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Abstract

In this paper we are concerned with a model in econophysics, the subfield of statistical
physics that applies concepts from traditional physics to economics. Our model is
an example of an interacting particle system with disorder, meaning that some of the
transition rates are not identical but rather drawn from a fixed distribution. Economical
agents are represented by the vertices of a connected graph and are characterized by
the number of coins they possess. Agents independently spend one coin at rate one for
their basic need, earn one coin at a rate chosen independently from a distribution φ, and
exchange money at rate μ with one of their nearest neighbors, with the richest neighbor
giving one coin to the other neighbor. If an agent needs to spend one coin when his/her
fortune is at 0, he/she dies, i.e. the corresponding vertex is removed from the graph.
Our first results focus on the two extreme cases of lack of cooperation μ = 0 and
perfect cooperation μ = ∞ for finite connected graphs. These results suggest that, when
overall the agents earn more than they spend, cooperation is beneficial for the survival of
the population, whereas when overall the agents earn less than they spend, cooperation
becomes detrimental. We also study the infinite one-dimensional system. In this case,
when the agents earn less than they spend on average, the density of agents that die
eventually is bounded from below by a positive constant that does not depend on the
initial number of coins per agent or the level of cooperation.
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cooperation
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1. Introduction

Models in econophysics typically consist of large systems of economical agents who earn,
spend, and exchange money. For a review of such models, we refer the reader to [8]. These
models so far have mainly been studied by statistical physicists. From a mathematical point of
view, they fall into the category of stochastic processes known as interacting particle systems;
see [4] and [7]. The most basic model in econophysics was studied in [3] based on numerical
simulations, but was also considered earlier in [1] and [2]. This model consists of a system of N

interacting economical agents that are characterized by the number of dollars they possess, and
evolves as follows: at each time step, an agent chosen uniformly at random gives one dollar to
another agent again chosen uniformly at random, unless the first agent has no money in which
case nothing happens. The main conjecture about this model is that when the number of agents
and the money temperature, defined as the average amount of money per agent, are both large,
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the limiting distribution of money is well approximated by the exponential distribution in which
the parameter is the money temperature.

Spatially explicit versions of this model where agents are located on the vertices of a finite
connected graph and can only exchange money with their nearest neighbors were recently
introduced and studied analytically in [5]. The nonspatial model considered in [3] is simply
obtained by assuming that the underlying graph is the complete graph with N vertices. It was
proved in [5] that the conjecture of [3] is indeed correct and in fact holds for all spatially explicit
versions, not only the process on the complete graph.

In this paper we study variants of the spatially explicit models [5] where agents also earn
money, spend money, and die if they run out of money. In addition, we assume that the exchange
of money occurs in a cooperative setting, meaning that the flow of money is exclusively directed
from ‘rich’agents to ‘poor’agents. We also follow the framework of interacting particle systems
(see [7]) by assuming that the process evolves in continuous rather than in discrete time. This
approach will allow us to define the system on infinite graphs using an idea of Harris [4] that
consists in constructing the process from a collection of independent Poisson processes.

1.1. Model description

To define our spatial model formally, let G = (V, E) be a finite or infinite locally finite con-
nected graph. Each vertex represents an economical agent who is either alive and characterized
by the amount of money he/she possesses, or dead. To fix the ideas, we assume that the amount
of money agents who are alive possess is a nonnegative integer representing a number of credits
or coins, while we use the state −1 for dead agents. In particular, the state of the system at
time t is a spatial configuration

ξt : V → {−1, 0, 1, 2, . . .}
with the value of ξt (x) indicating that agent x is dead or representing the number of coins
this agent possesses when he/she is alive. To define the evolution rules, we attach to each
vertex x ∈ V a random variable φx chosen independently from a fixed distribution φ. The
individual at vertex x earns one coin at rate φx and, to ensure his/her survival, spends one coin
at rate one. In particular, our model is an interacting particle system with disorder due to the
fact that the earning rates are drawn from a distribution. The population is also characterized by
its level of cooperation which is measured using a nonnegative parameter μ as follows: nearest
neighbors that are alive interact at rate μ and, in case one neighbor has at least two more coins
than the other neighbor, he/she gives one coin to the other neighbor. In particular, the ‘richest’
agent before the interaction does not give any coin if this makes him/her ‘poorer’ than his/her
neighbor. Finally, if an individual has zero coins at the time he/she needs to spend one coin then
he/she dies and the corresponding vertex is removed from the graph. To describe the dynamics
formally, for each spatial configuration ξ , let

ξ−
x (z) = ξ(z) − 1{z=x} for all z ∈ V (spending),

ξ+
x (z) = ξ(z) + 1{z=x} for all z ∈ V (earning)

be the configurations obtained respectively by removing/adding one coin at vertex x. Also, for
each edge (x, y) ∈ E of the network of interactions, we let

ξ(x,y)(z) = ξ(z) + 1{ξ(x)<ξ(y)−1}(1{z=x} − 1{z=y})
+ 1{ξ(y)<ξ(x)−1}(1{z=y} − 1{z=x}) (cooperation)
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be the configuration obtained by moving one coin from the richer to the poorer vertex if the
two vertices are at least two coins apart. The dynamics of the system is then described by the
Markov generator L defined on the set of cylinder functions by

Lf (ξ) =
∑
x∈V

(f (ξ−
x ) − f (ξ)) 1{ξ(x)�=−1} +

∑
x∈V

φx(f (ξ+
x ) − f (ξ)) 1{ξ(x)�=−1}

+
∑

(x,y)∈E

μ(f (ξ(x,y)) − f (ξ)) 1{ξ(x)�=−1, ξ(y)�=−1} .

The first sum describes the rate at which vertices spend one coin, the second sum the rate
at which they earn one coin, and the third sum the rate at which neighbors exchange one
coin. As previously mentioned, the process is well defined on locally finite graphs, including
infinite graphs, and can be constructed from a collection of independent Poisson processes.
More precisely,

• for all x ∈ V, let N−
t (x) be a Poisson process with intensity 1;

• for all x ∈ V, let N+
t (x) be a Poisson process with intensity φx ;

• for all (x, y) ∈ E , let Nt(x, y) be a Poisson process with intensity μ.

We further assume that these processes are independent. This implies that, with probability 1,
the arrival times are all distinct. A general result due to Harris [4] then shows that the process
can be constructed using the following rules:

• at the arrival times of the Poisson process N−
t (x), we take one coin from the individual

at vertex x if this individual is still alive;

• at the arrival times of the Poisson process N+
t (x), we give one coin to the individual at

vertex x if this individual is still alive;

• at the arrival times of N+
t (x, y), we move one coin from x to y if x has at least two more

coins than y or one coin from y to x if y has at least two more coins than x.

1.2. Main results

To begin with, we compare the two processes with the same earning rates φz in the absence
of cooperation (μ = 0) and in the presence of perfect cooperation (μ = ∞) on finite connected
graphs to understand whether cooperation is beneficial or detrimental for survival. We first
look at the probability of global survival that we define as

pμ(c, (φz)) = P(ξt (z) �= −1 for all (z, t) ∈ V × R+ | ξ0 ≡ c),

where c refers to the common initial number of coins per agent and where the earning rates φz

are independent realizations of the distribution φ for all z ∈ V. Estimates for the probability
of global survival can be expressed in terms of the two key quantities

D = max
x∈V

∑
z∈V

d(x, z) and � = 1

N

∑
z∈V

φz, (1)

where d refers to the graph distance and N to the population size. Using the fact that, as long as
all the agents are alive, the total number of coins on the graph behaves like a random walk that
increases at rate N� and decreases at rate N together with the fact that nearest neighbors are
at most one coin apart in the presence of perfect cooperation, we have the following theorem.
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746 N. LANCHIER AND S. REED

Theorem 1. In the presence of perfect cooperation (μ = ∞),

p∞(c, (φz)) ≥ max(0, 1 − �−(Nc−D+1)).

The proof relies, among other things, on an application of the optional stopping theorem
for martingales. The inequality in the statement turns out to be an equality when N = 1.
In particular, because the system in the absence of cooperation behaves like N independent
copies of a one-person system, the theorem also gives the probability of global survival
when μ = 0. Using this and some basic algebra, it can be proved that when � > 1 and c is
large, the probability of global survival is larger in the presence of perfect cooperation than in
the absence of cooperation.

Theorem 2. Assume that � > 1. Then there exists c0 < ∞ that depends on N such that

p0(c, (φz)) =
∏
z∈V

max(0, 1 − φ−(c+1)
z )

≤ max(0, 1 − �−(Nc−D+1))

≤ p∞(c, (φz)) for all c ≥ c0.

More generally, we conjecture that when � > 1, i.e. when overall the agents earn more than
they spend, the probability of global survival is larger in the presence of perfect cooperation
than in the absence of cooperation regardless of the initial value c.

We now focus on the two-person system: we set V = {x, y} and assume that vertices x

and y are connected by an edge. In this case, Theorem 1 implies that when

� = 1
2 (φx + φy) > 1 and φx < 1 < φy,

global survival is possible in the presence of perfect cooperation whereas individual x dies
almost surely in the absence of cooperation, showing again that cooperation is beneficial.
Cooperation, however, becomes detrimental when

� = 1
2 (φx + φy) < 1 and φx < 1 < φy.

In this case, regardless of the level of cooperation μ, global survival is not possible so, to
measure the effect of cooperation, we study instead

Eμ(c, (φz)) = E(card{z ∈ V : ξt (z) �= −1 for all t ∈ R+} | ξ0 ≡ c)

the expected number of individuals that live forever. Due to perfect cooperation and the fact
that individual x dies almost surely, it can be proved that the last time both individuals each
have one coin is almost surely finite and that, between this time and the first time one of the two
individuals dies, the process behaves according to a certain seven-state Markov chain. Using a
first-step analysis to study this Markov chain and part of the proof of Theorem 1, the expected
value of the number of individuals that live forever can be computed explicitly.

Theorem 3. Assume that V = E = {x, y} and that

� = 1
2 (φx + φy) < 1 and φx < 1 < φy.
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Then, letting � = 8 + 2φx + 2φy , for all c ≥ 1,

E∞(c, φx, φy) =
(

2

�

)(
1 − 1

φy

)
+

(
φy

�
+ 1

4

)(
1 −

(
1

φy

)2)

< 1 −
(

1

φy

)c+1

= E0(c, φx, φy).

Our approach to prove this result works in theory for all complete graphs, but becomes
computationally intractable even with only three vertices. More generally, we conjecture that,
at least on the complete graph and when � < 1, i.e. when overall the agents earn less than they
spend, the expected number of individuals that live forever is larger in the absence of cooperation
than in the presence of perfect cooperation. Essentially, we conjecture that cooperation is
beneficial for populations that are ‘productive’ but detrimental for populations that are not.

Finally, we look at the infinite system in one dimension: the underlying graph is represented
by the integers with each integer being connected to its predecessor and to its successor. In this
case, the process is more difficult to study because the graph is infinite. In the next result
we show that when the expected value of φ is less than 1, the density of individuals who die
eventually in the infinite one-dimensional system is bounded from below by a positive constant
that does not depend on the level of cooperation or on the initial number of coins per agent.

Theorem 4. Assume that E(φ) < 1. Then

lim
n→∞

1

2n + 1

n∑
z=−n

1{ξt (z)=−1 for some t} = l,

where l > 0 does not depend on μ or on the initial fortune c per vertex.

To prove this result, we first identify a collection of events that ensures that a given agent
dies before time 1. This, together with the ergodic theorem, implies that the density of agents
that die before time 1 is positive. This density, however, depends a priori on the initial fortune.
Then, we define a sink as a vertex such that the agents in any finite interval that contains this
vertex earn overall less than they spend. The law of large numbers implies that the density of
sinks is bounded from below by a constant that does not depend on the initial fortune. Finally,
using the fact that, at time 1, each sink is located between two agents who already died, we
use a recursive argument to prove that each sink dies eventually. In conclusion, the density of
individuals who die eventually is bounded from below by the density of sinks which, in turn,
is bounded from below by a positive constant that does not depend on the initial fortune. This
gives the result.

The proof of Theorem 4 also suggests that when the expected value of φ is larger than 1,
the density of agents who live forever can be made arbitrarily close to 1 by choosing the initial
fortune c large enough. The proof of this result, however, requires additional arguments that
we were not able to make rigorous.

2. Proof of Theorems 1 and 2

In this section we start by collecting some preliminary results about martingales that will be
used later to prove the first two theorems. The first step is to estimate probabilities related to
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the continuous-time Markov chain (Wt ) with transition rates

lim
ε→0

ε−1
P(Wt+ε = Wt + 1) =

∑
z∈V

φz, lim
ε→0

ε−1
P(Wt+ε = Wt − 1) = card(V) = N.

Recall from (1) that � = (1/N)
∑

z∈Vφz. To state our next results, we also define

Ti = inf{t : Wt = i} for all i ∈ Z.

Lemma 1. Assume that K ≤ Nc ≤ M and � �= 1. Then

p(K, M) = P(TM < TK | W0 = Nc) = 1 − �−(Nc−K)

1 − �−(M−K)
.

Proof. This follows from the optional stopping theorem applied to the martingale (�−Wt )

stopped at time T = min(TK, TM); see [6, Example 5.1] for a proof. �
Lemma 2. For all M ≤ Nc and all � > 0,

q(M) = P(TM = ∞ | W0 = Nc) = max(0, 1 − �−(Nc−M)).

Proof. We distinguish three cases depending on the value of �.

• When � = 1, the process (Wt ) is the one-dimensional symmetric random walk which is
known to be recurrent. This yields the probability q(M) = 0.

• When � < 1, the law of large numbers implies that Wt → −∞ almost surely. In par-
ticular, the stopping time TM is again almost surely finite and we have the probability
q(M) = 0.

• When � > 1, the law of large numbers now yields Wt → ∞ so

{TM = ∞} = {TK < TM for all K ≥ Nc} almost surely.

Since we also have the inclusions

{TK+1 < TM} ⊂ {TK < TM} for all K ≥ Nc,

by continuity from the above and Lemma 1, we obtain

q(M) = P(TK < TM for all K ≥ Nc | W0 = Nc)

= P

(
lim

K→∞{TK < TM}
∣∣∣ W0 = Nc

)
= lim

K→∞ P(TK < TM | W0 = Nc)

= 1 − �−(Nc−M).

Observing also that 1 − �−(Nc−M) ≤ 0 if and only if � ≤ 1 yields the result. �
Lemma 2 is the main ingredient to prove Theorem 1. To see the connection between the

previous martingale results and the economical system, define

τ = inf{t : ξt (x) = −1 for some x ∈ V} and Zt =
∑
z∈V

ξt (z),
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and observe that, before time τ , the individual at z is alive, earns one coin at rate φz, and spends
one coin at rate one; therefore,

lim
ε→0

ε−1
P(Zt+ε = Zt + 1 | τ > t) =

∑
z∈V

φz,

lim
ε→0

ε−1
P(Zt+ε = Zt − 1 | τ > t) = card(V) = N.

In other words, by time τ , the total number of coins behaves like the Markov chain (Wt ). Using
this and the previous lemma, we can now prove the theorem.

Proof of Theorem 1. In the limiting case μ = ∞ and as long as all the individuals are alive,
each time an individual has at least two more coins than one of his/her neighbors, this individual
instantaneously gives a coin to one of his/her poorest neighbors; therefore,

|ξt (x) − ξt (y)| ≤ 1 for all (x, y) ∈ E , t < τ .

Now letting x, y ∈ V be arbitrary, there exist z0 = x, z1, . . . , zd = y ∈ V such that

(zi, zi+1) ∈ E for all i = 0, 1, . . . , d − 1,

where d = d(x, y). In particular, the triangle inequality implies that

|ξt (x) − ξt (y)| ≤ |ξt (z0) − ξt (z1)| + · · · + |ξt (zd−1) − ξt (zd)| ≤ d = d(x, y) (2)

for all t < τ . Now, on the event that τ < ∞, just before that time, there is at least one vertex,
say x, with zero coins, while the other vertices have a positive fortune. This, together with (2),
implies that the total number of coins satisfies

Zτ− =
∑
z∈V

ξτ−(z) =
∑
z∈V

|ξτ−(x) − ξτ−(z)| ≤
∑
z∈V

d(x, z).

Taking the maximum over all possible configurations yields

Zτ− ≤ max
x∈V

∑
z∈V

d(x, z) = D .

Finally, using Lemma 2 and observing that all the individuals survive if and only if τ = ∞
yields the following lower bound for the probability of global survival:

p∞(c, (φz)) = P(τ = ∞ | ξ0(z) = c for all z ∈ V)

≥ P(Zt ≥ D for all t | ξ0(z) = c for all z ∈ V)

= P(Wt > D − 1 for all t | W0 = Nc)

= P(TD−1 = ∞ | W0 = Nc) = q(D − 1)

= max(0, 1 − �−(Nc−D+1)). �

Using Lemma 2 and Theorem 1, we can now prove Theorem 2.

Proof of Theorem 2. It follows from Lemma 2 that in the presence of only one vertex, say x,
the probability of survival can be expressed as

p0(c, φx) = q(−1) = max(0, 1 − φ−(c+1)
x ).

https://doi.org/10.1017/apr.2018.34 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.34


750 N. LANCHIER AND S. REED

Because in the absence of cooperation (μ = 0), the system with N individuals consists of N

independent copies of a one-person system, then

p0(c, (φz)) =
∏
z∈V

p0(c, φz) =
∏
z∈V

max(0, 1 − φ−(c+1)
z ).

It directly follows that p0(c, (φz)) = 0 when

φz ≤ 1 for some z ∈ V

so the inequality to be proved is obvious in this case. Assume now that φz > 1 for all z ∈ V.
In this case, we have the following inequalities:

log(p0(c, (φz))) =
∑
z∈V

log(1 − φ−(c+1)
z ) ≤ −

∑
z∈V

φ−(c+1)
z ,

log(p∞(c, (φz))) ≥ log(1 − �−(Nc−D+1)) ≥ − �−(Nc−D+1)

1 − �−(Nc−D+1)
.

In particular, since � > 1, for all N ≥ 2 and sufficiently large c,

log(p∞(c, (φz))) ≥ − �−(Nc−D+1)

1 − �−(Nc−D+1)

≥ −2�−(Nc−D+1)

≥ −2
(

min
z∈V

φz

)−(Nc−D+1)

≥ −
(

min
z∈V

φz

)−(c+1)

≥ −
∑
z∈V

φ−(c+1)
z

≥ log(p0(c, (φz))). �

3. Proof of Theorem 3

As stated in the introduction, the two-person system is simple enough that we may calculate
certain probabilities by hand. Because there are only two vertices, we will call them x and y

and the rates at which they earn a coin φx and φy , respectively. To simplify the notation, write

Xt = ξt (x) and Yt = ξt (y) for all t ≥ 0.

Letting T− = inf{t : min(Xt , Yt ) = −1}, the process

�−(Xt∧T−+Yt∧T− ) =
(

2

φx + φy

)Xt∧T−+Yt∧T−

is again a martingale. Using the fact that the individuals’ fortunes differ by at most one coin
in the presence of perfect cooperation, and repeating the proofs of Lemmas 1 and 2, we easily
show that when both individuals start with c coins, the probability of global survival satisfies

p∞(c, φx, φy) = P(min(Xt , Yt ) ≥ 0 for all t | X0 = Y0 = c)

≥ P(Xt + Yt > 0 for all t | X0 = Y0 = c)

= max

(
0, 1 −

(
2

φx + φy

)2c)
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in the case of perfect cooperation. In particular, when

φx + φy > 2 and φx < 1 < φy,

while individual x dies almost surely in the absence of cooperation, global survival is possible in
the presence of perfect cooperation, showing that cooperation is beneficial in this case. We now
focus on the parameter region

φx + φy < 2 and φx < 1 < φy, (3)

and show that in this case cooperation is detrimental: individual x again dies almost surely while
individual y is more likely to live forever in the absence of cooperation than in the presence of
perfect cooperation. The probability of survival can be computed explicitly.

Using again the fact that the individuals’ fortunes differ by at most one coin in the presence
of perfect cooperation, together with the fact that global survival is not possible when (3) holds,
implies that the stopping time T− is almost surely finite and that

(XT− , YT−) ∈ {(−1, 0), (−1, 1), (0, −1), (1, −1)}.
To simplify the notation, we rename these four states as well as the three adjacent states as
presented in Figure 1 and define the stopping times and corresponding probabilities, i.e.

τi = inf{t : (Xt , Yt ) = Si} and pi = P(T− = τi) for i = 1, 2, 3, 4.

We compute explicitly the probabilities pi in the next lemma.

Lemma 3. Assume (3) holds and we have perfect cooperation. Then

p1 = p2 = 2

�
, p3 = φx

�
+ 1

4
, p4 = φy

�
+ 1

4
,

where � = 8 + 2φx + 2φy .

Proof. Observe that T− is almost surely finite when (3) holds. Since, in addition, the
individuals’ fortunes differ by at most one coin before time T−,

T+ = sup{t : Xt = Yt = 1} < ∞ almost surely.

Also, between time T+ and time T−, the process consists of the seven-state continuous-time
Markov chain whose transition rates are indicated in Figure 1. Referring again to the figure for
the name of the states, we define the conditional probabilities

pij = P(T− = τi | (X0, Y0) = Sj ) for all (i, j) ∈ {1, 2, 3, 4} × {5, 6, 7}.
Using a first-step analysis and looking at the probabilities at which the process starting from
state S5 jumps to each of the four adjacent states, we obtain

p15 = 1

2 + φx + φy

+ φxp16

2 + φx + φy

+ φyp17

2 + φx + φy

.

The same idea yields p16 = p17 = ( 1
2 )p15. Solving the system, we obtain

p15 = 2

4 + φx + φy

and p16 = p17 = 1

4 + φx + φy

.
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Figure 1: The seven states and transition rates between times T+ and T−.

Since, in addition, the first state visited after time T+ is equally likely to be S6 and S7, we
conclude that the probability p1 can be expressed as

p1 = p16 + p17

2
= 1

4 + φx + φy

= 2

�
,

which, by symmetry, is also the value of p2. To compute p3, we again use a first-step analysis
to obtain a system involving the three conditional probabilities, i.e.

p35 = φxp36

2 + φx + φy

+ φyp37

2 + φx + φy

, p36 = 1

2
+ p35

2
, p37 = p35

2
.

Solving the system yields

p35 = φx

4 + φx + φy

, p36 = 1

2
+ φx

8 + 2φx + 2φy

, p37 = φx

8 + 2φx + 2φy

,

from which it follows, as before, that

p3 = p36 + p37

2
= φx

8 + 2φx + 2φy

+ 1

4
= φx

�
+ 1

4
.

By symmetry, the value of p4 is obtained by exchanging the roles of φx and φy in the previous
expression, which completes the proof. �

Using the previous lemma as well as Lemma 2 and conditioning on the first boundary state
visited, we deduce that the expected number of individuals that survive in the presence of perfect
cooperation, which is also the probability that y survives, can be expressed as

E∞(c, φx, φy) = p2p0(0, φy) + p4p0(1, φy)

=
(

2

�

)(
1 − 1

φy

)
+

(
φy

�
+ 1

4

)(
1 −

(
1

φy

)2)
.
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Since, in addition,

1 − 1

φy

< 1 −
(

1

φy

)2

≤ 1 −
(

1

φy

)c+1

for all φy > 1, c ≥ 1,

and due to (
2

�

)
+

(
φy

�
+ 1

4

)
= P(T− = τ2 or T− = τ4) ≤ 1,

we conclude that

E∞(c, φx, φy) < 1 −
(

1

φy

)c+1

= E0(c, φx, φy).

This completes the proof of Theorem 3.

4. Proof of Theorem 4

As explained in the introduction, the first step to prove Theorem 4 is to identify a collection
of events that simultaneously occur with positive probability and ensure that a given vertex,
say the origin, dies before time 1. These events are defined from the collection of independent
Poisson processes introduced at the end of the model description as follows:

A1 = {N+
1 (0) = 0 and N−

1 (0) ≥ (c + 1)2},
A2 = {N+

1 (z) = N−
1 (z) = 0 for all z ∈ Z such that 0 < |z| ≤ c + 1},

A3 = {N+
1 (c + 2) + · · · + N+

1 (c + n + 1) ≤ n for all n > 0},
A4 = {N+

1 (−(c + 2)) + · · · + N+
1 (−(c + n + 1)) ≤ n for all n > 0}.

The times at which neighbors exchange a coin are unimportant in the proof of the theorem.
Let A be the event that consists of the intersection of these four events. See Figure 2 for a
representation.

Lemma 4. For all μ ∈ [0, ∞], we have P(ξ1(0) = −1 | A) = 1.

Proof. To begin with, we ignore the exchange of money between c+1 and its right neighbor
and between −(c + 1) and its left neighbor. Recalling that an agent can receive one coin from
a neighbor only if this neighbor has at least two more coins, on the event A1 ∩ A2,

ξ1(0) = −1 and c ≥ ξt (z) ≥ |z| − 1 for all 0 < |z| ≤ c + 1, t ∈ (0, 1). (4)

Note that the second inequality above becomes an equality when μ = ∞. In this case, the total
loss of coins among the 2c + 3 vertices around 0 can be expressed as

(c + 1) + 2c + 2(c − 1) + · · · + 2 × 1 + 2 × 0 = (c + 1)2,

which explains our definition of the event A1. Observe that (4) implies that there are exactly c

coins at vertex c + 1 until time 1. In particular, looking at the full system and allowing the
exchange of money between c + 1 and its right neighbor, on the event A3,

number of coins traveling c + 1 → c + 2 by time 1

≥ number of coins traveling c + 2 → c + 1 by time 1. (5)
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Figure 2: Typical configuration at time 1 when A occurs: the agent at 0 is dead and the fortune of the
agents at distance at least c + 2 from the origin is below the black dashed line. The numbers at the bottom
of the figure indicate the number of coins these agents earned by time 1. In the figure, we assume that
these agents do not spend any coins, in which case the fortune of the agents within distance c + 1 of the

origin is above the white dashed line.

By symmetry, on the event A4,

number of coins traveling −(c + 1) → −(c + 2) by time 1

≥ number of coins traveling −(c + 2) → −(c + 1) by time 1. (6)

Combining (4)–(6), we deduce that given the event A, we must have ξ1(0) = −1. �
To prove that the event A has a positive probability, let

ε = −E(φ) − 1

2
> 0 so that E(φ) = 1 − 2ε

and call vertex z ∈ Z a right ε-sink when

φz + φz+1 + · · · + φz+n ≤ (n + 1)(1 − ε) for all n ∈ N,

and a left ε-sink when

φz + φz−1 + · · · + φz−n ≤ (n + 1)(1 − ε) for all n ∈ N.

Then, we have the following result.

Lemma 5. We have P(z is a left ε-sink) = P(z is a right ε-sink) = a > 0.

Proof. Define the process

Xn = Xn(z) = φz + φz+1 + · · · + φz+n − (n + 1)(1 − ε) for all n ∈ N.

Since the random variables φz, φz+1, . . . , φz+n are independent and identically distributed
(i.i.d.), it follows from the strong law of large numbers that

lim
n→∞

Xn

n + 1
= lim

n→∞
1

n + 1

n∑
i=0

(φz+i − (1 − ε)) = E(φ) − (1 − ε) = −ε < 0.
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In particular, there exists N , fixed from now on, such that

P(Xn ≤ 0 for all n ≥ N) = P

( n∑
i=1

(φz+i − (1 − ε)) ≤ 0 for all n ≥ N

)
≥ 1

2
. (7)

In addition, since E(φ) < 1 − ε, we have p = P(φ ≤ 1 − ε) > 0 so

P(Xn ≤ 0 for all n < N) ≥ P(φz+i ≤ 1 − ε for all i < N) = pN > 0. (8)

Finally, combining (7) and (8) and using that the events {Xn ≤ 0} for different values of n ∈ N

are positively correlated, we conclude that

P(z is a right ε-sink)

= P(Xn ≤ 0 for all n ≥ 0)

= P(Xn ≤ 0 for all n ≥ N | Xn ≤ 0 for all n < N)P(Xn ≤ 0 for all n < N)

≥ P(Xn ≤ 0 for all n ≥ N)P(Xn ≤ 0 for all n < N)

≥ ( 1
2

)
pN

> 0.

It also follows from obvious symmetry that the probability that z is a left ε-sink is equal to the
probability that it is a right ε-sink. �

Using the previous lemma, we can now prove that the event A has positive probability.

Lemma 6. We have P(A) > 0.

Proof. Since the Poisson processes in the graphical representation are independent,

P(A) = P(A1)P(A2)P(A3)P(A4).

In addition, for any given c finite, the first two events have positive probability while, by
symmetry, the last two events have the same probability, i.e.

P(A1)P(A2) > 0 and P(A3) = P(A4). (9)

In particular, to conclude, it suffices to prove that the event A3 has a positive probability.
By conditioning on the event that vertex c + 2 is a right ε-sink, we obtain

P(A3) ≥ P(A3 | c + 2 is a right ε-sink)P(c + 2 is a right ε-sink)

= aP(A3 | c + 2 is a right ε-sink), (10)

where a > 0 according to Lemma 5. Now let

Yn = Poisson(n(1 − ε)) for all n > 0

be independent. Using the fact that the events that we use to define the event A3 are positively
correlated and recalling the definition of a right ε-sink, we deduce that

P(A3 | c + 2 is a right ε-sink) ≥ P(Yn ≤ n for all n > 0) =
∏
n>0

P(Yn ≤ n). (11)
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In other respects,∏
n>0

P(Yn ≤ n) > 0 
⇒
∑
n>0

− log(1 − P(Yn > n)) < ∞


⇒
∑
n>0

P(Yn > n) < ∞, (12)

which follows from standard large deviations estimates for the Poisson distribution. Combin-
ing (10)–(12), we deduce that P(A3) > 0 which, together with (9), proves the lemma. �

Since the random variables φz are i.i.d., we may apply the ergodic theorem together with
Lemmas 4 and 6 to deduce that

lim
n→∞

1

2n + 1

n∑
z=−n

1{ξ1(z)=−1} ≥ P(A) > 0. (13)

Note, however, that this does not imply our theorem because the probability of A1 ∩ A2, and,
therefore, the lower bound P(A), depend on c, the initial number of coins per vertex.

The second step of the proof is to identify an infinite collection of vertices, that we call
ε-sinks, that are removed eventually. The density of such vertices is bounded from below by a
positive constant that does not depend on c. More precisely, we call vertex z ∈ Z an ε-sink if

φz−m + φz−m+1 + · · · + φz+n ≤ (m + n + 1)(1 − ε) for all m, n ∈ N. (14)

Lemma 7. We have P(z is an ε-sink) ≥ a2 > 0.

Proof. Let Am,n be the event in (14) and observe that

Am,0 ∩ A0,n ⊂ Am,n for all m, n ∈ N.

In particular, the event that z is an ε-sink is expressed as

⋂
m,n

Am,n =
⋂
m,n

(Am,0 ∩ A0,n) =
(⋂

m

Am,0

)
∩

(⋂
n

A0,n

)
. (15)

Using the fact that A0,n = {Xn ≤ 0}, where the process (Xn) has been defined in the proof of
Lemma 5, and obvious symmetry, we also have

P

(⋂
m

Am,0

)
= P

( ⋂
n

A0,n

)
= P(Xn ≤ 0 for all n ≥ 0) = a > 0 (16)

according to Lemma 5. Combining (15) and (16), and using the fact that the events Am,0
and A0,n are positively correlated, we conclude that

P(z is an ε-sink) = P

(⋂
m,n

Am,n

)
≥ P

(⋂
m

Am,0

)
P

(⋂
n

A0,n

)
= a2 > 0. �

To complete the proof of the theorem, the last step is to show that all the ε-sinks die eventually
with probability 1, which is the subject of the next lemma.

Lemma 8. Assume that x ∈ Z is an ε-sink. Then ξt (x) = −1 for some t .
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Proof. For all times t , we define

z−
t = sup{z ≤ x : ξt (z) = −1} and z+

t = inf{z ≥ x : ξt (z) = −1}.
In view of (13) and since −1 is an absorbing state for each vertex,

It = (z−
t , z+

t ) is bounded at time t = 1 and nonincreasing in t for the inclusion.

Now, set T0 = 1 and define recursively

Ti =
{

inf{t > Ti−1 : It �= It−} when Ti−1 < ∞,

∞ when Ti−1 = ∞
for all i > 0. See Figure 3 for a representation. Given that time Ti is finite and that the
interval ITi

is nonempty, by the definition of an ε-sink, between time Ti and time Ti+1, the
process

Zt = ξt (z
−
Ti

+ 1) + ξt (z
−
Ti

+ 2) + · · · + ξt (z
+
Ti

− 1)

is dominated stochastically by a one-dimensional random walk with negative drift. This implies
that the expected number of coins in the interval It is decreasing, therefore, one of the vertices
in the interval must reach state −1 in finite time and

P(Ti+1 < ∞ | Ti < ∞ and ITi
�= ∅) = 1.

Recall also that the interval is bounded at time 1 and observe that, by the definition of the
stopping times, the length of the interval decreases by at least one at each step, i.e.

|IT0 | < ∞ and |ITi+1 | ≤ |ITi
| − 1

when Ti < Ti+1 < ∞. In summary, it takes only a finite number steps for It to become empty
and the duration of each step is almost surely finite. Since, in addition, the sink dies at the
time It becomes empty,

inf{t : ξt (x) = −1} = inf{t : It = ∅} < ∞
with probability 1. �

Figure 3: An illustration of the construction in Lemma 8 with the sequence of stopping times Ti . The
crosses ‘×’ represent the agents that are dead. The shaded region indicates the interval It from time T0 = 1
until the sink dies. In our example, it takes four steps to kill the sink located at the center of the figure.
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As stated previously, since the random variables φz are i.i.d., we may apply the ergodic
theorem which, together with Lemmas 7 and 8, implies that

lim
n→∞

1

2n + 1

n∑
z=−n

1{ξt (z)=−1 for some t} ≥ lim
n→∞

1

2n + 1

n∑
z=−n

1{z is an ε-sink} ≥ a2 > 0.

Since a does not depend on c, this proves Theorem 4.
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