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Mack-mode waves are measured in a hypersonic boundary layer using high-frequency
focusing schlieren deflectometry. Experiments are performed using a 5◦ flared cone
at 0◦ angle of attack in the low-disturbance Mach 6 Quiet Tunnel at Texas A&M
University across a free-stream unit Reynolds number range of 7.8× 106 m−1 6Re′6
11.0 × 106 m−1. The high-frequency response of the measurement system allows
harmonics and other nonlinear behaviour to be measured. Mack-mode waves and
several harmonics are clearly observed at a frequency of f0 ≈ 250 kHz. Bispectral
analysis is used to show that these waves undergo several quadratic phase-coupled
sum and difference interactions with themselves to produce harmonics, as well interact
with a relatively low-frequency wave that results in amplitude modulation. Bispectral
analysis is used to highlight these interactions.
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1. Introduction
Owing to its impact on heat transfer, drag and engine performance, laminar–

turbulent transition is particularly important in hypersonic boundary layers. In a
low-disturbance environment such as flight, this process typically occurs through the
growth and breakdown of modal disturbances. For an edge Mach number greater
than approximately 4 (over an adiabatic wall), the Mack mode becomes the dominant
instability mechanism (Mack 1969, 1984).

The Mack mode is an inviscid instability that arises when a region of the mean
flow becomes supersonic relative to the phase speed of the instability. The result is
a layer near the wall that acts as a waveguide where acoustic waves may become
trapped (Fedorov 2011). These waves initially have a small amplitude and behave
linearly before ultimately exhibiting nonlinear behaviour at large amplitudes.

Evidence of the nonlinear behaviour of the Mack mode has been observed on many
occasions in the past several decades, including in some of the earliest experiments
on the topic (Stetson 1988). The first study to take an in-depth look at this nonlinear
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Nonlinear Mack-mode behaviour 75

behaviour was that of Kimmel & Kendall (1991). They utilized the bicoherence (Kim
& Powers 1979) to illustrate the nonlinear self-interaction of Mack-mode waves to
form harmonics as well as noting the existence of a carrier waves at a much lower
frequency. These experiments were performed in a conventional wind tunnel, and
at the time, it was unknown how these features might change in a low-disturbance
environment.

The wavelength of the most unstable Mack-mode waves is typically λ≈ 2δ, where
δ is the boundary layer thickness. The frequency is therefore proportional to ue/δ,
where ue is the velocity at the boundary layer edge. For the large ue and small δ
typical of hypersonic boundary layers, this leads to dominant fundamental frequencies
in the range of f0 ∼O(105–106). One of the hallmarks of nonlinear behaviour is sum
interactions, which provide energy at frequency components at the sum frequency of
two interacting components. For example, one of the most common sum interactions
is the generation of harmonics through the self-interaction of f0 to produce 2f0.
Therefore, the frequency response of any measurement system used for investigating
this behaviour must be very high. Experiments studying this behaviour are therefore
rare.

Past experiments have primarily utilized hot-wire anemometry due to its ability
to make off-body measurements with a high frequency response. Following Stetson
(1988), who noted the presence of a 2f0 wave in the spectrum, Kimmel & Kendall
(1991) studied the boundary layer on a Mach 8 cone placed in a conventional
wind tunnel. They noted that peaks were observed in the bicoherence in a region
corresponding to the generation of a first harmonic. This peak was small, peaking
at approximately 0.4 (out of a theoretical maximum of 1) but substantially larger
than the noise floor. The rise in bicoherence magnitude also corresponded with the
stabilization of the biphase about definite values at the peak location, indicating that
the peak corresponded with a great degree of phase coupling between that frequency
pair. Additionally, measured amplification rates deviated further from linear theory as
the bicoherence magnitude increased. Taken together, this presented a strong case that
the high-frequency 2f0 signal was a harmonic generated by a phase-coupled nonlinear
interaction.

Following up on the study in a conventional tunnel by Kimmel & Kendall (1991),
Chokani (1999) revisited the problem in a quiet Mach 6 wind tunnel to compare the
spectral dynamics with that of the conventional facility. Data were collected in the
boundary layer over a cone with two new features designed to further destabilize
the Mack mode: a flared afterbody and a cooled surface. These experiments showed
behaviour that was largely consistent with the earlier work, including a nonlinear
regime dominated by fundamental resonance. The study also noted several new
features, including a second harmonic at 3f0, a low-frequency modulation and
interactions corresponding to the ‘spectral broadening’ effect commonly observed
just before transition.

Chokani (2005) later expanded on the analysis performed in Chokani (1999) by
including the difference portion of the principal domain of the bicoherence spectrum
as well as utilizing a demodulation technique to explore the details of the previously
observed carrier wave. They utilized what was described as the cross-bicoherence
and reported evidence of a f0–f0 interaction feeding energy back into the mean flow
preceding the development of the first harmonic. At later stages, they also observed
2f0–2f0 and 2f0–f0 interactions later in the process just prior to the onset of the spectral
filling phenomenon. The demodulation revealed that the low-frequency amplitude
modulation that appears in the bispectrum arises in both the f0 and 2f0 components.
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However, the bispectral analysis was based on the data recorded by Blanchard &
Selby (1996), which did not acquire data simultaneously at two points, a necessary
condition for the use of the cross-bicoherence. For single-point measurements, only the
auto-bicoherence may be calculated. Due to the symmetry of the Fourier transform,
the difference interactions obtained from the auto-bicoherence are comprised of
redundant information and no distinction can be made between them and the sum
interactions of the same three wave triplets. It is therefore unclear whether the results
of Chokani (2005) unambiguously represent true difference interactions.

Bountin, Shiplyuk & Maslov (2008) later performed experiments on a sharp cone
with straight sides in a conventional Mach 5.95 wind tunnel. These experiments
introduced artificially generated wavepackets to the boundary layer in order to study
interactions at a higher amplitude than would naturally occur. This study made several
notable observations. It identified a peak corresponding to a dominant subharmonic
resonance of the Mack mode with detuning, possibly involving first-mode waves.
This corresponded to one of the mechanisms investigated by Craik (1971) in subsonic
boundary layers. It also indicated that the region of highest nonlinear activity was not
located exactly at the peak of maximum overall root mean square (r.m.s.) fluctuations,
but instead along the upper edge of that peak.

Recent direct numerical simulations (DNS) have further studied this phenomenon.
Sivasubramanian & Fasel (2014) simulated an artificial wavepacket introduced near the
tip of a flared cone, the Fourier spectrum of which produces a broadband input. They
observed evidence of both fundamental and subharmonic resonance in the nonlinear
transition process and noted that the fundamental resonance appeared much stronger.
A follow-up study was performed (Sivasubramanian & Fasel 2015) in which controlled
input was provided along an azimuthally periodic strip near the leading edge. The
resulting breakdown scenario qualitatively matched the experiments performed (Ward
et al. 2012), and it was conjectured that fundamental resonance was the dominant
‘natural’ breakdown mechanism in a hypersonic quiet tunnel. A second follow-up study
was performed by Hader & Fasel (2018) in which natural transition was simulated
using stochastic forcing in the free stream and allowing the boundary layer to develop
without any initial spanwise input. The results again matched the previous DNS and
experiments, providing strong evidence of a fundamental breakdown.

The present work is based on the data collected by Hofferth et al. (2013), which
used a focusing schlieren system to make high-frequency measurements of the Mack
mode over a flared cone in a Mach 6 quiet tunnel. Using the auto-bicoherence due
to the single-point nature of the measurements and by varying Reynolds number
via total pressure (as opposed to changing streamwise station), the hot-wire results
of Chokani (1999, 2005) were qualitatively reproduced. In the present work, new
features of the bispectrum are observed and additional insight is gained about
the nonlinear breakdown process of waves associated with the Mack mode. The
experimental apparatus and methods are detailed in § 2. A brief discussion of the
analysis techniques employed, including the bispectrum, is given in § 3 in order to
orient the reader to the analysis of the results presented in § 4, followed by concluding
remarks in § 5.

2. Experimental apparatus and method
2.1. Wind tunnel

Experiments were performed in the Mach 6 Quiet Tunnel (M6QT) at Texas A&M
University (TAMU). This facility was the result of an effort to design quiet,
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FIGURE 1. Schematic of the Langley 93-10 flared cone model. The 43 thermocouples
along the flared section are more closely spaced (1z=6.35 mm) than the 8 on the straight
section (1z= 25.4 mm).

hypersonic facilities at NASA Langley Research Center spanning several decades
and culminating in the 1990s with the M6QT (Chen, Wilkinson & Beckwith 1993;
Blanchard, Lachowicz & Wilkinson 1997). The settling chamber and nozzle were then
transferred to TAMU in 2005 where they were refurbished (including re-polishing
the nozzle) and integrated into the infrastructure at the National Aerothermochemistry
Laboratory (NAL). Initial flow quality testing (Hofferth, Bowersox & Saric 2010)
showed that tunnel performance was consistent with Blanchard et al. (1997) with
free-stream fluctuation levels of p′t2,rms/pt2 6 0.05 % in the quiet core (where pt2 is the
test-section Pitot pressure).

In its present configuration at TAMU, M6QT is a pressure-vacuum blowdown
tunnel with approximately 40 s of constant-condition run time. The facility is capable
of quiet operation in the range 4.6× 106 m−1 6 Re′ 6 11.0× 106 m−1, corresponding
to a settling chamber pressure of approximately 400 kPa 6 pt1 6 950 kPa. Prior
to each run, the tunnel is convectively preheated to avoid oxygen liquefaction in
the test section as well as provide a more stable total temperature while data
are collected. The data in the present experiments were collected during a single
wind tunnel run by collecting data throughout the course of a slow pressure
sweep. The pressure ranged from approximately 70 to 150 psia, corresponding to
7.8× 106 m−1 6 Re′ 6 11.0× 106 m−1. The data were segmented into blocks 100 ms
in length for analysis. Over an individual block, the rate of pt1 increase ranged from
20.4 to 49.5 kPa s−1, corresponding to changes in total pressure over single blocks
ranging from 0.19 to 0.65 % respectively. Similar analysis of the temperature drift
showed a range of 0.005–0.07 % in T0 over a single block. Therefore, pt1 and T0
were treated as constant over each block. Reynolds number was calculated based on
the measured reservoir conditions and an estimate of free-stream viscosity based on
the formula by Keyes (1951), which performs better than the common Sutherland
formula at the low free-stream temperatures common in low-enthalpy facilities.

2.2. Model
The present experiment was performed on the Langley 93-10 flared cone model
previously used by Lachowicz, Chokani & Wilkinson (1996), Doggett, Chokani &
Wilkinson (1997) and Horvath et al. (2002). It is 0.508 m (20 in.) in length. The first
0.254 mm (10 in.) is a right circular cone with semivertex angle 5◦. The downstream
0.254 m (10 in.) of the model is flared with a constant radius of 2.36 m (93.071 in.).
A schematic of the model is shown in figure 1. Flared cones have shown great utility
in the study of the Mack mode due to the destabilizing effect of the adverse pressure
gradient.
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FIGURE 2. Trace of Tw over time at z= 381 mm. Note the dramatic rise in temperature
when the flow becomes turbulent.

The walls of the model are constructed of stainless steel and are approximately
1.8 mm in thickness, except at the thermocouple locations, where the thickness is
0.8 mm. The thin walls are heated during the convective tunnel preheat to just
above Tw/Taw = 1, where Taw is the adiabatic wall temperature, to Tw/Taw ≈ 1.1.
During the course of the run, the wall temperature ratio approaches Tw/Taw = 1.0.
By the time data collection begins, the temperature has stabilized to approximately
Taw ± 1 K, corresponding to approximately 0.99 6 Tw/Taw 6 1.01 while the boundary
layer remains laminar. Once the unit Reynolds number (Re′) becomes sufficiently
high, the boundary layer on the nozzle wall becomes turbulent, leading to both a
higher adiabatic wall temperature and a turbulent cone boundary layer. Figure 2
depicts a typical temperature trace at a single station on the model (in this case at
z= 381 mm, where z is the axial coordinate). Note that around t= 46 s into the run,
the temperature of the model surface rises rapidly as the free stream becomes noisy.
After this time, the wall never achieves an adiabatic condition before the end of the
run. Further discussion of this phenomenon is given in § 4.1.

While the model was mounted in the tunnel at nominally 0◦ angle of incidence,
subsequent investigation of the difference between these data and computations
revealed a slight angle to be present. The model was found to have an angle of
attack of α = 0.09 ± 0.1◦ and a yaw of β = 0 ± 0.1◦. See the appendix of Hofferth
et al. (2013) for more detail.

2.3. Measurement technique
The present study utilizes a focusing schlieren system to make high-frequency
measurements of the Mack-mode waves. Focusing schlieren systems are similar
to a traditional schlieren system with several key changes in order to achieve a
finite depth of field (Weinstein 1993; Settles 2001; Settles & Hargather 2017). The
system utilizes a Fresnel lens (per Boedeker 1959) in order to dramatically increase
the amount of light being directed through the test volume. In place of a single
knife-edge cutoff, the focusing schlieren system utilizes a matched pair of grids: a
source grid upbeam of the test volume and a cutoff grid downbeam. The two grids
are photographic negatives of one another and function as an array of cutoffs.

The most important specification for this system is the depth of field. At
approximately 25 mm (1 in.), this is small enough to isolate the density gradient
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FIGURE 3. Schematic of the focusing schlieren system.

fluctuations due to the Mack mode from outside sources of noise such as the nozzle
wall shear layers or window defects. Additional detailed specifications and sizing for
the system used presently (depicted schematically in figure 3) are given in Hofferth
et al. (2013).

Optical access was provided into the test section by a pair of high-quality optical
flats. In order to achieve a sufficiently high sampling rates, data were collected using
a fibre optic connected to a Thor Labs APD110A avalanche photodetector. The
fibre optic was positioned in the schlieren image so that the measurement location
corresponded to z = 495 mm along the cone’s axis and r ≈ 0.8δ ≈ 1.3 mm above
the surface, centred approximately at the location of maximum r.m.s. mass flux
fluctuations (Hofferth & Saric 2012). The diameter of the fibre optic in the image
plane was approximately δ/2, leading to spatial averaging. The output of photodetector
was passed through a Stanford Research Systems preamplifier. It was bandpass filtered
in the range of 1 kHz 6 f 6 1 MHz and a roll off of −6 dB decade−1. Both the raw
and amplified signals were sampled at 2 MHz, allowing frequencies up to 1 MHz to
be resolved in the data.

The spatial averaging has three primary effects on the results. First, and the
reason this diameter was selected, is that it allows more light to enter the detector.
A smaller optical fibre was found to capture insufficient light for a strong signal
using the available light sources. Second, Bountin et al. (2008) showed that nonlinear
interactivity is more intense above and below the location of maximum r.m.s.
fluctuations. The effects of this wall-normal dependence in the nonlinear interactions
could therefore not be studied with these measurements. Finally, as Re′ increases
throughout a run, the boundary layer thins but the optical fibre remains stationary.
The large measurement area therefore allows the regions with large fluctuations to
remain within the field of view of the measurement system even as its location slowly
changes.

The spatial averaging also results in a loss of signal-to-noise ratio (SNR) for waves
with a wavelength less than or equal to the width of the fibre. For example, consider
a wave propagating across the field of view with λ= δ/n where n is a positive integer.
If one integrates the light intensity of this wave in a single line across the diameter
of the fibre, the result is zero. Any slight deviation from this wavelength would result
in a non-zero integrated light intensity.
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There are several important considerations as a result of this. First, the Mack-mode
results in waves that are two-dimensional (2-D) and will have considerable signal
available to the optical fibre both above and below the diameter, and any chord
chosen parallel to the diameter will have a smaller integration length than the
diameter. Therefore, the above-hypothesized wave may have zero signal along the
diameter, but along every other chord the signal will be non-zero. Second, any slight
deviation from λ= δ/n will result in a non-zero signal even along the diameter. This
signal can be quite small if λ ≈ δ/n, but the 2-D nature of the waves again means
that there will be some chord over which the signal is quite strong. However, given
that any positive n results in some location where this phenomenon occurs, waves
with small wavelengths such as these will experience a smaller SNR than waves
whose wavelengths are large.

In the context of the present experiment, the wavelength of the fundamental is λ0≈

2δ. This means that the harmonic of number n will have a frequency of (n+ 1)f0 and
a wavelength of λn ≈ 2δ/(n + 1). The third harmonic (n = 3, corresponding to 4f0)
has wavelength λ3 ≈ δ/2, or approximately the same as the fibre diameter, and the
above discussion becomes pertinent. While 4f0 is greater than the Nyquist frequency
for higher Rez values, it is resolvable at lower Rez. Any conclusions drawn about 4f0
must therefore bear this limitation in mind.

3. Analysis techniques
3.1. Heat flux

Surface temperature was recorded at 51 locations along the cone’s axis. The thin
wall of the model allows the surface to react relatively quickly to changes in external
conditions during the course of the run. Sudden, rapid rises in temperature may
therefore be recorded (such as the one seen in figure 2). Wall temperature remains
nearly constant through most of the run near the tip and becomes increasingly
sensitive to changes in Re′ (increasing with t) toward the base, where the amplitude
of the Mack-mode waves is great enough to cause localized heating. Note that
the Mack mode may cause localized heating even in the laminar region due to
either its own large amplitudes (Kuehl 2018) or due to nonlinear wave interactions
(Sivasubramanian & Fasel 2015).

In order to better illustrate the effect of the flow on the surface temperature, the
heat flux into the surface is approximated with a simple one-dimensional model. In
what follows, the intent is to illustrate the qualitative behaviour rather than quantitative
heat flux, so several assumptions are applied with only weak justification.

The rate of temperature change in a solid element of mass m and specific heat
capacity c is given by

dQ
dt
=mc

dT
dt
. (3.1)

The thermocouples indicate that the surface temperature is nearly constant over the
surface of the model for a given Re′, so heat conduction laterally through the surface
is ignored. Additionally, owing to the nearly stagnant air inside the model compared to
the high-speed flow outside, the convective heat transfer rate from the model skin into
the interior is much smaller than that at the exterior surface. Therefore, it is assumed
that the surface heat flux due to the external flow is the only appreciable source of
heat transfer. Therefore, the surface heat flux is modelled as

qw =
1
A

dQ
dt
≈

mc
A

dT
dt
= ρch

dTw(t, z)
dt

, (3.2)
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where A is a representative area on the model, m is the mass of the volume of surface
material underneath the area A, c is the specific heat capacity of the steel, h is the
wall thickness, Q is the heat transferred into the wall and ρ is the density of the steel.
The temperature derivative is approximated with fourth-order central differences.

3.2. Spectra and bispectra
3.2.1. Definition

The power spectrum has found widespread use in myriad science and engineering
fields due to its simplicity and utility for examining the basic spectral characteristics
of time series. While power spectra are broadly useful, they have a key drawback
pertinent to the analysis of nonlinear systems: they carry with them an implicit
assumption that a given signal is a linear combination of Fourier modes. When
studying nonlinear phenomena such as a flowing fluid, this presents no problem
provided the only interest is in identifying and tracking the changes in the frequency
components of a signal. However, if one desires to detect and characterize the
nonlinear behaviour of a system, the power spectrum is inadequate. This warrants the
use of higher-order spectra such as the bispectrum. The following treatment largely
follows the work of Collis, White & Hammond (1998).

For a continuous time-varying signal x(t), the signal’s energy spectrum is defined
as

Exx( f )= X( f )X∗( f ), (3.3)

where X( f ) is the Fourier transform of x(t) and ∗ denotes a complex conjugate.
Additionally, the signal power is defined as

E[x2(t)] =
∫
∞

−∞

Sxx( f ) df , (3.4)

where E[·] is the expectation operator and Sxx( f ) is the power spectrum or power
spectral density (PSD). The PSD itself is defined as

Sxx( f )= lim
T→∞

1
T

E[X( f )X∗( f )] = lim
T→∞

1
T

E[|X( f )|2], (3.5)

where T is the signal length. Note that the argument of the expectation is the energy
spectrum. As illustrated by this definition, the PSD lacks phase information in that it
only depends on the magnitude of the Fourier transform.

In order to overcome this shortcoming, a higher-order spectrum may be defined by
instead dealing with the expected value of the cube of the signal,

E[x3(t)] =
∫
∞

−∞

∫
∞

−∞

Sxxx( f1, f2) df1 df2. (3.6)

Here, the quantity Sxxx is called the bispectrum or bispectral density and is defined as

Sxxx( f1, f2)= lim
T→∞

1
T

E[X∗( f1)X∗( f2)X( f1 + f2)]. (3.7)

This also suggests that we can define an energy bispectrum similarly to the energy
spectrum as

Exxx( f1, f2)= X∗( f1)X∗( f2)X( f1 + f2). (3.8)
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3.2.2. Interpretation of the bispectrum
The physical interpretation of the bispectrum is considered by noting that the

Fourier transform may be represented in exponential form as

X( f )= A( f ) exp( jφ). (3.9)

Using this definition with the definition of Sxxx

Exxx = Af1Af2Af1+f2 exp[ j(φf1+f2 − φf1 − φf2)]. (3.10)

This indicates that the expected value will be maximized when the phase of its
operand is constant for each realization of the time series, i.e. when

β = φf1+f2 − φf1 − φf2 = const. (3.11)

where β is called the biphase.
Consider, three waves at f1, f2 and f1 + f2 measured as part of a time signal. If

these waves are spontaneously excited independently of one another, their phases will
all be random with respect to one another and β will assume a random value for any
single realization of this signal. When averaged over many realizations, the expected
value of Exxx will be zero if β is random. If, on the other hand, the f1 + f2 wave
is generated by quadratic phase coupling (QPC) between f1 and f2, then φf1 and φf2
are still random, but their relationship with φf1+f2 , is constant, hence β is constant.
Over many realizations, the expected value of Exxx for phase-coupled waves is non-
zero. Therefore, the bispectrum indicates the presence of QPC interactions between
a group of signal components at f1, f2 and f3 = f1 + f2. One common example of
QPC is the production of a harmonic by a wave with frequency f0 coupling with
itself, f0 + f0 → 2f0. It is worth noting explicitly that the bispectrum indicates only
the presence of quadratic nonlinearity and is not effective in detecting other forms
(e.g. cubic nonlinear interactions).

3.2.3. Normalization and estimation of the bispectrum
The bispectrum is typically employed in the detection of QPC, and in many

instances, the normalization method employed by Kim & Powers (1979) is used.
This method, dubbed the bicoherence spectrum, b, is defined as follows:

b2( f1, f2)=
|Exxx( f1, f2)|

2

E[|X( f1)X( f2)|2]E[|X( f1 + f2)|2]
. (3.12)

This measure has the advantage of being bounded by 0 and 1 at each frequency pair,
and a larger value indicates a higher degree of QPC between the three waves.

Kim & Powers (1979) also suggest a method for estimating the bicoherence, which
involves breaking the signal into M windows of length T =N1t. Then

b̂( f1, f2)=

∣∣∣∣∣ 1
M

M∑
i=1

X(i)
1 X(i)

2 X∗(i)1+2

∣∣∣∣∣[
1
M

M∑
i=1

|X(i)
1 X(i)

2 |
2

]1/2 [
1
M

M∑
i=1

|X(i)
1+2|

2

]1/2 . (3.13)

This is functionally and practically similar to the common estimation method for the
PSD proposed by Welch (1967), only in this case, applied to a normalized version of
Exxx.
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FIGURE 4. Traces of estimated heat flux, qw, over time at each location along the model.
The rise in heat flux upon transition occurs simultaneously at every location on the cone,
indicating that the cause was loss of quiet flow.

4. Results
4.1. Nonlinearity and transition

Time series of the embedded thermocouples are plotted in figure 4. Note that Re′
increases with t, but t is reported directly in this instance because the surface
temperature and the flow conditions were sampled separately and the data did not
allow an exact match between a specific value of Re′ and the corresponding t.

The most notable feature in the figure is the abrupt and dramatic rise in qw at
higher Re′. This rise corresponds to the onset of turbulence. Importantly, the fact that
the transition location is not a function of Re′ and instead the entire cone becomes
turbulent all at once indicates that transition in this experiment was likely due to the
loss of quiet flow in the test section rather than due to the nonlinear breakdown of
the Mack mode. This naturally raises the question of whether the flow ever becomes
transitional or turbulent prior to the loss of quiet flow.

One additional feature of figure 4 is that there are regions of elevated heat flux
in the laminar portion of the plot toward the base of the model. Relatively early in
the run, near the base of the model, a region of increased heating develops. As Re′
increases further, this region shifts further upstream and the base region drops back
down to nearly zero. Finally, there is a second region of elevated heat flux that forms
when Re′ increases still further, which begins to move upstream as Re′ increases until
transition occurs due to loss of quiet flow.

It should be noted that dual peaks in heat transfer have been observed previously,
both in experiments (cf. Ward et al. 2012) and in DNS studies (Sivasubramanian
& Fasel 2015). According to the DNS, the first peak occurs when the primary
Mack mode reaches saturation, and the secondary peak occurs when transition
begins. Additionally, in each of those studies, the two peaks coexisted on the model
at different spatial locations. In contrast, however, the first peak in the present
data disappears right around the time when the second peak first appears. It is
not clear whether the first peak’s disappearance is a result of the limitations of
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FIGURE 5. PSDs at several values of Rez. Note the nearly constant lower limit of each
peak. Higher Rez leads to a shift to higher f , followed by spectral filling in the valleys
before the eventual breakdown.

the one-dimensional approximation technique or is a genuine feature of the flow.
However, it is clear that the Mack-mode waves are reaching sufficient amplitude to
cause localized heating in an otherwise laminar region of the flow.

The power spectral densities (PSD) of the focusing schlieren data are plotted in
figure 5 at several values of Rez. There are two very prominent peaks and, at higher
Rez, a third small peak begins to form. The peak with the lowest frequency is in the
vicinity of f0 = 250 kHz and represents the most unstable frequencies of the Mack
mode. The two higher peaks are located at approximately 2f0 and 3f0 respectively and
appear to be harmonics generated by nonlinearity in the Mack mode as its amplitude
increases (this relationship will be further developed in § 4.2). At approximately Rez=

4.8× 106, the valleys between the peaks begin to fill, rapidly leading to a turbulent
spectrum with no visible peaks by Rez > 5.0× 106. There is no evidence of power in
the vicinity of the subharmonic of the Mack mode, which may be attributable to its
non-existence, its small amplitude or limitations in detecting oblique waves with the
schlieren technique with a finite but sizable focal depth. No conclusions can therefore
be drawn about the possibility of subharmonic resonance from these spectra.

Figure 6 depicts several spectrograms of the short-time Fourier transform (STFT)
of the focusing schlieren data at several of the values of Rez bracketing the transition
point. At the lowest value, Rez = 4.6 × 106, there are clear lines spanning the
entire measurement time corresponding to f0 as well as its first harmonic. At
Rez = 4.7 × 106 m−1, the situation is largely unchanged with only very intermittent
bursts of turbulence, signified by the vertical lines of broadband energy interrupting
the otherwise unbroken f0 and 2f0 lines; Rez= 4.8× 106 exhibits much more frequent
turbulent bursts, and Rez = 4.9× 106 is fully turbulent.

4.2. Phase coupling
The PSD is plotted against the entire measured range of Rez in figure 7. The
lower bound of each peak remains relatively constant as the peaks broaden into
higher frequencies as Rez increases. At Rez ≈ 4.7 × 106, the valleys begin to fill
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FIGURE 6. Spectrograms of the short-time Fourier transform at several values of Re′.
Intermittency due to intermittent loss of quiet flow increases rapidly with Re′ near the
breakdown point.

until Rez ≈ 4.9 × 106, when the flow becomes turbulent, consistent with the STFT
spectrograms of figure 6. A slow shift of f0 from lower to higher frequencies as Rez
increases (and δ decreases) is observed in the data. This can be seen more clearly in
figure 8, which plots the frequency of the centre of each peak as a function of Rez.
These values of f0 are used to normalize the results of the bispectral analysis.

Figure 9 depicts the bicoherence, b, normalized according to the method of Kim &
Powers (1979). These plots should be read such that a peak at any frequency pair,
( f1, f2), indicates that a QPC interaction exists between modes at f1, f2 and f1 +

f2. Generally speaking, it is not possible using the bispectrum alone to distinguish
between the sum and difference interactions that may be represented by these three
waves. For example, a peak at ( f1, f2) may represent f1+ f2→ ( f1+ f2) or ( f1+ f2)−

f1→ f2 or ( f1+ f2)− f2→ f1. In most cases, these interactions can be distinguished in
the present study using contextual clues and supporting evidence. The horizontal axes
are normalized by f0 and represent the frequencies as multiples of the most unstable
Mack-mode frequency at that Rez.

Referring back to figures 7 and 8, it is clear that the peak at f ≈ 2f0 is well
established at Rez = 3.84 × 106. Unsurprisingly, the bispectrum at the same Rez
(figure 9a) exhibits a peak at (1, 1). The peak at 2f0 has both a smaller amplitude
than the one at f0 and nearly twice the bandwidth (based on the full width at
half-maximum, FWHM). It is therefore likely that this interaction represents 1+1→2,
indicating self-excitation of the Mack mode at f0 to generate a harmonic at 2f0. There
is also already a peak that exists at (2, 1), which is perhaps more surprising given
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FIGURE 7. Power spectral density as a function of Rez. Approximately horizontal stripes
representing f0 (the Mack mode), 2f0 and 3f0 are visible and appear successively in that
order. All three rapidly disappear upon transition to turbulence.
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FIGURE 8. Peak frequencies as a function of Re′.

that no peak at 3f0 is yet visible in the PSD. Given the lack of meaningful energy at
3f0 at this Rez, this peak therefore represents 2+ 1→ 3 and is evidence of an early
coupling between the Mack mode and its harmonic to generate a second harmonic.
These peaks will be discussed further in § 4.2.1.

As Rez increases, the bispectral peaks all grow larger in extent in the frequency
plane until the breakdown process begins (figure 9e), where they begin to shrink.
Their maximum amplitude, however, has some notable behaviour. Figure 10 depicts
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FIGURE 9. Plots of b, the bicoherence (Kim & Powers 1979) over the entire principle
domain. Line plots above and to the right of each contour provide the corresponding PSDs
for reference.

the maximum amplitude for each integer frequency pair and was produced by taking
the maximum value of b within f /f0 =±0.5 of each coordinate. It indicates that the
(1, 1) peak does not change amplitude by a significant amount until Rez≈ 4.49× 106,
where it begins to decrease well before the onset of transition. The (2, 1) peak does
not reach a saturation point until somewhat later, Rez ≈ 4.09× 106. It then begins to
roll off similar to the (1, 1) peak.

In addition to these harmonic-generating peaks, there are also a pair of peaks
located near (1, 0) and (2, 0) that are visible in figure 9. These peaks represent an
interaction between the respective frequencies f0 and 2f0 and frequencies near 0 and
will be discussed further in § 4.2.2. The amplitude of (1, 0), as shown in figure 10,
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FIGURE 10. Maxima of various frequency interaction pairs as a function of Rez.

remains relatively constant throughout the range of Rez prior to transition. The (2, 0)
peak, however, begins at a lower amplitude and eventually reaches grows to be nearly
identical to the (1, 0) peak at Rez ≈ 4.19× 106.

Figure 10 also depicts three peaks that were not clearly visible in figure 9. The
(2, 2) peak has a nearly constant, small amplitude. Note that approximately half-way
through the Rez sweep, 4f0 becomes greater than the Nyquist frequency, fN , and the
centre of the (2, 2) region is no longer resolvable. The maximum value of b does not
appear to be meaningfully affected by this, indicating that its small value in that region
is likely unrelated to any hypothetical interactions at (2, 2) and instead represents the
noise floor. This conclusion is further supported by the same b≈ 0.1 value prevailing
throughout the turbulent portion of the Rez sweep.

There is also a (3, 0) peak visible, and while it has a very small amplitude, it
does increase slightly throughout the course of the run (and slightly above the zero
interaction limit provided by the (2, 2) amplitude). It drops off rapidly like the rest
of the peaks during the transition process. Finally, there is also evidence of possible
weak interaction of low frequencies surrounding (0, 0).

Notably, no peaks are present in the region that would suggest a subharmonic
resonance such as the one observed by Bountin et al. (2008). In that study, the
authors suggested that the subharmonic resonance was between pairs of oblique
first-mode waves to reinforce the Mack mode. While the present data show no
sign of first-mode content in the frequency range relevant to these subharmonic
interactions (figure 5), and therefore no corresponding bispectral peak, this should
not be taken as evidence that no such wave interaction exists. The depth of field of
the focusing schlieren system is approximately 25 mm, so the signal resulting from
oblique first-mode waves will undergo substantial integration through that depth and
across several wavelengths. The result is that the SNR for these waves is likely quite
small, and they may still exist yet be indiscernible to this measurement system.

4.2.1. Harmonic generation
In order to further investigate the peaks representing harmonic generation, it helps

to magnify them to help elucidate their features. Figure 11 depicts such a magnified
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FIGURE 11. Magnified plots of the bicoherence centred at (1, 1) and depicting interactions
between the fundamental, f0, and itself.

version of the (1, 1) peak at a series of Rez values prior to transition. As the figure
illustrates, the peak has a peculiar structure even at smaller Rez. At Rez = 3.84 ×
106 (figure 11a), the main peak is elongated diagonally with a slope of 1, indicating
interactions in the family of (1±∆)+ (1±∆)→ 2± 2∆ where ∆ represents a small
frequency deviation (relative to f0). This peak shape is indicative of the broadband
self-interaction of the Mack mode leading to the spectral broadening that commonly
occurs when a harmonic is generated. This is reflected by the fact that the FWHM
bandwidth of the 2f0 peak is nearly twice that of the f0 peak.

The other notable feature is the presence of a secondary peak that is entirely
detached from the main peak at (1+∆, 1−∆). The nature of this side peak is less
obvious, but appears to be part of the sum interaction whereby energy is generated in
the harmonic by (1+∆)+ (1−∆)→ 2. One other serious possibility exists as a result
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FIGURE 12. Magnified plots of the bicoherence centred at (2,1) and depicting interactions
between the fundamental, f0, and itself.

of the nature of the pressure sweep in the present experiment. The slow increase in
Rez is accompanied by a slow increase in f0. It is possible, therefore, that this peak
represents a 2− (1−∆)→ 1+∆ difference interaction resulting from the harmonic
remaining weakly coupled with the f0 an instant in the past and contributing to the
broadening of the original Mack-mode peak. Additional experiments with constant
Rez and instrumentation capable of calculating the cross-bispectrum are required to
determine which of these scenarios is correct.

It is next useful to examine the generation of the second harmonic, 3f0. Figure 12
shows a magnified grid of the interactions in the vicinity of (2, 1). This peak has
a much lower amplitude at 3.84 × 106 compared to its eventual saturation value
(figure 12a) when compared to the behaviour of its (1, 1) counterpart, but has
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FIGURE 13. Magnified plots of the bicoherence centred at (1,0) and depicting interactions
between f0, its sidebands and low-frequency waves.

reached saturation by 4.19× 106 (figure 12b). One thing that should be immediately
noted is that, while the (2, 1) peaks are inclined much like the (1, 1) peaks,
the (2, 1) peaks feature a slope of approximately 0.5. Therefore, the interactions
are of the family (2 + 2∆, 1 + ∆). It is expected that this is similar to the
generation of the first harmonic in that it represents a sum interaction of the form
(2 + 2∆) + (1 + ∆)→ 3 + 3∆. This was not possible to confirm directly, however,
as the third harmonic peaks were not prominent enough to calculate their FWHM
bandwidth.

4.2.2. Low-frequency and mean-flow interactions
Figures 13 and 14 depict magnified plots of the (1, 0) and (2, 0) peaks, respectively.

Note that the measured signal was AC-coupled and low-pass filtered in order to
remove the DC component from the data, so the peaks do not actually touch the
abscissa. It is therefore impossible to determine with certainty whether or not the
peaks truly represent an interaction with the mean flow based on the present data.
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FIGURE 14. Magnified plots of the bicoherence centred at (2, 0) and depicting interacti-
ons between the first harmonic, 2f0, its sidebands, low-frequency waves and the mean flow.

However, in low-speed boundary layers, Craik (1971) showed that a strong nonlinear
energy transfer occurs between the mean flow and the unstable waves, ultimately
leading to the rapid growth of especially oblique pairs resulting in a spanwise
periodicity to the flow. Given the 3-D breakdown observed by Sivasubramanian &
Fasel (2015) and the theoretical analysis of Chen, Zhu & Lee (2017), it is likely that
a similar mechanism exists with the Mack mode. The peaks in figures 13 and 14
drop off uniformly for all f1 as f2 decreases toward zero in a manner consistent with
a peak dampened by signal filtering. The subsequent analysis therefore assumes that
these peaks do, in fact, reach the abscissa.

Early in the Rez sweep, the (1, 0) peak appears only in the region of (1 − ∆, ε),
as is shown in figure 13(a). Here, ε is used similarly to ∆ for a small frequency
but is given a separate designation since ε does not represent a small shift in f0 as
does ∆. Inspection of figures 5, 13 and 14 indicated that ε represents approximately
0 6 ε 6 50 kHz, which is part of the band over which both first-mode and Görtler
waves are expected to be unstable. For ε = 0, this peak represents an interaction with
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the mean flow of the class (1 − ∆, 0). Given the works of Craik (1971) and Chen
et al. (2017), it is likely this represents the interaction (1−∆)+ 0→ (1−∆). This
interaction represents an energy transfer from the mean flow into the lower sideband
of the Mack mode.

For ε>0, there are several possible interactions that may be represented. The first is
(1−∆)+ ε→ (1−∆+ ε), which indicates an interaction between the lower sideband
of the Mack mode with a low-frequency wave to contribute to spectral broadening.
This should be evident in the signal in the form of amplitude modulation of the Mack
mode. The second possibility is (1−∆+ ε)− (1−∆)→ ε, which is an interaction
between different Mack-mode sideband frequencies to create or else reinforce ε. The
final possibility is (1 − ∆ + ε) − ε→ (1 − ∆), which is an interaction between the
sidebands and ε to contribute to spectral broadening. Determining which of these is
definitively the case requires the use of the cross-bispectrum in a future experiment.

The first of these possibilities has the most support in literature, and indicates the
interaction of low-speed waves of another family with the primary Mack mode. In
particular, if the low frequency represented first-mode waves, which are known to
be oblique in supersonic flows (Mack 1984), then the mechanism would be expected
to be quite similar to the resonant triad described by Craik (1971) where a pair of
symmetric oblique wave interact with a two-dimensional Tollmien–Schlichting wave
in subsonic flows.

In order to assess this possibility that such a triad interaction may be playing a role
in the present experiments, several approximate calculations were performed. Let the
dominant frequency of the Mack mode be denoted ω0= 2πf0 as before. The spanwise
wavenumber may be calculated by α0 = ω0/c0, where c0 is the phase velocity of the
Mack mode and is assumed here to be that of the slow acoustic wave, c0/ue = 1 −
1/Me. Here, subscript e denotes quantities at the boundary layer edge.

Craik (1971) shows that interacting oblique waves must have a spanwise wavenum-
ber of α0/2, so the wavenumber of the pair of oblique waves must be

α1 =
α0

2
=

πf0

c0
. (4.1)

This may be converted by the use of the wave angle, ψ , into the corresponding
spanwise wavenumber, β, by

β1 = α1 tanψ =
πf0

c0
tanψ. (4.2)

This may, in turn, be converted into the circumferential wave number, kc (number of
peaks per model circumference), by

kc =
β1C
2π
= β1R=

πf0R
c0

tanψ, (4.3)

where C is the model circumference and R is the model radius. Here kc is a commonly
cited measure of azimuthal periodicity and may be readily compared with existing
experiments and computations.

In hypersonic boundary layers, it is well known that the most unstable first-mode
waves are oblique (Mack 1984), making them prime candidates for triad interactions
with the Mack mode. According to Mack (1984), the wave angle for the most unstable
oblique, first-mode waves is typically between 50 and 60◦. Accordingly ψ = 55◦ has
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been selected to model an unstable first-mode wave in the present analysis along with
f0 = 250 kHz as observed in the present experiments.

Using these values, kc=95. This is consistent with Sivasubramanian & Fasel (2015),
who observed kc= 100 to be the most resonant oblique mode in their DNS, and Ward
et al. (2012) observed streaks at kc = 75 in their experiments. Both of these studies
were conducted on a similar geometry at similar conditions to the present experiments.
The relatively good agreement between this simple analysis and these two studies
provides strong evidence that a resonant triad may be at work in generating the
azimuthal periodicity exhibited therein. In order to confirm this experimentally, a
cross-bispectrum is required along with data concerning wave speeds and angles.

Returning to figure 13, as Rez increases, a second peak begins to form (figure 13b)
and continues to grow up until the breakdown point. After Rez = 4.39 × 106

(figure 13c), the secondary peak continues to grow while the original peak begins to
lose amplitude. This secondary peak is centred around (1+∆, ε) and has a similar list
of possible interactions to the original peak, including (1+∆)+ ε→ 1+∆+ ε, which
corresponds to the possible resonant triad. Notably, the two peaks never coalesce until
the boundary layer transitions.

The behaviour of the peak at (2, 0), depicted in figure 14, is similar to but
distinct from that of the (1, 0) peaks. Once again, at lower Rez, the peak forms at
2−∆ (figure 14a) and a second peak forms at 2+∆ at a slightly higher Reynolds
number (figure 14b). These again have similar lists of possible interactions to the
(1, 0) peaks, including an interaction with low-frequency oblique waves. Notably,
however, at moderate Rez (beginning in figure 14c), the two peaks merge, well before
transition. Unlike the (1, 0) peak, where the Mack-mode fundamental interacts with
ε only through its sidebands, the harmonic interacts with ε directly. It is not clear
why this is the case.

In both the (1, 0) and (2, 0) cases, the peaks broaden along the abscissa (figures 13f,
14f ) and eventually diminish completely (not shown) as a result of transition.

4.3. Amplitude modulation
The existence of bispectral peaks near (1, ε) and (2, ε) suggests the presence of
amplitude modulation in these waves respectively, which has been observed in several
previous studies (e.g. Kimmel & Kendall 1991; Chokani 1999, 2005; Hofferth et al.
2013). A number of theories for the origin of this modulation of the Mack mode
have been suggested, including interactions with low-frequency waves and sideband
interactions. In particular, Hofferth et al. (2013) suggested that intermittent turbulence
in the free stream may play a role in the Mack-mode amplitude modulation.

To investigate this further, the data at each Rez were filtered using a digital, 8-
pole, band-pass Butterworth filter with zero phase distortion. The cutoff frequencies
were chosen as f0 ± 20 kHz. Several time traces of this data are plotted in figure 15.
The signals show a clear amplitude modulation with an overall decrease in amplitude
during (figure 15c) and after transition (figure 15d). A Hilbert transform was then
performed on the band-passed signals in order to demodulate them. The envelope
curves are plotted in figure 15 as bold lines.

The power spectra of the envelope signals were then calculated, a sampling
of which are plotted in figure 16. The spectra show that the envelope wave is
excited broadly from DC out to approximately 40 kHz, where the roll off reaches
approximately two decades. The spectrum broadly rises with Rez until it reaches
a maximum at Rez = 4.6 × 106, at which point it begins attenuating through the
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FIGURE 15. Mack-mode wavepackets calculated by band-pass filtering the schlieren data
at ±20 kHz surrounding the fundamental as determined by the PSD.
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FIGURE 16. PSDs of the envelopes of the band-passed signals. Energy is broadband at
low frequencies, even prior to the onset of intermittency. A small bump is visible in the
peaks at the same Rez where intermittency increases.

transition process. This is in agreement with the qualitative analysis of figure 15.
Also notable is the slight bump that appears in the 0–5 kHz range in the spectra that
becomes dramatically larger just before breakdown. The nature of this peak shall be
obvious shortly.
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FIGURE 17. Traces of STFT at f = 1.5f0 as a function of Rez. Note the turbulent bursts
increasing in frequency as Rez approaches transition.

Next, it is instructive to compare these spectra to the intermittent free-stream
turbulent bursts. The best way to do this is to produce a time signal representing the
bursts as a function of time and calculate their spectra. This was done be taking a
horizontal trace through the spectrograms in figure 7 at f = 1.5f0 to produce a time
series of the PSD at that frequency. Since 1.5f0 is directly between the Mack-mode
peak and its harmonic, it remains constant and low level except when there is a
turbulent burst. Several of these traces are plotted in figure 17. Note the dramatic
increase in intermittency just prior to transition (figure 17c) and the broadband signal
in the turbulent region (figure 17d).

Each of these intermittency signals was then passed through a high-pass filter to
make it more suitable for use with a fast Fourier transform. The PSDs were then
calculated, several of which are plotted in figure 18. The plot has been truncated
at 10 kHz due to the rapid roll off after this point. It is obvious that there are no
dominant frequencies associated with the tunnel intermittency except near the Rez =

4.8 × 106 point. This exactly corresponds with figure 17(c) where the intermittency
level dramatically increases, and the intermittent power is contained entirely in the
range of 0–2 kHz. This, in turn, matches well with the peak that is present in the PSD
of the envelope curve at the same Rez in figure 16. Therefore, it appears unlikely that
the tunnel intermittency plays a major role in the amplitude modulation of the Mack
mode in such experiments except near the point of loss of quiet flow. At this point,
it appears only in superposition with existing amplitude modulation.

Since tunnel intermittency does not adequately explain the amplitude modulation,
the source of this behaviour must be related to the bispectral peaks at (n, ε), where
n is an integer representing the Mack mode or its harmonics. This agrees with the
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FIGURE 18. Power spectral density plots of intermittent turbulent bursts at f = 1.5f0 as a
function of Rez.

results of Chokani (2005), who performed a complex demodulation and reached the
same conclusion.

5. Conclusion

High-bandwidth focusing schlieren data originally collected by Hofferth et al.
(2013) in a low-disturbance, hypersonic wind tunnel were reanalysed. Multiple
nonlinear interactions of the Mack mode were detected and examined through the use
of the bicoherence spectrum. Amplitude modulation was examined through the use
of the Hilbert transform and its relationship to tunnel intermittency was discussed.
Transition to turbulence occurred only due to the loss of quiet flow.

Evidence of nonlinearity is present even at the lowest Rez measured in the study in
the form of significant harmonics in the power spectrum and a large corresponding
peak in the bispectrum. A second harmonic is also observed in the spectra and
bispectra at moderate Rez. The bispectrum indicates that there is considerable quadratic
nonlinear interaction in the sidebands, contributing ultimately to the wider FWHM
bandwidth of higher harmonics relative to lower harmonics and the fundamental.
A secondary peak near (1, 1) also contributes to the spectral broadening of the Mack
mode itself. Interactions leading to higher harmonics are also present, though without
the presence of a secondary peak.

There are additional indications of interactions between the Mack mode, low-
frequency waves, and potentially the mean flow. Pairs of more stable oblique waves
are known to interact with dominant two-dimensional waves in low-speed flows and
there exists a strong energy-transfer mechanism between the mean flow and the
resonant triad in such cases (Craik 1971). A series of simple calculations show that it
is plausible that such an interaction is occurring in the boundary layer of the present
study, though further experiments are required in order to confirm this.

The low-frequency interactions are visible in the time series representing the Mack
mode in the form of a low-frequency amplitude modulation. The envelope wave of
this modulated time signal contains a broad range of frequencies that do not appear
to coincide with the frequencies dominating tunnel intermittency until just before
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loss of quiet flow. At that point, the modulation spectrum only responds in a narrow
band coinciding with the intermittency spectrum in a manner that suggests the two
phenomena are independent.

Future potential studies in this area could aim to address the ambiguity of sum
and difference interaction relationships via multi-point measurements and use of
the cross-spectrum. Sufficient improvements to the measurement depth of field would
permit wave speeds and angles to be determined, and enable substantiation of potential
resonant triads similar to those of Craik (1971), including those involving the Mack
mode with itself or with first-mode waves. Grouped surface pressure sensors would
also allow a more complete characterization of the wave speeds and angles.
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