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In the Nastrom–Gage spectrum of atmospheric turbulence, we observe a k−3 energy
spectrum that transitions into a k−5/3 spectrum, with increasing wavenumber k.
The transition occurs near a transition wavenumber kt, located near the Rossby
deformation wavenumber kR. The Tung–Orlando theory interprets this spectrum as
a double downscale cascade of potential enstrophy and energy, from large scales to
small scales, in which the downscale potential enstrophy cascade coexists with the
downscale energy cascade over the same length scale range. We show that, in a
temperature-forced two-layer quasi-geostrophic model, the rates with which potential
enstrophy and energy are injected place the transition wavenumber kt near kR. We also
show that, if the potential energy dominates the kinetic energy in the forcing range,
then the Ekman term suppresses the upscale cascading potential enstrophy more than
it suppresses the upscale cascading energy, a behaviour contrary to what occurs in
two-dimensional turbulence. As a result, the ratio η/ε of injected potential enstrophy
over injected energy, in the downscale direction, decreases, thereby tending to decrease
the transition wavenumber kt further. Using a random Gaussian forcing model, we
reach the same conclusion, under the modelling assumption that the asymmetric
Ekman term predominantly suppresses the bottom layer forcing, thereby disregarding a
possible entanglement between the Ekman term and the nonlinear interlayer interaction.
Based on these results, we argue that the Tung–Orlando theory can account for the
approximate coincidence between kt and kR. We also identify certain open questions
that require further investigation via numerical simulations.

Key words: atmospheric flows, quasi-geostrophic flows

1. Introduction
Quasi-geostrophic models capture the dynamics of the atmosphere at planetary

scales greater than 100 km, in order of magnitude. They are based on the
assumptions of rapid rotation and small vertical thickness, both of which become
pronounced features of the dynamics of atmospheric motion at increasingly larger
length scales. The simplest quasi-geostrophic model is the two-layer model, in
which we have two layers of two-dimensional vorticity–streamfunction equations,
coupled by a temperature equation, situated in a mid-layer between the vorticity
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layers. Obviously, the two-layer model can be generalized by adding more layers of
vorticity–streamfunction equations interlaced with temperature equation mid-layers. In
the limit of an infinite number of layers, we converge to the full quasi-geostrophic
model.

Until recently, it was assumed that quasi-geostrophic turbulence has the same
dynamical behaviour as two-dimensional turbulence, where, according to the theory of
Kraichnan (1967), Leith (1968) and Batchelor (1969), there is a downscale enstrophy
cascade and an upscale inverse energy cascade. This assumption follows from Charney
(1971), who claimed that there is an ‘isomorphism’ between quasi-geostrophic
turbulence and two-dimensional turbulence. More recently, key differences between
these two models were noted by Tung & Welch (2001), Tung & Orlando (2003b)
and Gkioulekas & Tung (2007a). The most remarkable difference was highlighted
in the numerical simulation of the two-layer quasi-geostrophic model by Tung &
Orlando (2003a), which produced an energy spectrum that scales as k−3 initially,
and, with increasing wavenumber k, transitions to k−5/3 scaling. This is consistent
with the observed energy spectrum of the atmosphere, as was first measured by
Nastrom & Gage (1984) and Gage & Nastrom (1986), but it is inconsistent with our
conventional understanding of the dynamical behaviour of two-dimensional turbulence,
as described by the theory of Kraichnan (1967), Leith (1968) and Batchelor (1969).
Tung & Orlando (2003a) showed that their simulation produced a downscale enstrophy
cascade that coexisted with a downscale energy cascade, with both energy and
enstrophy injected by baroclinic instability at small wavenumbers, and dissipated at
large wavenumbers. If η is the enstrophy flux and ε is the energy flux associated
with these coexisting cascades, then, by dimensional analysis, Tung & Orlando (2003a)
argue that the transition from k−3 scaling to k−5/3 scaling should occur at a transition
wavenumber kt ∼ (η/ε)1/2, and it does.

This result bolstered the Tung–Orlando theory, which interpreted the Nastrom–Gage
spectrum as a coexisting downscale potential enstrophy cascade and downscale energy
cascade, both spanning a comparable range of length scales. It should be noted
that it was not the intention of Tung & Orlando (2003a) to claim that the entire
Nastrom–Gage spectrum can be explained via the two-layer quasi-geostrophic model.
The point of the simulation was to demonstrate that it is possible to have coexisting
downscale potential enstrophy and energy cascades, even in models as close to two-
dimensional turbulence as the two-layer quasi-geostrophic model. This possibility is
bound to become even more favourable under models that are further away from the
two-dimensional approximation, such as the multi-layer quasi-geostrophic model or the
three-dimensional stratified turbulence model. Gravity waves can also play a helpful
role in facilitating coexisting cascades, as discussed further in § 5.

In a subsequent paper, Smith (2004) criticized Tung & Orlando (2003a) on the
following grounds. First, using his ‘HVK scale’ estimates, he claimed that the
Tung–Orlando numerical simulation is not well resolved and that therefore the k−5/3

part of the Tung–Orlando energy spectrum is a bottleneck instead of being indicative
of a real cascade. In connection with this claim, Smith (2004) criticized the use
of a resolution-dependent hyperdiffusion coefficient by Tung & Orlando (2003a).
Second, he claimed that, in two-dimensional turbulence, it is not possible for the
downscale energy flux to be large enough to create a gap between the transition
wavenumber kt and the dissipation wavenumber kd. In response, Tung (2004) noted
the following. (a) Since the diagnostics in the Tung–Orlando simulation indicate a
downscale enstrophy flux η and a downscale energy flux ε that have magnitudes
consistent with the location of the transition wavenumber kt in the simulation’s energy
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spectrum, it is very unlikely that the transition is caused by an energy bottleneck,
as argued by Smith (2004). (b) The use of a resolution-dependent hyperviscosity
coefficient is intended to model the anomalous energy dissipation sink at small scales,
originating from three-dimensional dynamics, by controlling the downscale energy
dissipation rate. (c) Smith’s ‘HVK scale’ argument, which was used to argue that the
Tung–Orlando simulation is not well resolved, has various flaws, discussed in detail
by Tung (2004), that render it inconclusive. Nevertheless, Smith’s claim, that kt will
coincide with the dissipation scale kd, can be shown to hold, for the case of two-
dimensional turbulence, via a corrected proof given by Gkioulekas & Tung (2005b).
However, as was shown by Gkioulekas & Tung (2007a), this result is not necessarily
generalizable to quasi-geostrophic models. Thus, Smith (2004) did not establish the
claim that ‘an inertial range transition is not possible in quasi-geostrophic models’, and
the theoretical problem remains open. (d) Since the diagnostics of the Tung–Orlando
simulation indicate that the downscale energy dissipation rate balances the rate with
which energy is sent downscale from the forcing range, the simulation is sufficiently
well resolved to prevent a bottleneck-type energy pile-up at small scales, over a time
scale longer than the runtime of the simulation.

Be that as it may, the underlying theoretical question, implied by Smith (2004),
remained open: How can the downscale energy flux ε be large enough to yield a
gap between kt and kd, when that is not possible in two-dimensional turbulence? An
even deeper question also demanded further understanding: How is it possible for
two downscale cascades to coexist? These lingering questions generated scepticism
towards the Tung–Orlando theory, which is why we were prompted to investigate them
at greater depth. In Gkioulekas & Tung (2005a,b), we augmented the Tung–Orlando
theory by noting that, even in two-dimensional turbulence, there is a small amount of
energy cascading from small to large wavenumbers, as long as the viscosity coefficient
of the small-scale dissipation term is non-zero. We have proposed that this small
‘energy leak’ should be viewed as a downscale energy cascade that coexists with the
dominant downscale enstrophy cascade. To support this theory, in Gkioulekas & Tung
(2005a,b) we noted that the triad interactions responsible for the enstrophy cascade
are independent of those responsible for the downscale energy cascade. This is, in
fact, an immediate but unstated consequence of the original argument by Kraichnan
(1967), as noted in Gkioulekas & Tung (2005a, § 3.2). We have also theorized that
the two cascades can be viewed as two independent homogeneous solutions of the
governing statistical theory that can be linearly superposed on each other. Davidson
(2008) confirmed the validity of the linear superposition principle for the third-order
structure functions, thereby adding further detail to a corresponding proof sketch given
in Gkioulekas & Tung (2005a, § 3.1). Some of the details of my statistical theory
of two-dimensional turbulence were given in Gkioulekas (2008, 2010), and further
development of this theory is currently in progress.

To elaborate further, our claim is that the energy spectrum of the downscale cascade
is given by the linear combination of a dominant k−3 term, arising from the dominant
downscale enstrophy cascade, and a subdominant k−5/3 term, arising from the hidden
downscale energy cascade, which allows, in principle, a transition from the −3 slope
to the −5/3 slope. In linearly dissipated two-dimensional turbulence, this transition
is not expected to be realized, because an upper bound on the energy flux forces
the transition scale kt to be greater than the dissipation scale kd of the enstrophy
cascade. If ΠE(k) is the energy flux from the (0, k) wavenumber interval to the
(k,+∞) interval and ΠG(k) is the enstrophy flux from (0, k) to (k,+∞), then this
flux inequality reads k2ΠE(k) − ΠG(k) < 0, for all wavenumbers k not in the forcing
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range. The origin of this inequality is the relationship DE(k) = k−2DG(k) between the
energy dissipation spectrum DE(k) and the enstrophy dissipation spectrum DG(k). Thus,
with increasing wavenumber k, the proportion of the energy dissipation rate relative
to the enstrophy dissipation rate vanishes rapidly with k−2, and this rapid decrease is
the reason why the downscale energy cascade coexisting with the downscale enstrophy
cascade cannot be seen in the energy spectrum. However, the subtle point that deserves
to be stressed here is that the proof of the inequality involves both the linearity of the
dissipation terms and the twin conservation laws (of enstrophy and energy), and is
not inherent solely in the twin conservation laws. With a nonlinear dissipation term,
which could result from neglected three-dimensional effects, the flux inequality could
be violated within the inertial range. Since the transition wavenumber kt is expected
to be approximately equal to the wavenumber where the flux inequality becomes an
equation, an inertial range violation of the flux inequality would give kt� kd.

As was shown by Gkioulekas & Tung (2007a), in the quasi-geostrophic two-layer
model, the relationship between DE(k) and DG(k) becomes quite complicated, so it
may be possible to violate the flux inequality, thus resulting in a significant separation
between kt and kd. If that occurs, we can expect k−5/3 scaling in the gap created
between kt and kd. In Gkioulekas & Tung (2007a), we have identified asymmetric
dissipation as the only mechanism that can break the flux inequality. By ‘asymmetric
dissipation’ we mean that the dissipation operators acting on the top and bottom
velocity equations are different: indeed, in the two-layer quasi-geostrophic model, there
is an Ekman dissipation term acting at large scales at the bottom layer but not at
the top layer. Since the small-scale hyperdiffusion is not physically inherent in the
quasi-geostrophic dynamics, there is no physical reason to prefer symmetric over
asymmetric hyperdiffusion either. Unfortunately, there are still many open questions
concerning the theory of the flux inequality. Consequently, the numerical results of
Tung & Orlando (2003a) notwithstanding, there is still some uncertainty on whether
the two-layer model can have a robust energy dissipation sink that can break the flux
inequality in the inertial range.

It should be noted that, when the same dissipation operator is used on both layers,
it can be proved that the flux inequality is satisfied for all wavenumbers not in the
forcing range. For that case, the prediction of Charney (1971), that quasi-geostrophic
turbulence will be isomorphic to two-dimensional turbulence, is expected to hold.
This was confirmed in a numerical simulation by Vallgren & Lindborg (2010), where
the dissipation operator and the forcing term are both independent of the vertical
coordinate.

Recently, Tulloch & Smith (2009) proposed a more sophisticated two-layer two-
mode quasi-geostrophic model that has succeeded in reproducing the Nastrom–Gage
spectrum. More importantly, using their quasi-geostrophic (QG) model, Tulloch &
Smith (2009) confirmed that it is possible for a downscale potential enstrophy cascade
to coexist with a downscale energy cascade, thereby vindicating the fundamental
premise of the Tung–Orlando theory. A further advantage of the Tulloch–Smith QG
model is that it seems to have resolved the small-scale energy dissipation sink problem
implied by the HVK argument of Smith (2004). Since the Tulloch–Smith QG model
is still a severely restricted approximation of the full quasi-geostrophic model, it is
reasonable to expect that the small-scale energy dissipation sink problem will remain
resolved under the full quasi-geostrophic model. This raises many interesting questions
that are, unfortunately, beyond the scope of this paper, but will be investigated in
future work.
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The goal of the present paper is to add one more piece to the overall puzzle
by looking at the forcing range instead of the dissipation range. We will thus
consider the effect of symmetric versus asymmetric forcing on the dynamics of
the two-layer quasi-geostrophic model. We will first show that, when the model is
forced exclusively through the temperature equation, this results in antisymmetric
forcing on the potential vorticity equations for both layers. Consequently, the energy
forcing spectrum FE(k) and the potential enstrophy forcing spectrum FG(k) are
related as FG(k) = (k2 + k2

R)FE(k), with kR the Rossby wavenumber. For forcing-range
wavenumbers k ∼ kf � kR, we have approximately FG(k) ∼ k2

RFE(k). It follows that, if
we neglect Ekman dissipation, then the ratio of the enstrophy flux η over the energy
flux ε injection to the downscale cascades will satisfy (η/ε) ∼ k2

R, and therefore the
transition wavenumber kt has to be in the vicinity of the Rossby wavenumber kR.
As it turns out, this is indeed the approximate location of the transition wavenumber
kt in the actual Nastrom–Gage spectrum as well as in the Tung & Orlando (2003a)
simulation.

We will show that asymmetric Ekman dissipation tends to decrease the ratio
kt ∼ (η/ε)1/2 as long as the potential energy spectrum dominates the kinetic energy
spectrum in the forcing range. This peculiar behaviour results from the asymmetry
of the effective forcing between the two layers, caused by the introduction of the
Ekman term into the bottom layer. This claim is further supported by our consideration
of the random Gaussian forcing model, in which the bottom-layer forcing is directly
suppressed by a controlled scalar factor. Unfortunately, there are a number of open
questions and outstanding issues concerning the distribution of energy between
potential energy and kinetic energy. Furthermore, the modelling assumption that the
Ekman term suppresses forcing only at the lower layer is equivalent to ignoring the
unknown effect of the entanglement of the Ekman term with the interlayer interaction,
and that is the underlying problem.

It should be noted that, in the context of the two-layer model, unless the dissipation
terms at small scales can dissipate the energy and potential enstrophy at the same
rate with which they are injected to the downscale range, the downscale energy and
potential enstrophy cascades will simply fail to develop. It is not yet obvious, in
terms of theory, whether the two-layer quasi-geostrophic model can dissipate this
much energy, a problem previously discussed by Gkioulekas & Tung (2007a). On the
other hand, in the real atmosphere, we note that, at larger wavenumbers, the dynamics
transitions from quasi-geostrophic to stratified three-dimensional turbulence. According
to Lindborg (2007), the transition to stratified turbulence occurs at a scale of about
100 km. Since stratified turbulence, like three-dimensional Navier–Stokes turbulence,
does have an anomalous energy dissipation sink, it follows that any amount of
energy injected at large scales can and will be dissipated. Furthermore, since potential
enstrophy continues to be conserved under stratified dynamics, the two cascades can
continue to coexist for scales less than 100 km. On the other hand, the two-layer
model is indeed realistic at the small synoptic-scale wavenumbers, where the forcing
takes place, so using it to explain the rates of energy and potential enstrophy injection
at the forcing range is a fair argument.

As we have explained above, in the Tung–Orlando theory, the location of the
transition wavenumber kt is directly determined by the relative magnitude of the
downscale potential enstrophy flux η over the downscale energy flux ε. A different
mechanism underlies the surface quasi-geostrophic (SQG) model that was recently
proposed by Tulloch & Smith (2006). In their model, there is only one cascade,
whose scaling exponent changes with wavenumber k, because the self-similar scaling
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of the model’s nonlinear term changes with increasing k. As a result, in the
Tulloch–Smith SQG model, the transition wavenumber kt is strictly constrained to
coincide with kR, because the transition in the scaling of the nonlinear term of the
model occurs at kR. This dynamics of the Tulloch–Smith SQG model is analogous to
that of the Lagrangian-averaged Navier–Stokes alpha model (LANS α-model) of three-
dimensional Navier–Stokes turbulence (Holm et al. 2005), in which, once again, there
is a single downscale energy cascade with k−5/3 scaling in the energy spectrum, with
a transition to a steeper k−3 slope at higher wavenumbers k, because of the introduced
distortion of the Navier–Stokes nonlinearity. In both cases, we are essentially dealing
with a single homogeneous solution, associated with a single flux coefficient, which, to
first approximation, we can consider bifractal.

Under the quasi-geostrophic models used by Tung & Orlando (2003a) and
Tulloch & Smith (2009), on the other hand, we are dealing with two independent
homogeneous solutions each of which, to first approximation, can be considered
monofractal. Because the two solutions are independent of each other, as far as the
nonlinearity is concerned, it is possible for the transition wavenumber kt, in principle,
to have any arbitrary value, since its location is determined solely by the relative
magnitude of the two homogeneous solutions against each other. From the viewpoint
of this paper, the constraint kt ∼ kR is a weak indirect constraint that originates from
the combined effect of antisymmetric forcing and the large-scale Ekman dissipation
term on the energy and potential enstrophy injection rates. This paper argues that the
two-layer quasi-geostrophic model is consistent with placing kt near kR.

The paper is organized as follows. In § 2 we review the two-layer quasi-geostrophic
model and introduce various preliminaries. In § 3 we derive the potential enstrophy
and energy forcing spectra for the case of a generalized multi-layer quasi-geostrophic
model, and discuss the random Gaussian forcing model. These results are applied to
the two-layer quasi-geostrophic model itself in § 4. Conclusions and discussion are
given in § 5, and technical matters are discussed in the appendices.

2. The two-layer model equations
The two-layer model is defined by two vorticity–streamfunction equations and a

temperature equation, which read

∂ζ1

∂t
+ J(ψ1, ζ1 + f )=−2f

h
ω + d1, (2.1)

∂ζ2

∂t
+ J(ψ2, ζ2 + f )=+2f

h
ω + d2 + e2, (2.2)

∂T

∂t
+ J

(
ψ1 + ψ2

2
,T

)
=−N2

f
ω + Q0. (2.3)

We see that the temperature T is advected by the average streamfunction (ψ1 + ψ2)/2.
Here ψ1 and ψ2 are the streamfunctions of the top and bottom layers; ω is the vertical
velocity; ζ1 = ∇2ψ1 and ζ2 = ∇2ψ2 are the relative vorticities; and d1, d2 and e2 are the
dissipation terms given by

d1 = (−1)κ+1 ν∇2κζ1 = (−1)κ+1 ν∇2κ+2ψ1, (2.4)

d2 = (−1)κ+1 ν∇2κζ2 = (−1)κ+1 ν∇2κ+2ψ2, (2.5)

e2 =−νEζ2 =−νE∇2ψ2. (2.6)
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The terms d1 and d2 represent momentum dissipation of relative vorticity and e2

represents Ekman damping from the lower boundary layer. Furthermore, h is the
height between the top and bottom rigid horizontal boundaries (the two vorticity layers
and the temperature mid-layer divide the space between the horizontal boundaries into
four equal intervals, with the temperature mid-layer situated between the two vorticity
layers), f is the Coriolis term, N is the Brunt–Väisälä frequency, and Q is the thermal
forcing term. The temperature T is related with the streamfunctions ψ1 and ψ2 via the
geostrophic condition T = (2/h)(ψ1 − ψ2). Finally, J(a, b) is defined as the Jacobian
between the fields a and b, and it reads:

J(a, b)= ∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
. (2.7)

Solving for the vertical velocity ω in the temperature equation, after substituting the
geostrophic condition, leads to the definition of the potential vorticities q1 and q2 given
by

q1 =∇2ψ1 + f + k2
R

2
(ψ2 − ψ1), (2.8)

q2 =∇2ψ2 + f − k2
R

2
(ψ2 − ψ1), (2.9)

and their corresponding governing equations, which read

∂q1

∂t
+ J(ψ1, q1)= f1 + d1, (2.10)

∂q2

∂t
+ J(ψ2, q2)= f2 + d2 + e2. (2.11)

Here, kR is the Rossby deformation wavenumber defined as kR ≡ 2
√

2 f /(hN),
f1 = −(1/4)k2

RhQ0 and f2 = (1/4)k2
RhQ0. The derivation is shown in appendix A.

Although the argument is well-known folklore, we want to note mainly that: (a) the
dissipation terms have the same form in the relative vorticity equations as they do in
the potential vorticity equations; and (b) the thermal forcing term Q appears on both
top and bottom potential vorticity equations with opposite signs. Consequently, both
layers are forced antisymmetrically by the same forcing term, except with opposite
signs.

It is also well known that the two-layer model, in the absence of forcing and
dissipation, conserves the total energy E given by

E(t)=−
∫

R2
[ψ1(x, t)q1(x, t)+ ψ2(x, t)q2(x, t)] dx, (2.12)

and the potential enstrophies G1 and G2 for each layer given by

G1(t)=
∫

R2
q2

1(x, t) dx, (2.13)

G2(t)=
∫

R2
q2

2(x, t) dx. (2.14)

To properly define all the relevant spectra associated with these conserved quantities,
consider first the Fourier expansions of the streamfunction fields ψα(x, t) and potential
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vorticity fields qα(x, t) (α = 1, 2):

ψα(x, t)=
∫

R2
ψ̂α(k, t) exp(ik · x) dk, (2.15)

qα(x, t)=
∫

R2
q̂α(k, t) exp(ik · x) dk. (2.16)

In Fourier space, the potential vorticity fields qα and streamfunction fields ψα are
related by

q̂α(k, t)=
∑
β

Lαβ(‖k‖)ψ̂α(k, t). (2.17)

Here, the sum runs over all layers, in this case β = 1, 2, and Lαβ(k) is a wavenumber
matrix defined as

Lαβ(k)=
[
−k2 − k2

R/2 +k2
R/2

+k2
R/2 −k2 − k2

R/2

]
. (2.18)

In real space, the same relation between the potential vorticity qα and the
streamfunction ψα can be written in terms of a corresponding differential operator
Lαβ , as follows:

qα(x, t)=
∑
β

Lαβψα(x, t). (2.19)

It is easy to see that the matrix Lαβ(k) is non-singular, for k > 0, and can therefore be
inverted. The inverse matrix L−1

αβ (k) defines a corresponding inverse integrodifferential
operator L −1

αβ . Note that in (2.17) we have neglected the β contribution to the
Coriolis term f , since, for the case of our planet, the impact of the β effect on
the Nastrom–Gage energy spectrum is negligible. We have also neglected the latitude
dependence of f , on the premise that we are interested in the ensemble average of the
energy spectrum restricted to a thin strip of the Earth’s surface that is oriented parallel
to the equator. These approximations cause the Coriolis term f to drop out of the
nonlinear Jacobian terms altogether.

Let us now introduce the following notation. Consider any arbitrary abstract scalar
fields a(x) and b(x), which can be snapshots in time of either the streamfunction
fields ψα(x, t) or the potential vorticity fields qα(x, t) for a given level α. Let a<k(x)
and b<k(x) be the fields obtained from a(x) and b(x) by setting to zero, in Fourier
space, the components corresponding to wavenumbers whose norm is greater than k.
Formally, a<k(x) is defined as

a<k(x)=
∫

R2
dx0

∫
R2

dk0
H(k − ‖k0‖)

4π2 exp(ik0 · (x− x0))a(x0) (2.20)

≡
∫

R2
dx0 P(k | x− x0)a(x0), (2.21)

with H(x) the Heaviside function, defined as the integral of a delta function,

H(x)=
∫ x

0
δ(τ ) dτ =


1, if x ∈ (0,+∞),
1/2, if x= 0,
0, if x ∈ (−∞, 0).

(2.22)
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Here P(k | x − x0) is the corresponding low-pass filter kernel. Obviously, b<k(x) is
defined similarly. We now use the two filtered fields a<k(x) and b<k(x) to define the
bracket 〈a, b〉k as

〈a, b〉k =
d
dk

∫
R2

dx 〈a<k(x)b<k(x)〉 (2.23)

= 1
2

∫
A∈SO(2)

dΩ(A) 〈[â∗(kAe)b̂(kAe)+ â(kAe)b̂∗(kAe)]〉. (2.24)

Here, â(k) and b̂(k) are the Fourier transforms of a(x) and b(x), SO(2) is the set
of all non-reflecting rotation matrices in two dimensions, dΩ(A) is the measure of
a spherical integral, e is a two-dimensional unit vector, and 〈·〉 represents taking an
ensemble average. The star superscript represents taking the complex conjugate. Also
note that (2.23) is the definition of the bracket, and (2.24) is a consequence of the
definition.

It is easy to see that the bracket is both symmetric and bilinear, in that it satisfies

〈a, b〉k = 〈b, a〉k, (2.25)
〈a, b+ c〉k = 〈a, b〉k + 〈a, c〉k, (2.26)
〈a+ b, c〉k = 〈a, c〉k + 〈b, c〉k. (2.27)

Moreover, every (αβ)-component of the operator Lαβ is self-adjoint with respect to
the bracket, which gives

〈Lαβa, b〉k = 〈a,Lαβb〉k = Lαβ(k)〈a, b〉k, (2.28)

and the same property is also satisfied by every component of the inverse operator
L −1
αβ , that is,

〈L −1
αβ a, b〉k = 〈a,L −1

αβ b〉k = L−1
αβ (k)〈a, b〉k. (2.29)

Using the bracket, we now define the energy spectrum E(k)=−〈ψ1, q1〉k − 〈ψ2, q2〉k
and the potential enstrophy spectra G1(k) = 〈q1, q1〉k and G2(k) = 〈q2, q2〉k for each
layer. We also define G(k) = G1(k) + G2(k) as the total potential enstrophy spectrum.
This method of defining spectra was previously used by Frisch (1995), and it is
equivalent to the standard definition of spectra in terms of narrow spherical shells
in Fourier space (see (2.24)). It is also superior in that one can generalize the
definition of spectra to non-homogeneous flows by removing the spatial integral in
(2.23), thereby obtaining location-dependent spectra.

It is useful to be able to rewrite the above spectra in terms of a streamfunction
spectrum Cαβ(k)= 〈ψα, ψβ〉k. From the bilinear property of the bracket, it follows that
the energy spectrum E(k) reads:

E(k)=−
∑
α

〈ψα, qα〉k =−
∑
α

〈
ψα,

∑
β

Lαβψβ

〉
k

=−
∑
αβ

Lαβ(k)〈ψα, ψβ〉k (2.30)

=−
∑
αβ

Lαβ(k)Cαβ(k). (2.31)
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Likewise, the potential enstrophy spectrum G(k) reads:

G(k)=
∑
α

〈qα, qα〉k =
∑
α

〈∑
β

Lαβψβ,
∑
γ

Lαγψγ

〉
k

(2.32)

=
∑
αβ

Lαβ(k)

〈
ψβ,

∑
γ

Lαγψγ

〉
k

=
∑
αβγ

Lαβ(k)Lαγ (k)〈ψβ, ψγ 〉k (2.33)

=
∑
αβγ

Lαβ(k)Lαγ (k)Cβγ (k). (2.34)

Stated in this way, these expressions easily generalize to multiple-layer quasi-
geostrophic models simply by using a different matrix Lαβ(k) with more rows and
columns.

3. Forcing spectrum in general
Now let us turn our attention to the forcing spectra of the two-layer model. We

begin by writing the potential vorticity equations in the following more abstract form:

∂qα
∂t
+ J(ψα, qα)=

∑
β

Dαβψβ + fα. (3.1)

Here, Dαβ is a matrix operator that accounts for all the dissipation terms and fα is
the forcing term acting on the α layer. Using this abstract formulation will shorten the
calculations below considerably. For the case of thermal forcing, the forcing terms take
the form f1 = ϕ and f2 =−ϕ.

Multiplying both sides by the inverse operator L −1
αβ gives the following governing

equation for the streamfunctions:

∂ψα

∂t
+
∑
β

L −1
αβ J(ψβ, qβ)=

∑
βγ

L −1
αβ Dβγψγ +

∑
β

L −1
αβ fβ . (3.2)

Now, let us define a streamfunction-forcing spectrum φαβ(k)= 〈fα, ψβ〉k and recall our
definition of the streamfunction spectrum, Cαβ(k) = 〈ψα, ψβ〉k. Differentiating Cαβ(k)
with respect to time gives

∂Cαβ(k)

∂t
=
〈
∂ψα

∂t
, ψβ

〉
k

+
〈
ψα,

∂ψβ

∂t

〉
k

, (3.3)

and we may write a governing equation for Cαβ(k) in the form

∂Cαβ(k)

∂t
+ Tαβ(k)= Dαβ(k)+ Fαβ(k). (3.4)

Here, Tαβ(k) is the contribution from the nonlinear Jacobian term, Dαβ(k) is the
contribution from the dissipation term, and Fαβ(k) is the contribution from the forcing
term. Our interest here is in the forcing contribution Fαβ(k). It is easy to see that
Fαβ(k) can be written in terms of the streamfunction-forcing spectrum φαβ(k) as
follows:

Fαβ(k)=
〈∑

γ

L −1
αγ fγ , ψβ

〉
k

+
〈
ψα,

∑
γ

L −1
βγ fγ

〉
k

(3.5)
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=
∑
γ

L−1
αγ (k)〈fγ , ψβ〉k +

∑
γ

L−1
βγ (k)〈ψα, f γ 〉k (3.6)

=
∑
γ

[L−1
αγ (k)φγβ(k)+ L−1

βγ (k)φγα(k)]. (3.7)

Here, we have replaced the time derivatives in (3.3) with the forcing term from (3.2).
We now note that governing equations for the energy spectrum E(k) and the potential
enstrophy spectrum G(k) can be obtained by applying the operators indicated by (2.31)
and (2.34) to the governing equation for the streamfunction spectrum Cαβ(k). These
equations are analogous to (3.4) and they take the form

∂E(k)

∂t
+ TE(k)= DE(k)+ FE(k), (3.8)

∂G(k)

∂t
+ TG(k)= DG(k)+ FG(k). (3.9)

Here, the terms above have analogous definitions. The next step is to write the forcing
spectrum FE(k) for the energy and FG(k) for the potential enstrophy in terms of Fαβ(k).
Using the operator indicated by (2.31), the energy forcing spectrum FE(k) reads:

FE(k)=−
∑
αβ

Lαβ(k)Fαβ(k)=−
∑
αβγ

Lαβ(k)[L−1
αγ (k)φγβ(k)+ L−1

βγ (k)φγα(k)] (3.10)

=−
∑
βγ

[(∑
α

Lβα(k)L
−1
αγ (k)

)
φγβ(k)

]

−
∑
αγ

[(∑
β

Lαβ(k)L
−1
βγ (k)

)
φγα(k)

]
(3.11)

=−
∑
βγ

δβγφγβ(k)−
∑
αγ

δαγφγα(k)=−2
∑
α

φαα(k). (3.12)

A similar calculation gives the potential enstrophy forcing spectrum FG(k). We use the
operator indicated by (2.34), and we find that FG(k) reads:

FG(k)=
∑
αβγ

Lαβ(k)Lαγ (k)Fβγ (k) (3.13)

=
∑
αβγ

Lαβ(k)Lαγ (k)
∑
δ

[L−1
βδ (k)φδγ (k)+ L−1

γ δ (k)φδβ(k)] (3.14)

=
∑
αγ δ

Lαγ (k)

[∑
β

Lαβ(k)L
−1
βδ (k)

]
φδγ (k)

+
∑
αβδ

Lαβ(k)

[∑
γ

Lαγ (k)L
−1
γ δ (k)

]
φδβ(k) (3.15)

=
∑
αγ δ

δαδLαγ (k)φδγ (k)+
∑
αβδ

Lαβ(k)δαδφδβ(k)= 2
∑
αβ

Lαβ(k)φαβ(k). (3.16)
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Note that the FE(k) calculation is dependent on the symmetry assumption Lαβ(k) =
Lβα(k), which multi-layer quasi-geostrophic models do satisfy. On the contrary, the
FG(k) calculation is not dependent on this symmetry assumption.

Because of the dependence of the streamfunction-forcing spectrum φαβ(k) on the
streamfunction ψα, it is not possible to predict the forcing spectra FE(k) and FG(k)
solely from the statistical properties of the forcing term fα. The sole exception is the
case where fα is a random Gaussian field that is delta-correlated in time such that

〈fα(x1, t1)fβ(x2, t2)〉 = 2Qαβ(x1, x2)δ(t1 − t2), (3.17)

where Qαβ(x1, x2) is assumed to be known. Then, it can be shown that the
streamfunction-forcing spectrum φαβ(k) is given by

φαβ(k)=
∑
γ

Qαγ (k)L
−1
βγ (k). (3.18)

Here Qαγ (k) is the correlation spectrum of the forcing term fα given by

Qαγ (k)= d
dk

∫
dx dy dzP(k | x− y)P(k | x− z)Qαγ (y, z). (3.19)

We give a detailed derivation of this result in appendix B.

4. Estimating the downscale injection rates
We will now consider three different arguments for estimating the ratio η/ε of the

potential enstrophy injection rate η to the energy injection rate ε to the downscale
inertial range. It should be noted here that a careful distinction needs to be made
between the total injection rates to the flow, given by integrating (3.12) and (3.16),
versus the partial injection rates to the coexisting downscale cascades of potential
enstrophy and energy. For the purpose of estimating the transition wavenumber
kt ∼ √η/ε, it is the partial downscale injection rates η and ε that are relevant. These
partial downscale injection rates are dependent on both the forcing term and the
Ekman term, and that complicates the task ahead.

In the first argument, we assume that the model is forced exclusively through
the temperature equation, and we disregard the effect of the Ekman term on the
downscale injection rates. In the second argument, we consider the combined effect
of thermal forcing and the asymmetric Ekman dissipation term on the energy and
potential enstrophy partial downscale injection rates. We will show that the Ekman
term tends to shift the transition wavenumber kt towards large scales, but this claim is
predicated on the hypothesis that the potential energy spectrum dominates the kinetic
energy spectrum at the forcing range, and the status of this hypothesis is presently
uncertain. This prompts us to consider the third argument, where we force both
potential vorticity equations with random Gaussian forcing that is delta-correlated in
time, where the forcing on the bottom layer is suppressed using a control factor µ.
The underlying modelling assumption is that the asymmetric Ekman term suppresses
forcing on the bottom layer but not at the top layer.

By combining our results from these three arguments, we will argue that the
two-layer quasi-geostrophic model tends to place the transition wavenumber kt

near the Rossby deformation wavenumber kR. It should be noted that, owing to
interlayer interaction, it is not obvious whether the Ekman term actually suppresses
predominantly the bottom-layer forcing. Furthermore, for models where the forcing is
flow-dependent, there is further uncertainty on the effect of the Ekman term on forcing
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and the overall adjustment of the partial downscale injection rates. These caveats are
discussed further below.

We begin the argument by rewriting our general expressions for the energy forcing
spectrum FE(k) and the potential enstrophy forcing spectrum FG(k) in terms of the
streamfunction-forcing spectrum φαβ(k) for the special case of the two-layer model by
substituting the corresponding matrix Lαβ(k) from (2.18). It is easy to see that the
energy forcing spectrum FE(k) reads:

FE(k)=−2
∑
α

φαα(k)=−2[φ11(k)+ φ22(k)]. (4.1)

Likewise, the potential enstrophy forcing spectrum FG(k) reads:

FG(k)= 2
∑
αβ

Lαβ(k)φαβ(k) (4.2)

= 2[L11(k)φ11(k)+ L12(k)φ12(k)+ L21(k)φ21(k)+ L22(k)φ22(k)] (4.3)

=−2(k2 + k2
R/2)[φ11(k)+ φ22(k)] + 2(k2

R/2)[φ12(k)+ φ21(k)]. (4.4)

Using these expressions as our point of departure, we now proceed with our analysis
of the three energy and potential enstrophy partial downscale injection rate estimates.

4.1. Estimate 1: thermal forcing neglecting Ekman term
Under thermal forcing we may assume that the potential vorticity equations are forced
with f1 = ϕ and f2 = −ϕ. Let us define Φ1(k) = 〈ϕ,ψ1〉k and Φ2(k) = 〈ϕ,ψ2〉k as
the streamfunction correlators with ϕ. We may therefore write the components of the
streamfunction-forcing spectrum φαβ(k) as

φ11(k)= 〈ϕ,ψ1〉k =Φ1(k), (4.5)
φ12(k)= 〈ϕ,ψ2〉k =Φ2(k), (4.6)
φ21(k)= 〈−ϕ,ψ1〉k =−Φ1(k), (4.7)
φ22(k)= 〈−ϕ,ψ2〉k =−Φ2(k). (4.8)

It follows that the energy forcing spectrum FE(k) is given by

FE(k)=−2[φ11(k)+ φ22(k)] = −2[Φ1(k)−Φ2(k)], (4.9)

and the potential enstrophy forcing spectrum FG(k) is given by

FG(k)=−2(k2 + k2
R/2)[φ11(k)+ φ22(k)] + 2(k2

R/2)[φ12(k)+ φ21(k)] (4.10)

=−2(k2 + k2
R/2)[Φ1(k)−Φ2(k)] + 2(k2

R/2)[Φ2(k)−Φ1(k)] (4.11)

=−2(k2 + k2
R)[Φ1(k)−Φ2(k)]. (4.12)

We see that the energy forcing spectrum FE(k) and the potential enstrophy forcing
spectrum FG(k) are related as

FG(k)= (k2 + k2
R)FE(k). (4.13)

In the limit k ∼ kf � kR, we find that FG(k) ∼ k2
RFE(k), which implies that the ratio

η/ε of injected potential enstrophy rate η to injected energy rate ε is approximately
equal to the square of the Rossby deformation wavenumber kR. It follows that, if
all of the injected energy and enstrophy cascade downscale and get successfully
dissipated at small scales, we will then have a double potential enstrophy–energy
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cascade with transition wavenumber kt ∼ kR. We suggest, therefore, with some caveats
to be discussed further below, that the two-layer quasi-geostrophic model provides a
competent explanation for why the Nastrom–Gage spectrum exhibits a transition from
k−3 scaling to k−5/3 scaling near the Rossby deformation wavenumber kR.

It should be stressed that this calculation neglects the effect of Ekman dissipation
of the energy and potential enstrophy injection rates, and is only good as a first
approximation. In the next two arguments we will suggest that the Ekman term
may tend to decrease kt further and that it is unlikely that it can suppress the
partial downscale energy injection rate, as one typically expects in two-dimensional
turbulence.

4.2. Estimate 2: thermal forcing with asymmetric Ekman dissipation
Let us now consider the effect of asymmetric Ekman dissipation on the partial
downscale rates of potential enstrophy and energy injection. It is well known that,
in two-dimensional turbulence, large-scale dissipation predominantly dissipates most
of the injected energy while allowing a considerable fraction of enstrophy to cascade
to small scales. This is evidenced by all of the numerical simulations that have
successfully reproduced the enstrophy cascade with a k−3 spectrum (Lindborg &
Alvelius 2000; Kaneda & Ishihira 2001; Pasquero & Falkovich 2002). If the same
thing were to occur in the two-layer quasi-geostrophic model, it would undermine our
previous argument concerning the location of the transition wavenumber kt, because in
that argument we assumed that most of the injected energy cascades downscale.

As far as the downscale cascades are concerned, they ‘feel’ forcing from both the
forcing term and the Ekman term. It is therefore necessary to define the effective
forcing spectra FE(k) and FG(k), in which the effects of asymmetric forcing and
Ekman dissipation are included together. We use calligraphic notation to distinguish
them from the forcing spectra FE(k) and FG(k) given by (4.1) and (4.4). The partial
injection rates η and ε to the downscale cascades are given by integrating FE(k)
and FG(k). As a matter of mathematical expediency, we can still calculate FE(k)
and FG(k) via (4.1) and (4.4) by redefining the forcing terms f1 and f2 to include
the asymmetric Ekman term. The calculation below shows that the effect of the
asymmetric Ekman term is to tend to decrease the effective energy forcing spectrum
FE(k), thereby acting as an energy sink. However, as long as the potential energy
spectrum dominates the kinetic energy spectrum at the forcing range, the effective
potential enstrophy forcing spectrum FG(k) will decrease much faster, thereby shifting
the transition wavenumber to smaller scales. It should be stressed that, in most quasi-
geostrophic models, the forcing term is flow-dependent, so the reaction of the flow to
the effect of the asymmetric Ekman term adds another degree of uncertainty to the
above claims. On the other hand, for random Gaussian forcing that is delta-correlated
in time, the reaction of the flow does not affect the effective forcing spectra.

Let us now elaborate on the above argument. We begin by redefining f1 = ϕ and
f2 =−ϕ−νE∇2ψ2, as discussed above. Recall that C12(k)= 〈ψ1, ψ2〉k, and let us define
U1(k) = 〈ψ1, ψ1〉k and U2(k) = 〈ψ2, ψ2〉k. It follows that the streamfunction-forcing
spectra φαβ(k) are given by

φ11(k)= 〈ϕ,ψ1〉k =Φ1(k), (4.14)
φ12(k)= 〈ϕ,ψ2〉k =Φ2(k), (4.15)

φ21(k)= 〈−ϕ − νE∇2ψ2, ψ1〉k =−Φ1(k)+ νEk2C12(k), (4.16)

φ22(k)= 〈−ϕ − νE∇2ψ2, ψ2〉k =−Φ2(k)+ νEk2U2(k). (4.17)
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Substituting into (4.1), we find that the effective energy forcing spectrum FE(k) is
given by

FE(k)=−2[Φ1(k)−Φ2(k)+ νEk2U2(k)] (4.18)

= FE(k)− 2νEk2U2(k). (4.19)

Since U2(k) is positive-definite, we have U2(k) > 0, and therefore the asymmetric
Ekman dissipation term decreases the rate of energy injection. Note that, if the
forcing term ϕ is dependent on the flow, as is the case in both the Tung–Orlando
and Tulloch–Smith simulations (Tung & Orlando 2003a; Tulloch & Smith 2009), the
decrease due to the νEk2U2(k) term could be counteracted by an increase due to the
2[Φ1(k)−Φ2(k)] term, as pointed out to the author by an anonymous referee. However,
if ϕ is given as a standard independent random forcing term, which is common
practice in turbulence simulations, then FE(k) is decreased by the Ekman term.

Similarly, the effective potential enstrophy forcing spectrum FG(k) is given by

FG(k)− (k2 + k2
R)FE(k)= k2

R[φ11(k)+ φ12(k)+ φ21(k)+ φ22(k)] (4.20)

= νEk2
Rk2[C12(k)+ U2(k)], (4.21)

and it follows that FG(k) is given by

FG(k)= (k2 + k2
R)FE(k)+ νEk2

Rk2[C12(k)+ U2(k)]. (4.22)

We see that whether the Ekman term tends to shift kt upscale or downscale depends on
the sign of C12(k) + U2(k). It is already known that U2(k) > 0. However, C12(k) can
be either positive or negative. The condition C12(k) < 0 is necessary but not sufficient
to ensure a transition wavenumber shift towards large scales. The necessary and
sufficient condition for effecting such a shift is U2(k)+ C12(k) < 0. On the other hand,
the condition C12(k) < U2(k) is sufficient to ensure that the Ekman term dissipates
potential enstrophy, which is expected on physical grounds. To show this, we rewrite
the effective potential enstrophy forcing spectrum FG(k) in terms of the potential
enstrophy forcing spectrum FG(k) as follows:

FG(k)= (k2 + k2
R)[FE(k)− 2νEk2U2(k)] + νEk2

Rk2[C12(k)+ U2(k)] (4.23)

= FG(k)+ νEk2[k2
R(C12(k)− U2(k))− 2k2U2(k)]. (4.24)

Consequently, the Ekman term dissipates potential enstrophy if k2
R(C12(k) − U2(k)) −

2k2U2(k) < 0 for all wavenumbers k in the forcing range. Since U2(k) > 0, due to
being positive-definite, it is sufficient that C12(k) < U2(k).

We can gain some insight into C12(k) by relating it with the kinetic and potential
energy spectra EK(k) and EP(k), which are defined as follows. Let ψ ≡ (ψ1 + ψ2)/2
and τ ≡ (ψ1−ψ2)/2. So, ψ1 = ψ+τ and ψ2 = ψ−τ . Following Salmon (1978, 1980),
the definitions of the spectra EK(k), EP(k) and EC(k) in terms of ψ and τ are given by

EK(k)= 2k2〈ψ,ψ〉k, (4.25)

EP(k)= 2(k2 + k2
R)〈τ, τ 〉k, (4.26)

EC(k)= 2k2〈ψ, τ 〉k. (4.27)
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It can be shown that the definitions are self-consistent, i.e. E(k) = EK(k) + EP(k). It
is easy now to write C12(k) in terms of EK(k) and EP(k):

C12(k)= 〈ψ1, ψ2〉k = 〈ψ + τ, ψ − τ 〉k
= 〈ψ,ψ〉k − 〈ψ, τ 〉k + 〈τ, ψ〉k − 〈τ, τ 〉k (4.28)

= 〈ψ,ψ〉k − 〈τ, τ 〉k =
EK(k)

2k2
− EP(k)

2(k2 + k2
R)
. (4.29)

We see that requiring EK(k)� EP(k) for all wavenumbers k in the forcing range is
sufficient to ensure that C12(k) be negative.

To obtain a necessary and sufficient condition, we first note that

U2(k)= 〈ψ2, ψ2〉k = 〈ψ − τ, ψ − τ 〉k = 〈ψ,ψ〉k − 2〈ψ, τ 〉k + 〈τ, τ 〉k (4.30)

= EK(k)

2k2
+ EP(k)

2(k2 + k2
R)
− EC(k)

k2
. (4.31)

It follows that

U2(k)+ C12(k)= EK(k)− EC(k)

k2
, (4.32)

and therefore U2(k)+C12(k) < 0 if and only if EK(k) < EC(k) for all wavenumbers k in
the forcing range. It should be stressed that, as far as the transition wavenumber kt is
concerned, the relevant requirement is that the ratio FG(k)/FE(k) should be decreased
by the Ekman term. It is easy to see from (4.22) that FG(k)/FE(k) is a linear function
of νE with slope k2

Rk2[C12(k)+ U2(k)]. Thus, the condition EK(k) < EC(k) is indeed the
needed necessary and sufficient condition.

Without a detailed phenomenological understanding of the two-layer model, it is
hard to say whether this condition is satisfied. Salmon (1980) has argued that, in
the two-layer model, energy is being injected as potential energy and gets converted
to kinetic energy near the Rossby wavenumber kR. We may therefore expect the
potential energy to remain dominant in the forcing range, provided that most kinetic
energy does not inversely cascade back to large scales again. Nevertheless, this is
an open question that should be carefully investigated via numerical simulations. In
the next section we will provide an alternative argument supporting the claim of
a transition wavenumber shift to large scales, predicated on the hypothesis that the
Ekman dissipation term suppresses forcing only at the lower layer, thereby assuming
that the interlayer interaction does not propagate Ekman dissipation into the top layer.
The spectrum C12(k) captures, in effect, an aspect of the dynamics of this interlayer
interaction.

Be that as it may, we note that it is also possible to formulate arguments that
suggest the opposite conclusion as follows. As Tung & Orlando (2003b) have shown,
an equipartition of kinetic and potential energy is expected in the extreme baroclinic
limit represented by the SQG model (i.e. EP(k)/EK(k) = 1). The opposite limit, if
generalized for all scales, is the case of three-dimensional stratified turbulence, where
Lindborg (2006) observed a 1 : 3 distribution of the total energy between potential and
kinetic such that EP(k)/EK(k) ∼ 1/3, with the exact ratio being somewhat dependent
on the rotation rate. For both cases, we have EK(k) > EP(k). Furthermore, in a
recent direct numerical simulation of the full quasi-geostrophic model by Vallgren
& Lindborg (2010), it has been confirmed that the total energy spectrum E(k) is
equipartitioned between potential energy EP(k) and the two horizontal components of
kinetic energy, leading to an approximate ratio EP(k)/EK(k) ∼ 1/2, consistent with
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the theory of Charney (1971). A deviation seems to occur in the forcing range,
where EP(k)/EK(k) ∼ 1, but any value between 1/2 and 1 violates the sufficient
condition EK(k)� EP(k). It should be noted, however, that the simulation of Vallgren
& Lindborg (2010) is forced symmetrically instead of antisymmetrically, and it is
uncertain how that may affect the partition ratio of energy between kinetic energy and
potential energy. Also uncertain is the effect of restricting the full quasi-geostrophic
model to two layers and using asymmetric instead of symmetric dissipation.

At this point, one could argue that, if the Ekman term in FG(k) is negligible, then
it does not matter either way whether FG(k) is increasing or decreasing. We will
now argue, using a phenomenological order-of-magnitude estimate, that the Ekman
adjustment of the potential enstrophy forcing spectrum FG(k) is not expected to
be negligible. The argument is as follows. On the assumption that most injected
energy cascades to small scales, FE(k) is proportional to the downscale energy
flux ε. If we also assume that the forcing spectrum is spread over a wavenumber
interval with width proportional to the average forcing wavenumber kf , then we get the
dimensional estimate FE(k) ∼ ε/kf . This estimate is a lower bound for FE(k) since,
as an anonymous referee noted, it is possible, in principle, for the forcing spectrum
to be concentrated on a peak with width 1k narrower than kf . We also assume
that k2[C12(k) + U2(k)], which has the dimension of the energy spectrum, scales as
k2[C12(k)+U2(k)] ∼ η2/3k−3

f , consistent with the downscale potential enstrophy cascade
spectrum. Putting these two phenomenological estimates together, for forcing-range
wavenumbers k ∼ kf � kR, we estimate the two terms on the right-hand side of (4.22)
as follows:

A ≡ (k2 + k2
R)FE(k)∼ εk2

R/kf , (4.33)

B ≡ νEk2
Rk2(C12(k)+ U2(k))∼ νEk2

Rη
2/3k−3

f . (4.34)

Using the relation η ∼ εk2
t between the potential enstrophy flux η and the energy

flux ε, we find that the ratio of the two terms is estimated by

A

B
∼ εk2

Rk−1
f

νEk2
Rη

2/3k−3
f

∼ εk2
f

νEη2/3
∼ ηk2

f

νEη2/3k2
t

∼ η
1/3

νE

(
kf

kt

)2

. (4.35)

For the potential enstrophy flux η, we use the value η ∼ 10−15 s−3 estimated by
Cho & Lindborg (2001) by structure function analysis. For the Ekman coefficient
νE, we use the number νE ∼ (6.7 day)−1 ∼ 10−6 s−1 by Tung & Orlando (2003a).
Finally, from the Nastrom–Gage spectrum itself, we can estimate kt ∼ 10−3 km−1 and
kf ∼ 10−4 km−1 for the transition and forcing wavenumbers. Using these numbers, we
find that A /B ∼ 10−1, which implies that the terms A and B are comparable within
one order of magnitude, so the effect of the constant coefficients is likely to play an
important role in deciding which term is dominant. Note that, if the forcing spectrum
is concentrated on a peak with width 1k with 1k � kf , then FE(k) is increased,
thus the change to the ratio A /B in turn indicates a diminishing impact of the
Ekman term on the transition wavenumber kt. Consequently, within the framework of
the above phenomenology, our estimate of the A /B ratio represents a worst-case
scenario, in the sense that the effect of the Ekman term cannot be stronger than this
estimate.

In light of the above, it is very important to further investigate, with numerical
simulations, the effect of the Ekman term on the injection rates, using both the
quasi-geostrophic model of Tung & Orlando (2003a) and the quasi-geostrophic model
of Tulloch & Smith (2009). Specifically, for the case of the two-layer model, future
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numerical studies should, at the very least, investigate the interlayer spectrum C12(k)
and the partition of energy between kinetic energy and potential energy.

4.3. Estimate 3: asymmetric random forcing
In the previous case, we have seen that the effect of asymmetric Ekman dissipation on
the forcing range is to tend to decrease the rate of energy injection. There is, however,
ambiguity regarding whether the enstrophy injection rate is increasing or decreasing,
and whether the Ekman term shifts the transition wavenumber kt towards small scales
or large scales. The underlying problem is that, owing to the effect of the layer-to-
layer interaction on the relationship between potential vorticity and streamfunction, it
is not obvious whether dissipating the bottom-layer streamfunction ψ2 is equivalent to
dissipating the bottom-layer potential vorticity q2. On the other hand, we will show
now that, if the bottom-layer forcing is directly suppressed via a control factor µ, that
will indeed result in a reduction of the ratio FG(k)/FE(k) in the forcing range.

To that end, let us assume that the forcing terms for the top and bottom layers
respectively are f1 = ϕ and f2 = −µϕ with 0 < µ < 1. Decreasing µ increases the
suppression of the bottom-layer forcing term f2. We also assume that ϕ is a random
Gaussian field that is delta-correlated in time with correlation spectrum Q(k). In
appendix C, we show that the streamfunction-forcing spectra φαβ(k) can be expressed
in terms of Q(k) as follows:

ϕαβ(k)= −Q(k)ψαβ(k)

2k2(k2 + k2
R)
. (4.36)

Here, ψαβ are given by

ψ11(k)= (2k2 + k2
R)− µk2

R, (4.37)

ψ12(k)= k2
R − µ(2k2 + k2

R), (4.38)

ψ21(k)=−µ(2k2 + k2
R)+ µ2k2

R, (4.39)

ψ22(k)=−µk2
R + µ2(2k2 + k2

R). (4.40)

Without explicitly calculating the forcing spectra FE(k) and FG(k), we can readily
argue that, since

ψ11(k)+ ψ12(k)+ ψ21(k)+ ψ22(k)= 2(k2 + k2
R) (1− µ)2, (4.41)

it follows that

FG(k)− (k2 + k2
R)FE(k)= k2

R[φ11(k)+ φ12(k)+ φ21(k)+ φ22(k)] (4.42)

= −Q(k)[ψ11(k)+ ψ12(k)+ ψ21(k)+ ψ22(k)]
2k2(k2 + k2

R)
(4.43)

= −Q(k)[2(k2 + k2
R) (1− µ)2]

2k2(k2 + k2
R)

=−k2
R (1− µ)2 Q(k)

k2
, (4.44)

via (4.20) and therefore that

FG(k)= (k2 + k2
R)FE(k)− k2

R (1− µ)2 Q(k)

k2
. (4.45)

We note that, since the third term in the equation above is always negative,
suppressing the lower-level forcing leads to a large-scale shift of the transition
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wavenumber kt. For µ = 1, as expected, we recover the previously derived relation
FG(k)= (k2 + k2

R)FE(k).
Another way of looking at the problem is by explicitly calculating the ratio

FG(k)/FE(k) and showing that it decreases with decreasing µ = 1. As shown in
appendix C, an explicit calculation of the forcing spectra FE(k) and FG(k) gives

FE(k)= 2Q(k)[2(1+ µ2)k2 + (1− µ)2 k2
R]

2k2(k2 + k2
R)

, (4.46)

FG(k)= 2Q(k)(1+ µ2). (4.47)

For the antisymmetric case µ = 1, the energy forcing spectrum FE(k) reduces
to FE(k) = 4Q(k)/(k2 + k2

R) and the enstrophy forcing spectrum FG(k) reduces to
FG(k) = 4Q(k), thereby recovering our previous more generally applicable result
FG(k) = (k2 + k2

R)FE(k), which suggests a transition wavenumber kt ∼ kR, in the limit
k ∼ kf � kR.

For the extreme case µ = 0, whereby the bottom-layer forcing is completely
suppressed, again under the limit k ∼ kf � kR, the energy forcing spectrum FE(k)
is given by

FE(k)= 2Q(k)[2k2 + k2
R]

2k2(k2 + k2
R)
∼ 2Q(k)k2

R

2k2k2
R

∼ Q(k)

k2
, (4.48)

and the enstrophy forcing spectrum FG(k) is given by FG(k) = 2Q(k). It follows that
FG(k)∼ 2k2FE(k), which suggests a reduced transition wavenumber kt ∼ 2kf .

The two extreme cases µ = 1 and µ = 0 indicate that the ratio FG(k)/FE(k)
decreases with decreasing µ from approximately k2

R to 2k2
f . We can confirm that

this is indeed the case by taking the partial derivative with respect to the parameter µ.
The partial derivative reads

∂

∂µ

[
FG(k)

FE(k)

]
= ∂

∂µ

[
2(1+ µ2)Q(k)2k2(k2 + k2

R)

2Q(k)[2(1+ µ2)k2 + (1− µ)2 k2
R]
]

(4.49)

= 2k2(k2 + k2
R)
∂

∂µ

[
1+ µ2

[2(1+ µ2)k2 + (1− µ)2 k2
R]
]

(4.50)

= 2k2(k2 + k2
R)

[
2k2

R(1− µ)(1+ µ)
[2(1+ µ2)k2 + (1− µ)2 k2

R]2
]
. (4.51)

For 0< µ< 1, it is easy to see that every factor is positive, and therefore

∂

∂µ

[
FG(k)

FE(k)

]
> 0. (4.52)

Consequently, the ratio FG(k)/FE(k) decreases with decreasing µ. We conclude that,
if the asymmetric Ekman damping term on the bottom-layer streamfunction ψ2

indeed suppresses the effective forcing of the bottom-layer potential vorticity, then
the ratio FG(k)/FE(k) will tend to decrease, thereby indicating a tendency to reduce
the transition wavenumber kt.

5. Conclusions and discussion
In the present paper, we have sought to explain why the transition from k−3

scaling to k−5/3 scaling in the Nastrom–Gage spectrum occurs near the Rossby
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deformation wavenumber kR, where the atmospheric turbulence is still governed under
quasi-geostrophic dynamics instead of three-dimensional dynamics. According to the
Tung–Orlando theory (Tung & Orlando 2003a), the entire Nastrom–Gage spectrum
represents a downscale potential enstrophy cascade that coexists with a downscale
energy cascade. The location of the transition wavenumber kt is thereby controlled by
the ratio η/ε of the downscale potential enstrophy flux η over the downscale energy
flux ε and given by kt ∼√η/ε. That ratio, in turn, depends on the large-scale forcing
and the effect of large-scale dissipation on the injection of potential enstrophy and
energy.

We have shown that, in the two-layer quasi-geostrophic model, which is reasonably
applicable in the forcing scales, thermal forcing leads to antisymmetric forcing of the
potential vorticity layer equations. This, in turn, yields a ratio η/ε of the potential
enstrophy injection rate η over the energy injection rate ε that is approximately equal
to k2

R. So, if most of the injected potential enstrophy and energy cascades towards
small scales, then the transition wavenumber kt will be approximately equal to kR.

At this point, one might object by arguing, drawing from an analogy with two-
dimensional turbulence, that the large-scale Ekman dissipation will get rid of most
of the injected energy at the forcing range while allowing a considerable amount
of potential enstrophy to cascade to small scales. As it turns out, it is far from
obvious that the two-layer model behaves in this manner. In general, the Ekman term
always dissipates some amount of energy, and may or may not dissipate potential
enstrophy, depending on the sign and magnitude of the interlayer spectrum C12(k).
We have shown that, if the potential energy spectrum EP(k) dominates the kinetic
energy spectrum EK(k) in the forcing range, then the downscale potential enstrophy
injection rate η will be dampened faster than the downscale energy injection rate ε.
The resulting reduction in the η/ε ratio will tend to shift the transition wavenumber
kt towards large scales. This tendency becomes exact if the forcing used in these
simulations is made independent of the flow.

Unfortunately, there is some ambiguity in the results of our direct analysis of the
Ekman term, owing to the dependence of the direction of the transition wavenumber
shift on the spectral distribution of the energy between kinetic and potential energy.
Using a random Gaussian forcing model, we have shown that, under the assumption
that the Ekman term suppresses forcing predominantly at the bottom layer, the ratio
η/ε will be decreased, thereby shifting the transition wavenumber kt to larger scales.
While this assumption may seem obvious, on physical grounds, it requires us to
disregard the possibility of Ekman dissipation being propagated to the top layer via
the nonlinear interlayer interaction. Without a more detailed understanding of the
phenomenology of the two-layer model, and especially the interlayer spectrum C12(k),
this is as far as we can go on this problem in terms of theory.

Another problem with our argument is that it is only half of the whole story. In
order for the injected potential enstrophy and energy to form a steady-state cascade, it
is also necessary that the small-scale dissipation terms be able to dissipate the potential
enstrophy and energy at the same rate with which they are injected. In a strictly
two-dimensional model, this is impossible, because the potential enstrophy and energy
fluxes ΠG(k) and ΠE(k) are constrained by the inequality k2ΠE(k) − ΠG(k) < 0, for
all wavenumbers k not in the forcing range (Gkioulekas & Tung 2005a,b). However,
as we have shown previously in Gkioulekas & Tung (2007b), the asymmetric Ekman
dissipation term can potentially cause this flux inequality to be violated. If that occurs,
then a transition from k−3 to k−5/3 scaling is possible near the wavenumber kt where
the aforementioned flux inequality breaks down. Unfortunately, it is not easy to derive
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a rigorous necessary and sufficient condition for violating the flux inequality, in the
form of a lower bound for νE, without introducing phenomenological assumptions.
In light of the controversy with the Tung–Orlando simulation (Smith 2004; Tung
2004; Gkioulekas & Tung 2007a), this energy dissipation sink problem remains an
open question. On the other hand, we are quite certain that this flux inequality was
successfully violated in the more sophisticated two-mode two-layer quasi-geostrophic
model of Tulloch & Smith (2009), which produced coexisting cascades of potential
enstrophy and energy consistent with the Tung–Orlando theory. We do not yet have a
detailed mathematical understanding of how this violation came about.

Ultimately, the question of whether QG models can break the flux inequality is
somewhat academic, albeit interesting. As Lindborg (2007) has shown, at scales less
than 100 km, the assumptions that underlie the quasi-geostrophic model break down.
This breakdown acts in our favour by giving us an anomalous energy dissipation sink
at large k, thereby further facilitating the breakdown of the flux inequality. What is
less obvious is whether there is still an effective potential enstrophy dissipation sink
at small scales, occurring either at length scales where the flow is still stratified or
via a violation of potential enstrophy conservation at even smaller scales where the
flow becomes entirely three-dimensional. If yes, then we have a full accounting of the
entire process: quasi-geostrophic dynamics is thus responsible for injecting potential
enstrophy and energy at a proportion leading to kt ∼ kR, and three-dimensional
dynamics is responsible for dissipating both at small scales. If no, then the widely
accepted interpretation of the k−3 part of the Nastrom–Gage spectrum as a downscale
potential enstrophy cascade is itself in jeopardy, regardless of whether or not one
agrees with all other aspects of the Tung–Orlando theory. An alternative explanation
of the Nastrom–Gage spectrum as a downscale helicity cascade (with k−7/3 scaling
instead of k−3) coexisting with a downscale energy cascade is the only remaining
hypothesis on the table, if we were to completely rule out quasi-geostrophic dynamics
for all length scales (Bershadskii, Kit & Tsinober 1993; Moiseev & Chkhetiani 1996;
Branover et al. 1999; Chkhetiani, Eidelman & Golbraikh 2006).

It is fair to say that this paper does not resolve all of the outstanding controversies
with respect to the Nastrom–Gage spectrum. For example, we have not yet completely
resolved the energy dissipation sink issue in the Tung–Orlando simulation, or the
question of whether the k−3 part of the Nastrom–Gage spectrum is a helicity cascade
or a potential enstrophy cascade. In spite of extensive numerical evidence, e.g. by
Koshyk, Hamilton & Mahlman (1999), Koshyk & Hamilton (2001), Skamarock (2004),
Takahashi, Hamilton & Ohfuchi (2006) and Hamilton, Takahashi & Ohfuchi (2008),
I believe that both questions are still open at the present time. Furthermore, within
the framework of the theory presented in this paper, we have posed the new open
question of the effect of Ekman dissipation on shifting the transition wavenumber
away from the Rossby wavenumber kR. Underlying all this is the theoretical question
of whether the location of the transition wavenumber kt is flexible and controlled via
the magnitude of the two fluxes associated with two independent coexisting cascades,
as proposed by Tung & Orlando (2003a), or whether it is inflexible and pinned down
near the Rossby wavenumber kR by a scaling transition inherent in the nonlinearity,
as typified by the Tulloch–Smith SQG model (Tulloch & Smith 2006). While we are
advocating for the flexible placement of the transition wavenumber kt, it is fair to say
that the question deserves further scrutiny.

An anonymous referee has also raised the question of whether gravity waves can
play a role in the Nastrom–Gage spectrum, as was conjectured by Dewan (1979) and
VanZadt (1982). It is well known that gravity waves vanish in the quasi-geostrophic
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limit, therefore they are not expected to be relevant over the quasi-geostrophic range
of length scales, as were rigorously determined by Lindborg (2007). According to
Gage & Nastrom (1986), the agreement between the measured wavenumber spectra
and frequency spectra suggests that the spectrum arises from strong turbulence and not
from gravity waves. Gage & Nastrom (1985) also noted that ‘the energy levels and
shapes of the horizontal and vertical energy spectra are not consistent with existing
models of internal wave spectra’, with the caveat that the inconsistency could be
originating from shortcomings of these internal wave spectral models. Given these
arguments against the gravity wave interpretation of the Nastrom–Gage spectrum,
and the ‘folklore’ belief that quasi-geostrophic dynamics does not allow a downscale
energy cascade, it was necessary for Tung & Orlando (2003a) to demonstrate that
the entire Nastrom–Gage spectrum can be reproduced entirely by quasi-geostrophic
dynamics in order to bolster their hypothesis of coexisting cascades of potential
enstrophy and energy, even under very restricted two-dimensional approximations of
quasi-geostrophic dynamics. Tung & Orlando (2003a) however did acknowledge that
gravity waves could play a role in enabling the coexistence of the two downscale
cascades.

As for the gravity wave interpretation, many relevant questions are still not settled.
For instance, Terasaki, Tanaka & Zagar (2011) point towards a very interesting
possibility. Using reprocessed observational data provided by the Japan Meteorological
Agency, they showed that, after decomposing the total energy into a quasi-geostrophic
component and a gravity wave component, the quasi-geostrophic component yields a
k−3 potential enstrophy cascade contribution spanning the entire range of resolved
length scales, and the gravity wave component yields a k−5/3 energy cascade
contribution coexisting over the same range of scales. The total energy spectrum is
thus the linear superposition of the two contributions.

This picture is consistent with the Tung–Orlando theory and the linear superposition
hypothesis proposed by Gkioulekas & Tung (2005a,b) and Gkioulekas & Tung (2006).
As explained by Gkioulekas & Tung (2006), the underlying principles involved are
universal and originate from the linearity of the underlying statistical mechanics, so
we expect them to remain valid, beyond two-dimensional turbulence, in all related
dynamical systems that allow the coexistence of cascades of energy and enstrophy.
Under the scenario of coexisting quasi-geostrophic and gravity wave dynamics,
indicated by Terasaki et al. (2011), the transition wavenumber is still entirely
controlled by the injection rate ratio η/ε, given the confirmed validity of the linear
superposition principle. The remaining open question is whether the main results of
this paper concerning the injection rates ratio (i.e. η/ε ∼ k2

R) can be generalized even
beyond quasi-geostrophic models. We believe that further research is needed in that
direction.
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Appendix A. The potential vorticity–streamfunction equations
In this appendix, we derive the potential vorticity equations (2.10) and (2.11) from

the relative vorticity equations (2.1) and (2.2) and the mid-layer temperature equation
(2.3). Our goal is to demonstrate that the potential vorticity equations are forced
antisymmetrically, a key property for the argument of the present paper, and that
the dissipation terms in the relative vorticity equations retain the same form in the
potential vorticity equations. The derivation is dependent on the following properties of
the Jacobian J(a, b):

J(a, b+ c)= J(a, b)+ J(a, c), (A 1)
J(a+ b, c)= J(a, c)+ J(b, c), (A 2)

J(a, a)= 0 and J(a, b)=−J(b, a), (A 3)
J(λa, µb)= λµJ(a, b), (A 4)

where λ and µ are constants.
The first step is to solve for the vertical velocity ω in the temperature equation (2.3).

From the geostrophic constraint T = (2/h)(ψ1 − ψ2), we write the advection term in
the temperature equation as

J

(
ψ1 + ψ2

2
,T

)
= 1

h
[J(ψ1, ψ1)− J(ψ1, ψ2)+ J(ψ2, ψ1)− J(ψ2, ψ2)] (A 5)

=−2
h

J(ψ1, ψ2). (A 6)

It follows that the vertical velocity ω can be written as

ω =− f

N2

[
∂T

∂t
+ J

(
ψ1 + ψ2

2
,T

)
− Q0

]
(A 7)

=− 2f

hN2

[
∂

∂t
(ψ1 − ψ2)− J(ψ1, ψ2)− hQ0

2

]
, (A 8)

and therefore

2f

h
ω =−k2

R

2

[
∂

∂t
(ψ1 − ψ2)− J(ψ1, ψ2)− hQ0

2

]
. (A 9)

Here we have defined the Rossby deformation wavenumber kR = 2
√

2 f /(hN).
The next step is to define the potential vorticities q1 and q2 for the top and bottom

layers respectively as

q1 =∇2ψ1 + f + k2
R

2
(ψ2 − ψ1), (A 10)

q2 =∇2ψ2 + f − k2
R

2
(ψ2 − ψ1). (A 11)

The advection terms J(ψ1, q1) and J(ψ2, q2) of the potential vorticities with respect to
the streamfunctions ψ1 and ψ2 are given by

J(ψ1, q1)= J(ψ1, ζ1 + f + (k2
R/2)(ψ2 − ψ1)) (A 12)

= J(ψ1, ζ1 + f )+ k2
R

2
J(ψ1, ψ2) (A 13)
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and

J(ψ2, q2)= J(ψ2, ζ2 + f − (k2
R/2)(ψ2 − ψ1)) (A 14)

= J(ψ1, ζ1 + f )+ k2
R

2
J(ψ2, ψ1) (A 15)

= J(ψ1, ζ1 + f )− k2
R

2
J(ψ1, ψ2). (A 16)

Therefore, differentiating the top-layer potential vorticity q1 with respect to the time t
gives

∂q1

∂t
= ∂ζ1

∂t
+ k2

R

2
∂

∂t
(ψ2 − ψ1) (A 17)

=−J(ψ1, ζ1 + f )− 2f

h
ω + d1 + k2

R

2
∂

∂t
(ψ2 − ψ1) (A 18)

=−J(ψ1, ζ1 + f )+ k2
R

2

[
∂

∂t
(ψ1 − ψ2)− J(ψ1, ψ2)− hQ0

2

]
+ d1 + k2

R

2
∂

∂t
(ψ2 − ψ1) (A 19)

=−J(ψ1, ζ1 + f )− k2
R

2
J(ψ1, ψ2)− hk2

R

4
Q0 + d1 (A 20)

=−J(ψ1, q1)− Q+ d1, (A 21)

with Q defined as Q = hk2
RQ0/4. Likewise, differentiating the bottom-layer potential

vorticity q2 with respect to the time t gives

∂q2

∂t
= ∂ζ2

∂t
− k2

R

2
∂

∂t
(ψ2 − ψ1) (A 22)

=−J(ψ2, ζ2 + f )+ 2f

h
ω + d2 + e2 − k2

R

2
∂

∂t
(ψ2 − ψ1) (A 23)

=−J(ψ2, ζ2 + f )− k2
R

2

[
∂

∂t
(ψ1 − ψ2)− J(ψ1, ψ2)− hQ0

2

]
+ d2 + e2 − k2

R

2
∂

∂t
(ψ2 − ψ1) (A 24)

=−J(ψ2, ζ2 + f )+ k2
R

2
J(ψ1, ψ2)+ hk2

R

4
Q0 + d2 + e2 (A 25)

=−J(ψ2, q2)+ Q+ d2 + e2. (A 26)

The governing equations (2.10) and (2.11) for the potential vorticity follow.

Appendix B. Streamfunction forcing spectrum under random Gaussian
forcing

Let us consider the case of a generalized multi-layer model forced at each layer α
with random Gaussian forcing fα such that

〈fα(x1, t1)fβ(x2, t2)〉 = 2Qαβ(x1, x2)δ(t1 − t2). (B 1)
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From the Novikov–Furutsu theorem (Furutsu 1963; Novikov 1965) we know that,
given a functional R[f ], the correlation between fα and R[f ] reads:

〈fα(x1, t1)R[f ]〉 =
∫

R2
dx2

∫
R

dt2 〈fα(x1, t1)fβ(x2, t2)〉
〈

δR[f ]
δfβ(x2, t2)

〉
. (B 2)

It should be noted that implied here is a space–time approach in which it is the
entire forcing history f that is being mapped to a number by the functional R[f ]. The
ensemble average is understood to average over all possible forcing histories. The
idea is to treat the streamfunction ψα of layer α at a given point in space–time as
a functional of the entire forcing history, and then use the Novikov–Furutsu theorem
to evaluate the streamfunction-forcing spectrum φαβ(k). This idea follows a similar
argument by McComb (1990) for the three-dimensional Navier–Stokes equation. The
argument proceeds as follows.

Recall first the definition of the filtering kernel:

a<k(x, t)=
∫

R2
P(k | x− y)a(y, t) dy. (B 3)

By definition, the streamfunction-forcing spectrum φαβ(k) is given by

φαβ(k)= 〈fα, ψβ〉k =
〈

fα,
∑
γ

L −1
βγ qγ

〉
k

=
∑
γ

L−1
βγ (k)〈fα, qγ 〉k (B 4)

=
∑
γ

L−1
βγ (k)

d
dk

∫
R2

dx 〈f<k
α (x, t)q<k

γ (x, t)〉 (B 5)

=
∑
γ

L−1
βγ (k)

d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)〈fα(y, t)qγ (z, t)〉. (B 6)

Using the Novikov–Furutsu theorem, we calculate the streamfunction-forcing
correlation 〈fα(y, t)qγ (z, t)〉, and find that it reads:

〈fα(y, t)qγ (z, t)〉 =
∫

R2
dw
∫

R
dt0 〈fα(y, t)fδ(w, t0)〉

〈
δqγ (z, t)

δfδ(w, t0)

〉
(B 7)

=
∫

R2
dw
∫

R
dt0 2Qαδ(y,w)δ(t − t0)

〈
δqγ (z, t)

δfδ(w, t0)

〉
(B 8)

= 2
∫

R2
dwQαδ(y,w)

〈
δqγ (z, t)

δfδ(w, t)

〉
. (B 9)

To evaluate the variational derivative of potential vorticity qγ (z, t) with respect to layer
forcing fδ(w, t0), we first note that, by causality, the potential vorticity qγ (z, t) at time
t is related with the initial potential vorticity qγ (z, 0) at time t0 = 0 by an equation of
the form

qγ (z, t)= qγ (z, 0)+
∫ t

0
dt0 Nγ [q(t0)](z)+

∫ t

0
dt0 fγ (z, t0). (B 10)

Here, Nγ [q(t0)](z) represents the combined effect of the nonlinear and dissipation
terms. The third integral represents the causal contribution of the forcing term. Let
us assume now that 0 < τ < t, and differentiate the above equation variationally with
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respect to fδ(w, τ ). We immediately find that

δqγ (z, t)

δfδ(w, τ )
= δ

δfδ(w, τ )

[∫ t

0
dt0 Nγ [q(t0)](z)+

∫ t

0
dt0 fγ (z, t0)

]
(B 11)

=Aγ δ(z, t;w, τ )+Bγ δ(z, t;w, τ ), (B 12)

with Aγ δ(z, t;w, τ ) and Bγ δ(z, t;w, τ ) given by

Aγ δ(z, t;w, τ )= δ

δfδ(w, τ )

∫ t

0
dt0 Nγ [q(t0)](z)=

∫ t

τ

dt0
δNγ [q(t0)](z)
δfδ(w, τ )

, (B 13)

Bγ δ(z, t;w, τ )= δ

δfδ(w, τ )

∫ t

0
dt0 fγ (z, t0) (B 14)

= δ

δfδ(w, τ )

∫ t

0
dt0

∫
R2

dz0 δ(z− z0)fγ (z0, t0) (B 15)

= δ

δfδ(w, τ )

∫
R

dt0

∫
R2

dz0 H(t − t0)δ(z− z0)fγ (z0, t0) (B 16)

= δγ δH(τ − t)δ(z− w). (B 17)

Here, H(t) is the previously defined Heaviside function. For (B 13), we rely on the
principle of causality to restrict the integral from τ to t. It is easy to see that, for t = τ ,
Aγ δ(z, t;w, τ ) and Bγ δ(z, t;w, τ ) simplify to

Aγ δ(z, t;w, t)=
∫ t

t
dt0

δNγ [q(t0)](z)
δfδ(w, τ )

= 0, (B 18)

Bγ δ(z, t;w, t)= 1
2
δγ δδ(z− w), (B 19)

and therefore the variational derivative of qγ (z, t) with respect to fδ(w, t) is given by

δqγ (z, t)

δfδ(w, t)
= 1

2
δγ δδ(z− w). (B 20)

Substituting this result into (B 9), we show that the streamfunction-forcing correlation
is given by

〈fα(y, t)qγ (z, t)〉 = 2
∫

R2
dwQαδ(y,w)

〈
δqγ (z, t)

δfδ(w, t)

〉
(B 21)

= 2
∫

R2
dwQαδ(y,w)

1
2
δγ δδ(z− w) (B 22)

=
∫

R2
dwQαγ (y,w)δ(z− w)= Qαγ (y, z). (B 23)

Consequently, the streamfunction-forcing spectrum φαβ(k) reads:

φαβ(k)=
∑
γ

L−1
βγ (k)

d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)〈fα(y, t)qγ (z, t)〉 (B 24)

=
∑
γ

L−1
βγ (k)

d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)Qαγ (y, z) (B 25)

=
∑
γ

Qαγ (k)L
−1
βγ (k). (B 26)
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The integral above defines the forcing correlation spectrum Qαγ (k), given by

Qαγ (k)= d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)Qαγ (y, z). (B 27)

Our final result for the streamfunction-forcing spectrum is

φαβ(k)=
∑
γ

Qαγ (k)L
−1
βγ (k). (B 28)

Appendix C. The random Gaussian forcing model
Let us consider the case of the two-layer quasi-geostrophic model forced with f1 = ϕ

at the top layer and f2 = −µϕ at the bottom layer. Here, µ is a suppression constant
with 0 < µ < 1 and ϕ is a random Gaussian field that is delta-correlated in time such
that

〈ϕ(x1, t1)ϕ(x2, t2)〉 = 2Q(x1, x2)δ(t1 − t2). (C 1)

From Q(x1, x2) we define the corresponding correlation spectrum Q(k) as

Q(k)= d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)Q(y, z). (C 2)

It follows that, for α, β ∈ {1, 2}, fα and fβ are correlated according to

〈fα(x1, t1)fβ(x2, t2)〉 = 2Qαβ(x1, x2)δ(t1 − t2), (C 3)

with the components of Qαβ given by

Q11(x1, x2)= Q(x1, x2), (C 4)
Q12(x1, x2)= Q21(x1, x2)=−µQ(x1, x2), (C 5)

Q22(x1, x2)= µ2Q(x1, x2). (C 6)

The spectrum Qαβ(k) of Qαβ(x1, x2) is defined as

Qαβ(k)= d
dk

∫∫∫
(R2)

3
dx dy dzP(k | x− y)P(k | x− z)Qαβ(y, z). (C 7)

Consequently its components read:

Q11(k)=Q(k), (C 8)
Q12(k)=Q21(k)=−µQ(k), (C 9)

Q22(k)= µ2Q(k). (C 10)

In appendix B, we have shown that, under general random Gaussian forcing that
is delta-correlated in time, the general form of the streamfunction-forcing spectrum
φαβ(k) reads:

φαβ(k)=
∑
γ

Qαγ (k)L
−1
βγ (k). (C 11)

We would now like to reduce this result to the case of the two-layer quasi-geostrophic
model. Starting from (2.18), a simple calculation shows that the inverse matrix L−1

αβ (k)
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is given by

L−1
αβ (k)=

−1
2k2(k2 + k2

R)

[
2k2 + k2

R k2
R

k2
R 2k2 + k2

R

]
. (C 12)

We note that the inverse matrix L−1
αβ (k) is defined for all wavenumbers k > 0.

Combining the above two equations we find that the components of the
streamfunction-forcing spectrum φαβ(k) are

φ11(k)=Q11(k)L
−1
11 (k)+Q12(k)L

−1
12 (k)=Q(k)[L−1

11 (k)− µL−1
12 (k)] (C 13)

= −Q(k)[2k2 + k2
R − µk2

R]
2k2(k2 + k2

R)
, (C 14)

φ12(k)=Q11(k)L
−1
21 (k)+Q12(k)L

−1
22 (k)=Q(k)[L−1

21 (k)− µL−1
22 (k)] (C 15)

= −Q(k)[k2
R − µ(2k2 + k2

R)]
2k2(k2 + k2

R)
, (C 16)

φ21(k)=Q21(k)L
−1
11 (k)+Q22(k)L

−1
12 (k)=Q(k)[−µL−1

11 (k)+ µ2L−1
12 (k)] (C 17)

= −Q(k)[−µ(2k2 + k2
R)+ µ2k2

R]
2k2(k2 + k2

R)
, (C 18)

φ22(k)=Q21(k)L
−1
21 (k)+Q22(k)L

−1
22 (k)=Q(k)[−µL−1

21 (k)+ µ2L−1
22 (k)] (C 19)

= −Q(k)[−µk2
R + µ2(2k2 + k2

R)]
2k2(k2 + k2

R)
. (C 20)

We may therefore write the streamfunction-forcing spectra as

ϕαβ(k)= −Q(k)ψαβ(k)

2k2(k2 + k2
R)
, (C 21)

with ψαβ given by

ψ11(k)= (2k2 + k2
R)− µk2

R, (C 22)

ψ12(k)= k2
R − µ(2k2 + k2

R), (C 23)

ψ21(k)=−µ(2k2 + k2
R)+ µ2k2

R, (C 24)

ψ22(k)=−µk2
R + µ2(2k2 + k2

R). (C 25)

From the streamfunction-forcing spectra φαβ(k), we calculate both the potential
enstrophy forcing spectrum FG(k) and the energy forcing spectrum FE(k) using (4.1)
and (3.16). An easy calculation gives

ψ11(k)+ ψ22(k)= (2k2 + k2
R)− µk2

R − µk2
R + µ2(2k2 + k2

R) (C 26)

= 2(1+ µ2)k2 + k2
R (1− µ)2, (C 27)

and, therefore, for FE(k) we find that

FE(k)=−2[φ11(k)+ φ22(k)] = +2Q(k)[ψ11(k)+ ψ22(k)]
2k2(k2 + k2

R)
(C 28)

= 2Q(k)[2(1+ µ2)k2 + (1− µ)2 k2
R]

2k2(k2 + k2
R)

. (C 29)
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For the potential enstrophy forcing spectrum FG(k), we use a slightly more subtle
argument, and we have

FG(k)= 2
∑
αβ

Lαβ(k)φαβ(k)= 2
∑
αβ

Lαβ(k)

[∑
γ

L−1
βγ (k)Qαγ (k)

]
(C 30)

= 2
∑
αγ

[∑
β

Lαβ(k)L
−1
βγ (k)

]
Qαγ (k)= 2

∑
αγ

δαγQαγ (k) (C 31)

= 2
∑
α

Qαα(k)= 2[Q11(k)+Q22(k)] (C 32)

= 2(1+ µ2)Q(k). (C 33)

It is worth noting that the potential enstrophy forcing spectrum FG(k) is independent
of the matrix Lαβ(k) as long as Lαβ(k) is non-singular. The energy forcing spectrum
FE(k), on the other hand, is dependent on the inverse matrix L−1

αβ (k). Equations (C 29)
and (C 33) are the main results of this appendix.
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