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The steady simultaneous withdrawal of two inviscid fluids of different densities in
a duct of finite height is considered. The flow is two-dimensional, and the fluids
are removed by means of a line sink at some arbitrary position within the duct.
It is assumed that the interface between the two fluids is drawn into the sink, and
that the flow is uniform far upstream. A numerical method based on an integral
equation formulation yields accurate solutions to the problem, and it is shown that
under normal operating conditions, there is a solution for each value of the upstream
interface height. Numerical solutions suggest that limiting configurations exist, in
which the interface is drawn vertically into the sink. The appropriate hydraulic
Froude number is derived for this situation, and it is shown that a continuum of
solutions exists that are supercritical with respect to this Froude number. An isolated
branch of subcritical solutions is also presented.

1. Introduction
In reservoirs, cooling ponds or solar ponds, the fluid very often does not occur as a

homogeneous entity, but rather stratifies into two or more layers of different density.
Reservoirs, in particular, may possess a layer of fresh water overlying a deeper layer
into which salts or various pollutants may have entered.

It is often vital to the management of these reservoirs or ponds to know at what rate
fluid can be withdrawn from one layer, without entraining fluid from the neighbouring
layer. In a reservoir, for example, it may be necessary to remove a lower layer of
polluted water, to prevent the entire reservoir from becoming contaminated in the
event of a large-scale disruption that mixes up the two layers. It is therefore important
to know the conditions under which the lower fluid can be withdrawn, in a manner
which does not involve the fresh upper layer.

Recent research has shown that there may be (at least) three different types of flow
involving the withdrawal of a lower fluid in a two-layer system. In the first type of
flow, only the lower fluid is withdrawn and the interface between the fluids rises to
form a stagnation point directly above the sink. A second single-layer flow type also
exists, which possesses an interface that is pulled down sharply to form a cusp above
the sink, but does not enter it directly. In the third flow type, the interface is pulled
right into the sink, so that both fluids are withdrawn.

The present paper is concerned with this third solution type, in which both fluids
are withdrawn simultaneously. We consider a two-dimensional system in which both
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276 L. K. Forbes and G. C. Hocking

fluids are of finite depth; the flow therefore occurs in a duct, with a rigid plane below
the fluids and a rigid surface above. The two layers are separated by a sharp interface.
Withdrawal is envisaged to occur through a mathematical line sink at some arbitrary
height within the duct, and the interface is drawn right into this singular withdrawal
point. For simplicity, both fluids are assumed to be inviscid and to flow irrotationally.

There has been a great deal of recent work on these withdrawal problems, both
as a result of their importance to reservoir management as well as their intriguing
scientific interest, since many basic questions concerning these deceptively simple flow
problems remain unanswered. Solutions of the first type, in which the interfacial
free surface rises to form a stagnation point, appear to have been discussed first by
Peregrine (1972). He suggested that a limiting flow would eventually be achieved,
for sufficiently high withdrawal rate, at which the interface would form a secondary
stagnation point enclosing a 120◦ corner, exactly as for the classical gravity waves
of Stokes. For three-dimensional axisymmetric flows into a point sink in infinitely
deep fluid, this is evidently what occurs, as the work of Forbes & Hocking (1990)
shows, but for two-dimensional flows into a line sink the situation is much less
clear. Hocking & Forbes (1991) re-examined the Peregrine solution in infinitely deep
fluid, and found that some sort of limiting flow appeared to exist at a Froude
number (dimensionless withdrawal rate) of about 1.4, but that no obvious physical
mechanism, such as a breaking wave at the interface, presented itself as an explanation
for this behaviour. In a later paper in which the effects of surface tension were
included, Forbes & Hocking (1993) presented some evidence to suggest that the
limiting behaviour may be associated with a mathematical singularity related to a
fold bifurcation.

These solutions of the first type described above, having a stagnation point on the
interface directly above the sink, also exist in finite-depth flows in two-dimensions.
(The corresponding solutions for three-dimensional axisymmetric flow have been
presented recently by Forbes, Hocking & Chandler (1996), but these flows are not
discussed further here.) Mekias & Vanden-Broeck (1989) computed supercritical
solutions, for which the Froude number based on fluid depth is greater than 1, using
a numerical scheme based on a series expansion. These flows have a uniform stream
at infinity, with the free surface rising to form a stagnation point above the sink.
The corresponding solutions for subcritical flow (for which the depth-based Froude
number is less than 1) were computed by Hocking & Forbes (1992), using both a
Nekrasov formulation of the problem, as well as a direct integral equation approach.
These authors again obtained solutions with a uniform (subcritical) flow at infinity
and a stagnation point on the interface above the sink. The solutions were found to
break down at some limiting value of the Froude number, for reasons that were again
not clear. In an independent study, Mekias & Vanden-Broeck (1991) also solved this
subcritical withdrawal problem in finite depth, but unlike Hocking & Forbes (1992)
who concluded that waves far from the line sink would not occur, these authors
obtained a regular wave train downstream.

Solutions of the second type, in which the interface is drawn down to form a cusp
above the sink, are likewise not fully understood, although they have been in the
literature for a long time. They were first reported by Sautreaux (1901), and more
solutions of this type were obtained by Craya (1949). In fluid of infinite depth, Tuck &
Vanden-Broeck (1984) showed numerically that such flows only exist at one value of
the Froude number (withdrawal rate), and so their relationship to other types of flow
remains unclear. It has been speculated that these solutions represent the transition to
flows of the third type described above, in which the interface falls right into the sink
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and both fluids are then withdrawn. If this is the case, then these flows are clearly
of importance to the management of reservoirs. This speculation has been examined
further experimentally by Hocking (1991) and Wood & Lai (1972), for example. In
finite-depth fluids, these cusped solutions also exist, and have been computed in detail
by Hocking (1985) and Vanden-Broeck & Keller (1987). In that case, such solutions
may exist for all Froude numbers, and Hocking (1988) and Vanden-Broeck & Keller
(1987) even obtained a closed-form solution of this type valid for infinite Froude
number.

Solutions for flow of the third type, in which both layers are withdrawn simulta-
neously and the interface itself enters the sink, have been computed only recently by
Hocking (1995). He considered the case when both fluids are of infinite depth, so that
the overall fluid region is of unbounded extent, and gave strong numerical evidence
to suggest that the cusped solutions of the second type, discussed above, do indeed
correspond to a transition to a flow with both layers entrained into the sink. This
important result justifies interest in these types of flow, from the practical standpoint
of reservoir operation and management. (For three-dimensional axisymmetric Stokes
flow of viscous fluids, Lister (1989) has computed some steady solutions with the
interface passing into the sink. In that case, the results were primarily of geothermal
interest.)

The present paper aims to extend Hocking’s (1995) work, by studying in detail the
case when both fluids are of finite depth, and the interface between them is drawn
into the sink. For simplicity, it is assumed that the fluids are bounded above and
below by horizontal planes, so that the only free surface is the interface between the
fluids, which is drawn into the line sink. The combination Froude number appropriate
to this situation is derived in the Appendix, and it is shown that both subcritical
and supercritical solutions exist. In the supercritical case, there is a continuum of
solutions in which the height of the interface far upstream is free to be specified
for a given Froude number, but in the subcritical case, the solutions exist only
as an isolated branch, with an interface height that is determined as part of the
solution.

2. Formulation of the two-layer withdrawal problem
In two-dimensional steady flow, consider a horizontal duct of total height L,

containing two fluids. The upper fluid (referred to here as fluid 1) is of density ρ1

and the heavier lower fluid (fluid 2) has density ρ2 (ρ2 > ρ1). Suppose there is a line
sink within the duct, at some height S2 above the lower surface of the duct. The
sink withdraws both fluids simultaneously, at a total volume rate 2QT . A Cartesian
coordinate system is placed on the flow, with the x-axis pointing horizontally along
the lower surface of the duct and the y-axis pointing vertically. Thus, the line sink is
located at the point (x, y) = (0, S2). The two fluids are assumed to be separated by
a sharp interface (of zero thickness), and this interface enters the line sink at some
angle α to the horizontal, as shown in figure 1. The downward acceleration of gravity
is g.

Far from the sink, the interface is flat, and lies at a height H2 above the bottom
surface of the duct. The upper fluid 1 is therefore of some constant depth H1 far
upstream, with H1 +H2 = L (the total depth of the duct). Suppose that, far from the
sink, lower layer 2 has some uniform speed c2 and that the speed in the upper layer
is c1. In addition, suppose that the line sink withdraws upper fluid 1 at the volume
flow rate 2Q1 and the lower fluid 2 at the rate 2Q2. Then it follows that the total
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Figure 1. An illustrative sketch of the two-layer dimensionless withdrawal problem. (The interface
is taken from an actual solution, obtained with δ2 = 0.25, D = 0.9, FT = 0.2.)

withdrawal rate of fluid is 2QT = 2Q1 + 2Q2 and by conservation of mass in each
fluid layer

Q1 = c1H1 and Q2 = c2H2. (2.1)

At this point it is desirable to introduce dimensionless coordinates and variables.
This may be done in a number of different ways, but since the total duct depth
L and the total withdrawal rate 2QT would be readily measurable quantities in an
experiment, it seems most natural to use them as the basic units of length and volume
flow rate. Therefore, all lengths are referenced to L, and speeds to the quantity QT/L.

In these new dimensionless variables, there are eight non-dimensional parameter
groupings. These are the dimensionless sink elevation parameter δ2 = S2/L, and the
depths of the two fluid layers λ1 = H1/L and λ2 = H2/L far upstream of the sink.
These two depths are clearly related through the equation λ1 +λ2 = 1, as is illustrated
in figure 1. In addition, there is a non-dimensional density ratio D = ρ1/ρ2, and it is
necessary to impose the restriction D < 1 to obtain physically meaningful solutions.
The relative volume fractions withdrawn from layers 1 and 2 are θ1 = Q1/QT and
θ2 = Q2/QT , and these are related by means of the equation θ1 + θ2 = 1. The angle
α at which the interface enters the sink is also of importance, and is illustrated in
figure 1. Finally, there is the total Froude number FT = QT/(gL

3)1/2 which measures
the volume rate at which the two fluids are removed from the duct.

Of these eight dimensionless parameters, it will be seen that, in the cases of most
interest, only four of these are truly independent. Clearly two of the parameters could
be removed at once, if desired, by means of the trivial relations

λ1 + λ2 = 1 and θ1 + θ2 = 1. (2.2)

An analysis of the flow near the line sink gives another relationship between these
parameters, as will be seen presently (equation (2.13)), and one more parameter must
be determined as part of the solution; this parameter is usually the angle of entry α
of the interface into the sink.

The flow speeds c1 and c2 in the two fluid layers are measured in these dimensionless
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Withdrawal from a two-layer inviscid fluid in a duct 279

variables by means of two additional Froude numbers F1 and F2 in layers 1 and 2
respectively. In the upper fluid, the Froude number far upstream is F1 = c1/(gH1)

1/2,
and the corresponding quantity in the lower fluid is F2 = c2/(gH2)

1/2. Although it
is not strictly necessary to introduce these additional parameters, they may give an
indication of relative flow conditions in the two layers. They may be eliminated,
if desired, in terms of the eight basic flow parameters defined above, since the
conservation of mass conditions (2.1) yield

F1 =
θ1FT

λ
3/2
1

and F2 =
θ2FT

λ
3/2
2

. (2.3)

These two Froude numbers can also be related to the total Froude number FT by
means of the expression

FT = F1λ
3/2
1 + F2λ

3/2
2 . (2.4)

Since each fluid is assumed to be incompressible and to flow irrotationally, the
horizontal and vertical velocity components uj and vj in each layer, j = 1, 2, can be
expressed in terms of velocity potentials φj and streamfunctions ψj according to the
usual definitions

uj =
∂φj

∂x
=
∂ψj

∂y
vj =

∂φj

∂y
= −∂ψj

∂x
, j = 1, 2. (2.5)

These expressions (2.5) are the Cauchy–Riemann equations of complex variable
theory, and they reveal that complex potentials fj(z) = φj + iψj may be defined in
each layer, j = 1, 2, which are analytic functions of the complex coordinate z = x+iy.
The velocities may then be written uj − ivj = dfj/dz in each fluid. Far upstream the
flow becomes uniform, so that

uj → −
θj

λj
vj → 0 as x→∞, j = 1, 2. (2.6)

As both the top and bottom surfaces of the duct are assumed to be impermeable,
the boundary conditions on these planes then become

v1 = 0 on y = 1, v2 = 0 on y = 0. (2.7)

Very close to the sink, the complex potentials in each layer are dominated by the
singular behaviour

f1 → −
2θ1

π − 2α
ln(z − iδ2)

f2 → −
2θ2

π + 2α
ln(z − iδ2)

 as z → iδ2. (2.8)

Suppose that the interface between the two fluid layers is some curve η(x). The
unknown angle of entry α into the sink is then found from

η′(0) = tan α. (2.9)

Far upstream the interface becomes horizontal, so that

λ2 = η(∞). (2.10)

The fact that neither of the two fluids is free to cross this interface gives rise to two
kinematic conditions

vj = uj
dη

dx
, j = 1, 2, (2.11)
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to be satisfied on the interface η(x). There is also a dynamic boundary condition at the
interface, which expresses the fact that the pressure must be continuous on crossing
this free boundary, from one fluid to the other. An expression for the pressure in
each layer may be obtained simply from the Bernoulli equation, and equating the two
pressures at the interface gives the condition

1
2
DF2

T

(
u2

1 + v2
1

)
− 1

2
F2
T

(
u2

2 + v2
2

)
+ (D − 1)η = 1

2
DF2

1λ1 − 1
2
F2

2λ2 + (D − 1)λ2 (2.12)

which holds along the curve η(x).
Since the interface η(x) passes right into the sink, at which point the velocities

in each fluid layer are singular, special attention must be given to the Bernoulli
equation there. We follow Hocking (1995) by observing that, when the relations (2.8)
are substituted into the interface condition (2.12), a solution is only possible if the
singular part is removed. This requires us to take

1
2
DF2

T

(
2θ1

π − 2α

)2

= 1
2
F2
T

(
2θ2

π + 2α

)2

,

from which another relationship between the dimensionless parameters may be derived
in the form

θ2 =
(π + 2α)D1/2

(π + 2α)D1/2 + (π − 2α)
. (2.13)

The governing equations (2.5) within each fluid and the duct boundary conditions
(2.7) are satisfied identically, by making use of an integral equation in each of the
two layers. This procedure has become rather standard for problems of this type, and
so it is only necessary to give a brief overview of the derivation here. The equivalent
procedure for the case in which both fluids are of infinite depth is outlined by Hocking
(1995).

The complex potential f2 in the lower fluid becomes singular at the extraction
point z = iδ2 in the manner defined by equation (2.8), and this behaviour must also
be incorporated into the integral equation. In addition, the boundary condition (2.7)
at the lower wall y = 0 must be satisfied by the method of images, reflecting the
lower fluid 2 about the line y = 0, to form an image system with an image interface
at y = −η(x). For this reason, it is necessary to consider the complex function

χ2(z) =
df2

dz
+

2θ2

(π + 2α)

[
1

z − iδ2

+
1

z + iδ2

]
,

which is analytic in the lower fluid 2 and its image in the line y = 0, and which
accounts for the singular behaviour of the velocity df2/dz at the sink point z = iδ2

and its image at z = −iδ2. It is convenient to write the real and imaginary parts of
this function explicitly, so that

χ2(x, y) = A2(x, y)− iB2(x, y), (2.14a)

with

A2(x, y) = u2(x, y) +
2θ2

(π + 2α)

[
x

x2 + (y − δ2)2
+

x

x2 + (y + δ2)2

]
,

B2(x, y) = v2(x, y) +
2θ2

(π + 2α)

[
(y − δ2)

x2 + (y − δ2)2
+

(y + δ2)

x2 + (y + δ2)2

]
.

 (2.14b)

Here, u2 and v2 are the components of the velocity vector in the lower fluid 2, as
before.
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Cauchy’s integral formula ∮
χ2(zP ) dzP
zP − zQ

= 0 (2.15)

is applied to the analytic function χ2(z) in equation (2.14a), on a path consisting of
the entire interfacial free surface and its image below the line y = 0, connected by
vertical line segments infinitely far upstream. Additionally, the fixed point zQ on the
interface is bypassed with a semicircular contour of vanishingly small radius. In order
to satisfy the bottom boundary condition (2.7) identically (on the surface y = 0), the
reflection conditions

A2(x,−y) = A2(x, y), B2(x,−y) = −B2(x, y) (2.16)

are imposed, and these equations allow variables at the image free surface to be
expressed in terms of quantities at the true interface η(x). The flow is also left-right
symmetric, and this is expressed by the relations

A2(−x, y) = −A2(x, y), B2(−x, y) = B2(x, y). (2.17)

When the conditions (2.16) and (2.17) are incorporated into the Cauchy formula
(2.15), after some algebra there results the integral equation

πA2(Q) = −
∫ ∞

0

[
∆η−A2(P ) + ∆x+B2(P )

]
− η′(P )

[
∆x+A2(P )− ∆η−B2(P )

](
∆x+

)2
+
(
∆η−

)2
dxP

+CPV

∫ ∞
0

[
∆η−A2(P ) + ∆x−B2(P )

]
− η′(P )

[
∆x−A2(P )− ∆η−B2(P )

](
∆x−

)2
+
(
∆η−

)2
dxP

−
∫ ∞

0

[
∆η+A2(P ) + ∆x+B2(P )

]
− η′(P )

[
∆x+A2(P )− ∆η+B2(P )

](
∆x+

)2
+
(
∆η+

)2
dxP

+

∫ ∞
0

[
∆η+A2(P ) + ∆x−B2(P )

]
− η′(P )

[
∆x−A2(P )− ∆η+B2(P )

](
∆x−

)2
+
(
∆η+

)2
dxP , (2.18)

which is valid for flow variables in the lower fluid 2. The prefix CPV before the
second integral in equation (2.18) indicates that this is to be interpreted in the Cauchy
principal value sense, and for convenience we have defined

∆x± = xP ± xQ and ∆η± = η(xP )± η(xQ). (2.19)

A similar procedure is employed to derive an integral equation for flow variables
in the upper fluid layer 1. Since reflection about the upper boundary y = 1 is to be
used, we apply Cauchy’s integral formula to the analytic function

χ1(z) =
df1

dz
+

2θ1

(π − 2α)

[
1

z − iδ2

+
1

z − i(2− δ2)

]
,

on a path consisting of the interface and its image in the line y = 1 connected by
vertical line segments at infinity, and the point zQ on the true interface bypassed
by a small semicircular arc. As before, the real and imaginary parts of this analytic
function are written explicitly as

χ1(x, y) = A1(x, y)− iB1(x, y),

and the reflection condition

χ1(x, 2− y) = A1(x, y) + iB1(x, y)
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is used, analogously with equations (2.16) in the lower fluid, to satisfy the boundary
condition (2.7) identically on the surface y = 1. The functions A1 and B1 obey
the same equations (2.17) as their counterparts in the lower fluid, since the flow is
symmetric about the y-axis. Eventually, an integral equation for variables in the upper
fluid 1 is obtained, and may be written

πA1(Q) =

∫ ∞
0

[
∆η−A1(P ) + ∆x+B1(P )

]
− η′(P )

[
∆x+A1(P )− ∆η−B1(P )

](
∆x+

)2
+
(
∆η−

)2
dxP

−CPV

∫ ∞
0

[
∆η−A1(P ) + ∆x−B1(P )

]
− η′(P )

[
∆x−A1(P )− ∆η−B1(P )

](
∆x−

)2
+
(
∆η−

)2
dxP

+

∫ ∞
0

[
(∆η+ − 2)A1(P ) + ∆x+B1(P )

]
− η′(P )

[
∆x+A1(P )− (∆η+ − 2)B1(P )

](
∆x+

)2
+
(
∆η+ − 2

)2
dxP

−
∫ ∞

0

[
(∆η+ − 2)A1(P ) + ∆x−B1(P )

]
− η′(P )

[
∆x−A1(P )− (∆η+ − 2)B1(P )

](
∆x−

)2
+
(
∆η+ − 2

)2
dxP .

(2.20)

The task is now to solve the interfacial conditions (2.9)–(2.12) together with the
two integral equations (2.18) and (2.20), subject to the requirements (2.6) and (2.13)
and the various relationships (2.2)–(2.4) among the physical parameters. This is done
in a straightforward manner using Newton’s method, and is outlined briefly in the
next section.

3. The numerical solution
A numerical solution is sought, on a grid of evenly spaced points x1, x2, . . . , xN

along the x-axis, for which the uniform mesh spacing is h. Here, x1 = 0 and xN
should be chosen to be as large as possible. The unknown interface location η(x)
is approximated by the set of discrete values η1, η2, . . . , ηN and the surface slope is
represented as η′1, η

′
2, . . . , η

′
N . The velocity components u2(x) and v2(x) at the interface,

in lower layer 2, are approximated by point values u(2)
j and v

(2)
j , for j = 1, 2, . . . , N,

and in the upper fluid layer 1, the velocity components are approximately u
(1)
j and

v
(1)
j , j = 1, 2, . . . , N.

The four parameters δ2 the sink elevation, D the density ratio, λ2 the upstream
interface height and FT the total withdrawal Froude number are first specified, and
a guess is then made for the vector of unknowns

U = [α; η′2, . . . , η
′
N−1; u

(1)
2 , . . . , u

(1)
N ; u(2)

2 , . . . , u
(2)
N ]T . (3.1)

Equation (2.9) immediately gives the surface slope η′1 at the first point x1 = 0, and
since the interface is drawn into the sink, the condition η1 = δ2 is also imposed. Far
upstream the flow is uniform, and we specify η′N = 0 there. The withdrawal fraction
θ2 in the lower layer is obtained from equation (2.13), and the remaining parameters
λ1, θ1 and the two Froude numbers F1 and F2 are found using equations (2.2) and
(2.3).

The remaining flow variables are now constructed from this initial guess (3.1).
Simple trapezoidal rule integration allows the interface η(x) to be estimated, according
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to the recursive formula

ηj+1 = ηj +
h

2

[
η′j + η′j+1

]
, j = 1, 2, . . . , N − 1.

The vertical components of velocity in each layer are estimated at every mesh point,
except the first, by means of the kinematic boundary conditions (2.11), which in their
discrete approximations become

v
(1)
j = u

(1)
j η

′
j , v

(2)
j = u

(2)
j η

′
j , j = 2, 3, . . . , N.

The initial guess (3.1) is updated iteratively, using Newton’s method to force the
residual error vector

E(U ) = [E1, . . . , EN−1;EN, . . . , E2N−2;E2N−1, . . . , E3N−3]
T (3.2)

to zero. The first N − 2 elements of this vector E1, . . . , EN−2 are obtained from the
Bernoulli equation (2.12) evaluated at the points x2, . . . , xN−1. The condition (2.10) is
imposed by requiring that

EN−1 = ηN − λ2.

The next N − 1 elements EN, . . . , E2N−2 come from evaluating the integral equation
(2.20) in upper fluid 1 at the half-mesh points xj+1/2, j = 1, . . . , N−1. Since the Cauchy
principal value singularity is now located half way between mesh points, it can be
ignored in the integration, by symmetry, so that no special techniques are needed to
cope with it. The sink conditions (2.8) show that special treatment is required at the
first mesh point x1 = 0, however, since the interface is drawn right into the sink at
this point. It may be shown that these conditions are equivalent to taking

A1 → 0, B1 →
θ1

(π − 2α)(δ2 − 1)
as x→ 0,

and these are easily incorporated into the numerical evaluation of the integrals in
equation (2.20). It is also necessary to estimate the portion of each integral in (2.20)
that is lost in the truncation process; that is, an approximate formula is required for
the steady flow region in the interval xN < x < ∞. Here, it is sufficient to take η ≈ λ2,
η′ ≈ 0, and velocity components given approximately by equations (2.6). The tails of
the integrals ignored in the truncation may then be estimated in closed form. The
final N − 1 error elements E2N−1, . . . , E3N−3 in the residual vector (3.2) are likewise
obtained by evaluating the integral equation (2.18) at the N − 1 half-mesh points as
before, making use of the relations

A2 → 0, B2 →
θ2

(π + 2α)δ2

as x→ 0

at the first mesh point x1 = 0, and estimating the tails of the integrals beyond the
truncation point x = xN , as before.

A (damped) Newton’s method solution of these equations, E = 0, generally con-
verges rapidly from a suitable initial guess, and several choices for this starting guess
are given in the next section. Once a solution has been found to the full system of
equations, it can be used as a starting point for other solutions, and in this way, an
entire solution branch can be tracked.
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4. Closed-form solutions in special cases
In this section, we present two solutions to the governing equations, in two special

situations in which exact closed-form solutions are possible. In some sense these are
trivial situations, but the solutions thus obtained are nevertheless useful, both as
starting points for the Newton’s method algorithm of §3, and as points of reference
against which to check the accuracy of the numerical method itself.

4.1. Exact solution for λ2 = δ2 = 1/2

When the sink elevation δ2 = 1/2, then there is an exact solution for which the
interface is simply a flat surface. In this case therefore,

η(x) = λ2 = δ2 = 1/2. (4.1)

It follows at once that the entry angle α of the interface into the sink is simply α = 0,
and then from equations (2.13) and (2.2) the withdrawal fractions in each fluid layer
become

θ1 =
1

1 + D1/2
and θ2 =

D1/2

1 + D1/2
. (4.2)

The complex potentials f1 and f2 in the two fluid layers are therefore found as the
solution to a problem in which the interface is the horizontal line η = 1/2, with a line
sink on this interface at x = 0. This problem can be solved by conformal mapping.
These potentials are calculated to be

f1(z) = −θ1

π
ln( 1

4
[cosh (2π(z − i 1

2
))− 1]),

f2(z) = −θ2

π
ln( 1

4
[cosh (2πz) + 1]),

 (4.3)

and so, along the interface (4.1), the fluid velocities in each layer are

u1 − iv1 =
df1

dz
= −2θ1coth[πx]

u2 − iv2 =
df2

dz
= −2θ2coth[πx]

 on η = δ2 = 1/2. (4.4)

4.2. Solution for D = 1

In the case when the density ratio D is exactly 1, the two-fluid system becomes merely
a single fluid in a duct, and the interface disappears. Any streamline in the flow is
then a potential interface, and the particular streamline chosen would depend on the
value of the upstream depth λ2.

For flow in a duct of height 1, produced by a line sink at the location z = iδ2,
conformal mapping at once yields the solution

f(z) = − 1

π
ln
[

1
2
cosh (πz)− 1

2
cos (πδ2)

]
, (4.5)

where now f1 = f2 = f. Solutions of this type may be found in the book by
Milne-Thomson (1979), for example.

Suppose that a particular streamline −1 6 ψ 6 0 is chosen. After some algebra,
equation (4.5) may be inverted to give the shape of this streamline in the form

y(x;ψ) =
1

π
arccos

[
B + (B2 − AC)1/2

A

]
, (4.6a)
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in which, for convenience, we have defined the intermediate functions

A = sin2(πψ)cosh2(πx) + cos2(πψ)sinh2(πx),

B = sin2(πψ) cos(πδ2)cosh(πx),

C = sin2(πψ) cos2(πδ2)− cos2(πψ)sinh2(πx).

 (4.6b)

Careful perturbation analysis of this streamline shape (4.6) near x = 0 shows that the
entry angle for this streamline is

α = πψ +
π

2
, −1 > ψ > 0, (4.7)

as is to be expected on physical grounds. As in §4.1, the fluid velocities along this
streamline can now be computed by (complex) differentiation of equation (4.5).

Equations (4.6) and (4.7) take a particularly simple form for the streamline ψ =
−1/2. The streamline shape (4.6) becomes simply

η(x) =
1

π
arccos

(
cos(πδ2)

cosh(πx)

)
on ψ = −1/2, (4.8)

and the entry angle of the interface into the sink is simply α = 0 for ψ = −1/2, which
follows from equation (4.7). Along the streamline (4.8), the fluid velocities are

u = −coth (πx), v = − cos (πδ2)

[cosh2(πx)− cos2(πδ2)]1/2
on ψ = −1/2. (4.9)

These formulae (4.6)–(4.9) provide useful starting solutions for the Newton method
algorithm in §3.

5. Presentation of results
The numerical method of §3 has been run extensively to construct a reasonably

comprehensive description of the behaviour of solutions to the fully nonlinear model
outlined in §2. Nearly 1000 separate numerical solutions have been obtained over
a wide variety of parameter values. The numerical scheme has usually been run
with N = 151 mesh points placed on the interface (only half of which needs be
considered, by symmetry, as outlined in §2), and this requires the use of Newton’s
method in 450 variables. As a check on the numerical accuracy of these solutions,
we have compared them to results obtained with N = 301 interfacial surface points
for selected parameter values. (This involves a Newton’s method solution with 900
variables, which is a significant numerical undertaking.) It has been determined that
the solutions obtained here are insensitive, to graphical accuracy, to the number of
mesh points and the numerical window x1 < x < xN over which the points are placed.

5.1. High D and moderate FT

It is to be expected that the two fluids within the duct would normally be of very
similar densities, so that the dimensionless density ratio D would be expected to
be close to 1, on physical grounds. For this reason, we begin this section with an
investigation of the case D = 0.95, and with a total Froude number FT = 0.5.

Figure 2 shows how the entry angle α of the interface into the sink varies with the
depth λ2 of the interface far upstream. Results are given for three different values
of the sink elevation δ2 = 0.25, 0.5 and 0.75. In each case, the results are as would
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0.2 0.6 0.8
α
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–p/2

Figure 2. The variation of the entry angle α with the upstream interface height λ2, for the case
D = 0.95, FT = 0.5. Three sets of results are shown, for sink elevations δ2 = 0.25, 0.5 and 0.75.

be expected intuitively. For small λ2, the lower fluid 2 is very shallow, and must rise
steeply to enter the sink, at the point (x, y) = (0, δ2); therefore, the entry angle α is
close to the value α = −π/2 at which entry is exactly vertical. As the upstream depth
λ2 is increased, the entry angle α increases, and for sufficiently large λ2 the results
suggest that the interface ultimately drops vertically into the sink, with entry angle
α = π/2.

Our numerical scheme does not permit us to compute solutions right up to the
limiting configurations at which entry into the sink is vertical, with α = ±π/2.
This is scarcely surprising, but there seems no reason to doubt that the limiting
configurations do indeed involve vertical entry of the interface into the sink, and that,
with sufficiently many numerical mesh points and perhaps with the use of arclength as
the independent variable along the interface and a non-uniform mesh, results should
be possible with interface sections arbitrarily close to the vertical. Hocking (1995), in
his study of simultaneous withdrawal of two fluids of infinite depth, paid very close
attention to the (single) limiting configuration in his problem, at which the interface
was drawn down vertically with α = π/2, and presented strong numerical evidence
that this limiting solution was related to the isolated solution found by Tuck &
Vanden-Broeck (1984), at which a cusp formed directly above the line sink, but only
exists at one value of the withdrawal Froude number. This is an important result,
as it shows that the withdrawal Froude number found by Tuck & Vanden-Broeck
really is the point at which the interface collapses into the sink, and the upper fluid is
also withdrawn; such a result has practical significance for reservoir management, for
example. Nevertheless, Hocking’s numerical scheme likewise could not continue for
values of the entry angle α greater than about 1.3, and he used extrapolative curve
fitting to show that, at the limiting entry angle α = π/2, he recovered the Froude
number of Tuck & Vanden-Broeck as a limiting case. In the present problem, we have
similarly managed to compute solutions in the approximate interval 0 6 |α| 6 1.3.

These limiting configurations in figure 2, at which the interface near the sink
becomes vertical with entry angles α = −π/2 and α = π/2, would correspond to
withdrawal fractions θ2 = 0 and θ2 = 1, respectively. These situations represent
withdrawal totally from only one of the fluid layers, i.e. selective withdrawal. It can
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0.2 0.6 0.8

λ2

δ2 = 0.25

0.4 1.0
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3

2

1

0

F2

Figure 3. The variation of the Froude number F2 in the lower layer with the upstream interface
height λ2, for the case D = 0.95, FT = 0.5. Three sets of results are shown, for sink elevations
δ2 = 0.25, 0.5 and 0.75.

be demonstrated by an exact analysis of the governing equations that the curves for
sink height δ2 = 0.25 and δ2 = 0.75 in figure 2 must be antisymmetrical, and this is
confirmed by the numerical results. This serves as a useful additional check on the
accuracy of the numerical scheme. It will be shown later that the present solutions
are supercritical with respect to the appropriate combination Froude number.

Figure 3 shows the way in which the Froude number F2 in the lower fluid layer
varies with upstream depth λ2 for the case D = 0.95 and FT = 0.5, and for the
three sink elevations δ2 = 0.25, 0.5, and 0.75, as in figure 2. The Froude number F2

is a derived quantity and can be eliminated in favour of the principal parameters
in the problem, as shown by equations (2.3), and so is not strictly necessary in the
formulation of this problem. Nevertheless, it gives an indication of flow conditions
in the lower layer. Thus, for sink elevation δ2 = 0.75, conditions in the lower layer
evidently do not change greatly with changes to the upstream depth λ2, as reflected
by the fact that the Froude number F2 in this layer remains roughly constant, so that
decreases in upstream depth λ2 are matched by a compensating drop in withdrawal
fraction θ2. By contrast, the curve obtained with sink height δ2 = 0.25 shows a strong
increase in the Froude number F2 with decreasing depth λ2. Thus for δ2 = 0.25, lower
layer 2 becomes a fast flowing shallow layer as λ2 is decreased. By invoking symmetry,
as discussed in relation to figure 2, the results for F1 can be obtained by replacing λ2

with λ1, F2 with F1 and interchanging the values of δ2 in figure 3.
Three interface profiles are displayed in figure 4 for this case in which the density

ratio is D = 0.95 and the total Froude number is FT = 0.5. In this diagram,
the upstream depth has been fixed at the value λ2 = 0.5, and the three solutions
correspond to sink elevations δ2 = 0.25, 0.5 and 0.75. The dashed line is the interface
profile for the case δ2 = λ2 = 0.5, which by the result of §4.1, is simply the horizontal
surface η(x) = 0.5.

The interface profiles in figure 4 were obtained with N = 301 points distributed
over the interval 0 6 x 6 18 (and the full interface was obtained by reflection about
the y-axis). The portions of the interfaces at least in the interval −5 < x < 5 in
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Figure 4. Three interface profiles for D = 0.95, FT = 0.5, λ2 = 0.5, at the three different values of
the sink elevation δ2 = 0.25, 0.5 and 0.75.

figure 4 have been demonstrated to be insensitive to the details of the numerical
discretization process, at least to graphical accuracy, and so may be considered to be
accurate converged solutions. Again, the symmetry of the two interface profiles for
δ2 = 0.25 and 0.75 is confirmed.

5.2. Exploration of mathematical solution branches

In §5.1, solutions were presented for cases in which the density ratio D was very
close to 1, and the Froude number FT was of moderate size. We now consider what
becomes of the solution branch shown in figures 2–4 when these conditions do not
hold.

In figure 5, solutions have been computed for sink elevation δ2 = 0.25 and density
ratio D = 0.95, over a range of different total Froude number FT values. For FT
larger than about 0.2, the interface profile and entry angle α are reasonably insensitive
to the choice of Froude number FT , and the angle is maintained at about α = 0.75
over much of figure 5 (solutions for FT larger than 1 have also been obtained, but are
not shown here). However, as FT is decreased, a sufficiently small value is reached,
beyond which the entry angle α drops very rapidly. Indeed, the change of α with FT
becomes so rapid that issues of numerical accuracy prevent us from following the
entire solution branch, but it seems highly likely that a finite (small) Froude number
will be achieved for which the entry angle becomes vertical, with α = −π/2. This is
evidently the limiting interfacial profile formed at some minimum Froude number.

An initially unexpected feature of the results shown in figure 5 is that the portion on
the extreme left of the diagram, for which the angle α changes very rapidly, is actually
a different mathematical branch of solutions from those obtained with larger Froude
number. The gap in the curve in figure 5 is a portion for which numerical solutions
could not be obtained, and it appears that some sort of resonance between the two
solution branches occurs in this narrow interval (approximately 0.10 < FT < 0.11).
To the right of this gap, for FT & 0.11, the solution branch is uniquely defined by
the four parameters δ2, D, FT and λ2 (= 0.5 here), and these four parameters may be
specified in advance, as for the solutions shown in figures 2–4. However, the branch
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Figure 5. The variation of the entry angle α with the withdrawal Froude number FT , for the case
δ2 = 0.25, D = 0.95. Solutions to the right of this figure have been obtained with λ2 = 0.5. The
combination Froude number FC is also indicated.

of solutions to the left of the gap, for FT . 0.10, have the property that the upstream
depth λ2 is not free to be specified in advance if the other three parameters are
already fixed, but is instead obtained as part of the solution. This has been confirmed
by altering the numerical method in §3 so as to allow the Bernoulli equation (2.12) to
be satisfied at the mesh points x2, . . . , xN and then estimating the upstream depth λ2

from the converged solution for ηN , thus imposing condition (2.10) explicitly in the
numerical method. (In fact, the change of angle α with Froude number FT for this
branch of solutions is so rapid that we generally specify α in advance, and have the
numerical method solve for both FT and λ2.)

These two different solution branches in figure 5 can be explained by reference to
the combination Froude number for the two-fluid system, obtained from hydraulic
theory. We show in the Appendix that the appropriate combination Froude number
FC for this two-fluid system is obtained from the formula

F2
C =

F2
2 + DF2

1

1− D , (5.1)

where F1 and F2 are the two local Froude numbers in layers 1 and 2, as defined in
equations (2.3). (Results of this type for two-fluid systems are given in Armi 1986
and Forbes 1989.) This combination Froude number is easily computed from our
numerical solutions, and its values are indicated by the axis at the top of figure 5.

It can be seen that the resonance near FT = 0.11 occurs precisely at the critical
value FC = 1. Thus the branch of solutions to the right of this gap near FT = 0.11
corresponds to supercritical solutions, and represents an extension of the results
computed by Hocking (1995) for two-fluid systems of infinite depth. By contrast,
the isolated branch to the left of figure 5 (for which the depth λ2 is not free to be
specified) is a subcritical solution branch.

A representative solution from each of the two branches in figure 5 is displayed
in figure 6. The upper profile, for Froude number FT = 0.5, is one for which
the upstream interface height λ2 = 0.5 has been specified in advance; in fact, this
solution has already been presented in figure 4 (for δ2 = 0.25), and represents a
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Figure 6. Two interface profiles for δ2 = 0.25, D = 0.95. The top solution has been obtained with
FT = 0.5 and λ2 = 0.5. In the bottom solution, the entry angle was set to the value α = −0.3, and
both the Froude number and the upstream depth were determined from the numerical solution.

supercritical solution, with combination Froude number FC ≈ 4.9. By contrast, the
solution obtained with α = −0.3 (for which FT ≈ 0.089) has selected its own upstream
interface height λ2 ≈ 0.22, and is a subcritical solution.

Figures 5 and 6 therefore show that, for moderate and large Froude numbers,
there is a continuum of supercritical solutions for fixed values of the sink elevation
δ2, the density ratio D and the Froude number FT , since the upstream interface
height λ2 may be chosen arbitrarily. However, for each small Froude number FT , an
isolated subcritical solution exists for a unique interface height λ2. This result has
some similarities to the work of Hocking & Forbes (1992), as is discussed in §6.

The effect of varying the Froude number FT is again examined in figure 7, this
time for a different sink elevation δ2 = 0.75. The density ratio has again been set
at D = 0.95. In this diagram, results are presented for two different values of the
upstream interface height, λ2 = 0.25 and 0.5 in the supercritical (FC > 1) case. There
is a continuum of such curves for different values of λ2, each of which terminates
as the critical value of the combination Froude number FC = 1 is approached from
above. The dashed line denotes the subcritical solution branch; this is an isolated
branch, along which the depth λ2 cannot be specified in advance, and varies with FT .
The results suggest that there is a limiting profile on the subcritical branch, when the
interface drops vertically into the sink with entry angle α = π/2.

Three different interface profiles are shown for this case δ2 = 0.75, D = 0.95 in
figure 8. The lower two profiles have both been obtained with Froude number FT = 0.4
(FC > 1), and upstream depths λ2 = 0.25 and 0.5, as indicated on the diagram. These
are from the same supercritical branch of solutions discussed above, in which the
upstream depth λ2 is free to be given in advance. The top most interface profile,
however, corresponds to α = 0.5 in figure 7 (with FT ≈ 0.084); it is an example of the
subcritical branch of solutions (sketched with a dashed line in figure 7) for which the
upstream depth λ2 cannot be specified in advance, but instead finds its own level.

So far, results have been shown with fixed density ratio D = 0.95, since this is likely
to represent the situation that would be observed experimentally. For (mathematical)
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Figure 7. The variation of the entry angle α with the withdrawal Froude number FT , for the case
δ2 = 0.75, D = 0.95. Two sets of supercritical results are shown, for upstream interface heights
λ2 = 0.25 and 0.5. The isolated subcritical branch of solutions (sketched with a dashed line) is a
branch of solutions for which λ2 is determined as part of the solution.
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Figure 8. Three interface profiles for δ2 = 0.75, D = 0.95. The bottom solution has been obtained
with FT = 0.4 and λ2 = 0.25, and the middle surface represents FT = 0.4 and λ2 = 0.5. In the
top solution, the entry angle was set to the value α = 0.5, and both the Froude number and the
upstream depth were determined from the numerical solution.

completeness, we finish this presentation of the results by investigating the way in
which solutions vary with the density ratio D. This is illustrated in figure 9, for the
case in which the sink elevation is δ2 = 0.25 and the Froude number is fixed at the
moderate value FT = 0.5. This graph shows features that are completely analogous
to those seen in figures 5 and 7; for values of density ratio D close to 1, there is a
branch of supercritical solutions for which all four parameters δ2, FT , D and λ2 (= 0.5
here) are free to be specified independently, as in §5.1. However, as D is decreased, a
separate subcritical branch of solutions is encountered, for which only three of these
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Figure 9. The variation of the entry angle α with the density ratio D, for the case δ2 = 0.25,
FT = 0.5. Solutions to the right of this figure have been obtained with λ2 = 0.5. The combination
Froude number FC is also indicated.

parameters can be specified in advance and the fourth parameter (λ2 in this case) is
obtained as part of the solution. There is again a narrow interval 0.31 < D < 0.35 of
values of the density ratio for which the numerical method could not yield a steady
solution, and it is clear that the combination Froude number FC takes the critical
value FC = 1 within this interval, as shown on the figure. The entry angle α drops
very sharply on the subcritical branch to the left of figure 9, and it seems that a
limiting value of the density ratio D will be reached, at which the interface rises
vertically into the sink, with angle α = −π/2. Notice that, according to equation (5.1),
the combination Froude number FC becomes infinite as D → 1.

Two interface profiles are shown in figure 10, for the same values of the parameters
as in figure 9. The sink is located at the height δ2 = 0.25, and the upper profile is
for D = 0.95. The interface far upstream has height λ2 = 0.5, and the surface drops
sharply into the sink; this is the supercritical solution that would be expected in
practice (and has been sketched in figure 4). The lower profile has been obtained with
D = 0.286, and represents a point on the other subcritical solution branch to the
extreme left of figure 9. For this solution, the upstream depth λ2 cannot be specified
in advance, but is computed from the numerical method to be about 0.22.

6. Conclusion and discussion
In this paper, we have examined a class of withdrawal problems for two-layer flow

within a confined duct, in which a line sink is present at some point within the fluid
system. The interface is drawn into the sink, and both fluids are therefore withdrawn
simultaneously. The fluids have been assumed to be flowing uniformly far upstream.

For moderate Froude number and density ratio close to 1, the results are in
accordance with physical intuition. There are four parameters which are free to be
specified essentially arbitrarily; these are the sink elevation δ2, the Froude number
FT at which both fluids are withdrawn from the duct, the density ratio D and the
upstream depth λ2 of the interface. For combination Froude number FC greater than
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Figure 10. Two interface profiles for δ2 = 0.25, FT = 0.5. The top solution has been obtained with
D = 0.95 and λ2 = 0.5. In the bottom solution, the density ratio is D = 0.286, and both the entry
angle and the upstream depth were determined from the numerical solution.

1, these four parameters define a unique supercritical solution of the problem, and
the angle α at which the interface enters the sink is obtained from this solution.

It is evident from our numerical solutions that there are two possible limiting
profiles for flow in a duct. In both cases, the limiting flow involves a vertical entry of
the interface into the sink. In one extreme the interface enters the sink from above,
with α = π/2, and in the other limiting case the interface enters vertically from below,
with α = −π/2. These limiting cases are characterized by the fact that they withdraw
all their fluid from only one of the fluid layers, and hence can be considered as
selective withdrawal solutions.

It is difficult to compare the solutions to the present problem with the solutions
obtained by Hocking (1995), since his work involved two fluids both of infinite depth.
Thus Hocking’s solutions represent a particular type of limit in the present problem,
at which the total Froude number FT → 0. It is evident that the presence of the two
walls of the duct at y = 0 and y = 1 in the problem studied here introduces extra
complexities into this problem, the most obvious of which is the fact that there are
two limiting profiles here for which the interface enters the sink vertically, as opposed
to the single limiting profile with α = π/2 in Hocking’s work. This is a consequence
of the presence of the lower wall at y = 0.

An initially unexpected feature of the solutions to this problem is the fact that, for
combination Froude number FC less than 1, there is a second (subcritical) branch of
solutions for which only three of the defining parameters are free to be specified in
advance; the fourth parameter (the upstream depth λ2 of the interface) is obtained
as an output. Essentially this same phenomenon has been obtained by other authors
in related withdrawal flow problems. The results are summarized most succinctly in
figure 5 of the paper by Hocking & Forbes (1992). For withdrawal flows with a cusp
in the free surface directly above the sink, it turns out that a unique cusped solution
exists below some critical Froude number, and a continuum of cusped solutions exists
above that value of Froude number. This is analogous to the situation encountered
here, and it may be the case that the presence of both a supercritical and an isolated
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subcritical solution branch is a general feature of withdrawal flows in finite-depth
fluid systems.

It is interesting to speculate on the relationship between the steady subcritical
branch of solutions obtained here, and the solutions to the full unsteady problem. It
may be the case that this isolated solution represents a type of choking flow in which
the upstream conditions are determined by the flow into the sink. In that case, a fully
time-dependent flow would show a travelling wave moving out from the sink and
eventually controlling the upstream flow depth and speed. It would be interesting to
explore this fully unsteady flow in future research.

The computations in this paper were performed on a Sun ULTRA 1 machine
obtained under Australian Research Council (ARC) grant A69600071, and partial
support for the project has been provided by ARC grant A89701734. Collaboration
between the investigators has been generously supported by a travel grant from
Murdoch University. Discussion of some of this material with Dr Tony Watts, of
OPCOM Pty. Ltd. (Toowong, Queensland), is gratefully acknowledged, and comments
by all three anonymous referees have proved most useful.

Appendix. Calculation of the combination Froude number
The appropriate combination Froude number for this two-layer system can be

obtained using shallow-water (hydraulic) theory. The original dimensional variables
will be used in this development, and dimensionless Froude numbers will be defined
later, as required.

Suppose that the interfacial elevation is described by the function y = η(x). In the
upper fluid 1, the continuity equation gives rise to the shallow-water approximation

u1(L− η) = c1(L−H2), (A 1a)

in which H2 is the interface height far upstream and c1 is the fluid speed there, in
layer 1. The total depth of the duct is L = H1 +H2. If the pressure at the interface far
upstream is denoted p∞, then the approximate momentum equation in fluid layer 1 is

1
2
u2

1(x) +
1

ρ1

ps(x) + gη(x) = 1
2
c2

1 +
1

ρ1

p∞ + gH2. (A 1b)

Here, the pressure at the interface is ps(x), so that ps(x)→ p∞ as x→∞.
Since the aim of this section is to determine critical conditions for the flow, suppose

that the bottom of the duct is not flat, but has some shape y = h(x). Then, in the
shallow-water approximation, the continuity equation becomes

u2(η − h) = c2H2 (A 2a)

and the momentum equation yields

1
2
u2

2(x) +
1

ρ2

ps(x) + gη(x) = 1
2
c2

2 +
1

ρ2

p∞ + gH2. (A 2b)

It is convenient at this stage to define local Froude numbers

f1(x) =
u1

[g(L− η)]1/2
and f2(x) =

u2

[g(η − h)]1/2
, (A 3)

and observe that, if h(x)→ 0 as x→∞, then f1(x)→ F1 and f2(x)→ F2 far upstream,
where F1 and F2 are the Froude numbers in each layer, as defined in equations (2.3).
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It follows from the continuity equation (A 1a) in layer 1 that the local surface
elevation and fluid velocity in layer 1 can be written in terms of the local Froude
number f1(x) according to the expressions

η = L−
(
c2

1H
2
1

gf2
1

)1/3

, u1 =
(
c1H1gf

2
1

)1/3
. (A 4a)

The continuity equation (A 2a) in lower layer 2 similarly leads to the formulae

η = h+

(
c2

2H
2
2

gf2
2

)1/3

, u2 =
(
c2H2gf

2
2

)1/3
. (A 4b)

The momentum equations (A 1b) and (A 2b) in each fluid layer may be combined
to eliminate the interfacial surface pressure ps(x). In conjunction with equations (A 4),
these eventually lead to the two equations

λ1

F
2/3
1

f
2/3
1

+ λ2

F
2/3
2

f
2/3
2

= 1− h(x)

L
, (A 5a)

1
2
λ2F

2/3
2 f

4/3
2 − 1

2
Dλ1F

2/3
1 f

4/3
1 + (1− D)λ2

F
2/3
2

f
2/3
2

= 1
2
λ2F

2
2 − 1

2
Dλ1F

2
1 + (1− D)λ2 − (1− D)

h(x)

L
(A 5b)

in dimensionless form. When differentiated with respect to the coordinate x, these
two equations give rise to the matrix form[

λ1F
2/3
1 f

−5/3
1 λ2F

2/3
2 f

−5/3
2

Dλ1F
2/3
1 f

1/3
1 λ2F

2/3
2 f

−5/3
2 (1− D − f2

2)

] [
∂f1/∂x
∂f2/∂x

]
=

3h′(x)

2L

[
1

1− D

]
. (A 6)

Critical conditions will occur in this flow when h′(x) = 0, but with a non-trivial
solution to the matrix system (A 6). Under these circumstances, the determinant of
the coefficient matrix must be zero, and this gives the requirement

f2
C =

Df2
1 + f2

2

1− D = 1. (A 7)

The critical condition (A 7) leads at once to the use of the combination Froude
number FC defined in equation (5.1).
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