τ=0

〈
µ,Ad(φ−x j )(x)

〉
= −

〈
µ, [x j , x]

〉
= −µ(ad(x j )(x)) = −ad∗(x j )(µ)(x).

Here, we let |τ | = |x j | and follow the conventions of Definition 4.3.

Equation (4.6) shows that

v ◦ a]f =
∑

j

v j
· (1T × idG)

]
◦ (1⊗ ( f ] ◦ ax j )⊗ 1) ◦ (idT × (a ◦ σ))].

Therefore, for all R and all (t, g) ∈R GT , we have

(v ◦ a]f )(x)(t, g) =
∑

j

v j (t, g)
〈
ad∗(x j )( f (t)),Ad(g−1)(x)

〉
=

∑
j

v j (t, g)
〈
Ad∗(g)(ad∗(x j )( f (t))), x

〉
.

Vector fields are uniquely determined by their action on systems of local fibre coordinates,

by Proposition 4.5. Moreover, any homogeneous basis of g contained in gk defines a global

fibre coordinate system on AT (g
∗

k). Thus, we have

Tπ f /T (v) = 0 ⇐⇒

∑
j

v j (t, g)Ad∗(g)(ad∗(x j )( f (t))) = 0 ∀ R, (t, g) ∈R GT .

On the other hand, we may express〈
p]GT

( f ), [v,w]
〉
(t, g) =

∑
j

v j (t, g)
〈
ad∗(x j )( f (t)), (t, g)] ◦w

〉
=

∑
j

v j (t, g)
〈
Ad∗(g)(ad∗(x j )( f (t))),Ad(g−1)((t, g)] ◦w)

〉
.

This shows immediately that ω̃ f is well defined. Setting w̌ := (idT ×Ad)] ◦w, the above

computation shows that〈
p]GT

( f ), [v, w̌]
〉
(t, g) =

∑
j

v j (t, g)
〈
Ad∗(g)(ad∗(x j )( f (t))), w

〉
.

Hence, if ω̃ f (Tπ f (v), Tπ f (x̌ j )) = 0 for any j , then it follows that v ◦π
]
f = 0, so we see that

ω̃ f is nondegenerate.

Since G · f ∈ SManT , we have

TGT /T→G· f/T = π
∗

f (TG· f/T ),

by Proposition 4.5, so we may ask whether ω̃ f is induced by some tensor ω f on G · f .

Indeed, this is the case, as we presently show.
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The module inverse image and direct image functors ((π f )
∗, (π f )0∗) form an adjoint

pair, so there is a natural bijection

HomOG· f

(∧2 TG· f/T , (π f )0∗OGT

)
HomOGT

(∧2 TGT /T→G· f/T ,OGT

)
.

π∗f

Proposition 5.2. There is a unique even super-skew symmetric tensor

ω f : TG· f/T ⊗OG· f TG· f/T −→ OG· f

such that π∗f (ω f ) = ω̃ f .

Proof. By the above, there is a unique even super-skew symmetric tensor

ω f : TG· f/T ⊗OG· f TG· f/T −→ (π f )0∗OGT ,

such that π∗f (ω f ) = ω̃ f . We need to show that it takes values in the subsheaf OG· f .

But G · f = GT /G f is a weakly geometric quotient by Proposition 4.23, so that by

Remark 3.2, we have

OG· f = ((π f )0∗OGT )
G f .

It thus remains to prove that ω f takes values in the sheaf of invariants.

To that end, fix a homogeneous basis (x j ) of g contained in gk. Take any v,w ∈

TG· f/T (U ), where U ⊆ (G · f )0 is open and define V := (π f )
−1
0 (U ) ⊆ T0×G0. We may

write π
]
f ◦ v =

∑
j v

j (1⊗ x j ) ◦π
]
f ) for some v j

∈ OGT (V ), |v
j
| = |x j | + |v|, and similarly

for w.

Denote by (t, g, h) the generic point of GT |V ×T G f |V . We compute for any

superfunction k on G · f , defined on an open subset of U , that

(π
]
f ◦ v)(k)(t, gh) = v(k)

(
(t, gh) · f (t)

)
= v(k)

(
(t, g) · f (t)

)
= (π

]
f ◦ v)(k)(t, g).

Here, we are using the fact that G · f is a universal categorical quotient (Theorem 4.25),

so that, by Proposition 2.19, it admits a G-action for which π f is equivariant and f ,

considered as a T -valued point of G · f , is fixed by G f .

On the other hand, using results from [6], we have∑
j

(
v j (x j ◦π

]
f )(k)

)
(t, gh) =

∑
j

v j (t, gh)
d

dτ

∣∣∣
τ=0

k
(
(t, gh exp(τ x j )) · f (t)

)
=

∑
j

v j (t, gh)
d

dτ

∣∣∣
τ=0

k
(
(t, g exp(τ Ad(h)(x j ))h) · f (t)

)
=

∑
j

v j (t, gh)
d

dτ

∣∣∣
τ=0

k
(
(t, g exp(τ Ad(h)(x j ))) · f (t)

)
=

∑
j

v j (t, gh)(Ad(h)(x j ) ◦π
]
f )(k)(t, g).
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Combining both computations, we arrive at the equality∑
j

v j (t, gh)(Ad(h)(x j ) ◦π
]
f ) =

∑
j

v(t, g)(x j ◦π
]
f ) (5.1)

of vector fields over T along the morphism

π f ◦mGT = π f ◦ p1 : GT ×T G f −→ G · f.

Using Equation (5.1), we may compute

ω f (v,w)(t, gh) = ω̃ f (π
]
f ◦ v, π

]
f ◦w)(t, gh)

=

∑
jk

(−1)|x j ||xk |(v jwk)(t, gh)
〈
f (t), [x j , xk]

〉
=

∑
jk

(−1)|x j ||xk |(v jwk)(t, gh)
〈
f (t), [Ad(h)(x j ),Ad(h)(xk)]

〉
=

∑
jk

(−1)|x j ||xk |(v jwk)(t, g)
〈
f (t), [x j , xk]

〉
= ω̃ f (π

]
f ◦ v, π

]
f ◦w)(t, g) = ω f (v,w)(t, g),

which shows that indeed, ω f (v,w) is right G f -invariant, and hence, that ω f takes values

in the sheaf OG· f , as desired.

We may consider ω f as a global section of �2
G· f/T =

∧2
�1

G· f/T , i.e. a 2-form over T .

We show that it is closed.

Proposition 5.3. The 2-form ω f over T is relatively closed.

Proof. The element of 0(OGT ⊗ g∗) corresponding to f is a left G-invariant 1-form (which

is, moreover, even and real-valued). We show that it gives a potential for the pullback of

ω f . To that end, we follow ideas of Chevalley–Eilenberg [16].

Let v,w ∈ g. Denote by d = dGT /T the relative differential. Then

ιwd + dιw = Lw,

where ιv, |ιv| = |v|, denotes relative contraction, and Lv, |Lv| = |v|, denotes the relative

Lie derivative. We have

d f (v,w) = (−1)|v||w|ιwιvd f = (−1)|v||w|ιw(Lv f )

= −[Lv, ιw] f = −ι[v,w] f = −
〈
f, [v,w]

〉
= −ω̃ f (Tπ f /T (v), Tπ f /T (w)),

since ιw f = 〈 f, w〉 ∈ 0(OT ), so that dιw f = 0 = Lvιw f . Since both sides of the equation

are OGT -bilinear, the equation

ω̃ f
(
Tπ f /T (v), Tπ f /T (w)

)
= −d f (v,w)

holds for any vector fields v,w on GT over T , defined on some open subset. But since

ω̃ f = π
∗

f (ω f ) by Proposition 5.2, we have

π
]
f (ω f )(v,w) = ω̃ f

(
Tπ f /T (v), Tπ f /T (w)

)
= −d f (v,w)
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for any vector fields v,w on GT over T . Thus,

π
]
f (dω f ) = dπ]f (ω f ) = −d2 f = 0.

Since π
]
f is an injective sheaf map, we conclude that dω f = 0.

We summarise the above results in the following theorem.

Theorem 5.4. Let G be a Lie supergroup with Lie superalgebra g. Let T ∈ SSplfg
K

and f : T −→ A(g∗k) be such that G f is representable and G f −→ GT is an

embedding. Then the coadjoint orbit G · f exists, is universal categorical, and with the

Kirillov–Kostant–Souriau form ω f , G · f is a supersymplectic supermanifold over T . The

assumption is verified if the equivalent conditions in Theorem 4.16 hold.

6. Application: Glimpses of the superorbit method

This section offers an application of our general theory of coadjoint orbits to the geometric

construction of representations. By way of example, we show how the formalism can be

applied to give certain ‘universal’ T -families of representations of certain Lie supergroups,

namely, the Abelian supergroup A0|n and certain graded variants of the three-dimensional

Heisenberg group.

At this point, we only partially address the issue to which extent unitary structures

exist on these families, nor will we make precise in which sense they are universal. We

intend to treat these issues in forthcoming work, together with an extension to more

general Lie supergroups.

6.1. Representations of Lie supergroups over some base

Fix T ∈ SSplfg
K . To set the stage both for the general representation theory of supergroups

over T and in particular, for the examples to be considered below, we give some very

general definitions.

The functor O :
(
SSplfg

T
)op
−→ Sets defined on objects U/T in SSplfg

T by

O(U/T ) := 0(OU,0̄)

and on morphisms f : U ′/T −→ U/T in SSplfg
T by

O( f ) : O(U/T ) −→ O(U ′/T ) : h 7−→ f ](h)

is a ring object in the category
[(

SSplfg
T
)op
,Sets

]
.

Definition 6.1. Let G be a supergroup over T . A representation of G is a pair (H, π)
consisting of:

(i) a Z/2Z-graded O-module object H :
(
SSplfg

T
)op
−→ Sets and

(ii) a morphism π : G×H −→ H, denoted by

π(g)ψ, ∀U ∈ SSplfg
K , t ∈U T, g ∈t G, ψ ∈ H(t),
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such that π(g) leaves the homogeneous components of H invariant and the following

equations are satisfied:

π(1G(t))ψ = ψ, π(g1g2)ψ = π(g1)
(
π(g2)ψ

)
,

π(g)(λψ1+ψ2) = λπ(g)ψ1+π(g)ψ2,
(6.1)

for all t ∈U T , g, g1, g2 ∈t G, ψ,ψ1, ψ2 ∈ H(t), λ ∈ O(t).
A graded O-submodule H′ ⊆ H is a G-subrepresentation if it is G-invariant, i.e. if π

descends to a morphism G×H′ −→ H′.

This concept generalises the existent notions of representations of Lie supergroups in

several ways. To make contact with the literature, recall the following construction, which

produces a graded O-module for any OT -module: Let H be a (graded) OT -module. Define

for t ∈U T :

H(t) := 0
(
(t∗H)0̄

)
, Hi (t) := 0

(
(t∗Hi )0̄

)
(where (−)0̄ refers to the total grading) and for any commutative diagram

U ′ U

T,
t ′

f

t

set

H( f ) := 0( f ]⊗ 1) : H(t) −→ H(t ′),

where 0 denotes the global sections functor, as usual. The O-module structure is given

by

O(t)×H(t) −→ H(t) : (h, ψ) 7−→ h ·ψ,

where · is the module structure on global sections.

In particular, for T = ∗, any super-vector space V over K defines such an O-module.

Assume that V is finite-dimensional and we are given a linear action π : G×H −→
H where H = AK(V ) is the functor given on objects U by H(U ) = 0

(
(OU ⊗ V )0̄

)
and

linear actions are defined by the identities in Equation (6.1). Then we may define a

representation (H, π) by

π(g)ψ := π(g, ψ),

for all U ∈ SSplfg
K , g ∈U G, and ψ ∈ H(U ) = 0

(
(OU ⊗ V )0̄

)
.

If G is a Lie supergroup, then a linear action is the same thing as a representation

of the associated supergroup pair (g,G0), compare [2, Proposition 1.5]. For the affine

algebraic case, compare also [15, Definition 11.7.2].

Example 6.2 (The left-regular representation). Let G be a supergroup over T . The

left-regular representation (HG , λG) of G is defined by taking

HG(t) := 0
(
OU×T G,0̄

)
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for all t ∈U T ,

HG( f ) := ( f ×T idG)
]
: HG(t) −→ HG(t ′)

for all f : t ′ −→ t , and

λG(g)ψ :=
(
(idU ×T mG) ◦ ((idU , g−1)×T idG)

)]
(ψ) = ψ(−, g−1(−))

for all t ∈U T , g ∈t G, ψ ∈ HG(t) = 0
(
OU×T G,0̄

)
. Here, g−1 is iG(g), as usual.

Let G be a supergroup over T . By definition, the Lie superalgebra of G is the

OT -submodule g of the direct image sheaf p0∗(TG/T ) of left-invariant vector fields on

G, defined by

g(U ) :=
{
v ∈ TG/T (p−1

0 (U ))
∣∣ m]

G ◦ v = (1⊗ v) ◦m]
G
}

for any open set U ⊆ T0, endowed with the usual bracket of vector fields. We may consider

g as a functor, as explained above. Then the derived representation L of (HG , λ) is the

morphism dλG : g×HG −→ HG defined by dλG(v) := −Lv and

Lvψ :=
(
(1U×T G ×T idG)

]
◦ (v⊗ 1) ◦ (idU ×T mG)

]
)
(ψ)

for all U ∈ SSplfg
K , t ∈U T , v ∈ g(t) = 0((t∗g)0̄), and ψ ∈ HG(t) = 0

(
OU×T G,0̄

)
. Here, we

have

1U×T G := (idU , 1G(t)) : U −→ U ×T G.

Similarly, we define R : g×HG −→ HG by

Rvψ :=
(
(1U×T G ×T idG)

]
◦ v13 ◦ (idU ×T mG)

]
)
(ψ)

for all t ∈U T , v ∈ g(t) = 0((t∗g)0̄), and ψ ∈ HG(t) = 0
(
OU×T G,0̄

)
. Here, we define

v13 := ((1 2)−1
×T idG)

]
◦ (1⊗ v) ◦ ((1 2)×T idG)

],

where (1 2) : G×T U −→ U ×T G is the flip.

Let us now indicate how to apply these ideas to transplant the orbit method into

the world of Lie supergroups. Let G be a Lie supergroup and f ∈T A(g∗k) a T -valued

point of the dual of the Lie superalgebra g (see the introduction to § 5). The Lie

superalgebra of GT := T ×G will be denoted by gT and equals OT ⊗ g, as is easy to

see. The representations that appear in the superorbit method are all instances of the

following simple construction.

Proposition 6.3. Let h ⊆ gT be an OT -submodule. Then the graded O-submodule Hh
f ⊆

HGT defined by

Hh
f (t) :=

{
ψ ∈ HGT (t)

∣∣ ∀v ∈ h(t) = 0((t∗h)0̄) : Rvψ = −i〈 f (t), v〉ψ
}

for all U ∈ SSplfg
K , t ∈U T , is a GT -subrepresentation of (HGT , λGT ).

Proof. The action R is O-linear and commutes with L.
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In the generality they are defined here, the representations (Hh
f , λGT ) are not

interesting. The relevant case is when h is an OT -Lie subsuperalgebra of gT that is

� f -isotropic, i.e. � f (v, v
′) = 0 for all local sections v, v′ of h. If h is maximally isotropic,

then one thinks of Hh
f as the ‘space of h-polarised sections of the canonical line bundle

on G · f ’ and, following Kirillov’s orbit philosophy, expects suitable ‘completions’ thereof

to be irreducible.

In the classical case of a Lie group over T = ∗, this is indeed true, and under

certain assumptions, e.g. when G is nilpotent, one thus obtains all irreducible unitary

representations [17]. For nilpotent Lie supergroups, it is known by the work of Salmasian

and Neeb [37, 38] that irreducible unitary representations (in the sense of [13, 14]) are

parametrised by coadjoint orbits through ordinary points of g∗. The known constructions

of these representations are however somewhat roundabout.

As we show below, by way of example, for the Clifford supergroup of dimension 1|2,

they are realised as certain Hh
f . Moreover, we show that our approach, for general T ,

also allows for a Plancherel decomposition of the regular representation, at least for the

simplest case of the Abelian Lie supergroup A0|n , where coadjoint orbits through ordinary

points are totally insufficient.

We believe that these examples are mere inklings of a vastly more general picture

covering the representation theory and harmonic analysis of nilpotent and possibly more

general Lie supergroups.

6.2. The Plancherel formula for A0|n

Let G = A0|n be the additive supergroup of the super-vector space g = K0|n . The coadjoint

action Ad∗ of G is trivial. If we let T := A(g∗) and consider the generic point f = idT ∈T
A(g∗), then the following diagram commutes:

GT A(g∗)T

T

a f

p1 1T

Thus, a f factors as the composition of an embedding with a surjective submersion and

thus has constant rank by Remark 4.15. Alternatively, observe that the fundamental

distribution Ag = 0, so that the criterion (ii) of Theorem 4.16 is verified. Moreover,

the above factorisation coincides with the standard one into π f and ã f , i.e. G f = GT ,

G · f = T , π f = p1, and ã f = 1T . The Kirillov–Kostant–Souriau form ω f is zero.

The general philosophy of ‘geometric quantisation’ or ‘Kirillov’s orbit method’ demands

the choice of a polarising (i.e. maximally isotropic) subalgebra h ⊆ gT . Since � f = 0, we
must have h = gT . The corresponding GT -subrepresentation H = Hh

f of (HGT , λGT ) is

given for all U ∈ SSplfg
K , t ∈U T , by

H(t) :=
{
ψ
∣∣ ψ ∈ 0((OGU )0̄

)
,∀v ∈ g : R1⊗vψ = −i〈 f (t), v〉ψ

}
.

This is the functor of a free OT -module of rank 1|0, since it has the basis of sections

ψ0 := e−i
∑

j θ j ξ
j
∈ H(idT ) = 0(OGT ,0̄).

https://doi.org/10.1017/S147474801600030X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801600030X


Superorbits 1105

Here, θ1, . . . , θn is some arbitrary basis of g and ξ1, . . . , ξn is the dual basis of g∗,

considered as coordinate superfunctions on T = A(g∗) and G = A(g), respectively.

The representation of GT on H is determined by its action on the special vector

ψt := HGT (t)(ψ0) = e−i
∑

j t j ξ
j
, t j := t](θ j ).

With π denoting the restriction of λGT to H and g j := g](ξ j ), it is given by

π(g)ψt = ((idU , g−1)×T idG)
](idU ×T mG)

](e−i
∑

j t j ξ
j
)

= ((idU , g−1)×T idG)
](e−i

∑
j t j (ξ

j
1+ξ

j
2 ))

= e−i
∑

j t j (−g j
+ξ j )
= ei〈t,g〉ψt ,

that is, it is a character, as was to be expected.

We have the following ‘abstract’ Fourier inversion formula.

Proposition 6.4. For any superfunction f on G, we have∫
T

D(θ) strπ( f ) = (−1)n(n+1)/2in f0(0),

where π( f ) is defined by

π( f ) :=
∫

G
D(ξ) f π,

and the integrals are Berezin integrals.

For the Berezin integral, see [18, § 3.9], [33, Ch. 2, § 4], [35, Ch. 4, § 6].

Proof. Since π is a character, the operator π( f ) is a function:

π( f ) =
∫

G
D(ξ) f ei

∑
j θ j ξ

j
∈ 0(OT ).

Therefore, strπ( f ) is that same function. (Incidentally, this may be viewed as a baby

version of Kirillov’s character formula.) The assertion now follows from the Euclidean

Fourier inversion formula [7, Proposition C.17].

We obtain the following Plancherel formula.

Corollary 6.5. For all superfunctions f and g on G, we have∫
T

D(θ) str(π( f )†π(g)) = (−1)n(n+1)/2in
∫

G
D(ξ) f g.

Here, (−)† is the super-adjoint with respect to the OT -inner product on H normalised by

〈ψ0|ψ0〉 = 1 and id is the antilinear antiautomorphism of OG defined by ξ j = ξ j .

Proof. Using the methods of [4], one sees that π( f )†π(g) = π( f ∗ ∗ g), where ∗ is the

convolution product on G and f ∗ = i]( f ) where i is the inversion of G. Since δ = ξ1 . . . ξn

is the Dirac delta on G, the formula follows from Proposition 6.4.
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Remark 6.6. Thus, by judiciously applying the orbit method to T -valued points, we

have obtained a decomposition of the left-regular representation of G into an ‘odd direct

integral’ of ‘unitary’ characters. By contrast, a direct sum decomposition of the function

space 0(OG) into irreducible unitary G-representations is impossible, since the only such

representation is the trivial one!

6.3. The orbit method for Heisenberg type supergroups

Let us consider the Lie superalgebra g over K spanned by homogeneous vectors x, y, z
satisfying the unique nonzero relation

[x, y] = z.

When x, y, z are even, g is the classical Heisenberg algebra of dimension 3|0. When x, y
are odd, z must be even. The central element z spans a copy of K, so g is a unital Lie

algebra in the sense of [9], and its unital enveloping algebra U(g)/(1− z) is the Clifford

algebra Cliff(2,K). (NB: We use a different normalisation below.) For this reason, g is

called the Clifford–Lie superalgebra, and its representation theory was studied e.g. in

[4, 38]. The construction of the representations used there is ad hoc. Below, we show how

they arise in a natural fashion.

A third possibility, which does not seem to have been considered before, is that

x, y are of distinct parity (but see [22]). In this case, z is odd. As we show below,

besides characters, there exists a family of representations (which happen to be

finite-dimensional) parametrised by T = A0|1, which bear a striking resemblance to the

Schrödinger representation of the Heisenberg group.

6.3.1. Parity-independent computations. A number of computations concerning

the Lie superalgebra g of Heisenberg type introduced above are somewhat independent of

the parity of its elements. We begin with the coadjoint representation of g. Let x∗, y∗, z∗

be the basis dual to x, y, z. In terms of this basis, we have

ad∗(x) =

0 0 0
0 0 −(−1)|x ||z|

0 0 0

 , ad∗(y) =

0 0 (−1)|y|

0 0 0
0 0 0

 , ad∗(z) = 0.

Recall the definitions given at the beginning of § 4. We consider the field k = R, since we

are mainly interested in super versions of real Lie groups. A Lie supergroup G (i.e. a group

object in the category of supermanifolds over (K,R) of class C$ ) with Lie superalgebra

g is uniquely determined by the choice of a real Lie group G0 whose Lie algebra is a real

form gR,0̄ of g0̄, compare [6].

We fix gR := gR,0̄⊕ g1̄ by setting gR,0̄ := g0̄ ∩ 〈x, y, z〉R. Let G be the connected and

simply connected Lie supergroup whose Lie superalgebra is g and whose Lie group has

Lie algebra gR,0̄. Unless g is purely even, G0 is the additive group of R. With these

conventions, ad∗(v) is the fundamental vector field corresponding to v ∈ g under the

coadjoint action Ad∗ of G.

Let T ∈ SSplfg
K be arbitrary and f = αx∗+βy∗+ γ z∗ ∈T A(g∗R). Observe that

ad∗(ax + by+ cz)( f ) = −aγ y∗+ (−1)|y|(1+|z|)bγ x∗
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for v = ax + by+ cz ∈ g, where a, b, c ∈ K. Thus, if u = a′x + b′y+ c′z ∈ g ⊆ 0(OA(g∗k))
with arbitrary a′, b′, c′ ∈ K, then(

f ] ◦ ad∗(v)
)
(u) = −ab′γ + (−1)|y|(1+|z|)ba′γ.

Proposition 4.5 gives

f ] ◦ ad∗(v) =


−γ f ] ◦

∂

∂y
if v = x,

(−1)|y|(1+|z|)γ f ] ◦
∂

∂x
if v = y,

0 if v = z,

(6.2)

where we use x, y, z as a coordinate system on A(g∗k). Let t ∈ T0. The image of f ] ◦ ad∗(v)
in T f0(t)A(g∗k) = ( f ∗TA(g∗k))(t) is

( f ] ◦ ad∗(v))(t) = ad∗(v)( f0(t)) =


−γ (t)

( ∂
∂y

)
( f0(t)) if v = x,

(−1)|y|(1+|z|)γ (t)
( ∂
∂x

)
( f0(t)) if v = y.

These are zero if γ (t) = 0 and linearly independent otherwise. In the latter case, condition

(iii) of Theorem 4.16 is verified. In the former case, the images of ( f ] ◦ ad∗(v)), v = x, y,

in ( f ∗Ag)(t) are zero if and only if γt ∈ γtmT,t .

For simplicity, let T ∈ SManK and (τ, θ) be a local coordinate system at t such that

τ j (t) = 0 for all j . Assume that γt = γt ht for some ht ∈ OT,t , but γt 6= 0. Then in the

expansion γ =
∑

J γJ θ
J there is some minimal I such that γI (t) 6= 0. It follows that

γI (t) = γI (t)h0(t), so that h /∈ mT,t .

Thus, applying Theorem 4.16, we have proved that for T ∈ SManK, a f has locally

constant rank over T if and only if

∀t ∈ T0 :
(
γ (t) = 0 H⇒ γt = 0

)
.

If T0 is connected, then this condition is equivalent to: γ ∈ 0(O×T ) or γ = 0. The orbit

exists if the orbit map a f attached to f has locally constant rank, by Proposition 4.23.

To compute the coadjoint action, we realise G in matrix form and g as left-invariant

vector fields on G. For any R ∈ SSplfg
K , consider 3× 3 matrices with entries in OR . We fix

the parity on the matrices by decreeing that the rows and columns of nos. 1, 2, 3 have

parities depending on those of x, y, z according to Table 1.

Then matrices of the form 1 a′ c′

0 1 b′

0 0 1


are even if and only if |a′| = |x |, |b′| = |y|, and |c′| = |z|. Let G ′(R) be the set of

these matrices where in addition {a′, b′, c′} ⊆ 0(OR,R). Clearly, by defining the group

multiplication by the multiplication of matrices, G ′ is the point functor of a Lie

supergroup. As we shall show presently, it is isomorphic to G. Since G ′0 = G0 is the
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Table 1. Parity distribution for the supergroups of Heisenberg type.

|x | |y| |z| 1 2 3

0̄ 0̄ 0̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 0̄ 1̄
1̄ 0̄ 1̄ 1̄ 0̄ 0̄

additive group of R, unless G is purely even, it will be sufficient to show that the Lie

superalgebra of left-invariant vector fields on G ′ is precisely g.

Let (a, b, c) be the coordinate system on G defined on points by

h

1 a′ c′

0 1 b′

0 0 1

 :=

(−1)|x |a′ h = a,

(−1)|y|b′ h = b,

(−1)|z|c′ h = c.

Note that this sign convention is natural in the following sense: Consider the

supermanifold G ′ as the affine superspace of strictly upper triangular matrices. Then

a, b, c are the linear superfunctions which constitute the dual basis to the standard basis

(E12, E13, E23) of elementary matrices.

Let ∂
∂a ,

∂
∂b ,

∂
∂c be the coordinate vector fields given by the coordinate system (a, b, c).

Let Rx , Ry, Rz be the left-invariant vector fields on G ′ determined by

Rx (1G ′) =
∂

∂a
(1G ′), Ry(1G ′) =

∂

∂b
(1G ′), Rz := [Rx , Ry],

where we write Rx (1G ′) for 1]G ′ ◦ Rx , and so forth.

We now proceed to compute these explicitly. Let φx
: ∗[τx ] −→ G ′ be the infinitesimal

flow of Rx (1G ′), where |τx | = |x |. (Compare Definition 4.3.) For any function h on G ′, we

have

∂

∂τx

∣∣∣
τx=0

h

1 (−1)|x |τx 0
0 1 0
0 0 1

 = ( ∂
∂a

h
)
(1G ′),

as one sees by inserting the coordinates h = a, b, c. Thus, we have

(φx )](h) = h

1 (−1)|x |τx 0
0 1 0
0 0 1

.
Similarly, we obtain

(φy)](h) = h

1 0 0
0 1 (−1)|y|τy
0 0 1


for the infinitesimal flow φy of Ry(1G ′).
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We compute

(Rx h)

1 a′ c′

0 1 b′

0 0 1

 = ∂

∂τx

∣∣∣
τx=0

h

1 a′+ (−1)|x |τx c′

0 1 b′

0 0 1

,
(Ryh)

1 a′ c′

0 1 b′

0 0 1

 = ∂

∂τy

∣∣∣
τy=0

h

1 a′ (−1)|y|a′τy + c′

0 1 (−1)|y|τy + b′

0 0 1

,
by again inserting the coordinates for h. We obtain

Rx =
∂

∂a
, Ry =

∂

∂b
+ (−1)|x ||y|a

∂

∂c
. (6.3)

Here, we have used the parity identity |x | + |y| + |z| = 0̄. From these expressions, we see

immediately that

Rz = [Rx , Ry] = (−1)|x ||y|
[
∂

∂a
, a
∂

∂c

]
= (−1)|x ||y|

∂

∂c
, (6.4)

and that this is the only nonzero bracket between the vector fields Rx , Ry, Rz . The sign

(−1)|x ||y| that appears in the case of |x | = |y| = 1̄ is an artefact of the parity distribution

which is nonstandard in that case.

Since Rx , Ry, Rz are linearly independent, they span the Lie superalgebra of G ′, and it

follows that G ∼= G ′. In what follows, we identify these two supergroups. Moreover, we

identify x, y, z with Rx , Ry, Rz , respectively.

For further use below, we note that the right-invariant vector fields Lx , L y, L z , defined

by

Lv := −i]G ◦ Rv ◦ i]G , v = x, y, z,

take on the form

Lx =
∂

∂a
+ b

∂

∂c
, L y =

∂

∂b
, L z = (−1)|x ||y|

∂

∂c
. (6.5)

One immediately checks the bracket relation [Lx , L y] = −L z .

We now calculate the adjoint action of G in terms of the matrix representation. Let

U ∈ SSplfg
K and (g, v) ∈U G×AK(g) (cf. [6] for the notation), where we write

g =

1 a′ c′

0 1 b′

0 0 1

 , v = ξ x(1G)+ ηy(1G)+ ζ z(1G) ∈ 0((1G(g)∗TG)0̄).

According to the definition of a, b, and c, the generic point idG ∈G G is

idG =

1 (−1)|x |a (−1)|z|c
0 1 (−1)|y|b
0 0 1

.
Denote the diagonal morphism of U by 1U . We compute, for any function h on G:
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Ad(g)(v)(h) = 1
]
U (1⊗ v⊗ 1)h(g idG g−1)

= 1
]
U (1⊗ v⊗ 1) h

1 (−1)|x |a (−1)|z|c+ (−1)|y|a′b− (−1)|x |ab′

0 1 (−1)|y|b
0 0 1

.
To evaluate this further, we insert a, b, c for h. For h = a, b, Equation (6.3) tells us that

we get ξ and η, respectively. For h = c, we get, upon applying Equation (6.4):

(−1)|x ||y|ζ + (−1)|x |(|y|+1̄)ηa′− (−1)|y|ξb′.

Thus, identifying x with x(1G), and so forth, and writing v in columns, we find

Ad

1 a′ c′

0 1 b′

0 0 1

ξ x
ηy
ζ z

 =
 ξ x

ηy
(ζ + (−1)|x |ηa′− (−1)(|x |+1̄)|y|ξb′)z

.
One may verify the correctness of this result by rederiving the bracket relation

[x, y] =
∂

∂τy

∣∣∣
τy=0

(−1)|x ||y|[x, τy y]

=
∂2

∂τy∂τx

∣∣∣
τx=τy=0

(−1)|x ||y| Ad

1 (−1)|x |τx 0
0 1 0
0 0 1

 (τy y)

=
∂2

∂τy∂τx

∣∣∣
τx=τy=0

(−1)|x ||y|(−1)|x ||y|+|x |τy((−1)|x |τx ) = z.

It is now straightforward if somewhat tedious to derive

Ad∗

1 a′ c′

0 1 b′

0 0 1

ξ∗x∗η∗y∗

ζ ∗z∗

 =
(ξ∗+ (−1)|y|(|x |+1̄)b′ζ ∗)x∗

(η∗− (−1)|x |a′ζ ∗)y∗

ζ ∗z∗

 (6.6)

for any

(g, v∗) ∈U G×AK(g∗), g =

1 a′ c′

0 1 b′

0 0 1

 , v∗ =

ξ∗x∗η∗y∗

ζ ∗z∗

.
As for the adjoint action, we make a sanity check:

ad∗(x)(z∗) =
∂2

∂τz∂τx

∣∣∣
τx=τz=0

(−1)|x ||z| Ad∗

1 (−1)|x |τx 0
0 1 0
0 0 1

 (τzz∗)

=
∂2

∂τz∂τx

∣∣∣
τx=τz=0

(−1)|x ||z|+|x |(−(−1)|x |τx )τzz∗ = −(−1)|x ||z|z∗,

which is in agreement with our previous computations.

Let us return to our T -valued point f in the case where α = β = 0, i.e. we have

f = γ z∗ ∈T A(g∗R). Then

(t, g) ∈U G f ⇐⇒ a′t](γ ) = b′t](γ ) = 0, g =

1 a′ c′

0 1 b′

0 0 1

. (6.7)
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Moreover, the orbit map a f : GT −→ A(g∗R) takes the form

(a f )
](x) = γ b, (a f )

](y) = −(−1)|x ||z|γ a, (a f )
](z) = γ,

in terms of coordinates a, b, c on G and the (linear) coordinates x, y, z on A(g∗R), given

by

h

ξ∗x∗η∗y∗

ζ ∗z∗

 =

(−1)|x |ξ∗x(x∗) = ξ∗ h = x,

(−1)|y|η∗y(y∗) = η∗ h = y,

(−1)|z|ζ ∗z(z∗) = ζ ∗ h = z.

We now analyse this further, separately in the two cases in which G is not a Lie group

(i.e. when at least one of x, y, z is odd).

6.3.2. The Clifford supergroup of dimension 1|2. Assume that |x | = |y| = 1̄.

In this case, G is called the Clifford supergroup. This case has been given a definitive

treatment by Neeb and Salmasian [37, 38]; see also [4] for the related harmonic analysis.

Our emphasis here will be to put it in the general context the orbit method. Moreover,

we shall obtain the full family of Clifford modules for any nontrivial central character in

one sweep.

We take T := A1
\ 0 and γ := u, the standard coordinate function on A1, so f = γ z∗ :

T −→ A(g∗k). Since γ is invertible, a f has locally constant rank over T , and in particular,

G f is a Lie supergroup over T .

It is completely determined by its underlying Lie group (G f )0 over T0 and its Lie

superalgebra g f (over OT ), defined by

g f (U ) :=
{
v =

∑
j v

j e j ∈ OT (U )⊗K g
∣∣∣ ∑ j v

j (1]G ◦ e j ◦ a]f ) =
∑

j v
j f ] ◦ ae j = 0

}
,

for any open set U ⊆ T0. In view of Equation (6.2), we have g f = OT z. For the superspace

U = ∗, the condition in Equation (6.7) is void. We conclude that the point functor of G f
is given by

G f (U ) =


t,

1 0 c′

0 1 0
0 0 1

∣∣∣∣∣∣ t, c′ ∈ 0(OU,R,0̄)

 ,
for all U ∈ SSplfg

K , so that G f ∼= A1
T with the standard addition of A1 as multiplication

over T .

The orbit G · f = GT /G f is T ×A0|2 with fibre coordinates a, b. The local embedding

ã f : G · f −→ A(g∗k)T over T is given by

(ã f )
](x) = γ b, (ã f )

](y) = −γ a, (ã f )
](z) = γ.

Again following the general philosophy of geometric quantisation or Kirillov’s orbit

method, we choose a polarising subalgebra. To avoid reality problems, we consider the

case of K = C. In the real case, we would have to complexify anyway.

A polarising subalgebra corresponds here to the preimage h in gT = OT ⊗ g of a locally

direct submodule of gT /g f which is maximally totally isotropic with respect to the
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supersymplectic form induced by ω f . We consider the case of

h := 〈x, z〉OT .

The image in gT /g f is indeed maximally totally isotropic.

The space of h-polarised sections of the canonical line bundle on G · f is the

O-submodule Hh
f of HGT introduced in Proposition 6.3. It is given by

H(t) :=
{
ψ
∣∣ ψ ∈ 0(OGU ,0̄), Rxψ = 0, Rzψ = −i t](γ )ψ

}
,

for U ∈ SSplfg
C , t ∈U T . By Equations (6.3) and (6.4), this amounts to

ψ = ϕei t](γ )c

where ϕ ∈ 0(OU×A0|1,0̄), and we consider b as fibre coordinate on (U ×A0|1)/U . Thus,

ψ admits an expansion in the powers b0, b1 of b, with coefficients in functions on U .

Thus, H is the functor of the free OT -module of rank 1|1 = dim0(OA0|1). We denote the

corresponding OT -module by the same letter.

Denoting the restriction of λGT to H by π , we compute for g =
(

1 a′ c′
0 1 b′
0 0 1

)
∈U G:

π(g)ψ = ((idU , g−1)×mG)
]
(
ϕ(b1+ b2)ei t](γ )(c1+c2+a1b2)

)
= ϕ(b− b′)ei t](γ )(−c′+a′b′+c−a′b)

= ei t](γ )(−a′b+a′b′−c′)ψ(b− b′).

Formally deriving this expression, we readily obtain the infinitesimal action

dπ(x) = −ibt](γ ), dπ(y) = −
∂

∂b
, dπ(z) = i t](γ ).

Since the supercommutator of π(x) and π(y) is an anticommutator, we recognise this as

the ‘fermionic Fock space’ or ‘spinor module’ of the OT -Clifford algebra Cliff(2,OT ) :=

(OT ⊗U(g))/(z− iγ · 1). That is, we have a trivial bundle of ‘spinor’ modules C1|1 over

the base space R×, where the central character on the fibre at t ∈ R× is iγ (t) = i t . (The

fibres are unital algebra representations of Cliff(2,C).)

6.3.3. The odd Heisenberg supergroup of dimension 1|2. Assume now that

|x | = 0̄, |y| = |z| = 1̄. In this case, we call G the odd Heisenberg supergroup, since it

is a central extension of the Abelian Lie supergroup A1|1 with respect to a 2-cocycle

corresponding to an odd supersymplectic form.

We take T := A0|1 and γ := θ , the standard coordinate function on A0|1, so f = θ z∗ :
T −→ A(g∗k). In this case, Equation (6.7) gives

G f = (R,OG f ), OG f := OA1 [b, c, θ]/(aθ, bθ),

where b, c are odd, a is the standard coordinate function on A1, and the embedding

j : G f −→ GT is the obvious one. Clearly, G f is not a supermanifold over T .

To determine the orbit, let h be a function on GT and expand

h = h0+ hbb+ hcc+ hθθ + hbcbc+ hbθbθ + hcθcθ + hbcθbcθ
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where h I are functions on A1. The multiplication m of GT is given by

m](a) = a1+ a2, m](b) = b1+ b2, m](c) = c1+ c2+ a1b2,

where we write ai := p]i (a), and so forth. Thus, writing m′ := m ◦ (idGT ×T j), we find

that

m′](h) = m′](h0)+m′](hb)(b1+ b2)+m′](hc)(c1+ c2+ a1b2)+m′](hθ )θ

+m′](hbc)(b1c1+ b1c2+ a1b1b2− c1b2+ b2c2)+m′](hbθ )b1θ

+m′](hcθ )(c1θ + c2θ)+m′](hbcθ )(b1c1θ + b1c2θ).

Since p]1(h) contains only b1, c1, if h is invariant, then all summands involving b2 or c2
have to vanish. Moreover, on GT ×T G f , we have

m′](h I )θ = h I (a1+ a2)θ = h I (a1)θ + h′I (a1)a2θ = h I (a1)θ = p]1(h I )θ,

so the invariance condition is verified automatically for the θ and bθ components.

Therefore, h is left G f -invariant if and only ifm′](h I ) = p]1(h I ) for I = 0,

h I = 0 for I = b, c, bc, cθ, bcθ.

In other words, h is of the form

h = h0+ hθθ + hbθbθ

where h0 is constant and hθ , hbθ are arbitrary. It follows that the colimit in SSpT of

m, p1 : GT ×T G f −→ GT is given by

Q := (∗,OQ), OQ =
{

f ∈ 0(OA1)[ε|θ ]/(ε
2, εθ)

∣∣ f0 ∈ K
}
,

together with the morphism π f : GT −→ Q determined by

π
]
f (a) = a, π

]
f (ε) = bθ, π

]
f (θ) = θ,

see Remark 3.2. By Proposition 3.1, Q is a regular superspace in the sense of [5,

Definition 4.12], but it is not locally finitely generated, because it is not a subspace

of Yq := (∗,K[[a]][θ1, . . . , θq
]) for any q. (If Q were locally finitely generated, then it

would have to be a subspace of some Yq [5, Example 3.50].)

Nonetheless, we have the subrepresentation Hh
f of HGT from Proposition 6.3 for

polarising subalgebras h ⊆ gT . We choose

h := 〈x, z〉OT .

Once again, H = Hh
f is given by

H(t) :=
{
ψ
∣∣ ψ ∈ 0(OGU ,0̄), Rxψ = 0, Rzψ = −i t](γ )ψ

}
for U ∈ SSplfg

K , t ∈U T . We see that the condition on ψ amounts to

ψ = ϕei t](γ )c
= ϕ(1+ i t](γ )c),
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where ϕ ∈ 0(OU×A0|1,0̄) admits a finite expansion in b with coefficients in functions on

U . Again, this corresponds to the OT -module OT ⊗C1|1. The restriction π of λGT to H
is given by the same formula as before:

π(g)ψ = ei t](γ )(−a′b+a′b′−c′)ψ(b− b′), ∀g =

1 a′ c′

0 1 b′

0 0 1

 .
Formally deriving this expression, one obtains the following infinitesimal action:

dπ(x) = −i t](γ )b, dπ(y) = −
∂

∂b
, dπ(z) = i t](γ ).

Since the supercommutator of dπ(x) and dπ(y) is an ordinary commutator, this is a

parity reversed Schrödinger representation, parametrised by T = A0|1.

If instead we consider the polarising subalgebra h = 〈y, z〉OT , then the dimension of

the representation Hh
f changes drastically, although the action is formally very similar.

(Essentially, a and b exchange their roles.) This has also been observed by Tuynman

[40] in his setting and seems to reflect the fact that in this case, the orbit is not a

supermanifold.
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Appendix A. The inverse function theorem over a singular base

In this appendix, we prove a relative version of the inverse function theorem, valid

for an arbitrary base S ∈ SSplfg
K . This was used heavily in § 4. The case where S

is a supermanifold is a corollary of the well-known inverse function theorem for

supermanifolds [33, Theorem 2.3.1]. However, the proof in that case does not apply

without change to such cases as S = SpecKJT K, which are covered by our argument.

Theorem A.1 (Inverse function theorem). Let X/S and Y/S be in SManS and ϕ : X/S −→
Y/S a morphism over S. For any x ∈ X0, the following are equivalent:

(i) There is an open neighbourhood U ⊆ X0 of x so that V := ϕ0(U ) ⊆ Y0 is open, and

ϕ : X |U := (U,OX |U ) −→ Y |V is an isomorphism.

(ii) The germ (Tϕ/S)x : TX/S,x −→ TY/S,ϕ0(x) is invertible.

(iii) The map TS,xϕ : TS,x X −→ TS,ϕ0(x)Y is invertible.

Proof. The only nontrivial implication is (iii) H⇒ (i). The question is local, so that we

may assume that there are globally defined fibre coordinates (xa) = (u j , ξ k) on X and

(ya) = (v j , ηk) on Y . Consider the ideal IX ⊆ OX that is the tidy closure of that generated

by the ξ k and p−1
X,0(IS0), where pX : X −→ S is the structural projection and IS0 is the

ideal of the reduction of S [5, Construction 3.9]. (Here, the notion of tidy closure of
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an ideal is introduced in [5, Definition 3.40], where it was called tidying.) The similarly

defined ideal of OY shall be denoted by IY .

Let jX : X (0) −→ X and jY : Y (0) −→ Y be the thickenings [5, Definition 2.10] defined

by IX and IY , respectively. Let X (n) and Y (n), respectively, be the tidyings of the kth

normal neighbourhoods of jX and jY (see [5, Proposition 3.52], where the notation is

different). That is, X (n) = (X0,OX/I(n+1)
X ) where I(n+1)

X is the tidy closure of (IX )
n+1.

There are natural tidy embeddings j (n)X : X (n) −→ X and j (n+1,n)
X : X (n) −→ X (n+1) such

that the j (n+1,n)
X form an inductive system.

Since the morphism ϕ is over S, we have ϕ](IY ) ⊆ IX [5, Proposition 3.47, Corollary

3.49]. Therefore, we obtain commutative diagrams

X Y

X (n+1) Y (n+1)

X (n) Y (n)

ϕ

j (n+1)
X

ϕ(n+1)

j (n+1)
Y

j (n+1,n)
X

ϕ(n)

j (n+1,n)
Y

Notice that by [5, Corollary 5.30], X (0) is the reduction X0 of X , so it is reduced and a

supermanifold over S0 of even fibre dimension.

Assume for the moment that we can prove the theorem for such spaces. For a while, we

proceed similar to the standard proof of the inverse function theorem for supermanifolds

[33, proof of Theorem 2.3.1]. Namely, it is easily seen that possibly after shrinking X and

Y , ϕ(0) is an isomorphism over S0. Again shrinking X and Y as necessary, we may assume

that there are functions v′ j on Y such that

j (0)]Y (v′ j ) = ϕ(0)−1]( j (0)]X (u j )).

Here, we abbreviate ((ϕ(0))−1)] by ϕ(0)−1]. Moreover, define Ak` :=
∂ϕ](ηk )

∂ξ k . This matrix is

invertible, so consider its inverse Ak`. After shrinking X and Y further, there are functions

A′k` on Y such that

j (0)]Y (A′k`) = ϕ
(0)−1]( j (0)]X (Ak`)).

We let η′k :=
∑
` A′k`η

`. Since jY is a thickening, the values of v′ j are determined by

those of j (0)]Y (v′ j ), and hence, the mapping condition for the functions y′a := (v′ j , η′ j ) is

verified. Thus, there is by [5, Corollary 5.36] a unique morphism ψ : Y −→ X over S such

that

ψ](xa) = y′a .

Notice that

j (0)]X
(
ϕ](ψ](u j ))

)
= ϕ(0)](ϕ(0)−1]( j (0)]X (u j ))) = j (0)]X (u j ),

so that

(ψ ◦ϕ)](u j ) ≡ u j (IX ).

But since both sides of the equation are even, the equivalence is modulo IX,0̄, which is

the tidy closure of the ideal generated by p−1
X,0(IS0,0̄) and the ξ kξ `.
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We argue similarly for the Ak`:

j (0)]X (ϕ](A′k`)) = ϕ
(0)](ϕ(0)−1]( j (0)]X (Ak`))

)
,

so that ϕ](A′k`) ≡ Ak` modulo IX,0̄. Since Akm is even and ∂
∂ξ`

is a vector field over S, we

find that
∂Akm

∂ξ `
≡ 0 (IX ).

Therefore, we have modulo IX :

∂ϕ](ψ](ξ k))

∂ξ `
=

∑
m

∂ϕ](A′kmη
m)

∂ξ `
≡

∑
m

Akm
∂ϕ](ηm)

∂ξ `
= δk`,

where we use the simple fact that a vector field on a tidy superspace that leaves an ideal

invariant also leaves its tidy closure invariant. Thus,

(ψ ◦ϕ)](ξ k) ≡ ξ k (J ),

where J is the tidy closure of the ideal generated by p−1
X,0(IS0,1̄) and the ξ kξ `ξm .

This implies that (ψ ◦ϕ)] = id+ δ where δ annihilates p−1
X,0(OS) (because ϕ and ψ are

over S), δ(OX ) ⊆ IX and δ(IX ) ⊆ I2
X . The identity

δ( f g) = δ( f )g+ f δ(g)+ δ( f )δ(g)

shows by induction that δ(Ik
X ) ⊆ Ik+1

X . At this point, we cannot conclude as for the case

that S is a supermanifold (compare [33, proof of Theorem 2.3.1]), since IX may not be

nilpotent. However, we can continue as follows.

Since the morphism ψ is over S, it induces morphisms ψ (n) : Y (n) −→ X (n) such that

(ψ (n) ◦ϕ(n))] = id+ δ(n) for some sheaf endomorphisms δ(n) which map Ik
X/I

(n+1)
X to

Ik+1
X /I(n+1)

X . Thus, (δ(n))n+1
= 0, and it follows that (ψ (n) ◦ϕ(n))] is invertible. Thus,

ϕ(n) admits a left inverse φ(n) (say). By construction, we see that

φ(n+1)
◦ j (n+1,n)

Y = j (n+1,n)
X ◦φ(n).

Now, since X is formally Noetherian [5, Lemmas 3.36, 3.37], it follows from [5,

Proposition 3.52] that X = lim
−→n

X (n) in the category SSplfg
K . Thus, ϕ admits the left

inverse φ := lim
−→n

φ(n). Applying the above procedure to φ, it follows that φ admits a left

inverse, too. But it also has a right inverse, namely, ϕ, so it is invertible. Hence, ϕ is

invertible.

It remains to prove the theorem in the case where S = S0 is reduced and the fibre

dimension of X is purely even. Possibly shrinking S, there is an embedding i : S −→
S′ = Ar . Let X ′ := S′×Ap and similarly for Y . Define iX : X −→ X ′ to be the unique

morphism over i such that i]X (x
′a) = xa , where (x ′a) are the standard fibre coordinates

on X ′ over S′. Similarly, define iY : Y −→ Y ′. Then iX and iY are embeddings by [5,

Corollary 5.29].

Define ϕa := ϕ](ya). Possibly shrinking X , X ′, Y , and Y ′, we may assume that there

are functions ϕ′a on X such that ϕa
= i]X (ϕ

′a). Since X is reduced, i]X is post-composition
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with (iX )0. Thus, by taking real parts in the case of (K,k) = (C,R), we may assume

that the functions ϕ′a are k-valued. Therefore, there is by [5, Corollary 5.36] a unique

morphism ϕ′ : X ′ −→ Y ′ over S′ such that ϕ′](y′a) = ϕ′a . Then

ϕ′ ◦ iX = iY ◦ϕ,

so that by Lemma A.2 below, we may assume that ϕ′ satisfies the assumption of (iii).

But X ′ and Y ′ are ordinary manifolds, so the local invertibility of ϕ′ follows. Thus,

ϕ](ya) = i]X (ϕ
′](y′a)) is a system of fibre coordinates. This proves the assertion.

In the proof of the Theorem A.1, we have used the following easy lemma.

Lemma A.2. Let ϕ : X/S→ Y/S be a morphism of supermanifolds over S. For any pair

m|n of nonnegative integers, the set{
x ∈ X0

∣∣ rk TS,xϕ > m|n
}

is open. Here, we write p|q > m|n if and only if p > m and q > n.

Proof. In local fibre coordinates, TS,xϕ is represented by the Jacobian matrix JacS(ϕ)(x),
which is a continuous function of x . Since the rank of the upper or lower diagonal block

of a block matrix is a lower semicontinuous function and the finite intersection of open

sets remains open, the assertion follows.

Appendix B. Immersions of closed Lie groups over some base

Let T ∈ SSplfg
K be reduced. The aim of this appendix is to prove the following.

Theorem B.1. Let j : H −→ G be a morphism of Lie groups over T which is an injective

immersion and has closed image. Then j is a closed embedding.

We let g := T ×G T (G/T ), the restriction of the fibrewise tangent bundle of G to T ,

be the Lie algebra of G. It is a vector bundle over T and admits a bracket. Similarly, we

define h and consider the differential d j : h −→ g induced by T ( j/T ). It is an injective

vector bundle morphism and therefore a closed embedding. We define expG : g −→ G by

expG(x) := expG pg(x)
(x),

where pg is the vector bundle projection of g and we write G t for the fibre of G over

t ∈ T . By the smooth dependence of the solutions of ODE on Cauchy data, expG is a

morphism of manifolds over T . It is a local isomorphism of manifolds over T by the

inverse function theorem (Theorem A.1). Similarly, we may define expH . It follows that

j ◦ expH = expG ◦ d j , since this is true fibrewise.

Consider the set

h′ :=
{

x ∈ g
∣∣ expG(Rx) ⊆ j (H)

}
.

From the fibrewise statement (which is classical), it follows that the fibres of h′ are Lie

subalgebras of the fibres of g, and moreover, that d j (ht ) = h′t for any t ∈ T . Thus, h′

identifies with the image of d j and is therefore a vector subbundle of g.
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Fix t ∈ T . We may choose open neighbourhoods U ⊆ g of 0t and V0 ⊆ G of 1t such

that expG : U −→ V0 is a homeomorphism. Since this holds fibrewise, it follows that

expG(U ∩ h
′) ⊆ V0 ∩ H.

Fix a vector bundle metric 〈·, ·〉 on g (this exists after possibly restricting to

a paracompact neighbourhood of t in T ) and E := (h′)⊥ ⊆ g a vector subbundle

complementary to h′. We write ‖·‖ =
√
〈·, ·〉. The proof of the following two lemmas

is identical to the classical case [27, § 9.2.3].

Lemma B.2. Let xk ∈ U , xk 6= 0, expG(xk) ∈ j (H), converge to a point in the zero section

of g. Any accumulation point of ‖xk‖
−1xk lies in h′.

Lemma B.3. There is some open neighbourhood U ′′ ⊆ U ∩ E of 0t such that we have

expG(U
′′)∩ j (H) ⊆ T .

Lemma B.4. Possibly after shrinking the neighbourhood U ′′, there exist open

neighbourhoods U ′ ⊆ U ∩ h′ of 0t and V ′ ⊆ G of 1t such that

φ : U ′×U ′′ −→ V ′ : (u′, u′′) 7−→ (expG(u
′))(expG(u

′′))

is a diffeomorphism over T .

Proof. The classical case shows that fibrewise, φ fulfils the assumptions of the inverse

function theorem (Theorem A.1).

We now come to the proof of the theorem.

Proof of Theorem B.1. We claim that expG(U
′) = V ′ ∩ j (H). The inclusion ⊆ is clear,

since U ′ ⊆ U by construction. Conversely, let g = φ(u′, u′′) ∈ j (H), where (u′, u′′) ∈ U ′×
U ′′. Then

expG(U
′′) 3 expG(u

′′) = (expG(u
′))−1g ∈ j (H),

so that g = 1 and u′′ = 0 by Lemma B.3. Thus, g = expG(u
′) ∈ expG(U

′), proving the

claim.

Let U := expH (d j−1(U ′)). This is a neighbourhood of 1t in H , and after shrinking U ′,
we may assume that it is open. The claim implies

j (U ) = expG(U
′) = V ′ ∩ j (H),

so that U carries the initial topology with respect to j . The assertion follows.
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