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Herbert A. Simon, 1978 Economics Nobel Prize laureate, talked about satisficing (his
neologism) rather than optimizing as being what economists really need. Indeed,
optimization might be an unsuitable solution procedure (in that it suggests a unique
“optimal” solution) for problems where many solutions could be satisfactory. We think
that looking for an applicable monetary policy is a problem of this kind because there is
no unique way in which a central bank can achieve a desired inflation (unemployment,
etc.) path. We think that it is viability theory, which is a relatively young area of
mathematics, that rigorously captures the essence of satisficing. We aim to use viability
analysis to analyze a simple macro policy model and show how some robust adjustment
rules can be endogenously obtained.
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1. INTRODUCTION

The aim of this paper is to explore the usefulness of viability theory for the analysis
and synthesis of an economic state-constrained decision-making problem. The
problem concerns inflation targeting in a closed economy.
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Herbert A. Simon, 1978 Economics Nobel Prize laureate, talked about sat-
isficing [his neologism (1955)] rather than optimizing solutions as being what
economists really need. We share Simon’s view in that we believe that some
economic agents may not seek unique optimal solutions. For example, the central
bank governor in a country where the allowable inflation band has been legislated,
a national park director responsible for biodiversity of the fauna. Each of them will
strive to satisfy several objectives, many of them consisting of ensuring that the key
outcomes (e.g., inflation or the number of bears) remain within some normative
bounds. The bounds might result from some felicity function optimization, but the
governor or park director will perceive them as exogenously specified. We think
that economic theory that follows the Simon prescription may bring modeling
closer to how these people actually behave.

We also think that it is viability theory, which is a relatively young area of
mathematical analysis [see Aubin (1997) and Aubin et al. (2000)] that rigor-
ously captures the essence of satisficing. If so, viability theory is an appropriate
tool for achieving a satisficing solution to many economic problems. We aim to
demonstrate this by solving a stylized central bank macroeconomic problem.1 The
solution will enable us to analyze the system’s evolution within certain normative
constraints (such as a desired inflation band) rather than the system’s convergence
to a steady state, as is the case for many traditional (optimal) monetary policy
solutions. On the basis of the system’s evolution we will be able to propose some
robust satisficing monetary policies.

It is common knowledge [see, e.g., Başar and Bernhard (1991), Deissenberg
(1987)] that a strategy that maximizes a given objective function on paper may not
deliver expected results in real life because of parameter and model uncertainty.
A way out has been computation of robust solutions, usually calculated as min-
max strategies, as in Başar and Bernhard (1991), Deissenberg (1987), and Rustem
(1994). This approach has been successfully applied to the design of robust mone-
tary policies, see, for example, Hansen et al. (2006) and Z̃aković et al. (2002, 2006).

Strategies delivered by viability theory are alternative robust strategies. They
are based on an evolutionary analysis of admissible system trajectories rather than
robust (i.e., min-max) optimization.

It is the precautionary character of policy advice based on viability theory that
makes it robust. Our policies, which are obtained through a viability analysis
and which we call satisficing, are precautionary (or “preventative”) in that they
are based on the economic system’s inertia. This makes them naturally forward-
looking and suitable for any future circumstances. This is so because knowledge of
the system’s inertia enables us to detect (and avoid) regions of economic conditions
(such as large output gap2 or accelerating inflation) where control of the system
is difficult or impossible.

Moreover, computation of a satisficing policy requires fewer parameters to be
calibrated or estimated than of an optimizing policy. In this, the former is more
robust than any other policy, which is computed for a model that requires more
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parameters. This feature among others will render our policies less vulnerable to
the Lucas (1976) critique than the optimizing policies.

Generically, an evolutionary analysis enabled by viability theory proposes poli-
cies that are less invasive (i.e., attempting to change the status quo) than those
delivered through optimization. In particular, a viability-theory-based strategy
will advocate adjustment rules that may be “passive” [like those in Benhabib et al.
(2001)] for a large number of the economy states and “active” for some critical
states only. Also, in contrast to optimal policies, which are usually unique, the
viable control planner will have the flexibility to endeavor to attain other aims
in regions where the passive satisficing policies can be used. We wish to point
out that, because of the possibility of a passive policy choice, the same equations
embedded in our viability approach may be less vulnerable to the Lucas critique
than those embedded in the standard approach.

Finally, we believe that an evolutionary analysis gives us more insight into the
system’s (macro) economics than a customary equilibrium analysis. The insight
is gained (mainly) through the disclosure of the economy states from which
attainment of the central bank’s objectives is problematic. In particular, our analysis
will establish from which states of the economy the avoidance of a liquidity trap
is impossible.

In the next section, we provide an introduction to viability theory; we define the
basic notions and solve two simple viability problems. In Section 3, we apply the
theory to a simple macroeconomic model and provide justification for the above
observations on the differences between optimization and the viability theory
approach. The paper ends with concluding remarks.

2. WHAT IS VIABILITY THEORY?

2.1. Meaning

Suppose there is given a closed set K in the state space that may represent some
normative constraints. The basic problem that viability theory attempts to solve is
whether, for a given initial state, a control strategy exists that prevents the system
from leaving the constraint set. The viability kernel for the closed set K is the
(largest) subset of K that contains initial conditions for which such a strategy
exists. The kernel will be defined formally in Definition 2.1.

Consider a dynamic economic system with several state variables. At time
t ∈ � ≡ [0, T ] ⊂ IR+, where T can be finite or infinite, the state3 variables are

x(t) ≡ [x1(t), x2(t), . . . xN(t)]′ ∈ IRN, ∀t ∈ �

and the controls (or actions) are

u(t) ≡ [u1(t), u2(t), . . . uM(t)]′ ∈ IRM, ∀t ∈ �.

Imposition of normative restrictions on states and strategies means that

∀t ∈ �, x(t) ∈ K, and u(t) ∈ U,
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where symbols K , U represent sets of constraints that the state and control
variables need to satisfy. In general, the control constraints depend on x; however,
for simplicity, we will avoid the notation U(x).

The state evolves according to system dynamics f (·, ·) and controls u(t) as
follows:

ẋ(t) = f (x(t), u(t)), t ∈ �, x(t) ⊂ IRN, u(t) ∈ U ⊂ IRM. (1)

Evidently, we are dealing with controlled dynamics; that is, at every state x(t), the
system’s velocity ẋ(t) depends on action u(t). We will be looking for such u(t),
for which x(t) ∈ K for all t ∈ �.4

In economic terms, the last relationship tells us that at time t , for a given
composition of x (capital, labor, technology, etc.), the extent of growth (or decline),
or steady state stability, is dependent on the map f : IRN × IRM � IRN , whose
values are limited by the scope of the system’s dynamics f and controls contained
in U .

A viability theory analysis attempts to establish nonemptiness of a viability
kernel, which is a collection of loci for initial conditions of viable evolutions
x(t), t ∈ �.

DEFINITION 2.1. The viability kernel of the constraint set K for the control
set U is the set of initial conditions x0 ∈ K denoted 5 as V and defined as follows:

V ≡ {x0 ∈ K : ∃x(t) solution to (1) with x(0) = x0 s.t. x(t) ∈ K,∀t ∈ �} .

(2)

In other words, we know that if a trajectory begins inside the viability kernel V

then we have sufficient controls to keep this trajectory in the constraint set K for
t ∈ �. See Figure 1 for an illustration of the viability idea.6

The state constraint set K is represented by the yellow (or light shadowed)
round shape contained in the state space (where X denotes the state space; here,
X ≡ IR2). The solid and dash-dotted lines symbolize system evolution.

The viability kernel for the constraint set K , given controls from set U and
the system dynamics f , is the purple (darker) shadowed contour denoted V . The
system evolution represented by the trajectories that start inside the kernel (dashed
lines) are viable in K; that is, they remain in K . This is not the property of the
other trajectories (dash-dotted lines) that start outside the kernel. They leave K in
finite time <T .

We can now say what we understand as a viability problem, and define what
we mean by its solution.

Given the system dynamics f (·, ·), the sets of constraints K and U , and the
horizon T , the associated viability problem consists of establishing the existence
of the viability kernel V .

DEFINITION 2.2. When the kernel is nonempty V �= ∅, we say that the viability
problem has a solution; otherwise, the viability problem has no solution.
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FIGURE 1. The viable and nonviable trajectories.

Let us observe that the viability kernel is a “broad” concept that allows a
uniform treatment of problems defined on infinite or finite horizons. In particular,
a generically nonstationary solution to a finite-horizon policy problem,7 which
might consist in reaching a target in finite time, can be analyzed as a viable control
problem [e.g., see, Doyen and Saint-Pierre (1997)].

2.2. Linear dynamics example

Viability kernels can be characterized relatively easily for some typical dynamic
systems [see Aubin (1997), Aubin et al. (2000), and Cardaliaguet et al. (1999)].

Consider the linear dynamics system defined as follows:[
ẋ

ẏ

]
=

[
1 −1
1 1

] [
x

y

]
+

[
vx

vy

]
. (3)

The state variables are x, y; the instrument set U is the unit ball

U ≡ {
(vx, vy) : v2

x + v2
y ≤ 1, (vx, vy) ∈ IR2

}
, (4)

where vx adds to speed in direction x and vy adds to speed in direction y.
We can see that the further from the origin the system is, the faster it moves

along direction y. This might remind us of a paddling boat on a river approaching
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FIGURE 2. A geometric characterization of viability.

a waterfall. The further we are from calm waters (y = 0) the faster we move.
Intuitively, given our limited strength, we sense the existence of a point of no
return, after which we will not be able to paddle away from the waterfall.

Notice that this situation is reminiscent of what might occur if an economy
is hot. The larger output gap, the higher inflation, the larger output gap, and so
forth. Given limited instruments at the central bank’s disposal, too hot an economy
might be bound to suffer from a spiraling inflation. Clearly, determination of the
point of no return on the river and of the combination of output gap and inflation
for the economy is important for a safe journey. In viability theory, these points
are determined once the viability kernel is established.

First, we will check if the rectangle

K ≡ {
(x, y) : max(|x|, |y|) ≤ 1, (x, y) ∈ IR2

}
is a viability kernel. If it is, we will be certain that we can prevent the system to
escape from K using actions from U .

Figure 2 provides an illustration of the problem and of some geometric properties
required for viability.

Consider the frontier point B of the rectangle. The velocities from U are
constrained (see (4)) and generate evolution directions denoted by “x” (crosses);
the normal8 at B is the thin black line. We see that all angles are acute and that
there is no vector at B that would point inside the rectangle (or form an obtuse
angle with the normal). We see that for any (vx, vy) ∈ U , we are unable to “return”
to the rectangle from point B. This means that point B is not viable. The same
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reasoning can be repeated at many points of rectangle K . The conclusion will be
that the rectangle cannot be the viability kernel.

However, we can prove that disc V ,

V ≡ {
(x, y) : x2 + y2 ≤ 1, (x, y) ∈ IR2

}
(5)

(delimited by the circle of radius 1 centered at origin), is a viability kernel for the
sets K,U and the system dynamics (3).

Indeed, we can see that there are velocities at point A that generate evolution
directions represented by “*” (stars), which point inside the disc (form an obtuse
angle with the normal going through this point). This means that there exist some
(vx, vy) ∈ U for which we can turn the system so that it remains in V . This
reasoning can be repeated at any point of disc V . We could also prove that no
point (x, y) ∈ K\V is viable and conclude that disc V is the viability kernel.

The evolution direction at A that keeps the system inside V is represented by
the black vector at A pointing left. This direction is a consequence of use of
some outermost velocities (vx, vy) ∈ U . Presumably, this control is extreme (or
outermost) in that there is no other velocity vector that would generate a more
obtuse angle with the normal at A. In fact, the pair of velocities that generate the
black vector satisfy v2

x + v2
y = 1.

A comparison between sets K and V (the latter is a viability kernel; the former
is not) tells us that at B, the system moves too fast to be controlled through
(vx, vy) ∈ U . However, the same control set contains elements that are sufficient
to restrain the system, should we apply them early,9 that is, when the process is
within V .

2.3. Satisficing Policies

In economic situations in which a planner may be identified (e.g., a central bank),
a viability kernel can be used to select policies that keep the dynamic process x

inside the closed constraint set K .
Once the kernel is established, choosing a satisficing policy is a simple proce-

dure. This idea can be illustrated using Figure 2. We can see that there are controls
v2

x + v2
y ≤ 1 that keep trajectory x in V ⊂ K . In particular, we know that even if

x(t) is at the frontier of V , the outermost or extreme control is sufficient to prevent
the system trajectory from leaving V .

If V denotes the viability kernel of constraints K for dynamics f , then the
following generic policy rule can be formulated [see regulation maps in Aubin
(1997)]:{

∀x ∈ V apply instrument u ∈ W

where W ≡ {
u ∈ U : f (x, u) is a direction tangent or inward to V

}
.

(6)

So W is a set of instruments available at x that keep the system evolution inside
V .
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For a given viability problem this rule will be decomposed into two normative
directives: within the interior of the viability kernel V , every (admissible) control
can be used;10 on the boundary of the kernel frV , a specific instrument (path)
must be followed11. We will identify this instrument for each viability problem
solved in this paper (see Sections 2.4, and 4.4).

Let us briefly look at what kind of actions a central bank planner undertakes.
Routinely, every given time interval, the planner announces a cash interest rate.

A Taylor rule or an optimizing rule12 might be used to determine the new interest
rate. The latter usually equals the old interest rate plus or minus a fraction of a
percentage point. Although this might look simple, the process leading to the rate
determination is typically based on optimization of a loss function that contains a
significant number of parameters calibrated and/or estimated.

The effect of the central bank optimization process is similar to the application
of the satisficing policy: either maintains x (e.g., inflation) in K . However, as will
be explained later, fewer (subjective) parameters are needed to establish V than
to compute a minimizing solution to the bank loss function. Also, the possibility
of the use of any control in the interior of the viability kernel offers the planner a
possibility of striveing to achieve other goals (e.g., political) that were not used for
the specification of K . (Perhaps they were difficult to specify mathematically, or
they arose after the viability kernel had been established.) This is not the case of
an optimal solution, which remains optimal for the original problem formulation
only.

Should there be uncertainty regarding the model parameters, a sensitivity anal-
ysis needs to be performed to establish to what extent the system’s dynamics is
affected by the uncertainties. Once established, the current position of the system
will be generalized from x(t) to x(t) + b1(x(t), κ(t)), where b1(·, ·) is a ball
centered at x(t) with a radius κ(t) that will result from a robustness analysis
of (1).

When the model is subjected to shocks whose magnitude can be estimated
(or whose distribution is known), the viability kernel will have to be such that
x(t)+b2(x(t), ε(t)) ∈ K , where radius ε(t) will depend on the shock.13 Then the
above policy prescription can be followed.

2.4. An Analytical Solution to a Viability Problem

To optimize or not. . . . In a number of situations, an analytical description of
a viability kernel is possible. This is the case for some simple economic models.
We will describe analytically a viability kernel for a stylized scarce commodity
consumption problem. We will see how viability theory might be useful in deriving
rules that otherwise could be thought of as behavioral. We will also suggest
a possible optimization problem as a counterpart for the viability problem to
highlight some particular features of the latter.

Our commodity is of limited supply M > 0. The limit M > 0 could be the total
electricity supply from a large trader, a city bus carriers total passenger capacity,
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a monopolistic oil provider’s supply, etc. In each of the above cases, even if the
commodity supplier is a private firm, it will be held responsible by the government
for the commodity’s delivery collapse. The fines applied by the government are
usually very large and can threaten the firm’s survival.14 On the other hand, a
zero demand for the commodity would also be disastrous to the supplier. Hence,
ideally from the supplier’s (and government’s) point of view, the demand for the
commodity should be contained between 0 and M .

The commodity that we are interested in is such that one can develop an
“appetite” for it.15 That is, one usually wants to consume more of the commodity
in the next period than now. (However, losing appetite is also possible.) This will
be the case for electricity, public transport, chocolate, drugs, heating oil, and many
more. For example, if we find oil economical this winter, we might want to use
more of it next year.

Let x(t) denote demand for the commodity at time t ∈ �. Suppose that the
changes in the demand are proportional16 to the amount consumed at present. So
the demand variation can be written as ẋ = ax(t), where a > 0. Clearly, if our
appetite is not modified, we will soon want to consume more than M and thus
exhaust the supply.

Think of compensation p(t)x(t) [where p(t) ≥ 0 is price] paid to the commod-
ity provider. Paying the compensation should slow down the demand as follows:17

ẋ(t) = ax(t) − p(t)x(t). (7)

If price p(t) changes with x(t) as a result of an appropriate pricing strategy p(x),
then there is a chance that consumption will slow down and supply will not be
exhausted.

This suggests that the supplier might want to manage demand for the commodity
through price p(t) so that x ≤ x(t) ≤ M , where x is some minimum demand that
guarantees the supplier’s survival. [For simplicity, we will normalize demand and
write the above constraint as 0 ≤ x(t) ≤ M .]

A plausible optimization problem of the commodity supplier could thus be

• given the state equation (7), compute p(t) ∈ [0, p] such that

∫ T

0
e−ρt

{
p(t)x(t) − W1[max(0, x(t) − M)]2 − W2[max(0,−x(t))]2

}
dt (8)

is maximized, where ρ is the discount rate and W1,W2 > 0 are penalty coefficients.
Price p is some maximum price above which consumers switch to a different
product (or technology). Notice that we have assumed away the supply cost (or
absorbed it in p(t)).

Maximization of (8) in p(t) is a difficult problem18 to solve. It is an optimal
control problem with a nonlinear nondifferentiable objective function. Moreover,
it contains three arbitrary parameters.
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However, if the fines to pay for disrupting supply are very large, then W1,W2

are very big and hence the problem boils down to maintaining the demand and
price in the rectangle [0, M] × [0, p]. Notice that

• given the state equation (7), keeping

(x(t), p(t)) ∈ [0, M] × [0, p], ∀t ∈ � (9)

may thus be a satisfactory solution to the supplier’s problem. We observe that the
arbitrary constants ρ,W1,W2 do not enter this problem specification.

We will solve problem (9) through a viability analysis and call its (Markovian)
solution p(x(t)) ∈ [0, p] satisficing.

Viability kernel. If the price of the commodity is sticky,19 then the price path
that will guarantee the next period’s supply might be nontrivial. In other words, if
demand is accelerating but there is a limitation on the price changes, then not all
price paths will ensure that x(t) ≤ M ∀t , that is, demand satisfaction. In viability
parlance, one would say that not all price paths are viable.

From here on, we assume that the commodity price can be controlled by the
supplier and that the price process is sticky. The demand changes according to (7).
Due to perishability or nonstockability of the commodity, we cannot buy more of it
than we are able to consume at once. The maximum commodity supply is M > 0.
The problem of how p(t) should behave so that 0 ≤ x(t) ≤ M for t ∈ � is typical
of viability analysis. With bounds imposed on p(t) and its speed, a solution to that
problem is rather simple.

With all that we have said about the rectangle [0, M] × [0, p] and the price
process stickiness, we have the following description20 of the system at hand:{

ẋ = ax(t) − p(t)x(t)

ṗ = u ∈ [−c, c].
(10)

We will look at the problem variables (x, p) in the phase space; see Figure 3.
In the figure, the upper bound on p is assumed as 0.2; M = 1. The light shaded

rectangle whose vertices are (0,0),(1,0),(1,0.2), (0,0.2) is the constraint set K . We
will suppose that a = 0.05 and c = 0.001.

If price p(t) = a, quantities x(t) are steady; see (10). Hence, line p(t) = a

defines a collection of steady states. However, each of them is unstable. Indeed,
below this line, p < a ⇒ ẋ > 0 and with a constant price we drift to the right;
see the dash-dotted line starting at point C. Above the line, p > a ⇒ ẋ < 0, and
hence we drift to the left; see the dash-dotted line starting at C’. It is clear that if
we are off steady state we will hit one of the physical constraints on x in finite
time. To prevent exhaustion (x = M) or extinction (x = 0), ṗ cannot be zero that
is, the price needs to vary.

Intuitively, to steer away from M , for p < a, we should increase p. Similarly,
for p > a, we should decrease p to avoid x = 0. The dotted lines show the system
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FIGURE 3. An analytical derivation of a viability kernel.

trajectories when prices change at full velocity c = 0.001 (for those that start at
A and B) and c = −0.001 (for those that start at A′ and B ′). For points such as
A and A′ the strategy of changing p at full speed is sufficient to prevent x from
crossing the boundary of the constraint set K . However, if we start from other
points such as B or B ′ we are bound to violate one of the constraints even if the
price change is fastest.

To solve the viability problem we need to compute a collection of (x, p) from
which a feasible price policy can maintain the system within the constraints. In
other words, we need to establish the viability kernel21 V , where f is defined
through (10).

The viability kernel will be established here through an explicit calculation of
the critical trajectories that bring the system, at a full speed c (or −c), to a steady
state that intersects with the constraints. The critical trajectories are the thick lines
that originate at (1, 0.05) and (0, 0.05), which are the last acceptable steady states.
The resulting viability kernel V is the dark shadowed area between those lines.22

They have been easily computed by running the system backward in time at full
speed from the points where a steady state intersects with the constrains.

Now, we can see how a viability analysis could help the supplier to establish a
viable price strategy. Should there be no other considerations regarding price, the
policy23 should be (where fr V is the kernel’s boundary and hence V \fr V is its
interior):

⎧⎪⎨
⎪⎩

if (x, p) ∈ V \fr V, apply any feasible change of price u ∈ [−c, c];
if (x, p) ∈ {(

fr V
) ⋂{

(x, p) : p < a
}}

, increase price u = c;
if (x, p) ∈ {(

fr V
) ⋂{

(x, p) : p > a
}}

, decrease price u = −c,

(11)
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where
⋂

denotes intersection. Should a steady state (p = a) once be achieved,
this might be maintained by the following policy rule:

if (x, p) ∈
{
V

⋂{
(x, p) : p = a

}}
, keep price steady u = 0. (12)

As observed earlier [after rule (6)], the policy advice is passive, u ∈ [−c, c], if the
current point is within the viability kernel (see the first “if” in (11)); the policy is
active, that is, price p changes with the highest velocity |c|, if the current point is
at the viability kernel’s boundary (see the second and third “if” in (11)). We notice
that if the policy is passive, some other goals24 could be realized.

We notice that the kernel boundaries have an attractive economic interpretation.
For example, consider the lower part of V . For a given price p and consumption
x such that point p, x is below the steady state line, consumption of a rational
consumer can grow until the limit of the viability kernel is reached. Then the
boundary tells the agent in which way the prices will evolve so that x ≤ M . This
is important for the consumer, who might be solving their own optimization (or
viability) problem, where a demand law will be part of the problem specification.
Notice that this dynamic inverse demand law has been endogenously obtained.

3. A MACROECONOMIC MODEL

3.1. A Viability Theory Problem

Realistically, what a typical central bank wants to achieve is the maintenance of a
few key macroeconomic variables within some bounds. Usually, the bank realizes
its multiple targets using optimizing solutions that result from minimization of the
bank’s loss function. Typically, the loss function includes penalties for violating
an allowable inflation band and also for a nonsmooth interest adjustment. The
solution, which minimizes the loss function, is unique for a given selection of the
loss function parameters. In that, it does not allow for alternative strategies.

Our intention is to apply viability theory to the bank’s problem. Keeping vari-
ables of interest in a constrained set sounds very much like the viability theory
problem illustrated in Figure 1. We will establish the economy’s kernel, the subset
of the constraint set K , inside which the economy evolution can be contained
given the economic dynamics and instruments available to the central bank.

In the next section we will describe a stylized monetary rules model [inspired by
Svensson (2002) and Walsh (2003)]. We will then solve a viability theory problem
formulated for that model. We will show that the solutions obtained through
viability theory do not suffer from the drawbacks typical of their optimizing
counterparts.

3.2. A Central Bank Problem

Suppose a central bank is using short-term nominal interest rate i(t) as an instru-
ment to control inflation π(t) and, to a lesser extent, output gap y(t). A model
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that relates these variables may look like this [see Walsh (2003), p. 508) where
the time step h = 1):

y(t) = a1 y(t − h) + a2 y(t − 2h) − a3
(
i(t − h) − Et−hπ(t)

) + u(t) (13)

π(t) = π(t − h) + γy(t) + η(t), (14)

where y(t) is output gap, u(t) and η(t) are serially uncorrelated disturbances (or
shocks: in aggregate demand and inflation, respectively) with means equal to zero,
a1, a2, a3, and γ are calibrated parameters, and Et−h is the expectation operator.

Equation (13) represents the aggregate spending relationship. It corresponds
to a traditional IS function where aggregate demand is inversely related to the
real interest rate r(t − h) = i(t − h) − Et−hπ(t). Note that, in our aggregate
spending specification, time-t spending depends on the lagged value of the real
interest rate. Because monetary policy affects aggregate demand via real interest
rate, the assumption that time-t spending depends on lagged real interest rate will
imply a lagged response of output to monetary policy changes. This reflects a long-
standing view that many macroeconomic variables do not respond instantaneously
to monetary policy shocks [see Friedman (1968)]. The interest rate relevant to
aggregate spending decisions would be the long-term rate, which is ralated to
the short-term rate via the term structure relationship. To minimize the number
of variables in our exposition, we do not distinguish between the long-term and
short-term interest rates.

Equation (14) captures the inflation-adjustment process driven by the size of
the output gap. In the canonical New Keynesian specification, current inflation
π(t) depends on the expected future inflation Etπ(t + h). Furthermore, in the
Fuhrer-Moore (1995) model of multiperiod, overlapping nominal contracts, cur-
rent inflation depends on both past inflation and expected future inflation. However,
several empirical works [e.g., Fuhrer (1997)] suggest that the expected inflation
term is empirically unimportant once lagged inflation is included in the inflation
adjustment equation. Considering this, and also to simplify our exposition, we
ignore the expected inflation term.

Hence, our model is a simplified version of the Rudebusch-Svensson (1999)
model, with output gap and inflation that are state variables. They are driven by
shocks in aggregate demand, inflation, and nominal interest rate.

Assume25 that a2 = 0 in (13), call a the “new” coefficient with the one-lag
term, and apply the expectation operator Et−h to both (13) and (14). We obtain

Et−hy(t) = a Et−hy(t − h) − a3(Et−hi(t − h) − Et−hπ(t)) (15)

Et−hπ(t) = Et−hπ(t − h) + γEt−hy(t). (16)

At time t − h, the expectations are identical with the observations, so

Et−hy(t) = ay (t − h) − a3(i(t − h) − Et−hπ(t)) (17)

Et−hπ(t) = π(t − h) + γEt−hy(t). (18)
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Assume differentiability of the inflation and output gap processes. If so, for small
h,

Et−hy(t) = y(t − h) + ẏh (19)

Et−hπ(t) = π(t − h) + π̇h. (20)

These relationships tell us that agents forecast the expected values using extrapo-
lations. This corresponds to the basic learning process [compare Honkapohja and
Mitra (2006)].

Substituting in (17) and (18) (and omitting the time index t − h) yields

y + ẏh = ay − a3(i − (π + π̇h)) (21)

π + π̇h = π + γ (y + ẏh). (22)

From (22), π̇h = γy + γ ẏh. Allowing for that and for α h = a − 1, ξ h =
a3, ζ h = γ , and then dividing by h, we get the following inflation and output gap
dynamics for h → 0:

dy

dt
= αy(t) − ξ(i(t) − π(t)) (23)

dπ

dt
= ζy(t). (24)

The equations, which constitute the above model, are continuous time equivalents
of the aggregate demand equation (13) and the Phillips curve (14). They say that
output gap constitutes a sticky process (23) driven by the real interest rate, i.e.,
the difference between the interest and inflation rates, and that the inflation rate
(24) changes proportionally to the output gap. We will calibrate the model in
Section 3.3.

Notice that the model (23)–(24) is suitable for managing output gap and
inflation.26 For example, if output gap were positive and growing, increasing
i(t) (which is the central bank instrument) in (23) would slow down the output
gap. However, the inflation will not start diminishing as long as output gap is
positive.27 We observe that the central bank could exploit inertia of the controlled
processes to restrain their evolutions.

3.3. Parameter Values

We use the following parameter values [see Walsh (2003)28]:

ξ = a3

h

∣∣∣
h=1

= 0.35, ζ = γ

h

∣∣∣
h=1

= 0.002.

Regarding α, we know that α = a−1
h

∣∣
h=1

, but, first we need to say what the value
of a is. In general, it is impossible to approximate a second-order process (13) by
a first-order process y(t) = ay (t −h)−a3(i(t −h)−Et−hπ(t))+u(t). However,
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FIGURE 4. The second-order and first-order process responses.

(13) stalibilizes long-term if perturbed (e.g., by a step function); see Figure 4,
solid line. The other line represents the first-order process response, for which we
have chosen a such that, after some time, the responses are approximately at the
same level.

The solid line shows a step-function response of (13) with Fuhrer’s a1 =
1.53, a2 = −0.55 [see Fuhrer (1994) and Walsh (2003)]. The value of a for the
dashed line is a = 0.98,29 so α = −0.02. Hence the macroeconomic model that
we will analyze is

dy

dt
= −0.02 y(t) − 0.35(i(t) − π(t)) (25)

dπ

dt
= 0.002 y(t). (26)

The model enables us to analyze the behavior of the economy for which it was
calibrated.

3.4. The Constraints

Usually there is little doubt as to what the politically desired inflation bounds are.
For example, in New Zealand, the inflation band has been legislated to be confined
to [0.01, 0.03]. There is less agreement about what the desired output gap should
be. We will assume a rather wide interval for output gap to reflect a lesser concern
of the central bank for y(t) (e.g., y(t) ∈ [−0.04, 0.04]).

Similarly to the desired size of the output gap, the instrument set composition
also depends on political decisions. We will assume30 that i(t) ∈ [0, 0.07]. An
IR3 region, within which the meta-system31 trajectory [y(t), π(t), i(t)] will have
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FIGURE 5. Constraint set and projection.

to be contained, is shown in Figure 5. So the constraint set K is

K ≡ {(y(t), π(t), i(t)) : −0.04 ≤ y(t) ≤ 0.04, 0.01

≤ π(t) ≤ 0.03, 0.0 ≤ i(t) ≤ 0.07}. (27)

See K ⊂ IR3 in Figure 5 upper panel and its two-dimensional projection in the
lower panel.

Independent of keeping the interest range constrained, many central banks are
worried about the interest rate smoothness [see, e.g., Amato and Laubach (1999)].
That concern is usually modeled by adding w(i(t) − i(t − h))2, w > 0 to the loss
function. In continuous time, limiting the interest rate “velocity”

u ≡ di

dt
(28)

will produce a smooth time profile of i(t). Bearing in mind that the central bank’s
announcements concern changes in interest rate, we will treat u as the bank’s
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control. Observation that the changes are usually made every quarter and that the
typical change is 1/4%, the bank’s control set U will be defined as

U ≡ {u : u(t) ∈ [−0.005, 0.005]}; (29)

that is, the interest rate can drop, or increase, between 0 and 0.5% per quarter.
Hence, the dynamic system to analyze the relationship between the interest

rate, inflation, and output gap needs to be augmented by the interest rate velocity
constraint and will now look as follows:

dy

dt
= −0.02 y(t) − 0.35 (i(t) − π(t)), (30)

dπ

dt
= 0.002 y(t), (31)

di

dt
= u ∈ [−0.005, 0.005]. (32)

3.5. Robustness of Model

As we have mentioned in the Introduction, a viability model of the central bank
problem needs less subjectively assessed parameters than the corresponding op-
timization model. In particular, a viability model (30)–(32)(plus (27)) does not
require any weight that the bank loss function necessitates. Neither is the discount
rate needed. The bounds of the constraint set are either legislated or identifiable
in a rather nonobjectionable manner. If there is not much concern for limits of a
variable, as for output gap, then they can be set “large.”

Consequently, the boundaries of the constraint set K , within which the economy
can move, convey information about the desired evolution of the economy in a
more objective fashion than the loss function weights and discount factor tell us
about agents preferences.

4. VIABLE SOLUTIONS

We will perform a viability theory analysis using the model (30)–(32). This is
computational economics and the results will be parameter-specific; however, the
procedure can easily be repeated for any plausible parameter selection compatible
with the institutional framework.

4.1. A Steady State and Transition Analysis

First, let us examine the existence of steady states of (30)–(32) and assess their
stability.

Add the plane y = 0 and another one i = π to Figure 5; see Figure 6 top panel.
The steady states are at the intersection of those planes; see the dash-dotted line
in Figure 6 top panel.
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FIGURE 6. Constraint set K and typical evolutions.

In the top panel we see that when the output gap is negative (y < 0), inflation
decreases (arrow points toward A); reciprocally, inflation increases if the output
gap is positive (arrow points away from A). Above the plane i = π , interest rate
dominates inflation, which decreases the output gap (above i = π , arrows point
left). Below i = π , where inflation is higher than interest rate, the arrows point
right, which means that the output gap increases. (Basically, for moderate values
of y, output gap diminishes where real interest rate is positive.)

https://doi.org/10.1017/S1365100508070466 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100508070466


64 JACEK KRAWCZYK AND KUNHONG KIM

The bottom panel shows a few typical evolutions’ directions in the two-
dimensional (y, π) plane.

4.2. Two Precarious Situations

The introductory models discussed in Sections 2.2 and 2.4 are two-dimensional.
Because of this “low” dimensionality, the viability kernels were easily obtained for
those problems. In particular, we used a geometric characterization of the kernel in
Section 2.2, whereas in Section 2.4 we derived the kernel analytically. The central-
bank viable-control problem for system dynamics (30)–(32) and constraint set (27)
is essentially three-dimensional and thus is a “complex” problem, for which it is
very difficult to specify the analytical form of the kernel [compare Martinet and
Doyen (2007)].32 The geometric representation in three dimensions is also difficult.

In this paper, rather than computing the viability kernel for the entire constraint
set (27) and system dynamics (30)–(32), thus characterizing the central bank’s
viable policies for any point in K , we will establish satisficing controls for two
important monetary control problems critical for the functioning of the bank. The
first concerns a liquidity trap. The other relates to an economy that is hot.

These problems occur in the three-dimensional space (see upper panel Figure 6)
and it is where the viability kernel lives. We will analyze the problems in this
space; however, we will also try to examine the evolutions’ projections onto two-
dimensional space (bottom panel of Figure 6). We hope that this will help preserve
the transparency of our results.

We use Figure 6, bottom panel, to sketch what a two-dimensional analysis can
tell us about the system evolutions. Around corner A, inflation is low and output
gap negative. It is evident from the figure that if the bank lowers the interest rate
“too late,” which is represented by the lower arrow pointing downward rather then
rightward, the economy may drift (with negative output gap) toward zero inflation,
where no instrument exists to lift the output.33

The locus of points relevant to a “hot” economy is corner C (large and positive
output gap and high inflation). Intuitively, when the economy is close to C, there is
little the bank can do to prevent the economy from exceeding the 3% boundary. To
keep the economy in K , the bank must turn the economy to the left by increasing
i early.

Situations such as these ask for the determination of a collection of points from
where the control from U (defined in (29)) is sufficient for y(t), π(t) to avoid
leaving K in finite time. In the next section we will determine the collections
of points, presumably close to A and C, respectively, from which the dynamic
system (30)–(32) can be controlled so that the liquidity trap and exceeding the
upper inflation boundary are avoided.

4.3. Geometric Characterization

We need to say how we will characterize the collections of points in the state space
from where viable controls exist. We will use geometric characterization, helped
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by the analytical calculations of the limiting trajectories, that is, those on which
some critical feasible controls are applied.

In general [see, e.g., Aubin (1997), Cardaliaguet et al. (1999), Martinet and
Doyen (2007), and Smirnov (2002)], the characterization of viable controls relies
on an analysis of the compatibility of the system’s dynamics with the geometry
of the constraint set. A point in K is accepted as an element of the kernel’s
frontier if an evolution direction at this point is tangent to, or pointing inward into,
the viability kernel. This condition is equivalent to the request that an evolution
direction form an obtuse angle with the normal to the kernel’s frontier. To confirm
that a point is a member of the kernel V , a nonempty intersection between two
cones is sufficient: the first is the cone containing the system’s feasible velocities
at x, and the other is the normal (or “contingent”) cone to x ∈ V .

All these conditions can be easily illustrated by the analysis of the evolution
directions in Figure 2. For example, point A was confirmed as a member of V

because there existed an evolution from this point that did not leave V . We noted
that this evolution formed a 90◦ angle (limit obtuse). Equivalently, one evolution’s
direction intersected with one ray of the normal cone to V at A. A similar analysis
could also be performed in Figure 3. Here, the boundaries frV were obtained
analytically by “running” system (10) backward in time from two steady states
lying on the boundary of the constraint set K with the highest velocity. Hence, the
nonempty intersection between the cone containing the system’s feasible velocities
and the normal cone to the boundary was trivially fulfilled. Any evolution that
starts below the boundary (such as that from B in Figure 3) must leave K in
finite time because the boundary was obtained as the limit trajectory, on which the
prices grow with the highest allowable speed. Hence, there is no velocity to bend
the trajectory upwards before the K limit (x = 1) is reached. Reciprocally, any
evolution that originates above the boundary (such as that from A in Figure 3) can
be maintained in V simply because if it dropped to frV the fastest price change
would carry it to a steady state x = 1, p = a.

We will use the above observations to comment on viable controls for the three-
dimensional problem of the central bank, which we will solve in the subsequent
sections. We will explicitly compute the limiting trajectories by running the system
backward in time from a point within the constraint set, which the central bank
may consider as a target, perhaps intermediate, using the maximum feasible speed.
Then we will analyze the trajectories’ neighborhood to decide where the satisficing
controls exist.

4.4. Satisficing Controls

We will discuss the existence of satisficing controls for the two important economic
situations that were sketched in Section 4.2.

Liquidity trap. We will now determine the kernel’s boundaries for the “south-
west” corner (A). As in the case discussed in Section 2.4 (see Figure 3), we need
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FIGURE 7. Corner A: viability kernel for zero-interest-rate policy.

to say what states (perhaps intermediate) the central bank might want to achieve
when the economy is in recession (y(t) < 0) and the inflation and interest rates are
low and such that the realization of a sizeable negative real interest rate i(t)−π(t)

is impossible.
If i(t)−π(t) ≈ 0 and y(t) < 0, a long recession is looming; see equations (30),

(31). However, even if the interest rate is zero, a small positive inflation creates a
small negative real interest rate and the economy will go out of a recession. Thus
it will be of interest to the bank to identify the economy states from which the
zero-interest-rate policy guarantees a recovery without sliding to deflation.

In Figure 7 a limiting system evolution is shown as the solid line on which the
zero-interest-rate policy is applied, that is, i0 = i(10) = 0, where 10 [quarters] is
the time needed for the economy to move from point P to y = 0, π = 1%. This is
the point from which the economy will not slide to recession. Indeed, the economy
will recover: with the negative real interest rate and output gap zero, the output gap
growth is positive; hence inflation will start rising, output will become positive,
etc., see equations (30), (31). Eventually, the bank will be able to apply a nonzero
interest policy. We therefore believe that this point (y = 0, π = 1%, i = 0) can
represent a bank’s intermediate target.

The same limiting evolution is shown as one of the solid lines in the three-
dimensional Figure 8. It starts from around the corner A (marked i0 = 0) and lies
flat on the K set floor i = 0. (Notice that, in this scale, point A appears overlapping
with point P.)
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FIGURE 8. Viability problem presentation in IR3.

On this line, the economy evolves from y(0) < 0 to y(T ) ≥ 0 (where T = 10
quarters) and the inflation is decreasing to 1%. To calculate this trajectory, we
have run (30)–(32) backward from y(T ) = 0, π(T ) = 0.01, i(T ) = 0 with u = 0
until the output gap lower boundary was reached (point P). This trajectory (solid
line) delimits a viable control area (marked by the thin lines), from where the zero-
interest-rate policy guarantees achievement of a non-negative output gap (in 10
quarters or less). Any state to the left of the solid line does not have that property.

We can see that keeping the economy in the viable control area kernel can
prevent a liquidity trap. An economy, once it drops outside this region can remain
for long at a negative output gap level and become deflationary (in some monetary
policy jargon, people say that the economy falls into a liquidity trap).

Figure 7, jointly with equations (30)–(32), can help us understand why the
minimum allowable inflation level should be kept positive: if inflation is positive,
then the interest rate can be made smaller (positive or zero) than the inflation rate,
and hence a negative real interest rate can be achieved. This helps output gap to
grow. Should inflation be nonpositive, output gap will grow more slowly or not at
all.

However, the current interest rate (i.e., one from which the bank starts combating
recession) can be high, and dropping it to zero may create a shock if (32) is not
satisfied. To avoid this, the bank needs to change the interest smoothly. If this
happens, the negative real interest rate cannot be realized instantaneously and
some further output-gap shrinking phase will take place. This may last long for
high interest rates (obviously, it takes longer to lower a high interest rate to zero
than a low interest rate).34 It is therefore of importance for the bank to identify the
economy states from which the policy of the fastest drop of interest rate moves the
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FIGURE 9. Corner A: evolutions for maximum-speed recovery.

economy to point P (or the trajectory P→ (0, 0.01)); see Figure 7), from which
the zero-interest-rate policy will lead the economy to recovery.

Notice the dashed trajectory in Figure 9, which starts at neutral output gap
with i0 = 4.9% and joins smoothly the zero-interest trajectory at point P. On this
trajectory (and also on the other trajectories obtained for negative output gap and
positive real interest rate), output gap shrinks before it starts growing. We can see
that, for a recovery that would avoid this rather dramatic output gap decline (and
the y-lower bound violation), the interest rate i(t) for y(t) < 0 should not be too
high.

In this figure, we can also see that an economic evolution that starts with
i0 = 4.6% (the figure top dash-dotted trajectory) satisfies the output gap lower
limit. The other dash-dotted lines show the fastest interest rate drop evolutions from
neutral output gap for several other inflation rates. (The lowest such trajectory,
marked i0 = 2%, was also shown in Figure 8.) We see that maintenance by the
central bank of a relationship between the inflation and interest rates is crucial for
the fastest recovery.

To highlight this relationship, we consider an economy characterized by output
gap −2.73% and inflation 1.06%, which is the point M on the evolution that
crosses the neutral output gap with i0 = 4.3%. If the corresponding interest rate is
2.77% at this point, then the evolution follows the trajectory marked 4.3% in the
right panel and reaches a recovery state within the constraint set K . If, however,
the interest rate is 2.85%, then the economy evolves on the solid line and the
inflation lower boundary is violated. But, if the interest rate is 2.62%, then the
economy recovers inside K . We infer that for evolutions that do not escape from
K , the interest rate has to be lower than some critical level, which depends on
output gap and inflation.

In Figure 9, left panel, we show more evolution trajectories that bring the
economy to zero interest rate with the maximal interest rate drop. Each of these
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FIGURE 10. Corner A blowup.

trajectories was computed analytically; each reaches zero interest rate on the sep-
arating evolution P→ (0, 0.01) smoothly with u = −0.005. On these trajectories,
the overlap between the velocities’ cone and the normal (“contingent”) cone on
the viability kernel’s boundary is trivially fulfilled. Hence, there are satisficing
controls to bring the economy to y = 0, π = 1%, i = 0 from the points that are
inside of each trajectory and no such controls exist for points that are outside the
trajectories.

To better explain what the viability kernel about corner A is, we need to examine
the system evolutions in IR3, which we started in Figure 8. Figures 10–12 are
relevant to understanding the existence of a critical interest rate level for a given
combination of inflation and output gap. We also use these figures to identify
an area for which there exist viable controls that take the economy away from a
liquidity trap.

Figure 10 shows the maximum-speed recovery evolutions in IR3, commented on
earlier in Figure 9. The front semitransparent wall is the neutral output gap plane.
Behind the wall, a three-dimensional surface is emerging, delimited by the recov-
ery evolution trajectories: the outermost trajectory is the evolution corresponding
to i0 = 4.6%, which is the thickest dash-dotted line in Figure 9 passing near P.
The innermost trajectory corresponds to i0 = 0%. If the economy is to recover
speedily and remain in the rectangular box of constraints K , then the economy’s
three coordinates, output gap, inflation, and interest rate, must remain behind this
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FIGURE 11. Corner A blowup (continuation).

FIGURE 12. Time profiles of output gap, inflation, interest rate, and interest rate changes,
originating from point M.

surface. In other words, the area behind this surface contains the economy states
from which the viable evolutions control the economy away from negative output
gap and low inflation.

Figure 11 shows the details concerning the difference between the evolutions
starting inside and outside the viability kernel. The two trajectories shown in

https://doi.org/10.1017/S1365100508070466 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100508070466


SATISFICING SOLUTIONS 71

Figure 9 as a solid line and a dashed line are now presented in IR3. It is apparent
that the solid-line evolution that begins at i = 2.85% starts from outside the critical
trajectory (see the right panel) and leaves the constraint set K in finite time (see
the left panel). However, the dashed-line evolution from i = 2.62% begins inside
and leads to the fastest interest rate drop (speedy) recovery. We can see the time
profile of each of the evolution’s coordinates in Figure 12.

The three time profiles in Figure 12 represent the three cases shown in two
dimensions in Figure 9 and in three dimensions in Figure 11 (focus on the right
panels). They differ by the original interest rate, which, at time zero, is 2.77% on
the dash-dotted line (the one that passes through M), 2.85% on the solid line, and
2.62% on the dashed line.

For the dash-dotted line, the fastest reduction of the interest rate leads the output
gap to neutral without violating the lower inflation bound. If the evolution starts
from i0 = 2.62%, which is inside the 3D area shown in Figure 10, then the neutral
output gap is also achieved without violating the lower inflation bound. However,
if the evolution starts from i0 = 2.85%, which is outside the 3D area shown
in Figure 10, then even with the fastest reduction of the interest rate, the lower
inflation bound is crossed at time t ≈ 10.8. This illustrates that there is no viable
control from a point that is outside the critical evolution. (Here, i0 on the solid line
is 2.85%, which is more than the limit i0 = 2.77%; see the dash-dotted line.)

We infer from the above35 that the interior of the area displayed in Figure 10 is
the viability kernel for the area of K around corner A36.

A warning can be taken from the above figures that even mildly negative output
gaps can lead to a liquidity trap if inflation is very low and if the bank starts late
to control the economy, that is, the interest rates are relatively high.

This is mainly due to the inertia of the economic processes considered here.
Keeping the process evolution inside a viability kernel guarantees that the instru-
ment (here, nominal short-term interest rate) will be applied sufficiently early so
that uncontrollable fallouts can be avoided.

We also notice that very low inflation could harm viability of the system. In other
words, it will be a slow process for the economy to recover from a liquidity trap
when inflation is low. This observation reinforces a rather commonly accepted
central bank canon: not to consider zero or very low inflation as a goal of its
monetary policy [compare Nishiyama (2003)].

Overheating. We will now determine a set of points around the north-east
corner (C), for which the satisficing controls exist. Here, we will restrict our
analysis to situations in which interest rates dominate inflation, that is, the econ-
omy is above the 45◦ line in Figure 6 (top panel) and output gap decreases.
This monotonic movement, from right to left, helps us analyze the economy in
IR2 (output gap—inflation), rather than in IR3 (output gap—inflation—interest
rate).

Let us consider which point of the economy the central bank may want to target,
at least temporarily, if inflation runs high and output gap is positive. Obviously,
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any point from which the upper boundary on inflation will be exceeded will not be
aimed for. This excludes any point on this boundary as a target, even transitory, for
as long as y(t) > 0 [see equation (31)]. Hence, the bank should aim at y(t) ≤ 0.
However, strictly negative output gap y(t) < 0 means a recession (or a beginning
of it) thus the bank should use a policy conducive to y(t) = 0, rather than y(t) ≤ 0.
As the highest allowable inflation in our example is 3%, the bank ought to aim at
y(T ) = 0, π(T ) = 0.03 for some T > 0.

Presumably, with inflation close to the upper limit, the nominal interest rate
is also high and close to its maximum. Keeping it high can control the inflation,
but if the real interest rate i(t) − π(t) is positive and rather large, a recession is
probable [see equation (30) and Figure 9; also bear in mind footnote 34]. Hence
the bank should try to achieve y(T ) = 0, π(T ) = 0.03 with the interest rate that
minimizes the recessionary and inflationary pressures. This means that the bank
will intend i(T ) = 0.03, which characterizes a steady state, at which all pressures
vanish.

It is therefore of great importance for the bank to recognize which is the limiting
system evolution that reaches y(T ) = 0, π(T ) = 0.03, i(T ) = 0.03 in finite time
T and with the fastest allowable interest rate reduction u = di/dt = −0.005. The
limiting property of this system’s trajectory will be such that, for a given level of
the interest rate that is higher than inflation (as was assumed at the beginning of this
section), from the points that are above this trajectory, violation of the inflation
upper limit, or output gap lower limit, will happen in finite time. Conversely,
for evolutions from states that are on or below this trajectory, the violation will
not happen and the steady state y(T ) = 0, π(T ) = 0.03, i(T ) = 0.03 will be
achieved (again, for a given level of interest rate that is higher than inflation).
We will demonstrate these features of the economy’s evolutions by analyzing the
system’s dynamics (30)–(32) and Figures 13, 14.

We have determined this critical trajectory by running (30)–(32) backward from
y(T ) = 0, π(T ) = 0.03, i(T ) = 0.03 with u = −.005. The trajectory is shown
in Figure 13 (and also in the three-dimensional Figure 8; see the system trajectory
that starts at i0 = 6.3%).

Part of a booming economy’s characterization is that the interest rate is close
to the limit, which was set at 7% for this economy; see (27). In Figure 13, on the
limiting trajectory, we control the economy from when the interest rate was 6.3%,
the output gap was maximal (4%), and inflation run high but still below 3%. The
interest rate was gradually eased and, after less than 7 quarters, reached 3%,
the same value as inflation. On this trajectory, we run the economy forward from
the point that was reached when we ran it backwards; hence, not surprisingly,
these two evolutions coincide with the same thick trajectory.

We will further analyze the economic dynamics depicted in Figure 13 and
conclude that the evolution represented by the thick solid line belongs to the
viability kernel’s boundary (where the kernel and boundary are three-dimensional
objects). We will see that a 2D projection of the kernel lies left from this line
(marked by the thin lines).
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FIGURE 13. Viable and nonviable trajectories around corner C.

FIGURE 14. Time profiles of output gap, inflation, interest rate, and interest rate changes,
originating from points N, N′, and N′′.
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Figure 13 also shows what would happen if the bank did not combat inflation
early and let it leave the kernel. Consider point N lying on the limiting evolution.
Suppose the interest rate is 5.89%, which will be the interest rate of an economy
controlled by the maximum interest rate drop from the point marked i0 = 6.3%.
If the economy is controlled from point N in this way, it will continue evolving
on the thick line until the steady state marked by i(6.6) = 3% is reached. This
evolution is also shown in the time domain in Figure 14; see the dash-dotted
line.

Next, suppose that inflation has crossed the limiting evolution and that the
economy is at point N′′ and the interest rate is 5.89% (as at point N). If the bank
started raising the interest rate (or keeping it constant), the economy would cross
the neutral output gap with high interest rate. Inflation would start diminishing
but the lower bound on output gap would be broken; see Figure 9. Alternatively,
the bank could drop the interest rate with the maximum speed. This was a viable
policy from point N but is not from N′′. We can see this by observing the maximum
interest drop evolution that is represented by the solid line originating from N′′,
which crosses the inflation upper limit. Also, see the solid line37 in Figure 14,
which represents this evolution’s time profile. We can see that the violation of the
3% inflation limit will occur in about one quarter.

However, if the economy is below the limiting evolution, application of the
allowable instruments can prevent violation of the inflation upper limit. For exam-
ple, an evolution from N′ managed by the maximum interest rate drop reaches the
neutral output gap in 5 quarters and the corresponding interest level is such that
the violation of the lower bounds on output gap and inflation is not forthcoming
(compare Figure 9). This evolution, originating from point N′, is indicated by the
dashed line in both Figures 13 and 14.

From the above analysis (and from many more economic dynamics simulations
not reported here), we conclude that the thick solid line in Figure 13 belongs to
the viability kernel’s boundary. Furthermore, we deduce that there exist satisficing
controls for the economy’s states that are below this trajectory, whereas they do
not exist for the states above it.

5. CONCLUDING REMARKS

We have considered a simple macroeconomic model. An analysis based on vi-
ability theory enabled us to discuss how a central bank monetary policy can
be established. We have endogenously derived the following satisficing policy
recommendations:

(I) if y(t), π(t) are well inside V then apply i(t) + hu, u ∈ [−0.005, 0.005] for every
time interval h;

(II) otherwise apply (assuming feasible) i(t) − 0.005h if y < 0 or i(t) + 0.005h if y > 0,
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where V is the viability kernel (e.g., see the 3D area in Figure 10 behind the
surface spanned by the limit evolutions).

These recommendations are in line with policy (6); in particular, (II) is extreme
in that it calls for the full speed interest rate changes. The recommendations should
be understood as guidelines for the central bank’s governor.

We explain “well inside” as follows. We believe that there are two states an
economy can be in: well inside the viability kernel and close to its boundaries.38

An assessment of in which of them the economy is in will obviously depend on
the bank governor’s judgment. Our graphs are helpful in the assessment. They can
tell the governor where the economy is expected to move, given current conditions
and the applied instruments. If, at t + h, the economy is expected to remain in the
kernel, then the economy state at t is well inside the kernel.

The distinction between these two states of the economy is needed for the
governor to decide which size of instrument u to apply. With our model, the
governor can assess where the economy is expected to be at time t + h and what
options he or she will then have. We believe that the choices made in this manner
will be less arbitrary than the optimal ones that rely on the loss function weights
and discount rate, which are subjective parameters.

The satisficing policy choices can be modified to allow for measurement errors,
parameter uncertainty (In α, ζ , etc.), and shocks, even if the system’s dynamics
is deterministic39. In broad terms, a ball around each point of the trajectory in
the y, π plane (see, e.g., Figure 6) might be constructed where the ball size was
proportional to the degree of uncertainty (e.g., measured by standard deviations).
The conditions to apply rules (I), (II) can be modified: if the ball does not intersect
the viability kernel’s boundary, apply (I); else apply (II).

Usually, the bank’s policy established through a viability analysis should appear
more credible to economic agents than its optimized counterpart. This will be so
because the former depends on fewer arbitrary parameters than does the latter.
This and the observation about passivity of a viable (or “satisficing”) policy,
coming below, renders the latter less vulnerable to the Lucas critique (1976) than
its optimizing counterpart.

As was observed before, policy advice based on viability theory may be passive,
that is, recommend u = 0 [see (I)] for a wide range of states of the economy that
are well inside the kernel V . This will mean that the instrument realizations may
not change even if y, π have changed. However, this would not be the case if
a loss-function optimizing policy were implemented where each combination of
y, π implied a different i. If the bank chooses u = 0, the private sector will have
no need to change its behavior; hence the bank’s model parameters, which depend
generically on this behavior, will not change. In consequence, the bank policy will
remain time-consistent.

In general, a policy based on a viability analysis is precautionary in that it
controls the system away from regions of adverse economic conditions (such as
large negative output gap or accelerating inflation) where control of the system
is difficult or impossible. Hence, a viable policy is naturally forward-looking and
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thus attractive for uncertain conditions, where uncertainty might be due to the
parameter values or stochastic shocks. We can say that policy advice based on
viability theory takes a compromise into account between the instrument timing
and its strength. This might be paraphrased by saying that an early application of
a light instrument can replace (and, probably, be more efficient than) a late use of
a heavy instrument.

Future work will concentrate on open economy models, which will take ex-
change rate uncertainty into account. A starting point for an analysis might be
Clément-Pitiot and Doyen (1999), which computes viable policies that can keep
the exchange rate in a target zone; also see Krawczyk and Kim (2004a), where
exchange rate enters the model as a nuisance agent’s control. Extensions of the
model, in which the parameters would become new metastate variables controlled
by more nuisance agents, will produce viable policies robust to private sector
agents’ reactions, and hence even more resistant to the Lucas critique than those
computed in this paper.

We can also envisage an interest in viability kernels from international economic
agencies (such as the International Monetary Fund). Given economic data from
a country, its kernel can be established. An assessment of the current state of the
economy where it is relative to the kernel could help the agency in its advisory (or
lending) decisions regarding this country.

NOTES

1. This paper and its earlier version [Krawczyk and Kim (2004b)], along with the reports [Saint-
Pierre (2001) and Clément-Pitiot and Saint-Pierre (2006)] where an endogenous business cycle was
studied, and [Clément-Pitiot and Doyen (1999)], where an exchange rate dynamics analysis was
carried out, pioneer viability theory application to macroeconomics. For viability theory applications
to environmental economics see Bene et al. (2001), De Lara et al. (2006), Martinet and Doyen (2007),
and Martinet et al., in press; see Pujal and Saint-Pierre (2006) and references provided there for
applications to financial analysis.

2. We adopt the common meaning of output gap, that is, the log deviation of actual output from
the normal or potential level.

3. The state may be generalized to metastate, which will comprise instruments (flows) along the
usual stock variables. If so, the system’s controls will be velocities of the instruments; see later in the
paper the system of equations (10) and also the system of equations (30)–(32).

4. We do not rely on the use of set-valued maps and differential inclusions in this paper, which
is standard in mathematical papers about viable controls. However, we signal that one can view the
system velocity as the point-to-set map at x(t) ∈ K

F(x) ≡ {f (x, u), u ∈ U}
and that the dynamics (1) can be rewritten as the differential inclusion ẋ(t) ∈ F(x(t)). See Aubin
(1997), Aubin et al. (2000), and, in particular, Smirnov (2002) for theorems on the existence of solutions
to differential inclusions.

5. We stress that one determines a viability kernel given the constraint set (K), system dynamics
(f ), and horizon (T ). Some authors use the rather complex expression V K

f (T ) or ViabK
f (T ) to denote

a kernel. We will use simple V and highlight for which constraints, dynamics, and horizon the kernel
is determined.

6. For autonomous systems.
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7. Notice that traditional monetary-policy optimization models [e.g., Walsh (2003)] are modeled
and solved as infinite-horizon and stationary.

8. Actually, proximal normal. Given a convex set and a point outside the set, in a normed space,
a proximal normal is the direction of a vector that connects the point to a nearest point of the set.
A normal is just a direction in which a support functional is positive. We assume our problems are
formulated in normed spaces and will use the term normal.

9. Suppose the evolution started at the origin.
10. See Aubin (1997, p. 99) and Martinet and Doyen (2007, Section 3.4.1.3).
11. Unless a steady state has been reached. Also, see ibid.
12. See, for example, Walsh (2003).
13. This radius might equal a standard deviation shock magnitude. It may also equal the size of the

shock that occurs “once in 100 years,” etc.
14. Recently, the main gas supplier in Wellington, New Zealand was obliged to pay substantial

compensation to customers for a breakdown in gas delivery; also, a transmission line burnout in
Auckland resulted in heavy fines the electricity grid operator had to pay its patronage.

15. Aubin discusses (1997) several simple viability problems. In particular, an affine and bilinear
system dynamics is considered; see pp. 46–51. Our model is inspired by the former but has a structure
similar to that of the latter, with the economic interpretation expanded.

16. We believe that you may not like oil or chocolate at the beginning even if it is costless and you
will only gradually develop a taste for it. On the other hand, linearity of the changes is not crucial for
the subsequent analysis.

17. We do not pretend to derive equation (7). We conjecture that it might capture the consumption
habit of x.

18. Maximization of (8) in a Markovian (i.e., feedback) strategy p(x(t)) ∈ [0, p] would be even
more difficult.

19. For example, a lot of demand could make the clearing price rise faster than inflation. However,
the supplier may not want to feel some kind of social condemnation caused by the prices behaving too
differently from inflation. Also, the supplier may not want to change the menu too frequently. All that
would mean that the price would not change instantaneously.

20. This is a differential inclusion where the right-hand sides define the correspondence F referred
to in footnote 4.

21. The time of keeping the evolution viable is not important in this and subsequent examples,
hence we will drop index T from notation.

22. More precisely, the boundary of V is the x-axis from 0 + ε (where ε > 0 and small) to where
it intersects with the positive-velocity critical trajectory, then this trajectory, then x = 1, and then the
negative-velocity critical trajectory until (0, 0 + ε).

23. Notice that the policy advice for (x, p) that belong to the kernel’s frontier is to apply an extreme
price strategy, for which the price changes are maximal.

24. Not included in K; for example, integral (8) could be minimized.
25. In Section 3.3, we explain how we have assigned a value to new coefficient a in (17). We

could have used the full equation (13) in our study. However, this would have increased the state
space dimensionality and made the viability analysis less transparent. As this paper’s main purpose
is to show how viability theory can be applied in macroeconomics, we prefer to use a lower order
system.

26. For the time being, we assume the Lucas critique away. We will come back to it in the
Concluding Remarks.

27. In this simple model, inflation grows for any positive output gap. However, adding exchange
rate to the model, as in Krawczyk and Kim (2004a), helps to understand why this might not always be
the case.

28. The parameter values come from a table published in Walsh (2003), which quotes maximum
likelihood estimates for a model originally studied by Fuhrer (1994).

29. Notice that 1.53 − 0.55 = 0.98.
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30. The interest rate upper bound of 7% appears to be attained in New Zealand in 2004-4. We
could extend it to better reflect this country’s conditions. However, in other countries (e.g., the United
States), 7% seems a plausible upper bound for the interest rate and we will keep it at that level in this
introductory study.

31. See note 3.
32. For high-dimension problems, algorithms can lead to numerical determination of kernels; see,

for example, Saint-Pierre (1994).
33. This is what is meant by a liquidity trap: the economy remains in an area where output gap

is negative and inflation is close to zero (positive or negative). We again cite McCallum (2004)
for an analysis of a liquidity trap problem performed through an established method. Also, notice
that Nishiyama (2003) is a recent publication where a liquidity trap problem is analyzed in state
space.

34. Violation of the lower bound on output gap is imminent if the initial interest rate is high relative
to inflation measured at the same time.

35. And from many more simulated evolutions not shown here for lack of space.
36. We can now better appreciate that the areas in Figure 7 and in Figure 13, marked by the thin

lines, are IR2 projections of the respective viability kernels, which generically live in three dimensions;
that is, they depend generically on interest rate.

37. The output gap evolutions from N, N′, and N′′ are different from each other. However, in this
figure’s scale, they appear indistinguishable.

38. If the economy was outside V , the special crisis control would have to be applied to bring the
economy to V . Crisis control can also be computed using viability analysis; see, for example, Bene
et al. (2001) and Martinet and Doyen (2007). However, this problem surpasses the scope of this paper
and will be dealt with in subsequent papers.

39. Viability theory can also deal with explicit stochastic models.
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